This documentation is no longer maintained. For documentation of the current version of emc2, please see http://www.linuxcnc.org/docview/html

Table des matières

1 comp: un outil pour créer les modules HAL

1.1 Introduction

Ecrire un composant de HAL peut se révéler être une tâche ennuyeuse, la plupart de cette tâche consiste à appeler des fonctions rtapi_ et hal_ et à contrôler les erreurs associées à ces fonctions. comp va écrire tout ce code pour vous, automatiquement.

Compiler un composant de HAL est également beaucoup plus simple en utilisant comp, que le composant fasse partie de l'arborescence d'emc2, ou qu'il en soit extérieur.

Par exemple, cette portion des blocks ddt fait environ 80 lignes de code. Le composant équivalent est vraiment très court quand il est écrit en utilisant le préprocesseur comp:

component ddt "Calcule la dérivée de la fonction d'entrée";
pin in float in;
pin out float out;
variable float old;
function _;
license "GPL";
;;
float tmp = in;
out = (tmp - old) / fperiod;
old = tmp;

et il peut être compilé et installé très facilement en plaçant simplement ddt.comp dans src/hal/components puis en lançant make, ou en le plaçant quelque part sur le système et en lançant comp --install ddt.comp

1.2 Définitions

component
Un composant est un simple module temps réel, qui se charge avec halcmd loadrt. Un fichier .comp spécifie un seul composant.
instance
Un composant peut avoir zéro ou plusieurs instances. Chaque instance d'un composant est créée égale (elles ont toutes les mêmes pins, les mêmes paramètres, les mêmes fonctions et les mêmes données) mais elle se comporte de manière différente quand leurs pins, leurs paramètres et leur données ont des valeurs différentes.
singleton
Il est possible pour un composant d'être un 'singleton' (composant dont il n'existe qu'une seule instance), dans ce cas, exactement une seule instance est créée. Il est rarement logique d'écrire un composant singleton, à moins qu'il n'y ait qu'un seul objet de ce type dans le système (par exemple, un composant ayant pour but de fournir une pin avec le temps Unix courant, ou un pilote matériel pour le haut parleur interne du PC)

1.3 Création d'instance

Pour un singleton, une seule instance est créée quand le composant est chargé.

Pour un non-singleton, le paramètre 'count' du module détermine combien d'instances seront créées.

1.4 Syntaxe

Un fichier .comp commence par un certain nombre de déclarations, puis par un ;; seul sur sa propre ligne. Il se terminé par le code C implémentant les fonctions du module.

Déclarations d'include:

Les parenthèses indiquent un item optionnel. Une barre verticale indique une alternative. Les mots en CAPITALES indiquent une variable texte, comme ci-dessous:

HALNAME
Un identifiant.

Lorsqu'ils sont utilisés pour créer un identifiant de HAL, tous les caractères soulignés sont remplacés par des tirets, tous les points et les virgules de fin, sont supprimés, ainsi ce_nom_ est remplacé par ce-nom et si le nom _, alors le point final est enlevé aussi, ainsi function _ donne un nom de fonction HAL tel que component.<num> au lieu de component.<num>.

S'il est présent, le préfixe hal_ est enlevé du début d'un nom de composant pour la création des pins des paramètres et des fonctions.

Dans l'identifiant de HAL pour une pin ou un paramètre, # indique un membre de tableau, il doit être utilisé conjointement avec une déclaration [SIZE]. Les hash marks sont remplacées par des nombres de 0-barrés équivalents aux nombres de caractères #.

Quand ils sont utilisés pour créer des identifiants C, les changements de caractères suivants sont appliqués au HALNAME:

  1. Tous les caractères # sont enlevés ainsi que tous les caractères ., _ ou - immédiatement devant eux.
  2. Dans un nom, tous les carcatères . et - sont remplacés par _
  3. Les caractères _ répétitifs sont remplacés par un seul caractère _.

Un _ final est maintenu, de sorte que les identifiants de HAL, qui autrement seraient en conflit avec les noms ou mots clé réservés (par exemple: min), puissent être utilisés.

HALNAME Identifiant C Identifiant HAL
x_y_z x_y_z x-y-z
x-y.z x_y_z x-y.z
x_y_z_ x_y_z_ x-y-z
x.##.y x_y(MM) x.MM.z
x.## x(MM) x.MM

if CONDITION
Une expression impliquant la personnalité d'une variable non nulle quand la variable ou le paramètre doit être créé.
SIZE
Un nombre donnant la taille d'un tableau. Les items des tableaus sont numérotés de 0 à SIZE-1.
MAXSIZE : CONDSIZE
Un nombre donnant la taille maximum d'un tableau, suivi d'une expression impliquant la personnalité d'une variable et qui aura toujours une valeur inférieure à MAXSIZE. Quand le tableau est créé sa taille est égale à CONDSIZE.
DOC
Une chaine qui documente l'item. La chaine doit être au format C, entre guillemets, comme "Sélectionnez le front désiré: TRUE pour descendant, FALSE pour montant" ou au format Python triples guillemets, pouvant inclure des caractères newlines et des guillements, comme:
param rw bit zot=TRUE
"""L'effet de ce paramètre, également connu comme "the orb of zot",
requiert au moins deux paragraphes d'explications.

J'espère que ces paragraphes vous ont permis de comprendre "zot"
plus profondément.""";

La chaine documentation est en format groff -man. Pour plus d'informations sur ce format de markup, voyez groff_man(7). Souvenez vous que comp interpréte backslash comme Echap dans les chaines, ainsi par exemple pour passer le mot example en font italique, ecrivez \\fIexample\\fB.

TYPE
Un des types de HAL: bit, signed (signé), unsigned (non signé) ou float (flottant). Les anciens noms s32 et u32 peuvent encore être utilisés, mais signed et unsigned sont préférables.
PINDIRECTION
Une des ces directions: in, out, ou io. Le composant pourra positionner la valeur d'une pin de sortie, il pourra lire la valeur sur une pin d'entrée et il pourra lire ou positionner la valeur d'une pin io.
PARAMDIRECTION
Une des valeurs suivantes: r ou rw. Le composant pourra positionner la valeur d'un paramètre r et il pourra positionner ou lire la valeur d'un paramètre rw.
STARTVALUE
Spécifie la valeur initiale d'une pin ou d'un paramètre. Si il n'est pas spécifié, alors la valeur par défaut est 0 ou FALSE, selon le type de l'item.
fp
Indique que la fonction effectuera ses calculs en virgule flottante.
nofp
Indique que la fonction effectuera ses calculs sur des entiers. Si il n'est pas spécifié, fp est utilisé. Ni comp ni gcc ne peuvent détecter l'utilisation de calculs en virgule flottante dans les fonctions marquées nofp.
OPT, VALUE
Selon le nom de l'option OPT, les valeurs VALUE varient. Les options actuellement définies sont les suivantes:
option singleton yes
(défaut: no)

Ne crée pas le paramètre numéro de module et crée toujours une seule instance. Avec singleton, les items sont nommés composant-name.item-name et sans singleton, les items des différentes instances sont nommés composant-name.<num>.item-name.

option default_count 
number (défaut: 1)

Normalement, le paramètre count par défaut est 0. Si spécifié, count remplace la valeur par défaut.

option count_function yes
(défaut: no)

Normalement, le numéro des instances à créer est specifié dans le paramètre count du module, si count_function est spécifié, la valeur retournée par la fonction int get_count(void) est utilisée à la place de la valeur par défaut et le paramètre count du module n'est pas défini.

option rtapi_app no
(défaut: yes)

Normalement, les fonctions rtapi_app_main et rtapi_app_exit sont définies automatiquement. Avec option rtapi_app no, elles ne le seront pas et doivent être fournies dans le code C.

Quand vous implémentez votre propre rtapi_app_main, appellez la fonction int export(char *prefix, long extra_arg) pour enregistrer les pins, paramètres et fonctions pour préfixer.

option data 
type (défaut: none) deprecated

If specified, each instance of the component will have an associated data block of type (which can be a simple type like float or the name of a type created with typedef).

In new components, variable should be used instead.

option extra_setup yes
(défaut: no)

Si spécifié, appelle la fonction définie par EXTRA_SETUP pour chaque instance. Si la définition automatique rtapi_app_main est utilisée, extra_arg est le numéro de cette instance.

option extra_cleanup yes
(défaut: no)

Si spécifié, appelle la fonction définie par EXTRA_CLEANUP depuis la fonction définie automatiquement rtapi_app_exit, ou une erreur est détectée dans la fonction automatiquement définie rtapi_app_main.

option userspace yes
(défaut: no)

Si spécifié, ce fichier décrit un composant d'espace utilisateur, plutôt que le réel. Un composant d'espace utilisateur peut ne pas avoir de fonction définie par la directive de fonction. Au lieu de cela, après que toutes les instances soient construites, la fonction C user_mainloop() est appelée. Dès la fin de cette fonction, le composant se termine. En règle générale, user_mainloop() va utiliser FOR_ALL_INSTS() pour effectuer la mise à  jour pour chaque action, puis attendre un court instant. Une autre action commune dans user_mainloop() peut être d'appeler le gestionnaire de boucles d'événements d'une interface graphique.

option userinit yes
(défaut: no)

Si spécifiée, la fonction userinit(argc,argv) est appelée avant rtapi_app_main() (et cela avant l'appel de hal_init()). Cette fonction peut traiter les arguments de la ligne de commande ou exécuter d'autres actions. Son type de retour est void; elle peut appeler exit() et si elle le veut, se terminer sans créer de composant HAL (par exemple, parce que les arguments de la ligne de commande sont invalides).

Si aucune option VALUE n'est spécifiée, alors c'est équivalent à spécifier la valeur… yes. Le résultat consécutif à l'assignation d'une valeur inappropriée à une option est indéterminé. Le résultat consécutif à n'utiliser aucune autre option est indéfini.

LICENSE
Spécifie la license du module, pour la documentation et pour le module déclaré dans MODULE_LICENSE().
AUTHOR
Spécifie l'auteur du module, pour la documentation

1.5 Stockage des données par-instance

variable 
CTYPE NAME;
variable 
CTYPE NAME[SIZE];
variable 
CTYPE NAME = default;
variable 
CTYPE NAME[SIZE] = default;

Déclare la variable par-instance NAME de type CTYPE, optionnellement comme un tableau de SIZE items et optionnellement avec une valeur default. Les items sans default sont initialisés all-bits-zero. CTYPE est un simple mot de type C, comme float, u32, s32, etc.
Les variables d'un tableau sont mises entre crochets.

Les commentaires de style C++ une ligne (// …) et de style C multi-lignes (/* … */) sont supportés tous les deux dans la section déclaration.

1.6 Autres restrictions sur les fichiers comp

Bien que HAL permette à une pin, un paramètre et une fonction d'avoir le même nom, comp ne le permet pas.

1.7 Conventions des macros

En se basant sur les déclarations des items de section, comp crée une structure C appellée structure d'état. Cependant, au lieu de faire référence aux membres de cette structure (par exemple: *(inst->name)), il leur sera généralement fait référence en utilisant les macros ci-dessous. Certains détails de la structure d'état et de ces macros peuvent différer d'une version de comp à la suivante.

FUNCTION(name)
Cette macro s'utilise au début de la définition d'une fonction temps réel qui aura été précédemment déclarée avec 'function NAME'. function inclus un paramètre 'period' qui est le nombre entier de nanosecondes entre les appels à la fonction.
EXTRA_SETUP()
Cette macro s'utilise au début de la définition de la fonction appelée pour exécuter les réglages complémentaires à cette instance. Une valeur de retour négative (Unix errno) indique un défaut (par exemple: elle retourne -EBUSY comme défaut à la réservation d'un port d'entrées/sorties), une valeur égale à 0 indique le succés.
EXTRA_CLEANUP()
Cette macro s'utilise au début de la définition de la fonction appelée pour exécuter un nettoyage (cleanup) du composant. Noter que cette fonction doit nettoyer toutes les instances du composant, pas juste un. Les macros 'pin_name', 'parameter_name' et 'data' ne doivent pas être utilisées ici.
pin_name
parameter_name
Pour chaque pin, pin_name ou pour chaque paramètre, parameter_name il y a une macro qui permet d'utiliser le nom seul pour faire référence à la pin ou au paramètre.

Quand pin_name ou parameter_name sont des tableaux, la macro est de la forme pin_name(idx) ou param_name(idx) dans laquelle idx est l'index dans le tableau de pins. Quand le tableau est de taille variable, il est seulement légal de faire référence aux items par leurs condsize.

Quand un item est conditionnel, il est seulement légal de faire référence à cet item quand ses conditions sont évaluées à des valeurs différentes de zéro.

variable_name
Pour chaque variable, il y a une macro variable_name qui permet au nom seul d'être utilisé pour faire référence à la variable. Quand variable_name est un tableau, le style normal de C est utilisé: variable_name[idx]
data
Si l'option data est spécifiée, cette macro permet l'accès à l'instance de la donnée.
fperiod
Le nombre de secondes en virgule flottante entre les appels à cette fonction temps réel.
FOR_ALL_INSTS() {
} Pour les composants de l'espace utilisateur. Cette macro utilise la variable struct state *inst pour itérer au dessus de toutes les instances définies. Dans le corps de la boucle, les macros pin_name, parameter_name et data travaillent comme elles le font dans les fonctions temps réel.

1.8 Composants avec une seule fonction

Si un composant a seulement une fonction et que la chaine FUNCTION n'apparaît nulle part après ;;, alors la portion après ;; est considérée comme étant le corps d'un composant simple fonction.

1.9 Personnalité du composant

Si un composant a n'importe combien de pins ou de paramètres avec un if condition ou [maxsize : condsize], il est appelé un composant avec personnalité. La personnalité de chaque instance est spécifiée quand le module est chargé. La Personnalité peut être utilisée pour créer les pins seulement quand c'est nécessaire. Par exemple, la personnalité peut être utilisée dans un composant logique, pour donner un nombre variable de broches d'entrée à chaque porte logique et permettre la sélection de n'importe quelle fonction de logique booléenne de base and, or et xor.

1.10 Compiler un fichier .comp dans l'arborescence

Placer le fichier .comp dans le répertoire emc2/src/hal/components et lancer/relancer make. Les fichiers Comp sont automatiquement détectés par le système de compilation.

Si un fichier .comp est un pilote de périphérique, il peut être placé dans emc2/src/hal/components et il y sera construit excepté si emc2 est configuré en mode simulation.

1.11 Compiler un composant temps réel hors de l'arborescence

comp peut traiter, compiler et installer un composant temps réel en une seule étape, en plaçant rtexample.ko dans le répertoire du module temps réel d'emc2:

comp --install rtexample.comp

Ou il peut aussi être traité et compilé en une seule étape en laissant example.ko (ou example.so pour la simulation) dans le répertoire courant:

comp --compile rtexample.comp

Ou il peut simplement être traité en laissant example.c dans le répertoire courant:

comp rtexample.comp

comp peut aussi compiler et installer un composant écrit en C, en utilisant les options --install et --compile comme ci-dessous:

comp --install rtexample2.c

La documentation au format man peut être créée à partir des informations de la section declaration:

comp --document rtexample.comp

La manpage résultante, exemple.9 peut être lue avec:

man ./exemple.9

ou copiée à un emplacement standard pour une page de manuel.

1.12 Compiler un composant de l'espace utilisateur hors de l'arborescence

comp peut traiter, compiler et installer un document de l'espace utilisateur:

comp usrexample.comp
comp --compile usrexample.comp
comp --install usrexample.comp
comp --document usrexample.comp

Cela fonctionne seulement pour les fichiers .comp mais pas pour les fichiers .c.

1.13 Exemples

1.13.1 constant

Ce composant fonctionne comme dans 'blocks', y compris la valeur par défaut à 1.0. La déclaration function _ crée les fonctions nommées 'constant.0', etc.

component constant;
pin out float out;
param r float value = 1.0;
function _;
;;
FUNCTION(_) { out = value; }

1.13.2 sincos

Ce composant calcule le sinus et le cosinus d'un angle entré en radians. Il a différentes possibilités comme les sorties 'sinus' et 'cosinus' de siggen, parceque l'entrée est un angle au lieu d'être librement basé sur un paramètre 'frequency'.

Les pins sont déclarées avec les noms sin_ et cos_ dans le code source pour que ça n'interfère pas avec les fonctions sin() et cos(). Les pins de HAL sont toujours appelées sincos.<num>.sin.

component sincos;
pin out float sin_;
pin out float cos_;
pin in float theta;
function _;
;;
#include <rtapi_math.h>
FUNCTION(_) { sin_ = sin(theta); cos_ = cos(theta); }

1.13.3 out8

Ce composant est un pilote pour une carte imaginaire appelée out8, qui a 8 pins de sortie digitales qui sont traitées comme une simple valeur sur 8 bits. Il peut y avoir un nombre quelconque de ces cartes dans le système et elles peuvent avoir des adresses variées. La pin est appelée out_ parceque out est un identifiant utilisé dans <asm/io.h>. Il illustre l'utilisation de EXTRA_SETUP et de EXTRA_CLEANUP pour sa requête de région d'entrées/sorties et libère cette région en cas d'erreur ou quand le module est déchargé.

component out8;
pin out unsigned out_ "Output value; only low 8 bits are used";
param r unsigned ioaddr;

function _;

option count_function;
option extra_setup;
option extra_cleanup;
option constructable no;

;;
#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY_INT(io, MAX, "I/O addresses of out8 boards");

int get_count(void) {
    int i = 0;
    for(i=0; i<MAX && io[i]; i++) { /* Nothing */ }
    return i;
}

EXTRA_SETUP() {
    if(!rtapi_request_region(io[extra_arg], 1, "out8")) {
	// set this I/O port to 0 so that EXTRA_CLEANUP does not release the IO
	// ports that were never requested.
        io[extra_arg] = 0; 
        return -EBUSY;
    }
    ioaddr = io[extra_arg];
    return 0;
}

EXTRA_CLEANUP() {
    int i;
    for(i=0; i < MAX && io[i]; i++) {
        rtapi_release_region(io[i], 1);
    }
}

FUNCTION(_) { outb(out_, ioaddr); }

1.13.4 hal_loop

component hal_loop;
pin out float example;

Ce fragment de composant illustre l'utilisation du préfixe hal_ dans un nom de composant. loop est le nom d'un module standard du kernel Linux, donc un composant loop ne pourrait pas être chargé si le module loop de Linux est également présent.

Quand il le charge, halcmd montre un composant appelé hal_loop. Cependant, les pins affichées par halcmd sont loop.0.example et non hal-loop.0.example.

1.13.5 arraydemo

Ce composant temps réel illustre l'utilisation d'un tableau de taille fixe:

component arraydemo "Registre à décalage 4-bits";
pin in bit in;
pin out bit out-# [4];
function _ nofp;
;;
int i;
for(i=3; i>0; i--) out(i) = out(i-1);
out(0) = in;

1.13.6 rand

Ce composant de l'espace utilisateur modifie la valeur de ses pins de sortie vers une nouvelle valeur aléatoire dans l'étendue [0,1) à chaque ms.

component rand;
option userspace;

pin out float out;
license "GPL";
;;
#include <unistd.h>

void user_mainloop(void) {
    while(1) {
        usleep(1000);
        FOR_ALL_INSTS() out = drand48();
    }
}

1.13.6.1 logic

Ce composant temps réel montre l'utilisation de la personnalité pour créer un tableau de taille variable et des pins optionnelles.

component logic;
pin in bit in-##[16 : personality & 0xff];
pin out bit and if personality & 0x100;
pin out bit or if personality & 0x200;
pin out bit xor if personality & 0x400;
function _ nofp;
description """
Experimental general `logic function' component.  Can perform `and', `or'
and `xor' of up to 16 inputs.  Determine the proper value for `personality'
by adding:
.IP \\(bu 4
The number of input pins, usually from 2 to 16
.IP \\(bu
256 (0x100)  if the `and' output is desired
.IP \\(bu
512 (0x200)  if the `or' output is desired
.IP \\(bu
1024 (0x400)  if the `xor' (exclusive or) output is desired""";
license "GPL";
;;
FUNCTION(_) {
    int i, a=1, o=0, x=0;
    for(i=0; i < (personality & 0xff); i++) {
        if(in(i)) { o = 1; x = !x; }
        else { a = 0; }
    }
    if(personality & 0x100) and = a;
    if(personality & 0x200) or = o;
    if(personality & 0x400) xor = x;
}

Une ligne de chargement typique pourrait être:

loadrt logic count=3 personality=0x102,0x305,0x503

qui créerait les pins suivantes: