
V2.1 User Handbook

August 24, 2007

i

The EMC Team

This handbook is a work in progress. If you are able to help with writing, editing, or graphic
preparation please contact any member of the writing team or join and send an email to emc-
users@lists.sourceforge.net.

Copyright (c) 2000-6 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and one Back-Cover Text: "This EMC
Handbook is the product of several authors writing for linuxCNC.org. As you find it to be of value in
your work, we invite you to contribute to its revision and growth." A copy of the license is included in
the section entitled "GNU Free Documentation License". If you do not find the license you may order
a copy from Free Software Foundation, Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

Contents

I Introduction & installing EMC2 1

1 The Enhanced Machine Control 2

1.1 Introduction . 2

1.2 The Big CNC Picture . 2

1.3 Computer Operating Systems . 3

1.4 History of the Software . 3

1.5 How the EMC2 Works . 4

1.5.1 Graphical User Interfaces . 5

1.5.2 Motion Controller EMCMOT . 6

1.5.3 Discrete I/O Controller EMCIO . 7

1.5.4 Task Executor EMCTASK . 7

1.6 Thinking Like a Machine Operator . 8

1.6.1 Modes of Operation . 9

1.6.2 Information Display . 10

1.7 Thinking Like An Integrator . 11

1.7.1 Units . 12

1.7.2 Some things we may not want to change. 12

1.7.3 Some things we will need to change. 12

2 Installing the EMC2 software 14

2.1 Introduction . 14

2.2 EMC Download Page . 14

2.3 EMC2 Live CD . 15

2.4 EMC2 install script . 15

2.5 Manual installing using apt commands. 15

II Configuring EMC2 17

3 Running EMC2 18

3.1 Configuration Selector . 18

ii

CONTENTS iii

3.2 Copying Sample Configurations . 19

3.2.1 Copy and Paste . 19

3.2.2 Drag and Drop . 20

3.2.3 Comand Line Copy . 21

3.3 Starting a Custom Configuration . 21

4 Basic configurations for a stepper based system 23

4.1 Introduction . 23

4.2 Maximum step rate . 23

4.3 Pinout . 23

4.3.1 standard_pinout.hal . 24

4.3.2 Overview of the standard_pinout.hal . 26

4.3.3 Changing the standard_pinout.hal . 26

4.3.4 Changing the polarity of a signal . 26

4.3.5 Adding PWM Spindle Speed Control . 27

4.3.6 Adding an enable signal . 27

4.3.7 Adding an external ESTOP button . 27

5 INI Configuration 28

5.1 Files Used for Configuration . 28

5.2 The INI File Layout . 28

5.2.1 Comments . 29

5.2.2 Sections . 29

5.2.3 Variables . 30

5.3 INI Variable Definitions . 30

5.3.1 [EMC] Section . 30

5.3.2 [DISPLAY] Section . 30

5.3.3 [EMCMOT] Section . 30

5.3.4 [TASK] Section . 31

5.3.5 [HAL] section . 31

5.3.6 [TRAJ] Section . 31

5.3.7 [AXIS_<num>] Section . 32

5.3.7.1 Homing-related items . 34

5.3.7.2 Servo-related items . 34

5.3.7.3 Stepper-related items . 35

5.3.8 [EMCIO] Section . 36

5.4 Homing . 38

5.4.1 Overview . 38

5.4.2 Homing Sequence . 38

CONTENTS iv

5.4.3 Configuration . 38

5.4.3.1 HOME_SEARCH_VEL . 38

5.4.3.2 HOME_LATCH_VEL . 38

5.4.3.3 HOME_IGNORE_LIMITS . 40

5.4.3.4 HOME_USE_INDEX . 40

5.4.3.5 HOME_OFFSET . 40

5.4.3.6 HOME . 40

5.4.3.7 HOME_IS_SHARED . 40

5.4.3.8 HOME_SEQUENCE . 40

6 Introduction 43

6.1 What is HAL? . 43

6.1.1 HAL is based on traditional system design techniques 43

6.1.1.1 Part Selection . 43

6.1.1.2 Interconnection Design . 43

6.1.1.3 Implementation . 44

6.1.1.4 Testing . 44

6.1.2 Summary . 44

6.2 HAL Concepts . 45

6.3 HAL components . 46

6.3.1 External Programs with HAL hooks . 46

6.3.2 Internal Components . 46

6.3.3 Hardware Drivers . 47

6.3.4 Tools and Utilities . 47

6.4 Tinkertoys, Erector Sets, Legos and the HAL . 47

6.4.1 Tower . 47

6.4.2 Erector Sets . 47

6.4.3 Tinkertoys . 48

6.4.4 A Lego Example . 49

6.5 Timing Issues In HAL . 50

6.6 Dynamic Linking and Configuration . 50

7 HAL Tutorial 52

7.1 Before we start . 52

7.1.1 Notation . 52

7.1.2 The RTAPI environment . 52

7.2 Tab-completion . 53

7.3 A Simple Example . 53

7.3.1 Loading a realtime component . 53

CONTENTS v

7.3.2 Examining the HAL . 53

7.3.3 Making realtime code run . 55

7.3.4 Changing parameters . 56

7.3.5 Saving the HAL configuration . 56

7.3.6 Restoring the HAL configuration . 57

7.4 Looking at the HAL with halmeter . 57

7.4.1 Starting halmeter . 57

7.4.2 Using halmeter . 59

7.5 A slightly more complex example. 60

7.5.1 Installing the components . 60

7.5.2 Connecting pins with signals . 61

7.5.3 Setting up realtime execution - threads and functions 62

7.5.4 Setting parameters . 64

7.5.5 Run it! . 64

7.6 Taking a closer look with halscope. 64

7.6.1 Starting Halscope . 64

7.6.2 Hooking up the “scope probes” . 67

7.6.3 Capturing our first waveforms . 68

7.6.4 Vertical Adjustments . 69

7.6.5 Triggering . 69

7.6.6 Horizontal Adjustments . 71

7.6.7 More Channels . 72

8 Hardware Drivers 74

8.1 Parport . 74

8.1.1 Installing . 74

8.1.2 Removing . 75

8.1.3 Pins . 75

8.1.4 Parameters . 75

8.1.5 Functions . 77

8.1.6 Common problems . 77

8.2 probe_parport . 77

8.2.1 Installing . 77

8.3 AX5214H . 77

8.3.1 Installing . 78

8.3.2 Removing . 78

8.3.3 Pins . 78

8.3.4 Parameters . 78

8.3.5 Functions . 79

CONTENTS vi

8.4 Servo-To-Go . 79

8.4.1 Installing: . 79

8.4.2 Removing . 79

8.4.3 Pins . 80

8.4.4 Parameters . 80

8.4.5 Functions . 80

8.5 Mesa Electronics m5i20 “Anything I/O Card” . 81

8.5.1 Removing . 81

8.5.2 Pins . 81

8.5.3 Parameters . 82

8.5.4 Functions . 82

8.5.5 Connector pinout . 82

8.5.5.1 Connecor P2 . 83

8.5.5.2 Connector P3 . 83

8.5.5.3 Connector P4 . 84

8.5.5.4 LEDs . 85

8.6 Vital Systems Motenc-100 and Motenc-LITE . 85

8.6.1 Removing . 86

8.6.2 Pins . 86

8.6.3 Parameters . 87

8.6.4 Functions . 87

8.7 Pico Systems PPMC (Parallel Port Motion Control) . 87

8.7.1 Removing . 88

8.7.2 Pins . 88

8.7.3 Parameters . 88

8.7.4 Functions . 89

III Using EMC2 90

9 Using the AXIS Graphical Interface 91

9.1 Introduction . 91

9.2 Getting Started . 92

9.2.1 A typical session with AXIS . 92

9.3 Elements of the AXIS window . 92

9.3.1 Toolbar buttons . 93

9.3.2 Graphical Program Display Area . 93

9.3.2.1 Coordinate Display . 93

9.3.2.2 Preview Plot . 93

9.3.2.3 Program Extents . 94

CONTENTS vii

9.3.2.4 Tool Cone . 94

9.3.2.5 Backplot . 94

9.3.2.6 Interacting with the display . 94

9.3.3 Text Program Display Area . 94

9.3.4 Manual Control . 95

9.3.4.1 The “Axis” group . 95

9.3.4.2 The “Spindle” group . 96

9.3.4.3 The “Coolant” group . 96

9.3.5 Code Entry . 97

9.3.5.1 History . 97

9.3.5.2 MDI Command . 97

9.3.5.3 Active G-Codes . 97

9.3.6 Feed Override . 97

9.3.7 Spindle Speed Override . 98

9.3.8 Jog Speed . 98

9.4 Keyboard Controls . 98

9.5 emctop: Show EMC Status . 99

9.6 mdi: Text-mode MDI interface . 99

9.7 axis-remote: Send remote commands to the AXIS GUI 99

9.8 hal_manualtoolchange: Prompt the user to exchange tools 100

9.9 Python modules . 100

9.10 Using AXIS to control a CNC Lathe . 101

9.11 Advanced configuration of AXIS . 101

9.11.1 Program Filters . 101

9.11.2 The X Resource Database . 102

9.11.3 Physical jog wheels . 103

9.11.4 ~/.axisrc . 103

10 Using the TkEMC Graphical Interface 104

10.1 Introduction . 104

10.2 Getting Started . 104

10.2.1 A typical session with TkEMC . 105

10.3 Elements of the TkEMC window . 105

10.3.1 Main buttons . 106

10.3.2 Offset display status bar . 106

10.3.3 Coordinate Display Area . 106

10.3.3.1Backplot . 106

10.3.4 Automatic control . 107

10.3.4.1Buttons for control . 107

CONTENTS viii

10.3.4.2Text Program Display Area . 107

10.3.5 Manual Control . 107

10.3.5.1Implicit keys . 107

10.3.5.2The “Spindle” group . 108

10.3.5.3The “Coolant” group . 108

10.3.6 Code Entry . 108

10.3.6.1MDI: . 108

10.3.6.2Active G-Codes . 108

10.3.7 Jog Speed . 109

10.3.8 Feed Override . 109

10.3.9 Spindle speed Override . 109

10.4 Keyboard Controls . 109

11 Using The MINI Graphical Interface 110

11.1 Introduction . 110

11.2 Screen layout . 111

11.3 Menu Bar . 111

11.4 Control Button Bar . 113

11.4.1 MANUAL . 113

11.4.2 AUTO . 114

11.4.3 MDI . 115

11.4.4 [FEEDHOLD] – [CONTINUE] . 115

11.4.5 [ABORT] . 115

11.4.6 [ESTOP] . 115

11.5 Left Column . 116

11.5.1 Axis Position Displays . 116

11.5.2 Feedrate Override . 117

11.5.3 Messages . 117

11.6 Right Column . 117

11.6.1 Program Editor . 117

11.6.2 Backplot Display . 118

11.6.3 Tool Page . 118

11.6.4 Offset Page . 119

11.7 Keyboard Bindings . 119

11.7.1 Common Keys . 119

11.7.2 Manual Mode . 120

11.7.3 Auto Mode . 121

11.8 Misc . 121

CONTENTS ix

12 return Machining Center Overview 122

12.1 Mechanical Components . 122

12.1.1 Linear Axes . 122

12.1.2 Rotational axes . 122

12.1.3 Spindle . 123

12.1.4 Coolant . 123

12.1.5 Pallet Shuttle . 123

12.1.6 Tool Carousel . 123

12.1.7 Tool Changer . 123

12.1.8 Message Display . 123

12.1.9 Feed and Speed Override Switches . 123

12.1.10 Block Delete Switch . 123

12.1.11 Optional Program Stop Switch . 123

12.2 Control and Data Components . 124

12.2.1 Linear Axes . 124

12.2.2 Rotational Axes . 124

12.2.3 Controlled Point . 124

12.2.4 Coordinate Linear Motion . 124

12.2.5 Feed Rate . 124

12.2.6 Coolant . 125

12.2.7 Dwell . 125

12.2.8 Units . 125

12.2.9 Current Position . 125

12.2.10 Selected Plane . 125

12.2.11 Tool Carousel . 126

12.2.12 Tool Change . 126

12.2.13 Pallet Shuttle . 126

12.2.14 Feed and Speed Override Switches . 126

12.2.15 Path Control Mode . 126

12.3 Interpreter Interaction with Switches . 126

12.3.1 Feed and Speed Override Switches . 126

12.3.2 Block Delete Switch . 126

12.3.3 Optional Program Stop Switch . 127

12.4 Tool File . 127

12.5 Parameters . 128

12.6 Coordinate Systems . 129

CONTENTS x

13 Language Overview 130

13.1 Format of a line . 130

13.2 Line Number . 131

13.3 Word . 131

13.3.1 Number . 132

13.3.2 Parameter Value . 132

13.3.3 Expressions and Binary Operations . 132

13.3.4 Unary Operation Value . 133

13.4 Parameter Setting . 133

13.5 Comments and Messages . 133

13.6 Repeated Items . 134

13.7 Item order . 134

13.8 Commands and Machine Modes . 134

13.9 Modal Groups . 134

14 G Codes 136

14.1 G0: Rapid Linear Motion . 136

14.2 G1: Linear Motion at Feed Rate . 136

14.3 G2, G3: Arc at Feed Rate . 137

14.3.1 Center format arcs (preferred format) . 137

14.3.2 Radius format arcs (discouraged format) . 138

14.4 G33: Spindle-Synchronized Motion . 138

14.5 G4: Dwell . 139

14.6 G10: Set Coordinate System Data . 139

14.7 G17, G18, G19: Plane Selection . 139

14.8 G20, G21: Length Units . 140

14.9 G28, G30: Return to Predefined Absolute Position . 140

14.10 G38.2: Straight Probe . 140

14.11 G40, G41, G42: Cutter Radius Compensation. 141

14.12 G43, G49: Tool Length Offsets . 141

14.13 G53: Move in absolute coordinates . 141

14.14 G54 to G59.3: Select Coordinate System . 142

14.15 G61, G61.1, G64: Set Path Control Mode . 142

14.16 G80: Cancel Modal Motion . 142

14.17 G76: Threading Canned Cycle . 142

14.18 G81 to G89: Canned Cycles . 143

14.18.1 Preliminary and In-Between Motion . 145

14.18.2 G81: Drilling Cycle . 145

14.18.3 G82: Drilling Cycle with Dwell . 146

CONTENTS xi

14.18.4 G83: Peck Drilling . 146

14.18.5 G84: Right-Hand Tapping . 147

14.18.6 G85: Boring, No Dwell, Feed Out . 147

14.18.7 G86: Boring, Spindle Stop, Rapid Out . 147

14.18.8 G87: Back Boring . 147

14.18.9 G88: Boring, Spindle Stop, Manual Out . 147

14.18.10 G89: Boring, Dwell, Feed Out . 147

14.18.11 G90, G91: Set Distance Mode . 148

14.19 G92, G92.1, G92.2, G92.3: Coordinate System Offsets 148

14.20 G93, G94: Set Feed Rate Mode . 149

14.21 G98, G99: Set Canned Cycle Return Level . 149

15 M Codes 150

15.1 M0, M1, M2, M30, M60: Program Stopping and Ending 150

15.2 M3, M4, M5: Spindle Control . 151

15.3 M6: Tool Change . 151

15.4 M7, M8, M9: Coolant Control . 151

15.5 M48, M49: Override Control . 151

15.6 M50: Feed Override Control . 152

15.7 M51: Spindle Speed Override Control . 152

15.8 M52: Adaptive Feed Control . 152

15.9 M53: Feed Stop Control . 152

15.10 M62 to M65: Digital IO Control . 152

15.11 M100 to M199: User Defined Commands . 152

16 O Codes 153

16.1 Subroutines: “sub”, “endsub”, “return”, “call” . 153

16.2 Looping: “do”, “while”, “endwhile”, “break”, “continue” 154

16.3 Conditional: “if”, “else”, “endif” . 154

16.4 Indirection . 154

17 Other Codes 155

17.1 F: Set Feed Rate . 155

17.2 S: Set Spindle Speed . 155

17.3 T: Select Tool . 155

18 Order of Execution 157

CONTENTS xii

19 G-Code Best Practices 158

19.1 Use an appropriate decimal precision . 158

19.2 Use consistent white space . 158

19.3 Prefer “Center-format” arcs . 158

19.4 Put important modal settings at the top of the file . 158

19.5 Don’t put too many things on one line . 159

19.6 Don’t use line numbers . 159

20 Tool File and Compensation 160

20.1 Tool File . 160

20.2 Tool Compensation . 161

20.3 Tool Length Offsets . 161

20.4 Cutter Radius Compensation . 162

20.4.1 Cutter Radius Compensation Detail . 162

20.5 Tool Compensation Sources . 169

21 Coordinate System and G92 Offsets 171

21.1 Introduction . 171

21.2 The Machine Position Command (G53) . 171

21.3 Fixture Offsets (G54-G59.3) . 171

21.3.1 Default coordinate system . 173

21.3.2 Setting coordinate system values within G-code. 173

21.4 G92 Offsets . 173

21.4.1 The G92 commands . 174

21.4.2 Setting G92 values . 174

21.4.3 G92 Cautions . 175

21.5 Sample Program Using Offsets . 175

22 Canned Cycles 177

22.1 Preliminary Motion . 177

22.2 G80 . 178

22.3 G81 Cycle . 179

22.4 G82 Cycle . 181

22.5 G83 Cycle . 182

22.6 G84 Cycle . 182

22.7 G85 Cycle . 183

22.8 G86 Cycle . 183

22.9 G87 Cycle . 183

22.10 G88 Cycle . 185

22.11 G89 Cycle . 185

22.12 G98 G99 . 185

22.13 Why use a canned cycle? . 186

CONTENTS xiii

23 Image-to-gcode: Milling “depth maps” 188

23.1 What is a depth map? . 188

23.2 Integrating image-to-gcode with the AXIS user interface 188

23.3 Using image-to-gcode . 189

23.4 Option Reference . 189

23.4.1 Units . 189

23.4.2 Invert Image . 189

23.4.3 Normalize Image . 189

23.4.4 Tolerance (units) . 189

23.4.5 Pixel Size (units) . 189

23.4.6 Plunge Feed Rate (units per minute) . 190

23.4.7 Feed Rate (units per minute) . 190

23.4.8 Spindle Speed (RPM) . 190

23.4.9 Scan Pattern . 190

23.4.10 Scan Direction . 190

23.4.11 Depth (units) . 190

23.4.12 Step Over (pixels) . 190

23.4.13 Tool Diameter . 190

23.4.14 Safety Height . 191

23.4.15 Tool Type . 191

23.4.16 Lace bounding . 191

23.4.17 Contact angle . 191

A Glossary of Common Terms Used in the EMC Documents 192

B Legal Section 195

B.1 GNU Free Documentation License Version 1.1, March 2000 195

B.1.1 GNU Free Documentation License Version 1.1, March 2000 195

Part I

Introduction & installing EMC2

1

Chapter 1

The Enhanced Machine Control

1.1 Introduction

This book is intended for people who want to use the Enhanced Machine Controller to run a mill,
lathe, router, or to control some other rather standard kind of machine. Computer Numerical
Control or CNC is the general term used to name this kind of computer application. In order to
get right into the essential task of operating it we have limited the amount of information about
installation and setup. We assume that the user will install one of the standard ways (covered in
Chapter 2). Machine wiring and setup is limited to what we refer to as a mini or benchtop mill that
is powered by stepper motors and amps that use a single parallel port.

If the user is interested in developing their own install using some other distribution of Linux or
another operating system, or applying the EMC2 to a more complex machine, they should study the
Integrators Handbook where these topics are covered in greater detail.

1.2 The Big CNC Picture

The term CNC has taken on a lot of different meanings over the years. In the early days CNC
replaced the hands of a skilled machinist with motors that followed commands in much the same
way that the machinist turned the handwheels. From these early machines, a language of machine
tool control has grown. This language is called RS274 and several standard variants of it have been
put forward. It has also been expanded by machine tool and control builders in order to meet the
needs of specific machines. If a machine changed tools during a program it needed to have tool
change commands. If it changed pallets in order to load new castings, it had to have commands
that allowed for these kinds of devices as well. Like any language, RS274 has evolved over time.
Currently there are several dialects. In general each machine tool maker has been consistent within
their product line but different dialects can have commands that cause quite different behavior from
one machine to another.

More recently the language of CNC has been hidden behind or side-stepped by several programming
schemes that are referred to as “Conversational1 programming languages.” One common feature
of these kinds of programming schemes is the selection of a shape or geometry and the addition of
values for the corners, limits, or features of that geometry.

The use of Computer Aided Drafting has also had an effect on the CNC programming languages.
Because CAD drawings are saved as a list or database of geometries and variables associated with
each, they are available to be interpreted into G-Code. These interpreters are called CAM (Computer
Aided Machining) programs.

1One machine tool manufacturer, Hurco, claims to have a right to the use of these programming schemes and to the use
of the term conversational when used in this context.

2

CHAPTER 1. THE ENHANCED MACHINE CONTROL 3

Like the CAD converters, the rise of drawing programs, like CorelTM and the whole bunch of paint
programs, converters have been written that will take a bitmap or raster or vector image and turn
it into G-Code that can be run with a CNC.

You’re asking yourself, “Why did I want to know this?” The answer is that the EMC2 as it currently
exists does not directly take in CAD or any image and run a machine using it. The EMC2 uses a
variant of the earlier CNC language named RS274NGC. (Next Generation Controller). All of the com-
mands given to the EMC2 must be in a form that is recognized and have meaning to the RS274NGC
interpreter. This means that if you want to carve parts that were drawn in some graphical or draft-
ing program you will also have to find a converter that will transform the image or geometry list into
commands that are acceptable to the EMC2 interpreter. Several commercial CAD/CAM programs
are available to do this conversion. At least one converter (Ace) has been written that carries a
copyright that makes it available to the public.

There has been recent talk about writing a “conversational” or geometric interface that would allow
an operator to enter programs is much the same way that several modern proprietary controls enter
programs but it isn’t in there yet.

1.3 Computer Operating Systems

The EMC2 code can be compiled on almost any GNU-Linux Distribution (assuming it has been
patched with a real time extension). In addition to the raw code, some binary distributions are
available. The latest packages have been created around the Ubuntu GNU-Linux Distribution.
Ubuntu is one of the distributions that is aimed at novice Linux users, and has been found to be
very easy to use. Along with that, there are lots of places around the world that offer support for it.
Installing EMC2 on it is trivial, as you will see in Chapter 2.

The EMC2 will not run under a Microsoft (TM) operating system. The reason for this is that the
EMC2 requires a real-time environment for the proper operation of its motion planning and stepper
pulse outputs. Along with that, it also benefits from the much-needed stability and performance of
the Linux OS.

1.4 History of the Software

The EMC code was started by the Intelligent Systems Division at the National Institute of Standards
and Technology in the United States. The quotation below, taken from the NIST web presence
some time back, should lend some understanding of the essential reasons for the existence of this
software and of the NIST involvement in it.

As part of our (NIST) collaboration with the OMAC User’s Group, we have written soft-
ware which implements real-time control of equipment such as machine tools, robots,
and coordinate measuring machines. The goal of this software development is twofold:
first, to provide complete software implementations of all OMAC modules for the purpose
of validating application programming interfaces; and second, to provide a vehicle for the
transfer of control technology to small- and medium-sized manufacturers via the NIST
Manufacturing Extension Partnership. The EMC software is based on the NIST Real-
time Control System (RCS) Methodology, and is programmed using the NIST RCS Library.
The RCS Library eases the porting of controller code to a variety of Unix and Microsoft
platforms, providing a neutral application programming interface (API) to operating sys-
tem resources such as shared memory, semaphores, and timers. The RCS Library also
implements a communication model, the Neutral Manufacturing Language, which allows
control processes to read and write C++ data structures throughout a single homogeneous
environment or a heterogeneous networked environment. The EMC software is written in
C and C++, and has been ported to the PC Linux, Windows NT, and Sun Solaris operating

CHAPTER 1. THE ENHANCED MACHINE CONTROL 4

systems. When running actual equipment, a real-time version of Linux is used to achieve
the deterministic computation rates required (200 microseconds is typical). The software
can also be run entirely in simulation, down to simulations of the machine motors. This
enables entire factories of EMC machines to be set up and run in a computer integrated
manufacturing environment.

EMC has been installed on many machines, both with servo motors and stepper motors. Here is a
sampling of the earliest applications.

• 3-axis Bridgeport knee mill at Shaver Engineering. The machine uses DC brush servo motors
and encoders for motion control, and OPTO-22 compatible I/O interfaced to the PC parallel
port for digital I/O to the spindle, coolant, lube, and e-stop systems.

• 3-axis desktop milling machine used for prototype development. The machine uses DC brush
servo motors and encoders. Spindle control is accomplished using the 4th motion control axis.
The machine cuts wax parts.

• 4-axis Kearney & Trecker horizontal machining center at General Motors Powertrain in Pontiac,
MI. This machine ran a precursor to the full-software EMC which used a hardware motion
control board.

After these early tests, Jon Elson found the Shaver Engineering notes and replaced a refrigera-
tor sized Allen Bradley 7300 control on his Bridgeport with the EMC running on a Red Hat 5.2
distribution of Linux. He was so pleased with the result that he advertised the software on sev-
eral newsgroups. He continues to use that installation and has produced several boards that are
supported by the software.

From these early applications news of the software spread around the world. It is now used to con-
trol many different kinds of machines. More recently the Sherline company http://www.sherline.
com has released their first CNC mill. It uses a standard release of the EMC.

The source code files that make up the controller are kept in a repository on http://cvs.linuxcnc.
org. They are available for anyone to inspect or download. The EMC2 source code (with a few ex-
ceptions2) is released under the GNU General Public License (GPL). The GPL controls the terms
under which EMC2 can be changed and distributed. This is done in order to protect the rights of
people like you to use, study, adapt, improve, and redistribute it freely, now and in the future. To
read about your rights as a user of EMC2, and the terms under which you are allowed to distribute
any modifications you may make, see the full GPL at http://www.gnu.org/copyleft/gpl.html.

1.5 How the EMC2 Works

The Enhanced Machine Controller (EMC2) is a lot more than just another CNC mill program. It
can control machine tools, robots, or other automated devices. It can control servo motors, stepper
motors, relays, and other devices related to machine tools. In this handbook we focus on only a
small part of that awesome capability, the minimill.

Figure 1.1 shows a simple block diagram showing what a typical 3-axis EMC2 system might look
like. This diagram shows a stepper motor system. The PC, running Linux as its operating system,
is actually controlling the stepper motor drives by sending signals through the printer port. These
signals (pulses) make the stepper drives move the stepper motors. The EMC2 can also run servo
motors via servo interface cards or by using an extended parallel port to connect with external
control boards. As we examine each of the components that make up an EMC2 system we will
remind the reader of this typical machine.

2some parts of EMC2 are released under the “Lesser” GPL (LPGL), which allows them to be used with proprietary software
as long as certain restrictions are observed.

http://www.sherline.com
http://www.sherline.com
http://cvs.linuxcnc.org
http://cvs.linuxcnc.org
http://www.gnu.org/copyleft/gpl.html

CHAPTER 1. THE ENHANCED MACHINE CONTROL 5

Figure 1.1: Typical EMC2 Controlled Machine

There are four main components to the EMC2 software: a motion controller (EMCMOT), a discrete
I/O controller (EMCIO), a task executor which coordinates them (EMCTASK), and a collection of
text-based or graphical user interfaces. An EMC2 capable of running a minimill must start some
version of all four of these components in order to completely control it. Each component is briefly
described below. In addition there is a layer called HAL (Hardware Abstraction Layer) which allows
simple reconfiguration of EMC2 without the need of recompiling.

1.5.1 Graphical User Interfaces

A graphical interface is the part of the EMC2 that the machine tool operator interacts with. The
EMC2 comes with several types of user interfaces:

• an interactive command-line program named emcpanel

• a character-based screen graphics program named keystick 1.3

• X Windows programs named xemc 1.6 and yemc

• a Java-based GUI, emcgui

• two Tcl/Tk-based GUIs named tkemc 1.5 and mini 1.4.

• an OpenGL-based GUI, with an interactive G-Code previewer, called AXIS 1.2

CHAPTER 1. THE ENHANCED MACHINE CONTROL 6

Figure 1.2: The AXIS Graphical Interface

Tkemc and Mini will run on Linux, Mac, and Microsoft Windows if the Tcl/Tk programming language
has been installed. The Mac and Microsoft Windows version can connect to a real-time EMC2
running on a Linux machine via a network connection, allowing the monitoring of the machine
from a remote location. Instructions for installing and configuring the connection between a Mac or
Microsoft Machine and a PC running the EMC2 can be found in the Integrators Handbook.

1.5.2 Motion Controller EMCMOT

Motion control includes sampling the position of the axes to be controlled, computing the next
point on the trajectory, interpolating between these trajectory points, and computing an output
to the motors. For servo systems, the output is based on a PID compensation algorithm. For
stepper systems, the calculations run open-loop, and pulses are sent to the steppers based on
whether their accumulated position is more than a pulse away from their commanded position.
The motion controller includes programmable software limits, and interfaces to hardware limit and
home switches.

The motion controller is written to be fairly generic. Initialization files (with the same syntax as
Microsoft Windows INI files) are used to configure parameters such as number and type of axes (e.g.,
linear or rotary), scale factors between feedback devices (e.g., encoder counts) and axis units (e.g.,
millimeters), servo gains, servo and trajectory planning cycle times, and other system parameters.
Complex kinematics for robots can be coded in C according to a prescribed interface to replace the
default 3-axis Cartesian machine kinematics routines.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 7

Figure 1.3: The Keystick interface

1.5.3 Discrete I/O Controller EMCIO

Discrete I/O controllers are highly machine-specific, and are not customizable in general using
the INI file technique used to configure the more generic motion controller. However, since EMC2
uses the HAL, reconfiguration of the I/O subsystem has become very powerful and flexible. EMC2
contains a Programmable Logic Controller module (behaves just like a hardware PLC) that can be
used for very complex scenarios (tool changers, etc.).

In EMC2 there is only one big I/O controller, which provides support for all kinds of actions and
hardware control. All its outputs and inputs are HAL pins (more on this later on), so you can use
only the subset that fits your hardware and is necessary for your application.

1.5.4 Task Executor EMCTASK

The Task Executor is responsible for interpreting G and M code programs whose behavior does
not vary appreciably between machines. G-code programming is designed to work like a machinist
might work. The motion or turns of a handwheel are coded into blocks. If a machinist wanted his
mill to move an inch in the +X direction at some feedrate, he might slowly turn the handwheel five
turns clockwise in 20 seconds. The same machinist programming that same move for CNC might
write the following block of code.

G1 F3 X1.000

CHAPTER 1. THE ENHANCED MACHINE CONTROL 8

Figure 1.4: The Mini Graphical Interface

G1 means that the machine is supposed to run at a programmed feedrate rather than at the fastest
speed that it can (G0 is the way to command a rapid move like you would make above the work
when not cutting). The F3 means that it should travel at 3 inches a minute or 3 millimeters a
minute if it is working in metric mode. The X1.000 (assuming that the X axis started at zero) means
the machine should move one inch in the positive X direction. You will read quite a bit more about
G-code in the programming chapters .

Figure 1.7 is a block diagram of how a personal computer running the EMC2 is used to control
a machine with G-code. The actual G-code can be sent using the MDI (Machine Device Interface)
mode or it can be sent as a file when the machine is in Auto mode. These choices are made by the
operator and entered using one of the Graphical User Interfaces available with the software.

G-code is sent to the interpreter which compares the new block with what has already been sent
to it. The interpreter then figures out what needs to be done for the motion and input or output
systems and sends blocks of canonical commands to the task and motion planning programs.

1.6 Thinking Like a Machine Operator

This book will not even pretend that it can teach you to run a mill or a lathe. Becoming a machinist
takes time and hard work. An author once said, “We learn from experience, if at all.” Broken tools,
gouged vices, and scars are the evidence of lessons taught. Good part finish, close tolerances, and

CHAPTER 1. THE ENHANCED MACHINE CONTROL 9

Figure 1.5: The TkEmc Graphical Interface

careful work are the evidence of lessons learned. No machine, no computer program, can take the
place of human experience.

As you begin to work with the EMC2 program, you will need to place yourself in the position of
operator. You need to think of yourself in the role of the one in charge of a machine. It is a machine
that is either waiting for your command or executing the command that you have just given it.
Throughout these pages we will give information that will help you become a good operator of the
EMC2 mill. You will need some information right up front here so that the following pages will make
sense to you.

1.6.1 Modes of Operation

When an EMC2 is running, there are three different major modes used for inputting commands.
These are Manual, Auto, and MDI. Changing from one mode to another makes a big difference in
the way that the EMC2 behaves. There are specific things that can be done in one mode that can
not be done in another. An operator can home an axis in manual mode but not in auto or MDI
modes. An operator can cause the machine to execute a whole file full of G-codes in the auto mode
but not in manual or MDI.

In manual mode, each command is entered separate. In human terms a manual command might
be “turn on coolant” or “jog X at 25 inches per minute.” These are roughly equivalent to flipping a
switch or turning the handwheel for an axis. These commands are normally handled on one of the
graphical interfaces by pressing a button with the mouse or holding down a key on the keyboard.
In auto mode, a similar button or key press might be used to load or start the running of a whole
program of G-code that is stored in a file. In the MDI mode the operator might type in a block of
code and tell the machine to execute it by pressing the <return> or <enter> key on the keyboard.

Some motion control commands are available and will cause the same changes in motion in all

CHAPTER 1. THE ENHANCED MACHINE CONTROL 10

Figure 1.6: The XEMC Graphical Interface

modes. These include ABORT, ESTOP, and FEEDRATE OVERRIDE. Commands like these should be
self explanatory.

1.6.2 Information Display

While an EMC2 is running, each of the modules keeps up a conversation with the others and with
the graphical display. It is up to the display to select from that stream of information what the
operator needs to see, and to arrange it on the screen in a way that makes it easy for the operator
to understand. Perhaps the most important display is the mode the EMC2 is running in. You will
want to keep your eye on the mode display.

Right up there with knowing what mode is active is consistent display of the position of each axis.
Most of the interfaces will allow the operator to read position based upon actual or commanded
position as well as machine or relative position.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 11

Figure 1.7: EMC2 Process Diagram

Machine This is the position of an axis relative to the place where it started or was homed.

Relative This is the position of an axis after work or tool or other offsets have been applied.

Actual This is the real position of the axis within the machine or relative system.

Commanded This is where the axis is commanded to be.

These may all be exactly the same if no offsets have been applied and there is no deadband set
in the INI file. Deadband is a small distance which is assumed to be close enough – perhaps one
stepper pulse or one encoder count.

It is also important to see any messages or error codes sent by the EMC2. These are used to request
the operator change a tool, to describe problems in G-code programs, or to tell why the machine
stopped running.

As you work your way through this text, you will be learning, bit by bit, how to set up and run
a machine with your copy of the EMC2 software. While you are learning about setting up and
running a minimill here, you will be thinking of other applications and other capabilities. These are
the topics of the other linuxcnc.org handbooks.

1.7 Thinking Like An Integrator

The biggest task of a machine integrator is figuring out how to connect a PC running the EMC2 to a
machine and configuring the software so that it runs the machine correctly. Most of this is not the
topic of this book, but there are a few things that you will have to understand in order to make our
little minimill work for us like we expect it to work.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 12

1.7.1 Units

Units can be confusing. You might ask, “Does it work in inches, feet, centimeters, millimeters, or
what?” There are several possible answers to this question but the best one is that it works in the
units that you set it to work in.

At a machine level, we set each axis’s units to some value using an INI variable that looks like this.

UNITS = 1

or

UNITS = 0.03937007874016

The long number above is the distance represented by one millimeter if we convert it into inches.
“So,” you say, “the EMC2 uses millimeters internally.” If we use UNITS = 1 then we have defined
our user units as millimeters. If we use UNITS = 0.03937007874016 then we have defined our user
units as inches. Using similar arithmetic we could set our units to most any value we wanted. (You
will want to use inches or millimeters for your minimill, but some who run vehicles with the EMC2
have been known to set units to kilometers or miles.)

After we have decided upon a value for the units for an axis, we tell the EMC2 how may step pulses
or encoder pulses it should send or read for each unit of distance to be traveled. Once we have done
this, the EMC2 knows how to count units of distance. However it is very important to understand
that this counting of distance is different from the commanding of distance. You can command
distance in millimeters or inches without even thinking about the units that you defined. There are
G-codes that allow you to switch easily between metric and imperial.

1.7.2 Some things we may not want to change.

Within the EMC2 code are a few things that are not easily changed. We call these defaults. There
are connections that have been made between the running components of the EMC2 that we can
not easily change. We’ll see that there are displays and buttons and keyboard keys that are not
easily shifted about. We’ll learn about and get used to these in the chapters ahead.

1.7.3 Some things we will need to change.

The EMC2 is configured with files that are read at startup and used to override the compiled de-
faults. No real controller will likely use the compiled defaults, so you will certainly need to edit at
least some of these files to reflect the specifics of your machine.

There are five kinds of configuration files: INI, NML, TBL, VAR and HAL files. These are reflected
in lower case file extensions to a file name. They may be named stepper.tbl or generic.tbl but they
do the same thing when they are read by the EMC2 as it starts up. Many users copy these and
name them for the specific machine. A set of these files named Sherlinemill.ini, Sherlinemill.var,
Sherlinemill.tbl and Sherlinemill.nml are certainly more descriptive than a bunch of files named
generic.

These files each contain specific information for your CNC.

• stepper.ini contains all the machine parameters such as servo gains, scale factors, cycle times,
units, etc. and will certainly need to be edited.

• emc.nml contains communication settings for shared memory and network ports you may
need to override on your system, although it is likely that you can leave these settings alone.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 13

• stepper.tbl contains the tool information such as which pocket contains which tool, and the
length and diameter for each tool.

• rs274ngc.var contains variables specific to the RS-274-NGC dialect of NC code, notably for
setting the persistent numeric variables for the nine work coordinate systems.

We’ll get into some of the details of these files as we begin to hook up and operate our little machine.

In addition to these four files, there is a standard startup file. Back in the early days of the EMC
it was common to have to start up several different tasks in different terminal windows in order to
get the EMC to run a machine. Each of these tasks had to be supplied a bunch of information in
the form of arguments in order to be certain that the task started the way that we expected it to. All
of this was tedious and has been replaced by one script. It is named simply ’emc’. This executable
script file controls the startup of all of the modules needed to run a standard version of the EMC2.
When run, it lets the user choose a certain configuration.

Chapter 2

Installing the EMC2 software

2.1 Introduction

One of the problems users often complained about EMC was installing the software itself. They
were forced to get sources, and compile themselves, and try to set up a RT-patched Linux, etc. The
developers of EMC2 chose to go with a standard distribution called Ubuntu1.

Ubuntu has been chosen, because it fits perfectly into the Open Source views of EMC2:

• Ubuntu will always be free of charge, and there is no extra fee for the "enterprise edition", we
make our very best work available to everyone on the same Free terms.

• Ubuntu comes with full professional support on commercial terms from hundreds of compa-
nies around the world, if you need those services. Each new version of Ubuntu receives free
security updates for 18 months after release, some versions are supported for even longer.

• Ubuntu uses the very best in translations and accessibility infrastructure that the Free Soft-
ware community has to offer, to make Ubuntu usable for as many people as possible.

• Ubuntu is released regularly and predictably; a new release is made every six months. You
can use the current stable release or help improve the current development release.

• The Ubuntu community is entirely committed to the principles of free software development;
we encourage people to use open source software, improve it and pass it on.

2.2 EMC Download Page

You will find the most recent releases of EMC2 announced on www.linuxcnc.org. The releases
of EMC2 will be done in two ways (sources and binary package). The sources (described in the
Developers Handbook) consist of a tarball (emc2-<version>.tar.gz), which you should download and
unpack into your home directory.

This document (oriented towards the end-user) will only try to explain how to install the binary
package on the Ubuntu distribution2.

1“Ubuntu” is an ancient African word, meaning “humanity to others”. Ubuntu also means “I am what I am because of
who we all are”. The Ubuntu Linux distribution brings the spirit of Ubuntu to the software world. You can read more about
it at http://www.ubuntu.com

2For information regarding other Linux variants, check the Developers Handbook or ask for help on the emc-developers
mailing list http://sourceforge.net/mail/?group_id=6744.

14

http://www.ubuntu.com
http://sourceforge.net/mail/?group_id=6744

CHAPTER 2. INSTALLING THE EMC2 SOFTWARE 15

2.3 EMC2 Live CD

The EMC2 team now has a custom Live-CD based on Ubuntu 6.06 that will let you try out EMC2
before installing, and it’s also the easiest way to install Ubuntu and EMC2 together.

Just download the ISO http://linuxcnc.org/iso/emc2-ubuntu6.06-desktop-i386.iso (EU
Mirror http://dsplabs.utt.ro/~juve/emc/) and burn it to a CD. (The MD5SUM of the CD is
6ee5048eb9cb424aa030dfedccc5386b)

When you boot the CD on your machine, you can see and experiment with the exact environment
and EMC2 software that you will have if you choose to install it.

If you like what you see, just click the Install icon on the desktop, answer a few questions (your
name, timezone, password) and the install completes in a few minutes.

This install gives you all the benefits of the community-supported Ubuntu distribution as well as
being automatically configured for EMC2. As new Ubuntu updates or EMC2 releases are made, the
Update manager will let you know and allow you to easily upgrade.

2.4 EMC2 install script

We also provide a simple script to install emc2 on Ubuntu for users with an existing installation of
Ubuntu. It runs the commands explained in 2.5.

To use it you need to :

• Download the script from http://www.linuxcnc.org/emc2-install.sh (for Ubuntu 5.10)
or http://linuxcnc.org/dapper/emc2-install.sh (For Ubuntu 6.06)

• Save it on your Desktop. Right-click the icon, select Properties. Go to the Permissions tab and
check the box for Owner: Execute. Close the Properties window.

• Now double-click the emc2-install.sh icon, and select "Run in Terminal". A terminal will appear
and you will be asked for your password.

• When the installation asks if you are sure you want to install the EMC2 packages, hit Enter to
accept. Now just allow the install to finish.

• When it is done, you must reboot (System > Log Out > Restart the Computer), and when you
log in again you can run EMC2 by selecting it on the Applications > CNC Menu.

• If you aren’t ready to set up a machine configuration, try the sim-AXIS configuration; it runs a
"simulated machine" that requires no attached hardware.

• Now that the initial installation is done, Ubuntu will prompt you when updates of EMC2 or its
supporting files are available. When they are, you can update them easily and automatically
with the Update Manager.

2.5 Manual installing using apt commands.

The following few section will describe how to install EMC2 using a console and apt-commands. If
you know a bit about Linux and Debian-flavored distributions this might be trivial. If not, you might
consider reading 2.4.

First add the repository to /etc/apt/sources.list:

$ sudo sh -c ’echo "deb http://www.linuxcnc.org/emc2/ dapper emc2" >>/etc/apt/sources.list;’
$ sudo sh -c ’echo "deb-src http://www.linuxcnc.org/emc2/ dapper emc2" >>/etc/apt/sources.list’

http://linuxcnc.org/iso/emc2-ubuntu6.06-desktop-i386.iso
http://dsplabs.utt.ro/~juve/emc/
http://www.linuxcnc.org/emc2-install.sh
http://linuxcnc.org/dapper/emc2-install.sh

CHAPTER 2. INSTALLING THE EMC2 SOFTWARE 16

Or replace ’dapper’ above with ’breezy’ if you still use Ubuntu 5.10 Breezy Badger.

Then update & get emc2.

$ sudo apt-get update
$ sudo apt-get install emc2

This command will install the emc23 package along with all dependencies4.

You might get warnings that the packages are from an untrusted source (this means your com-
puter doesn’t recognize the GPG signature on the packages). To correct that issue the following
commands:

$ gpg --keyserver pgpkeys.mit.edu --recv-key BC92B87F

$ gpg -a --export BC92B87F | sudo apt-key add -

3AXIS is now part of emc2. You don’t need to install emc2-axis as previously.
4The dependencies are one of the nicest thing in Debian based distributions. They assure you have everything installed

that you need. In the case of emc2 it’s even a RT-patched kernel, and all needed libraries.

Part II

Configuring EMC2

17

Chapter 3

Running EMC2

One advantage of EMC has always been it’s ability to run a wide variety of machines and devices.
This flexibility can be a bit scary when you first begin to work with the system. The material in this
chapter will show you how to start up EMC2 using sample configurations and how to copy these
sample configurations so that you are ready to create the configuration you need for your machine.

3.1 Configuration Selector

The installation of EMC2 includes quite a few different configurations that can be started from
a graphical screen. This configuration selector is designed to make those first test runs easier by
showing the different configurations available and a bit of information about each. You will probably
not be able to run all of these configurations on the same computer. Several require that specific
hardware like the PICO Systems Universal Stepper Controller be connected or a or the Motinc Light
board be installed before starting that configuration. This hardware requirement is true of most
all of the servo configurations. There are also stepper configurations that use one or more parallel
ports as well as simulators that do not require any specific hardware.

EMC2 starts just like most installed Linux software. With a regularly installed system, you can
issue the command “emc” in most any terminal at most any location within the Linux tree. If
you have used a Ubuntu install you will find EMC2 under the Applications->CNC menu. Either
of these methods will pop up the configuration selector. Figure 3.1 shows the appearance of the
configuration selector screen.

Move your mouse cursor over and click on any of the configurations listed in the center tree and
you’ll be able to read about that configuration on the right side of the screen. When you’ve found a
configuration that you’d like to try, click the OK button and this script will start that configuration.
This script remembers the last configuration you ran so that you don’t have to run through the
whole list each time while trying to remember which one you tried last time.

If you look closer at the listing of available configurations you will see that they are divided into main
sections that show where those configurations are located in the file system. Your configuration
selector will show a different set of configurations that the one shown in Figure 3.1 because this
selector looks for and finds these configurations in both the /etc/emc2 directory and a user’s home
directory. In this case it shows all of the configurations it found in /home/rayh/emc2/configs as
well as those samples found in /etc/emc2.1

It is far easier to find a sample configuration that is close to what is required for a specific machine
and then editing that sample to exactly fit the axis ratios and IO buttons and relays than it is to

1We recommend making a copy of the sample configuration needed by a user in the home directory as
emc2/configs/myconfig. If a user leaves the sample configurations intact in /etc/emc2 they can always make a new copy
for editing.

18

CHAPTER 3. RUNNING EMC2 19

Figure 3.1: EMC2 Configuration Selector

start from scratch and write a new configuration. A user can quickly copy /etc/emc2 into the home
directory and prune out those configurations that are not ever going to be used. Or you can create
a new emc2/configs directory in home and copy or drag in those configurations that you want to
try modifying.

3.2 Copying Sample Configurations

The files in /etc/emc2/configs are just samples. You should copy them to your home directory
before modifying them. There are three possible ways to make a copy of an existing configuration;
copy and paste 3.2.1, drag and drop 3.2.2, and command line3.2.3. Any one of these will copy a
sample configuration.

3.2.1 Copy and Paste

Here’s how to do it with the menu system and file browser on Ubuntu systems:

• From the "Places" Menu choose "Computer"

• click "Filesystem"

• click "etc"

• click "emc2"

• click "sample-configs"

You will see a number of sample configurations, with names like "sim", "stepper", "motenc", etc.
These are the ones that you’ve been looking at with the Conifguration Selector. You can copy any of
them to use as the beginning of your customized configuration. You should pick one that is close to
what you ultimately need. For instance, if your machine uses stepper motors, you probably should

CHAPTER 3. RUNNING EMC2 20

choose the "stepper" configuration. If you are using servos with a Servo-to-Go card, "stg" is for you.
Move your mouse cursor over the configuration directory you wish to copy, right-click it and choose
"copy."

Now we need to create a couple of directories in your home folder.

• From the "Places" Menu choose "Home Folder"

• From "File" choose "Create Folder".

• Enter the name "emc2" where "untitled folder" is highlighted.

• click the new "emc2" folder.

• From "File" choose "Create Folder".

• Enter the name "configs" where "untitled folder" is highlighted.

• double click the new "configs" folder.

• right-click in the empty space in that folder and choose "paste".

Start EMC2 from the menu. The Configuration Selector will show you your new configuration at the
top of the Tree. Press the Cancel button to go back to the file browser that you used to copy with.
Now you can move into the copied folder and begin to specific files to suit your specific machine. To
edit one of the files (e.g., sim.ini), right click it and choose ’Open with "Text Editor"’. Details of the
configuration files are in the next chapters.

3.2.2 Drag and Drop

To copy via dragging instead of cut & paste:

• From "Places", choose "Home Folder".

• From "File" choose "Create Folder".

• Enter the name "emc2".

• click "emc2".

• From "File" choose "Create Folder".

• Enter the name "configs".

• double click "configs".

Now you have one copy of the file browser showing the empty configs folder. Leave this browser on
the screen and create another.

• From "Places" choose "Computer"

• click "Filesystem"

• click "etc"

• click "emc2"

• click "sample-configs".

Hold down Ctrl and drag "sim" from this window to the window "configs". If you do not hold down
Ctrl, you will get an error that a folder could not be removed (because the user can’t make changes
to the /etc/emc2/sample-configs folder)

CHAPTER 3. RUNNING EMC2 21

3.2.3 Comand Line Copy

To copy using the unix shell: Open a terminal window, and type

mkdir -p ~/emc2/configs
cp -R /etc/emc2/sample-configs/stepper ~/emc2/configs

You’ll find the unix terminal under
Figure 3.2: Terminal Windowthe Applications menu and Accessories

sub menu. As you gain more experi-
ence with Linux you will find your-
self using this terminal to enter com-
mands. These commands can be very
powerful. As you can see from the
two lines above text commands can
simplify many of the menu or click
things you can do in the graphical en-
vironment. The only limitation you’ll
find in the text environment is that
you will have to type each command
with great care for precision so that
Linux’s command interpreter will un-
derstand what you want it to do.

Figure 3.2 shows a terminal. Whenever a terminal starts it will give you a command prompt. This
prompt will include information about where it is running within the file system and who it thinks
you are. In this picture the terminal thinks I am rayh on a computer named rayu and I am in my
home (~) directory.

3.3 Starting a Custom Configuration

You will be able to see and easily run your custom configurations if you place them where the Con-
figuration Selector can find them. Any of the methods above will make a copy that the Configuration
Selector will find.

Once a configuration has been edited into shape and tested on a machine, it is possible to start that
configuration using a command like

emc emc2/configs/stepper/stepper_inch.ini

issued in a terminal in the users home directory.

It is also possible to make an icon on the desktop that starts the system. The dialog shown as
Figure 3.3 is what the Ubuntu Launcher Icon maker looks like. Start it by left clicking on any
empty desktop space. Type in the name of your machine where it says “name.” Type in a command
like that shown above in the Command space and tick the “Run in terminal” checkbox. The OK
button will put the icon on the desktop. You can even select a custom EMC2 icon to use if you wish.

Users of other distributions will need to explore the way that their desktop system works to build
these kind of custom launcher icons.

CHAPTER 3. RUNNING EMC2 22

Figure 3.3: Create Launcher Icon

Chapter 4

Basic configurations for a stepper
based system

4.1 Introduction

This chapter describes some of the more common settings that users want to change when setting
up EMC2. Because of the various possibilities of configuring EMC2, it is very hard to document
them all, and keep this document relatively short.

The most common EMC2 usage (as reported by our users) is for stepper based systems. These
systems are using stepper motors with drives that accept step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from
the motors), yet the system needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on the sample config released along with EMC2. The config is called
stepper, and usually it is found in /etc/emc2/sample-configs/stepper.

4.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for
step-and-direction output. The maximum requested step rate is the product of an axis’s
MAX_VELOCITY and its INPUT_SCALE. If the requested step rate is not attainable, following errors
will occur, particularly during fast jogs and G0 moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one
step is possible for each BASE_PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will
cause the machine to become unresponsive or even lock up), the INPUT_SCALE (if you can select
different step sizes on your stepper driver, change pulley ratios, or leadscrew pitch), or the
MAX_VELOCITY and STEPGEN_MAXVEL.

If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then
hardware step generation (such as with the emc2-supported Universal Stepper Controller)

4.3 Pinout

One of the majour flaws in EMC was that you couldn’t specify the pinout without recompiling the
source code. EMC2 is far more flexible, and now (thanks to the Hardware Abstraction Layer) you

23

CHAPTER 4. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 24

can easily specify which signal goes where. (read the 6.1 section for more information about the
HAL).

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters
inside the HAL.

The ones relevant for our pinout are1:

signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in 2

Depending on what you have chosen in your ini file you are using either standard_pinout.hal or
xylotex_pinout.hal. These are two files that instruct the HAL how to link the various signals &
pins. Furtheron we’ll investigate the standard_pinout.hal.

4.3.1 standard_pinout.hal

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers
using a parport for I/O
#
first load the parport driver
loadrt hal_parport cfg="0x0378"
#
next connect the parport functions to threads
read inputs first
addf parport.0.read base-thread 1
write outputs last
addf parport.0.write base-thread -1
#
finally connect physical pins to the signals
linksp Xstep => parport.0.pin-03-out
linksp Xdir => parport.0.pin-02-out
linksp Ystep => parport.0.pin-05-out
linksp Ydir => parport.0.pin-04-out
linksp Zstep => parport.0.pin-07-out
linksp Zdir => parport.0.pin-06-out

create a signal for the estop loopback
linkpp iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
linkpp iocontrol.0.tool-prepare iocontrol.0.tool-prepared
linkpp iocontrol.0.tool-change iocontrol.0.tool-changed

create a signal for "spindle on"
newsig spindle-on bit
connect the controller to it
linkps motion.spindle-on => spindle-on
connect it to a physical pin
linksp spindle-on => parport.0.pin-09-out

1Note: we are only presenting one axis to keep it short, all others are similar.
2Refer to section 8.1 for additional information

CHAPTER 4. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 25

###
You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core_stepper.hal
###

linksp Xen => parport.0.pin-01-out

###
If you want active low for this pin, invert it like this:
###

setp parport.0.pin-01-out-invert 1

###
A sample home switch on the X axis (axis 0). make a signal,
link the incoming parport pin to the signal, then link the signal
to EMC’s axis 0 home switch input pin
###

newsig Xhome bit
linkps parport.0.pin-10-in => Xhome
linksp Xhome => axis.0.home-sw-in

###
Shared home switches all on one parallel port pin?
that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the ini file. See the
user manual!
###

newsig homeswitches bit
linkps parport.0.pin-10-in => homeswitches
linksp homeswitches => axis.0.home-sw-in
linksp homeswitches => axis.1.home-sw-in
linksp homeswitches => axis.2.home-sw-in

###
Sample separate limit switches on the X axis (axis 0)
###

newsig X-neg-limit bit
linkps parport.0.pin-11-in => X-neg-limit
linksp X-neg-limit => axis.0.neg-lim-sw-in

newsig X-pos-limit bit
linkps parport.0.pin-12-in => X-pos-limit
linksp X-pos-limit => axis.0.pos-lim-sw-in

###
Just like the shared home switches example, you can wire together
limit switches. Beware if you hit one, EMC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this.
###

newsig Xlimits bit
linkps parport.pin-13-in => Xlimits

CHAPTER 4. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 26

linksp Xlimits => axis.0.neg-lim-sw-in
linksp Xlimits => axis.0.pos-lim-sw-in

###
you can also use the "net" syntax to accomplish the "newsig" and "link"
operations all at once. This command does the same thing as the above
block.
###

net Xlimits parport.pin-13-in => axis.0.neg-lim-sw-in axis.0.pos-lim-sw-in

The files starting with ’#’ are comments, and their only purpose is to guide the reader through the
file.

4.3.2 Overview of the standard_pinout.hal

There are a couple of operations that get executed when the standard_pinout.hal gets executed /
interpreted:

1. The Parport driver gets loaded (see 8.1 for details)

2. The read & write functions of the parport driver get assigned to the Base thread 3

3. The step & direction signals for axes X,Y,Z get linked to pins on the parport

4. Further IO signals get connected (estop loopback, toolchanger loopback)

5. A spindle On signal gets defined and linked to a parport pin

4.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and
locate the parts you want to change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to
do is to change the number in the ’parport.0.pin-XX-out’ name:

linksp Xstep parport.0.pin-03-out
linksp Xdir parport.0.pin-02-out

can be changed to:

linksp Xstep parport.0.pin-02-out
linksp Xdir parport.0.pin-03-out

or basicly any other numbers you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

4.3.4 Changing the polarity of a signal

If external hardware expects an “active low” signal, set the corresponding -invert parameter. For
instance, to invert the spindle control signal:

setp parport.0.pin-09-invert TRUE

3the fastest thread in the EMC2 setup, usually the code gets executed every few microseconds

CHAPTER 4. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 27

4.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0
addf pwmgen.update servo-thread
addf pwmgen.make-pulses base-thread
net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value
net spindle-on motion.spindle-on => pwmgen.0.enable
net spindle-pwm pwmgen.0.pwm => parport.0.pin-09-out
setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

4.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of
the motors. For this reason there are already defined signals called ’Xen’, ’Yen’, ’Zen’.

To connect them use the following example:

linksp Xen parport.0.pin-08-out

You can either have one single pin that enables all drives, or several, depending on the setup you
have. Note however that usually when one axis faults, all the other ones will be disabled aswell, so
having only one signal / pin is perfectly safe.

4.3.7 Adding an external ESTOP button

As you can see in 4.3.1 by default the stepper configuration assumes no external ESTOP button. 4

To add a simple external button you need to replace the line:

linkpp iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

with

linkpp parport.0.pin-01-in iocontrol.0.emc-enable-in

This assumes an ESTOP switch connected to pin 01 on the parport. As long as the switch will stay
pushed5, EMC2 will be in the ESTOP state. When the external button gets released EMC2 will
imediately switch to the ESTOP-RESET state, and all you need to do is switch to Machine On and
you’ll be able to continue your work with EMC2.

4An extensive explanation of hooking up ESTOP circuitry is explained in the wiki.linuxcnc.org and in the Integrator
Manual

5make sure you use a maintained switch for ESTOP.

Chapter 5

INI Configuration

5.1 Files Used for Configuration

The EMC is configured with human readable text files. All of these files can be read and edited in
any of the common text file editors available with most any Linux distribution.1 You’ll need to be a
bit careful when you edit these files. Some mistakes will cause the startup to fail. These files are
read whenever the software starts up. Some of them are read repeatedly while the CNC is running.

Configuration files include;

INI The ini file overrides defaults that are compiled into the EMC code. It also provides sections
that are read directly by the Hardware Abstraction Layer.

HAL The hal files start up process modules and provide linkages between EMC signals and
specific hardware pins.

VAR The var file provide a set of numbered variables for use by the interpreter. These values are
saved from one run to another.

TBL The tbl file saves tool information.

NML The nml file configures the communication channels used by the EMC. It is normally setup
to run all of the communication within a single computer but can be modified to
communicate between several computers.

.emcrc This file saves user specific information and is created to save the name of the directory
when the user first selects an EMC configuration.2

This chapter describes the EMC2’s INI file in just enough detail so that the reader can understand
which variable values might need to be edited in order to make a stock configuration conform to a
real machine.3

5.2 The INI File Layout

A typical INI file follows a rather simple layout that includes;

1Don’t confuse a text editor with a word processor. A text editor like gedit or kwrite produce files that are plain text.
They also produce lines of text that are separated from each other. A word processor like Open Office produce files with
paragraphs and word wrapping and lots of embedded codes that control font size and such. A text editor does none of this.

2Usually this file is in the users home directory (e.g. /home/user/)
3Complete reference to these files are left to the Integrator and Developer Handbooks.

28

CHAPTER 5. INI CONFIGURATION 29

• comments.

• sections,

• variables.

Each of these elements is separated on single lines. Each end of line or newline character creates a
new element.

5.2.1 Comments

A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at
the start a line, the rest of the line is ignored by the software. Comments can be used to describe
what some INI element will do.

; This is my little mill configuration file.
; I set it up on January 12, 2006

Comments can also be used to select between several values of a single variable.

DISPLAY = tkemc
DISPLAY = axis
DISPLAY = mini
DISPLAY = keystick

In this list, the DISPLAY variable will be set to axis because all of the others are commented out. If
someone carelessly edits a list like this and leaves two of the lines uncommented, the first one
encountered will be used.

5.2.2 Sections

Sections in an INI file work like file folders in a drawer. They separate variables based on what part
of the EMC they refer to. A section line looks like [THIS_SECTION]. The name of the section is
enclosed in brackets. Common INI files have several sections including;

• [EMC] general information (5.3.1)

• [DISPLAY] selects and sets up some display characteristics (5.3.2

• [TASK] sets up the task planner (5.3.4)

• [RS274NGC] location of interpreter specific file

• [EMCMOT] motion module and default characteristics (5.3.3)

• [HAL] hardware configuration files and commands (5.3.5)

• [TRAJ] information for the motion planner (5.3.6)

• [AXIS_0] ... [AXIS_n] individual axis variables (5.3.7)

• [EMCIO] emc’s input and output variables. (5.3.8)

Each of these section names are on a line by themselves so you can quickly scan through the file.

CHAPTER 5. INI CONFIGURATION 30

5.2.3 Variables

A variable line is made up of a variable name, an equals sign(=), and a value. Everything from the
first non-whitespace character after the = up to the end of the line is passed as the value, so you
can embed spaces in string symbols if you want to or need to. A variable name is often called a
keyword. These variables and the values they are assigned are the way that the INI affects the
operation of the EMC. You can edit the values for each keyword in any text editor. Changes don’t
take effect until the next time the controller is run.

The following sections detail each section of the configuration file, using sample values for the
configuration lines.

Some of the variables are used by EMC, and must always use the section names and variable
names shown. Other variables are used only by HAL, and the section names and variable names
shown are those used in the sample configuration files.

5.3 INI Variable Definitions

5.3.1 [EMC] Section

VERSION = $Revision: 1.3 $ The version number for the INI file. The value shown here looks odd
because it is automatically updated when using the Revision Control System. It’s a good idea
to change this number each time you revise your file. If you want to edit this manually just
change the number and leave the other tags alone.

MACHINE = My Controller This is the name of the controller, which is printed out at the top of
most graphical interfaces. You can put whatever you want here as long as you make it a
single line long.

RS274NGC_STARTUP_CODE = G21 G90 A string of NC codes that the interpreter is initialized
with. These are the codes that an interpreter will be reset to.

5.3.2 [DISPLAY] Section

DISPLAY = tkemc The name of the user interface to use. Valid options may include:

• axis

• keystick

• mini

• tkemc

• xemc

5.3.3 [EMCMOT] Section

BASE_PERIOD = 50000 Base task period, in nanoseconds - this is the fastest thread in the
machine. It’s units are nanoseconds. This is a fairly conservative value but if you are
installing on a very old, slow processor you may have to make this a larger number or the
machine may lock up or reboot.
You might want to make this value smaller if you have a fast computer because this value
sets the maximum number of stepper pulses you can get from your machine. It has little

CHAPTER 5. INI CONFIGURATION 31

effect on servo systems so leave it large. In the absence of long setup or hold times, the
absolute maximum step rate for a step+direction motor is one step per two BASE_PERIOD, so

max_step_rate [steps
second] =

109

2 ∗ base_period

Thus, the BASE_PERIOD shown above gives an absolute maximum step rate of 10000 steps
per second.

SERVO_PERIOD = 1000000 Servo task period is also in nanoseconds. This value will be rounded
to an integer multiple of BASE_PERIOD.
Most systems will not need to change this value. It is the update rate of the low level motion
planner. You’ll need it even if you only have steppers.

TRAJ_PERIOD = 10000000 Trajectory Planner task period in nanoseconds This value will be
rounded to an integer multiple of SERVO_PERIOD.
Folk with fast computers have found that reducing this value by half will give them smother
motion blending during contour cutting .

5.3.4 [TASK] Section

The [TASK] section contains general parameters for EMCTASK, which includes primarily the NC
language interpreter and the sequencing logic for sending commands to EMCMOT and EMCIO.

CYCLE_TIME = 0.100 The period, in seconds, at which EMCTASK will run. This parameter
mostly affects the polling interval when waiting for motion to complete, or when executing a
pause instruction. It no longer affects the throughput when transferring segments to the
real-time layer. Making it 0.0 or a negative number will tell EMCTASK not to sleep at all.

5.3.5 [HAL] section

The [HAL] section lists files and commands to setup the Hardware Abstraction Layer. If this is a
stepper system you might see several files here. The exact set would depend upon the
configuration of signals at the parallel port. At a minimum you would see the following. Sherline
mills use the “standard_pinout”, and “xylotex_pinout” matches the setup for those brand of cards.

HALFILE = core_stepper.hal
HALFILE = standard_pinout.hal
HALFILE = xylotex_pinout.hal

You can also add variables (commands really) here.4

5.3.6 [TRAJ] Section

The [TRAJ] section contains general parameters for the trajectory planning module in EMCMOT.
You will not need to change these if you are applying EMC to a common three axis mill in the
United States of America. If you are in an area using metric hardware components you might be
working with the stepper_mm.ini where these numbers are already setup for that system of units.

AXES = 3 The number of controlled axes in the system. If you have a four axis system put that
number here and edit the next two variables as well

4See the Integrator Handbook for details.

CHAPTER 5. INI CONFIGURATION 32

COORDINATES = X Y Z The names of the axes being controlled. X, Y, Z, A, B, and C are all valid.
It is also possible to have X Y Y Z and control ganged slides. For a fourth axis mounted on X
you would use X Y Z A. This has no effect on the mapping from G-code axis names (X- Y- Z-)
to joint numbers–kinematics does this–but is largely for documentation.

HOME = 0 0 0 Coordinates of the homed position of each axis. Again for a fourth axis you will
need 0 0 0 0. This value is only used for machines with nontrivial kinematics. On machines
with trivial kinematics this value is ignored.

LINEAR_UNITS = <units> The name of units to be used. Possible choices are (in, inch, imperial,
metric, mm). For systems executing in native English (inch) units, this value shall be any one
of ’in’, ’inch’ or ’imperial’. For systems executing in native millimeter units, this value shall be
’mm’ or ’metric’. This does not affect the ability to program in English or metric units in NC
code. It is used to determine how to interpret the numbers reported in the controller status
by external programs.

ANGULAR_UNITS = <units> The name of units to be used. For systems executing in native degree
units, this value should be ’deg’ or ’degree’. For systems executing in radians, this value is
’rad’ or ’radian’. Another possible value is ’grad’ or ’gon’ for units operating in gradians (400
gradians in a full circle).

DEFAULT_VELOCITY = 0.0167 The initial velocity used for axis or coordinated axis motion, in
user units per second. The value shown is one unit per minute.

DEFAULT_ACCELERATION = 2.0 The initial acceleration used for axis or coordinated axis
motion, in user units per second per second.

MAX_VELOCITY = 5.0 The maximum velocity for any axis or coordinated move, in user units per
second. Think for a moment what this value really means in hardware terms. The formula is
MAX_VELOCITY * 60. In this case this is 300 inches per minute.

MAX_ACCELERATION = 20.0 The maximum acceleration for any axis or coordinated axis move,
in user units per second per second.

POSITION_FILE = position.txt If set to a non-empty value, the joint positions are stored between
runs in this file. This allows the machine to start with the same coordinates it had on
shutdown.5 If unset, joint positions are not stored and will begin at 0 each time emc is
started.

5.3.7 [AXIS_<num>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components in
the axis control module. The axis section names begin numbering at 0, and run through the
number of axes specified in the [TRAJ] AXES entry minus 1.

Values for the various parameters of LINEAR axes are in the units specified in the [TRAJ]
LINEAR_UNITS entry. Values for the position of ANGULAR axes are in the units specified in the
[TRAJ] ANGULAR_UNITS entry.

TYPE = LINEAR The type of axes, either LINEAR or ANGULAR.

MAX_VELOCITY = 1.2 Per axis maximum velocity while coordinated motion is in effect.

MAX_ACCELERATION = 20.0 Per axis maximum acceleration while coordinated motion is in
effect.

5This assumes there was no movement of the machine while powered off. It helps on smaller machines without home
switches.

CHAPTER 5. INI CONFIGURATION 33

BACKLASH = 0.000 Backlash compensation value can be used to make up for small deficiencies
in the hardware used to drive an axis. Don’t expect this to compensate for poor mechanical
elements. The value set here is in UNITS.

COMP_FILE = file.extension A file holding a compensation structure for the specific axis. The
values inside are triplets of nominal, forward and reverse positions which correspond to the
nominal position (where it should be), forward (where the axis is while travelling forward) and
reverse (where the axis is while travelling back). One set of triplets per line. Currently the
limit inside EMC2 is for 256 triplets / axis.

COMP_FILE_TYPE = 1 Specifying a non-zero value changes the expected format of the
COMP_FILE. While type == 0, the expected values are triplets for nominal, forward & reverse.
With COMP_FILE_TYPE non-zero, the expected values in the COMP_FILE are nominal,
forward_trim and reverse_trim. These correspond to the nominal, nominal-forward and
nominal-reverse defined above.

INPUT_SCALE = 4000 This variable has slightly different meaning for stepper and for servo
systems. For steppers, the only number it is the number of pulses required to move the axis
one UNIT.
For servos this value is the scale factors for the axis input from the raw feedback device, e.g.,
an incremental encoder. The units on the scale value are in raw units (e.g., counts) per user
units (e.g., inch).
The value for scale can be obtained by doing a unit analysis, i.e., units are

sensor units

desired input SI units

For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units
of mm, we have

[scaleunits] = 2000
counts

rev
∗ 10

rev

inch
∗ 1/25.4

inch

mm

= 787.4
counts

mm

and, as a result,
input[mm] = (encoder[counts])/787.4

MIN_LIMIT = -1000 The minimum limit (soft limit) for axis motion, in user units. When this limit
is exceeded, the controller aborts axis motion.

MAX_LIMIT = 1000 The maximum limit (soft limit) for axis motion, in user units. When this limit
is exceeded, the controller aborts axis motion.

MIN_FERROR = 0.010 This is the value by which the axis is permitted to deviate from
commanded position at very low speeds. If MIN_FERROR is smaller than FERROR, the two
produce a ramp of error trip points. You could think of this as a graph where one dimension
is speed and the other is permitted following error. As speed increases the amount of
following error also increases toward the FERROR value.

FERROR = 1.0 FERROR is the maximum allowable following error, in user units. If the difference
between commanded and sensed position exceeds this amount, the controller disables servo
calculations, sets all the outputs to 0.0, and disables the amplifiers. If MIN_FERROR is
present in the .ini file, velocity-proportional following errors are used. Here, the maximum
allowable following error is proportional to the speed, with FERROR applying to the rapid rate
set by [TRAJ]MAX_VELOCITY, and proportionally smaller following errors for slower speeds.
The maximum allowable following error will always be greater than MIN_FERROR. This
prevents small following errors for stationary axes from inadvertently aborting motion. Small
following errors will always be present due to limited position resolution, vibration, etc.

CHAPTER 5. INI CONFIGURATION 34

UNITS = inch Historically, the UNITS were specified for each axis. It is now preferable to specify
the [TRAJ]LINEAR_UNITS and [TRAJ]ANGULAR_UNITS values only, and have no
[AXIS_n]UNITS setting.

5.3.7.1 Homing-related items

The next few parameters are Homing related, for a better explanation read Section 5.4

HOME_OFFSET = 0.0 The axis position of the home switch or index pulse.

HOME_SEARCH_VEL = 0.0 A value of zero means assume that the current location is the home
position for the machine. If your machine has no home switches you will want to leave this
value alone.

HOME_LATCH_VEL = 0.0 This is the final velocity to be used during a home sequence.

HOME_USE_INDEX = NO If the encoder used for this axis has an index pulse, and the motion
card has provision for this signal you may set it to yes. When it is yes, it will affect the kind of
home pattern used.

HOME_IGNORE_LIMITS = NO Some machines use a limit switch as a home switch. This variable
should be set to yes if you machine does this.

5.3.7.2 Servo-related items

The following items are for servo-based systems and servo-like systems including the univstep
board from Pico Systems. 6

P = 50 The proportional gain for the axis servo. This value multiplies the error between
commanded and actual position in user units, resulting in a contribution to the computed
voltage for the motor amplifier. The units on the P gain are volts per user unit.

I = 0 The integral gain for the axis servo. The value multiplies the cumulative error between
commanded and actual position in user units, resulting in a contribution to the computed
voltage for the motor amplifier. The units on the I gain are volts per user unit-seconds.

D = 0 The derivative gain for the axis servo. The value multiplies the difference between the
current and previous errors, resulting in a contribution to the computed voltage for the motor
amplifier. The units on the D gain are volts per user unit per second.

FF0 = 0 The 0-th order feedforward gain. This number is multiplied by the commanded position,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the
FF0 gain are volts per user unit.

FF1 = 0 The 1st order feedforward gain. This number is multiplied by the change in commanded
position per second, resulting in a contribution to the computed voltage for the motor
amplifier. The units on the FF1 gain are volts per user unit per second.

FF2 = 0 The 2nd order feedforward gain. This number is multiplied by the change in commanded
position per second per second, resulting in a contribution to the computed voltage for the
motor amplifier. The units on the FF1 gain are volts per user unit per second per second.

OUTPUT_SCALE = 1.000
6Refer to the the EMC2_Integrator_Manual for further information about servo systems and PID control.

CHAPTER 5. INI CONFIGURATION 35

OUTPUT_OFFSET = 0.000 These two values are the scale and offset factors for the axis output to
the motor amplifiers. The second value (offset) is subtracted from the computed output (in
volts), and divided by the first value (scale factor), before being written to the D/A converters.
The units on the scale value are in true volts per DAC output volts. The units on the offset
value are in volts. These can be used to linearize a DAC.
Specifically, when writing outputs, the EMC first converts the desired output in quasi-SI
units to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

raw =
output− offset

scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are
[output SI units]/[actuator units]. For example, on a machine with a velocity mode amplifier
such that 1 volt results in 250 mm/sec velocity,

amplifier[volts] = (output[
mm

sec
]− offset[

mm

sec
])/250

mm

sec volt

Note that the units of the offset are in user units, e.g., mm/sec, and they are pre-subtracted
from the sensor readings. The value for this offset is obtained by finding the value of your
output which yields 0.0 for the actuator output. If the DAC is linearized, this offset is
normally 0.0.
The scale and offset can be used to linearize the DACs as well, resulting in values that reflect
the combined effects of amplifier gain, DAC non-linearity, DAC units, etc. To do this, follow
this procedure:

1. Build a calibration table for the output, driving the DACs with a desired voltage and
measuring the result. See table 5.3.7.2 for an example of voltage measurements.

2. Do a least-squares linear fit to get coefficients a, b such that

meas = a ∗ raw + b

3. Note that we want raw output such that our measured result is identical to the
commanded output. This means

(a)
cmd = a ∗ raw + b

(b)
raw = (cmd− b)/a

4. As a result, the a and b coefficients from the linear fit can be used as the scale and offset
for the controller directly.

MAX_OUTPUT = 10 The maximum value for the output of the PID compensation that is written to
the motor amplifier, in volts. The computed output value is clamped to this limit. The limit is
applied before scaling to raw output units.

MIN_OUTPUT = -10 The minimum value for the output of the PID compensation that is written to
the motor amplifier, in volts. The computed output value is clamped to this limit. The limit is
applied before scaling to raw output units.

5.3.7.3 Stepper-related items

The following items are used by core_stepper.hal to set limits on the step waveforms that will be
generated. They typically include a headroom of 5% to 10% compared to the MAX_VELOCITY and
MAX_ACCEL items in the same AXIS.

CHAPTER 5. INI CONFIGURATION 36

Output Voltage Measurements
Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

STEPGEN_MAXVEL = 1.4 A value applied to the stepper pulse generator to provide some
overhead for following error catch up.7

STEPGEN_MAXACCEL = 21.0 Overhead for the stepper pulse generator when it needs to catch
up.

5.3.8 [EMCIO] Section

CYCLE_TIME = 0.100 The period, in seconds, at which EMCIO will run. You can make this as
small as you want to increase the throughput. Making it 0.0 or a negative number will tell
EMCIO not to sleep at all. Ultimately the system loading will limit the effective throughput.

TOOL_TABLE = tool.tbl The file which contains tool information, described in 12.4

TOOL_CHANGE_POSITION = 0 0 2 Specifies the XYZ location to move to when performing a tool
change.

7The step generator module, stepgen, applies its own limits to acceleration and velocity. We have discovered that it needs
to have a little "headroom" over the accel by the trajectory planner, otherwise it can fall slightly behind during accel and later
overshoot as it catches up. In the long term we hope to come up with a clean fix for this problem. In the meantime, please
set STEPGEN_MAXVEL to a few percent higher than MAX_VELOCITY, the regular velocity limit and STEPGEN_MAXACCEL
slightly larger that of MAX_ACCELERATION.

CHAPTER 5. INI CONFIGURATION 37

CHAPTER 5. INI CONFIGURATION 38

5.4 Homing

5.4.1 Overview

Homing seems simple enough - just move each joint to a known location, and set EMC’s internal
variables accordingly. However, different machines have different requirements, and homing is
actually quite complicated.

5.4.2 Homing Sequence

Figure 5.1 shows four possible homing sequences, along with the associated configuration
parameters. For a more detailed description of what each configuration parameter does, see the
following section.

5.4.3 Configuration

There are six pieces of information that determine exactly how the home sequence behaves. They
are defined in the ini, and can be tweaked to obtain the result you are after.

5.4.3.1 HOME_SEARCH_VEL

’HOME_SEARCH_VEL’ is defined in each AXIS_* section. The default value is zero. A value of zero
causes EMC to assume that there is no home switch. The search and latch stages of homing are
skipped, EMC declares the current position to be “HOME_OFFSET”, and does a rapid to “HOME” if
“HOME” is not equal to “HOME_OFFSET”.

If ’HOME_SEARCH_VEL’ is non-zero, then EMC assumes that there is a home switch. It begins by
checking whether the home switch is already tripped. If so, it backs off the switch at
HOME_SEARCH_VEL (the direction of the back-off is opposite the sign of HOME_SEARCH_VEL).
Then it searches for the home switch by moving in the direction specified by the sign of
’HOME_SEARCH_VEL’, at a speed determined by its absolute value. When the home switch is
detected, the joint will stop as fast as possible, but there will always be some overshoot. The
amount of overshoot depends on the speed. If it is too high, the joint might overshoot enough to hit
a limit switch or crash into the end of travel. On the other hand, if ’HOME_SEARCH_VEL’ is too
low, homing can take a long time.

5.4.3.2 HOME_LATCH_VEL

’HOME_LATCH_VEL’ is also defined in the ini file, for each AXIS. It specifies the speed and
direction that EMC uses when it makes its final accurate determination of the home switch and
index pulse location. It will usually be slower than the search velocity to maximise accuracy. If
HOME_SEARCH_VEL and HOME_LATCH_VEL have the same sign, then the latch phase is done
while moving in the same direction as the search phase. (In that case, EMC first backs off the
switch, before moving towards it again at the latch velocity.) If HOME_SEARCH_VEL and
HOME_LATCH_VEL have opposite signs, the latch phase is done while moving in the opposite
direction from the search phase. That means EMC will latch the first pulse after it moves off the
switch. If ’HOME_SEARCH_VEL’ is zero, the latch phase is skipped and this parameter is ignored.
If ’HOME_SEARCH_VEL’ is non-zero and this parameter is zero, it is an error and the homing
operation will fail. The default value is zero.

CHAPTER 5. INI CONFIGURATION 39

INDEX PULSES

INDEX PULSES

HOME SWITCH TRIPS

HOME SWITCH TRIPS

HOME SWITCH TRIPS

HOME SWITCH TRIPS

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

BACK OFF OF HOME SWITCH (SEARCH_VEL)

BACK OFF OF HOME SWITCH (SEARCH_VEL)

F INAL DETECTION OF SWITCH (LATCH_VEL)

F INAL DETECTION OF SWITCH AND
INDEX PULSE (LATCH_VEL)

F INAL DETECTION OF SWITCH (LATCH_VEL)

F INAL DETECTION OF SWITCH AND
INDEX PULSE (LATCH_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

1.000

1.000

1.000

1.000

3.000

3.000

3.000

3.000

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

LATCH_VEL = NEGATIVE

LATCH_VEL = NEGATIVE

LATCH_VEL = POSITIVE

LATCH_VEL = POSITIVE

USE_INDEX = FALSE

USE_INDEX = TRUE

USE_INDEX = FALSE

USE_INDEX = TRUE

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME = 1.000

HOME = 1.000

HOME = 1.000

HOME = 1.000

O V E R S H O O T

HOME SWITCH RELEASES

HOME SWITCH RELEASES

HOME SWITCH RELEASES

HOME SWITCH RELEASES

Figure 5.1: Homing Sequences

CHAPTER 5. INI CONFIGURATION 40

5.4.3.3 HOME_IGNORE_LIMITS

’HOME_IGNORE_LIMITS’ is another settable option in the AXIS_* section. It’s a boolean flag, and
can hold the values YES / NO. This flag determines whether EMC will ignore the limit switch
inputs. Some machine configurations do not use a separate home switch, instead they route one of
the limit switch signals to the home switch input as well. In this case, EMC needs to ignore that
limit during homing. The default value for this parameter is NO.

5.4.3.4 HOME_USE_INDEX

’HOME_USE_INDEX’ is a single bit settable in the AXIS_* section. It specifies whether or not there
is an index pulse. If the flag is true (HOME_USE_INDEX = YES), EMC will latch on the rising edge
of the index pulse. If false, EMC will latch on either the rising or falling edge of the home switch
(depending on the signs of search_vel and latch_vel). If ’HOME_SEARCH_VEL’ is zero, the latch
phase is skipped and this parameter is ignored. The default value is NO.

5.4.3.5 HOME_OFFSET

’HOME_OFFSET’ is a value setable from the ini in the AXIS_* section. It contains the location of
the home switch or index pulse, in joint coordinates. It can also be treated as the distance between
the point where the switch or index pulse is latched and the zero point of the joint. After detecting
the index pulse, EMC sets the joint coordinate of the current point to “HOME_OFFSET”. The
default value is zero.

5.4.3.6 HOME

’HOME’ is a value setable from the ini in the AXIS_* section. It is the position that the joint will go
to upon completion of the homing sequence. After detecting the index pulse, and setting the
coordinate of that point to “HOME_OFFSET”, EMC makes a move to "HOME" as the final step of
the homing process. The default value is zero. Note that even if this parameter is the same as
“HOME_OFFSET”, the axis will slightly overshoot the latched position as it stops. Therefore there
will always be a small move at this time (unless HOME_SEARCH_VEL is zero, and the entire
search/latch stage was skipped). This final move will be made at the joint’s maximum velocity.
Since the axis is now homed, there should be no risk of crashing the machine, and a rapid move is
the quickest way to finish the homing sequence. 8

5.4.3.7 HOME_IS_SHARED

’HOME_IS_SHARED’ is a value setable from the ini in the AXIS_* section. If there is not a separate
home switch input for this axis, but a number of momentary switches wired to the same pin, set
this value to 1 to prevent homing from starting if one of the shared switches is already closed. Set
this value to 0 to permit homing even if the switch is already closed.

5.4.3.8 HOME_SEQUENCE

’HOME_SEQUENCE’ is a value setable from the ini in the AXIS_* section. This value is used to
perform a multi-axis homing sequence (“HOME ALL”) and enforce homing order (e.g., Z may not be
homed if X is not yet homed). An axis may be homed after all axes with a lower HOME_SEQUENCE
have already been homed and are at the HOME_OFFSET. If two axes have the same
HOME_SEQUENCE, they may be homed at the same time. If HOME_SEQUENCE is -1 or not

8The distinction between ’home’ and ’home_offset’ is not as clear as I would like. I intend to make a small drawing and
example to help clarify it.

CHAPTER 5. INI CONFIGURATION 41

specified then this joint will not be homed by the HOME ALL sequence. HOME_SEQUENCE
numbers start with 0 and there may be no unused numbers.

CHAPTER 5. INI CONFIGURATION 42

Chapter 6

Introduction

6.1 What is HAL?

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a
number of “building blocks” to be loaded and interconnected to assemble a complex system. The
“Hardware” part is because HAL was originally designed to make it easier to configure EMC for a
wide variety of hardware devices. Many of the building blocks are drivers for hardware devices.
However, HAL can do more than just configure hardware drivers.

6.1.1 HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is
useful to examine those principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC
machine, those components might be the main controller, servo amps or stepper drives, motors,
encoders, limit switches, pushbutton pendants, perhaps a VFD for the spindle drive, a PLC to run
a toolchanger, etc. The machine builder must select, mount and wire these pieces together to make
a complete system.

6.1.1.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them
as black boxes. During the design stage, he decides which parts he is going to use - steppers or
servos, which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s
decisions about which specific components to use is based on what that component does and the
specifications supplied by the manufacturer of the device. The size of a motor and the load it must
drive will affect the choice of amplifier needed to run it. The choice of amplifier may affect the
kinds of feedback needed by the amp and the velocity or position signals that must be sent to the
amp from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every
interface card will require a driver. Additional components may be needed for software generation
of step pulses, PLC functionality, and a wide variety of other tasks.

6.1.1.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will
be interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens

43

CHAPTER 6. INTRODUCTION 44

for a servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the
limit switches connect to the controller, and so on. As the machine builder works on the design, he
creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which
signals are needed, and what they should connect.

6.1.1.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be
acquired and mounted, and then they are interconnected according to the wiring diagram. In a
physical system, each interconnection is a piece of wire that needs to be cut and connected to the
appropriate terminals.

HAL provides a number of tools to help “build” a HAL system. Some of the tools allow you to
“connect” (or disconnect) a single “wire”. Other tools allow you to save a complete list of all the
parts, wires, and other information about the system, so that it can be “rebuilt” with a single
command.

6.1.1.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see
whether a limit switch is working or to measure the DC voltage going to a servo motor. He may
hook up an oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find a
problem that requires the wiring diagram to be changed; perhaps a part needs to be connected
differently or replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools
needed for testing and tuning a system. The same commands used to build the system can be
used to make changes as needed.

6.1.2 Summary

This document is aimed at people who already know how to do this kind of hardware system
integration, but who do not know how to connect the hardware to EMC.

The traditional hardware design as described above ends at the edge of the main control. Outside
the control are a bunch of relatively simple boxes, connected together to do whatever is needed.
Inside, the control is a big mystery – one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal parts of the controller into smaller black boxes that can be
interconnected and even replaced just like the external hardware. It allows the “system wiring
diagram”to show part of the internal controller, rather than just a big black box. And most
importantly it allows the integrator to test and modify the controller using the same methods he
would use on the rest of the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk
about using extra flexible eight conductor shielded cable to connect an encoder to the servo input
board in the computer, the reader immediately understands what it is and is led to the question,
“what kinds of connectors will I need to make up each end.” The same sort of thinking is essential
for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may
seem a bit strange at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

CHAPTER 6. INTRODUCTION 45

6.2 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional
glossary because these terms are not arranged in alphabetical order. They are arranged by their
relationship or flow in the HAL way of things.

Component: When we talked about hardware design, we referred to the individual pieces as
"parts", "building blocks", "black boxes", etc. The HAL equivalent is a "component" or "HAL
component". (This document uses "HAL component" when there is likely to be confusion with
other kinds of components, but normally just uses "component".) A HAL component is a piece
of software with well-defined inputs, outputs, and behavior, that can be installed and
interconnected as needed.

Parameter: Many hardware components have adjustments that are not connected to any other
components but still need to be accessed. For example, servo amps often have trim pots to
allow for tuning adjustments, and test points where a meter or scope can be attached to view
the tuning results. HAL components also can have such items, which are referred to as
"parameters". There are two types of parameters: Input parameters are equivalent to trim
pots - they are values that can be adjusted by the user, and remain fixed once they are set.
Output parameters cannot be adjusted by the user - they are equivalent to test points that
allow internal signals to be monitored.

Pin: Hardware components have terminals which are used to interconnect them. The HAL
equivalent is a "pin" or "HAL pin". ("HAL pin" is used when needed to avoid confusion.) All
HAL pins are named, and the pin names are used when interconnecting them. HAL pins are
software entities that exist only inside the computer.

Physical_Pin: Many I/O devices have real physical pins or terminals that connect to external
hardware, for example the pins of a parallel port connector. To avoid confusion, these are
referred to as "physical pins". These are the things that “stick out” into the real world.

Signal: In a physical machine, the terminals of real hardware components are interconnected by
wires. The HAL equivalent of a wire is a "signal" or "HAL signal". HAL signals connect HAL
pins together as required by the machine builder. HAL signals can be disconnected and
reconnected at will (even while the machine is running).

Type: When using real hardware, you would not connect a 24 volt relay output to the +/-10V
analog input of a servo amp. HAL pins have the same restrictions, which are based upon
their type. Both pins and signals have types, and signals can only be connected to pins of the
same type. Currently there are 4 types, as follows:

• BIT - a single TRUE/FALSE or ON/OFF value

• FLOAT - a 32 bit floating point value, with approximately 24 bits of resolution and over 200
bits of dynamic range.

• U32 - a 32 bit unsigned integer, legal values are 0 to +4294967295

• S32 - a 32 bit signed integer, legal values are -2147483648 to +2147483647

Function: Real hardware components tend to act immediately on their inputs. For example, if the
input voltage to a servo amp changes, the output also changes automatically. However
software components cannot act "automatically". Each component has specific code that
must be executed to do whatever that component is supposed to do. In some cases, that code
simply runs as part of the component. However in most cases, especially in realtime
components, the code must run in a specific sequence and at specific intervals. For example,
inputs should be read before calculations are performed on the input data, and outputs
should not be written until the calculations are done. In these cases, the code is made

CHAPTER 6. INTRODUCTION 46

available to the system in the form of one or more "functions". Each function is a block of
code that performs a specific action. The system integrator can use "threads" to schedule a
series of functions to be executed in a particular order and at specific time intervals.

Thread: A "thread" is a list of functions that runs at specific intervals as part of a realtime task.
When a thread is first created, it has a specific time interval (period), but no functions.
Functions can be added to the thread, and will be executed in order every time the thread
runs.

As an example, suppose we have a parport component named hal_parport. That component
defines one or more HAL pins for each physical pin. The pins are described in that component’s
doc section: their names, how each pin relates to the physical pin, are they inverted, can you
change polarity, etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It
takes code to do that, and that is where functions come into the picture. The parport component
needs at least two functions: one to read the physical input pins and update the HAL pins, the
other to take data from the HAL pins and write it to the physical output pins. Both of these
functions are part of the parport driver.

6.3 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that
can be installed and interconnected as needed. This section lists available components and a brief
description of what each does. Complete details for each component are available later in this
document.

6.3.1 External Programs with HAL hooks

motion A realtime module that accepts NML motion commands and interacts with HAL

iocontrol A user space module that accepts NML I/O commands and interacts with HAL

classicladder A PLC using HAL for all I/O

halui A user space program that interacts with HAL and sends NML commands, it is intended to
work as a full User Interface using external knobs & switches

6.3.2 Internal Components

stepgen Software step pulse generator with position loop. See section ??

freqgen Software step pulse generator. See section ??

encoder Software based encoder counter. See section ??

pid Proportional/Integral/Derivative control loops. See section ??

siggen A sine/cosine/triangle/square wave generator for testing. See section ??

supply a simple source for testing

blocks assorted useful components (mux, demux, or, and, integ, ddt, limit, wcomp, etc.)

CHAPTER 6. INTRODUCTION 47

6.3.3 Hardware Drivers

hal_ax5214h A driver for the Axiom Measurement & Control AX5241H digital I/O board

hal_m5i20 Mesa Electronics 5i20 board

hal_motenc Vital Systems MOTENC-100 board

hal_parport PC parallel port. See section 8.1

hal_ppmc Pico Systems family of controllers (PPMC, USC and UPC)

hal_stg Servo To Go card (version 1 & 2)

hal_vti Vigilant Technologies PCI ENCDAC-4 controller

6.3.4 Tools and Utilities

halcmd Command line tool for configuration and tuning. See section ??

halgui GUI tool for configuration and tuning (not implemented yet).

halmeter A handy multimeter for HAL signals. See section ??

halscope A full featured digital storage oscilloscope for HAL signals. See section ??

Each of these building blocks is described in detail in later chapters.

6.4 Tinkertoys, Erector Sets, Legos and the HAL

A first introduction to HAL concepts can be mind boggling. Building anything with blocks can be a
challenge but some of the toys that we played with as kids can be an aid to building things with
the HAL.

6.4.1 Tower

I’m watching as my son and his six year old daughter build a tower from a box full of
random sized blocks, rods, jar lids and such. The aim is to see how tall they can make
the tower. The narrower the base the more blocks left to stack on top. But the narrower
the base, the less stable the tower. I see them studying both the next block and the shelf
where they want to place it to see how it will balance out with the rest of the tower.

The notion of stacking cards to see how tall you can make a tower is a very old and honored way of
spending spare time. At first read, the integrator may have gotten the impression that building a
HAL was a bit like that. It can be but with proper planning an integrator can build a stable system
as complex as the machine at hand requires.

6.4.2 Erector Sets1

What was great about the sets was the building blocks, metal struts and angles and plates, all with
regularly spaced holes. You could design things and hold them together with the little screws and
nuts.

1The Erector Set was an invention of AC Gilbert

CHAPTER 6. INTRODUCTION 48

I got my first erector set for my fourth birthday. I know the box suggested a much older
age than I was. Perhaps my father was really giving himself a present. I had a hard time
with the little screws and nuts. I really needed four arms, one each for the screwdriver,
screw, parts to be bolted together, and nut. Perseverence, along with father’s eventual
boredom, got me to where I had built every project in the booklet. Soon I was lusting
after the bigger sets that were also printed on that paper. Working with those regular
sized pieces opened up a world of construction for me and soon I moved well beyond the
illustrated projects.

Hal components are not all the same size and shape but they allow for grouping into larger units
that will do useful work.In this sense they are like the parts of an Erector set. Some components
are long and thin. They essentially connect high level commands to specific physical pins. Other
components are more like the rectangular platforms upon which whole machines could be built.
An integrator will quickly get beyond the brief examples and begin to bolt together components in
ways that are unique to them.

6.4.3 Tinkertoys2

Wooden Tinker toys had a more humane feel that the cold steel of Erector Sets. The
heart of construction with Tinker Toys was a round connector with eight holes equally
spaced around the circumference. It also had a hole in the center that was
perpendicular to all the holes around the hub.

Hubs were connected with rods of several different lengths. Builders would make large
wheels by using these rods as spokes sticking out from the center hub.

My favorite project was a rotating space station. Short spokes radiated from all the holes
in the center hub and connected with hubs on the ends of each spoke. These outer hubs
were connected to each other with longer spokes. I’d spend hours dreaming of living in
such a device, walking from hub to hub around the outside as it slowly rotated
producing near gravity in weightless space. Supplies traveled through the spokes in
elevators that transfered them to an from rockets docked at the center hub while they
transfered their precious cargos.

The idea of one pin or component being the hub for many connections is also an easy concept
within the HAL. Examples two and four (see section 7) connect the meter and scope to signals that
are intended to go elsewhere. Less easy is the notion of a hub for several incoming signals but that
is also possible with proper use of functions within that hub component that handle those signals
as they arrive from other components.

Another thought that comes forward from this toy is a mechanical representation of HAL threads.
A thread might look a bit like a centipede, caterpillar, or earwig. A backbone of hubs, HAL
components, strung together with rods, HAL signals. Each component takes in it own parameters
and input pins and passes on output pins and parameters to the next component. Signals travel
along the backbone from end to end and are added to or modified by each component in turn.

Threads are all about timing and doing a set of tasks from end to end. A mechanical
representation is available with Tinkertoys also when we think of the length of the toy as a
measure of the time taken to get from one end to the other. A very different thread or backbone is
created by connecting the same set of hubs with different length rods. The total length of the
backbone can be changed by the length of rods used to connect the hubs. The order of operations
is the same but the time to get from beginning to end is very diferent.

2Tinkertoy is now a registered trademark of the Hasbro company.

CHAPTER 6. INTRODUCTION 49

6.4.4 A Lego Example3

When Lego blocks first arrived in our stores they were pretty much all the same size and shape.
Sure there were half sized one and a few quarter sized as well but that rectangular one did most of
the work. Lego blocks interconnected by snapping the holes in the underside of one onto the pins
that stuck up on another. By overlapping layers, the joints between could be made very strong,
even around corners or tees.

I watched my children and grandchildren build with legos – the same legos. There are a
few thousand of them in an old ratty but heavy duty cardboard box that sits in a corner
of the recreation room. It stays there in the open because it was too much trouble to put
the box away and then get it back out for every visit and it is always used during a visit.
There must be Lego parts in there from a couple dozen different sets. The little booklets
that came with them are long gone but the magic of building with interlocking pieces all
the same size is something to watch.

Notice the following description of building a set of motion components in the HAL and how much
like a wall of lego blocks it is.

The motion module exports a pin for each axis in cartesean space, and another pin for
each axis in joint space. When it is loaded, it automatically creates a "jumper" signal for
each axis, and automatically connects those signals from the joint pin to the cartesean
pin. So you automatically have "trivkins" as soon as you load the motion module.
(trivkins – trivial kinematics is the case where each motor moves a single axis at 90
degrees to the others)

The motion module is like a pair of legos in a line end to end. Trivkins is just like a single block
overlapping the two. The in and out motion pins are plugged into each other by the block resting
above. But the parallel goes on.

If you need some other kinematics, you then load a specific kins component. This
component "knows" the names of the pins that the motion module uses for each axis,
both joint and cartesean. When the module loads, it again automatically creates signals
and connects its own pins to the motion module’s pins (which will disconnect the
"jumpers"). It could also know the thread names used by the motion module, and could
automatically add its own functions to those threads.

Trivkins is removed so that the motion blocks can be spread apart and by using other blocks, a
different bridge is built between input and output pins. In Lego terms, trivkins might be a gray
block and xxkins might be a yellow block.

So the net result is that 24 HAL signals and two HAL functions are configured, with no
action needed by the integrator other than loading the module. (24 signals are from 6
axis * 2 because we have joint and cartesean * 2 because we have forward and inverse
kinematics. Two functions because we have forward and inverse.) Because these HAL
signals exist, they can be metered or scoped or whatever for testing. But because both
modules know their names and know how to automatically connect them, the integrator
doesn’t have to know or care.

This kind of automatic HAL configuration is possible because all kinematics modules "plug in" the
same way.

3The Lego name is a trademark of the Lego company.

CHAPTER 6. INTRODUCTION 50

6.5 Timing Issues In HAL

Threads is going to take a major intellectual push because unlike the physical wiring models
between black boxes that we have said that HAL is based upon, simply connecting two pins with a
hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc, and it all just "happens". But in
PLC style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each
rung is evaluated in the order in which it appears, and only once per pass. A perfect example is a
single rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same
relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc, etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open,
and de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate
determined by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact a HAL-aware realtime version of
ClassicLadder would export a function to do exactly that. Meanwhile, a thread is the thing that
runs the function at specific time intervals. Just like you can choose to have a PLC evaluate all its
rungs every 10mS, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is _not_ what the thread does - that is determined by
which functions are connected to it. The real distinction is simply how often a thread runs.

In EMC we might have a 15uS thread, a 1mS thread, and a 10mS thread. These would be created
based on "Period", "ServoPeriod", and "TrajPeriod" respectively - the actual times would depend on
the ini. That is one part of the config process, and although it could be done manually, it would
normally be automatic.

The next step is to decide what each thread needs to do. Some of those decisions would also be
automatic - the motion module would automatically connect its "PlanTrajectory" function to the
TrajPeriod thread, and its "ControlMotion" function to the ServoPeriod thread.

Other connections would be made by the integrator (at least the first time). These might include
hooking the STG driver’s encoder read and DAC write functions to the servo thread, or hooking
stepgen’s function to the fast thread, along with the parport function(s) to write the steps to the
port.

6.6 Dynamic Linking and Configuration

It is indeed possible to configure HAL with a form of dynamic linking. But it is different than DLLs
as used by Microsoft(tm) or shared libraries as used in Linux. Both DLLs and shared libraries
essentially say "Here I am, I have this code you might want to use", where "you" is other modules.
Then when those other modules or programs are loaded, they say "I need a function called ’X’, is
there one?" and if the answer is YES, they link to it.

With HAL, a component still says "Here I am, I have this code you might want to use", but "you" is
the system integrator. The integrator gets to decide what functions are used and doesn’t have to
worry about another module needing "function X" and not finding it.

HAL can follow the normal DLL model as well. Although most components will simply export pins,
functions, and parameters, and then wait for the integrator (or a saved file) to interconnect them,
we can write modules that (attempt to) make connections when they are installed. One specific
place where this would work well is kinematics as illustrated in the Lego section 6.4.4 .

CHAPTER 6. INTRODUCTION 51

Chapter 7

HAL Tutorial

7.1 Before we start

Configuration moves from theory to device – HAL device that is. For those who have had just a bit
of computer programming, this section is the “Hello World” of the HAL. As noted above halcmd can
be used to create a working system. It is a command line or text file tool for configuration and
tuning. The following examples illustrate its setup and operation.

7.1.1 Notation

Command line examples are presented in bold typewriter font. Responses from the computer
will be in typewriter font. Text inside square brackets [like-this] is optional. Text inside angle
brackets <like-this> represents a field that can take on different values, and the adjacent
paragraph will explain the appropriate values. Text items separated by a vertical bar means that
one or the other, but not both, should be present. All command line examples assume that you are
in the emc2/ directory, and paths will be shown accordingly when needed.

7.1.2 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in
realtime, and all HAL components store data in shared memory so realtime components can
access it. Normal Linux does not support realtime programming or the type of shared memory that
HAL needs. Fortunately there are realtime operating systems (RTOS’s) that provide the neccessary
extensions to Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the EMC team came up with RTAPI, which provides a consistent way
for programs to talk to the RTOS. If you are a programmer who wants to work on the internals of
EMC, you may want to study emc2/src/rtapi/rtapi.h to understand the API. But if you are a
normal person all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.

For this tutorial, we are going to assume that you have successfully compiled the emc2/ source
tree. In that case, all you need to do is load the required RTOS and RTAPI modules into memory.
Just run the following command:

emc2$ halrun
halcmd:

52

CHAPTER 7. HAL TUTORIAL 53

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the
prompt has changed from the shell’s “$” to “halcmd”. This is because subsequent commands will
be interpreted as HAL commands, not shell commands. halrun is a simple shell script, and it is
more or less equivalent to running

emc2$ realtime start
emc2$ halcmd -kf

When halcmd exits, halrun stops the realtime system, just like

emc2$ realtime stop

You can also supply arguments to halrun that are passed on to halcmd, or give the name of a .hal
file. Because halrun stops the realtime system when it exits, the hal file run in this way will
typically end with a command that waits for completion, like loadrt -w halscope.

7.2 Tab-completion

Your version of halcmd may include tab-completion. Instead of completing filenames as a shell
does, it completes commands with HAL identifiers. Try pressing tab after starting a HAL command:

halcmd: lo<TAB>
loadrt loadusr lock
halcmd: loadrt d<TAB>
ddt debounce

7.3 A Simple Example

7.3.1 Loading a realtime component

For the first example, we will use a HAL component called siggen, which is a simple signal
generator. A complete description of the siggen component can be found in section ?? of this
document. It is a realtime component, implemented as a Linux kernel module. To load siggen use
the halcmd loadrt command:

halcmd: loadrt siggen

7.3.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd, the command line tool used to
configure the HAL. This tutorial will introduce some halcmd features, for a more complete
description try man halcmd, or see the halcmd reference in section ?? of this document. The first
halcmd feature is the show command. This command displays information about the current state
of the HAL. To show all installed components:

halcmd: show comp
Loaded HAL Components:
ID Type Name PID State
32769 RT siggen ready
9775 User halcmd9775 9775 initializing

CHAPTER 7. HAL TUTORIAL 54

Since halcmd itself is a HAL component, it will always show up in the list1. The list also shows the
siggen component that we installed in the previous step. The “RT” under “Type” indicates that
siggen is a realtime component.

Next, let’s see what pins siggen makes available:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name 02 float -W 0.00000e+00 siggen.0.cosine
32769 float OUT 0.00000e+00 siggen.0.sawtooth
32769 float OUT 0.00000e+00 siggen.0.sine
32769 float OUT 0.00000e+00 siggen.0.square
32769 float OUT 0.00000e+00 siggen.0.triangle

This command displays all of the pins in the HAL - a complex system could have dozens or
hundreds of pins. But right now there are only five pins. All five of these pins are floating point,
and all five carry data out of the siggen component. Since we have not yet executed the code
contained within the component, all the pins have a value of zero.

The next step is to look at parameters:

halcmd: show param
Parameters:
Owner Type Dir Value Name
32769 float RW 1.00000e+00 siggen.0.amplitude
32769 float RW 1.00000e+00 siggen.0.frequency
32769 float RW 0.00000e+00 siggen.0.offset
32769 s32 RO 0 siggen.0.update.time
32769 s32 RW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir. The
parameters labeled -W are writeable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this
later. Parameters labeled R- are read only parameters. They can be changed only by the
component. Finally, parameter labeled RW are read-write parameters. That means that thay are
changed by the component, but can also be changed by the user. Note: the parameters
siggen.0.update.time and siggen.0.update.tmax are for debugging purposes, and won’t be
covered in this section.

Most realtime components export one or more functions to actually run the realtime code they
contain. Let’s see what function(s) siggen exported:

halcmd: show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name
32769 b7f74ac5 b7d0c0b4 YES 0 siggen.0.update

The siggen component exported a single function. It requires floating point. It is not currently
linked to any threads, so “users” is zero2.

1The number after halcmd in the component list is the process ID. It is possible to run more than one copy of halcmd at
the same time (in different windows for example), so the PID is added to the end of the name to make it unique.

2The codeaddr and arg fields were used in development, and should probably be removed from the halcmd listing.

CHAPTER 7. HAL TUTORIAL 55

7.3.3 Making realtime code run

To actually run the code contained in the function siggen.0.update, we need a realtime thread.
Eventually halcmd will have a newthread command that can be used to create a thread, but that
requires some significant internal changes. For now, we have a component called threads that is
used to create a new thread. Lets create a thread called test-thread with a period of 1mS
(1000000nS):

halcmd: loadrt threads name1=test-thread period1=1000000

Let’s see if that worked:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999849 YES test-thread (0, 0)

It did. The period is not exactly 1000000nS because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The
next step is to connect the function to the thread:

halcmd: addf siggen.0.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf
(add function) command to actually change something in the HAL. We told halcmd to add the
function siggen.0.update to the thread test-thread, and if we look at the thread list again, we
see that it succeeded:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999849 YES test-thread (0, 0)

1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the
HAL is first started, the thread(s) are not actually running. This is to allow you to completely
configure the system before the realtime code starts. Once you are happy with the configuration,
you can start the realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
32769 float OUT 2.12177e-01 siggen.0.cosine
32769 float OUT -5.64055e-01 siggen.0.sawtooth
32769 float OUT 9.79820e-01 siggen.0.sine
32769 float OUT -1.00000e+00 siggen.0.square
32769 float OUT 1.28110e-01 siggen.0.triangle

halcmd: show pin
Component Pins:
Owner Type Dir Value Name

CHAPTER 7. HAL TUTORIAL 56

32769 float OUT 5.19530e-01 siggen.0.cosine
32769 float OUT 6.73893e-01 siggen.0.sawtooth
32769 float OUT -8.54452e-01 siggen.0.sine
32769 float OUT 1.00000e+00 siggen.0.square
32769 float OUT 3.47785e-01 siggen.0.triangle

We did two show pin commands in quick succession, and you can see that the outputs are no
longer zero. The sine, cosine, sawtooth, and triangle outputs are changing constantly. The square
output is also working, however it simply switches from +1.0 to -1.0 every cycle.

7.3.4 Changing parameters

The real power of HAL is that you can change things. For example, we can use the setp command
to set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:

halcmd: setp siggen.0.amplitude 5
emc2$

Check the parameters and pins again:

halcmd: setp siggen.0.amplitude 5
halcmd: show param
Parameters:
Owner Type Dir Value Name
32769 float RW 5.00000e+00 siggen.0.amplitude
32769 float RW 1.00000e+00 siggen.0.frequency
32769 float RW 0.00000e+00 siggen.0.offset
32769 s32 RO 397 siggen.0.update.time
32769 s32 RW 109100 siggen.0.update.tmax

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
32769 float OUT 4.78453e+00 siggen.0.cosine
32769 float OUT -4.53106e+00 siggen.0.sawtooth
32769 float OUT 1.45198e+00 siggen.0.sine
32769 float OUT -5.00000e+00 siggen.0.square
32769 float OUT 4.02213e+00 siggen.0.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5.000, and that the pins
now have larger values.

7.3.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show
command. However two of the commands actually changed things. As we design more complex
systems with HAL, we will use many commands to configure things just the way we want them.
HAL has the memory of an elephant, and will retain that configuration until we shut it down. But
what about next time? We don’t want to manually enter a bunch of commands every time we want
to use the system. We can save the configuration of the entire HAL with a single command:

halcmd: save
components
loadrt threads name1=test-thread period1=1000000

CHAPTER 7. HAL TUTORIAL 57

loadrt siggen
signals
links
parameter values
setp siggen.0.amplitude 5.00000e+00
setp siggen.0.frequency 1.00000e+00
setp siggen.0.offset 0.00000e+00
realtime thread/function links
addf siggen.0.update test-thread

The output of the save command is a sequence of HAL commands. If you start with an “empty”
HAL and run all these commands, you will get the configuration that existed when the save
command was issued. To save these commands for later use, we simply redirect the output to a
file:

halcmd: save all saved.hal

7.3.6 Restoring the HAL configuration

To restore the HAL configuration stored in saved.hal, we need to execute all of those HAL
commands. To do that, we use halcmd -f <filename> which reads commands from a file:

emc2$ halcmd -f saved.hal

7.4 Looking at the HAL with halmeter

You can build very complex HAL systems without ever using a graphical interface. However there
is something satisfying about seeing the result of your work. The first and simplest GUI tool for the
HAL is halmeter. It is a very simple program that is the HAL equivalent of the handy Fluke
multimeter (or Simpson analog meter for the old timers).

We will use the siggen component again to check out halmeter. If you just finished the previous
example, then siggen is already loaded. If not, we can load it just like we did before:

emc2$ halrun
halcmd: loadrt siggen
halcmd: loadrt threads name1=test-thread period1=1000000
halcmd: addf siggen.0.update test-thread
halcmd: start
halcmd: setp siggen.0.amplitude 5

7.4.1 Starting halmeter

At this point we have the siggen component loaded and running. It’s time to start halmeter. Since
halmeter is a GUI app, X must be running.

halcmd: loadusr halmeter

At the same time, a halmeter window opens on your screen, looking something like figure 7.1.

CHAPTER 7. HAL TUTORIAL 58

Figure 7.1: Halmeter at startup, nothing selected

Figure 7.2: Halmeter source selection dialog

CHAPTER 7. HAL TUTORIAL 59

7.4.2 Using halmeter

The meter in figure 7.1 isn’t very useful, because it isn’t displaying anything. To change that, click
on the ’Select’ button, which will open the probe selection dialog (figure 7.2).

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin
siggen.0.triangle first, so click on it then click the ’OK’ button. The probe selection dialog will
close, and the meter looks something like figure 7.3.

Figure 7.3: Halmeter displaying the value of a pin

You should see the value changing as siggen generates its triangle wave. Halmeter refreshes its
display about 5 times per second.

If you want to quickly look at a number of pins, you can use the ’Accept’ button in the source
selection dialog. Click on ’Select’ to open the dialog again. This time, click on another pin, like
siggen.0.cosine, and then click ’Accept’. When you click ’Accept’, the meter immediately begins to
display the newly selected item, but the dialog does not close. Try displaying a parameter instead
of a pin. Click on the ’Parameters’ tab, then select a parameter and click ’Accept’ again. You can
very quickly move the “meter probes” from one item to the next with a couple of clicks.

To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once. 3

3Halmeter is due for a rewrite. The rewrite will do a number of things to make it nicer. Scientific notation will go away - it
is a pain to read. Some form of ranging (including autoranging) will be added to allow it to display a wide range of numbers
without using scientific notation. An “analog bar graph” display will also be added to give a quick indication of trends. When
the rewrite is done, these screenshots and the accompanying text will be revised to match the new version.

CHAPTER 7. HAL TUTORIAL 60

7.5 A slightly more complex example.

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to
allow you to load and connect a number of simple components to make up a complex system. The
next example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just
finished one of the previous examples, we need to remove the all components and reload the RTAPI
and HAL libraries:

halcmd: exit
emc2$ halrun

7.5.1 Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this
component refer to section ??. For now, we can skip the details, and just run the following
commands:4

halrun: loadrt freqgen step_type=0,0
halcmd: loadrt siggen
halcmd: loadrt threads name1=fast fp1=0 period1=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The
second command loads our old friend siggen, and the third one creates two threads, a fast one
with a period of 50 micro-seconds and a slow one with a period of 1mS. The fast thread doesn’t
support floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins
and parameters than before:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
03 float -W 0.00000e+00 siggen.0.cosine
03 float -W 0.00000e+00 siggen.0.sawtooth
03 float -W 0.00000e+00 siggen.0.sine
03 float -W 0.00000e+00 siggen.0.square
03 float -W 0.00000e+00 siggen.0.triangle
02 s32 -W 0 freqgen.0.counts
02 bit -W FALSE freqgen.0.dir
02 float -W 0.00000e+00 freqgen.0.position
02 bit -W FALSE freqgen.0.step
02 float R- 0.00000e+00 freqgen.0.velocity
02 s32 -W 0 freqgen.1.counts
02 bit -W FALSE freqgen.1.dir
02 float -W 0.00000e+00 freqgen.1.position
02 bit -W FALSE freqgen.1.step
02 float R- 0.00000e+00 freqgen.1.velocity

halcmd: show param
Parameters:
Owner Type Dir Value Name
03 float -W 1.00000e+00 siggen.0.amplitude

4The “\” at the end of a long line indicates line wrapping (needed for formatting this document). When entering the
commands at the command line, simply skip the “\” (do not hit enter) and keep typing from the following line.

CHAPTER 7. HAL TUTORIAL 61

03 float -W 1.00000e+00 siggen.0.frequency
03 float -W 0.00000e+00 siggen.0.offset
02 u32 -W 000000001 freqgen.0.dirhold
02 u32 -W 000000001 freqgen.0.dirsetup
02 float R- 0.00000e+00 freqgen.0.frequency
02 float -W 0.00000e+00 freqgen.0.maxaccel
02 float -W 1.00000e+15 freqgen.0.maxfreq
02 float -W 1.00000e+00 freqgen.0.position-scale
02 s32 R- 0 freqgen.0.rawcounts
02 u32 -W 000000001 freqgen.0.steplen
02 u32 -W 000000001 freqgen.0.stepspace
02 float -W 1.00000e+00 freqgen.0.velocity-scale
02 u32 -W 000000001 freqgen.1.dirhold
02 u32 -W 000000001 freqgen.1.dirsetup
02 float R- 0.00000e+00 freqgen.1.frequency
02 float -W 0.00000e+00 freqgen.1.maxaccel
02 float -W 1.00000e+15 freqgen.1.maxfreq
02 float -W 1.00000e+00 freqgen.1.position-scale
02 s32 R- 0 freqgen.1.rawcounts
02 u32 -W 000000001 freqgen.1.steplen
02 u32 -W 000000001 freqgen.1.stepspace
02 float -W 1.00000e+00 freqgen.1.velocity-scale

7.5.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some
HAL signals to connect the two components. We are going to pretend that the two step pulse
generators are driving the X and Y axis of a machine. We want to move the table in circles. To do
this, we will send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module
creates the sine and cosine, but we need “wires” to connect the modules together. In the HAL,
“wires” are called signals. We need to create two of them. We can call them anything we want, for
this example they will be X_vel and Y_vel. To create them we use the the newsig command. We
also need to specify the type of data that will flow through these “wires”, in this case it is floating
point:

halcmd: newsig X_vel float
halcmd: newsig Y_vel float

To make sure that worked, we can look at all the signals:

halcmd: show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel
float 0.00000e+00 Y_vel

The next step is to connect the signals to component pins. The signal X_vel is intended to run
from the cosine output of the signal generator to the velocity input of the first step pulse generator.
The first step is to connect the signal to the signal generator output. To connect a signal to a pin
we use the linksp command.

halcmd: linksp X_vel siggen.0.cosine

To see the effect of the linksp command, we show the signals again:

CHAPTER 7. HAL TUTORIAL 62

halcmd: show sig
ignals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine
float 0.00000e+00 Y_vel

When a signal is connected to one or more pins, the show command lists the pins immediately
following the signal name. The “arrow” shows the direction of data flow - in this case, data flows
from pin siggen.0.cosine to signal X_vel. Now let’s connect the X_vel to the velocity input of a
step pulse generator:

halcmd: linksp X_vel freqgen.0.velocity

We can also connect up the Y axis signal Y_vel. It is intended to run from the sine output of the
signal generator to the input of the second step pulse generator:

halcmd: linksp Y_vel siggen.0.sine
halcmd: linksp Y_vel freqgen.1.velocity

Now let’s take a final look at the signals and the pins connected to them:

halcmd: show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine
==> freqgen.0.velocity

float 0.00000e+00 Y_vel
<== siggen.0.sine
==> freqgen.1.velocity

The show sig command makes it clear exactly how data flows through the HAL. For example, the
X_vel signal comes from pin siggen.0.cosine, and goes to pin freqgen.0.velocity.

7.5.3 Setting up realtime execution - threads and functions

Thinking about data flowing through “wires” makes pins and signals fairly easy to understand.
Threads and functions are a little more difficult. Functions contain the computer instructions that
actually get things done. Thread are the method used to make those instructions run when they
are needed. First let’s look at the functions available to us:

halcmd: show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name
03 D89051C4 D88F10FC YES 0 siggen.0.update
02 D8902868 D88F1054 YES 0 freqgen.capture_position
02 D8902498 D88F1054 NO 0 freqgen.make_pulses
02 D89026F0 D88F1054 YES 0 freqgen.update_freq

In general, you will have to refer to the documentation for each component to see what its
functions do. In this case, the function siggen.0.update is used to update the outputs of the

CHAPTER 7. HAL TUTORIAL 63

signal generator. Every time it is executed, it calculates the values of the sine, cosine, triangle, and
square outputs. To make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators:

The first one, freqgen.capture_position, is used for position feedback. It captures the value of
an internal counter that counts the step pulses as they are generated. Assuming no missed steps,
this counter indicates the position of the motor.

The main function for the step pulse generator is freqgen.make_pulses. Every time make_pulses
runs it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step
pulses, it should run as frequently as possible. Because it needs to run so fast, make_pulses is
highly optimized and performs only a few calculations. Unlike the others, it does not need floating
point math.

The last function, freqgen.update_freq, is responsible for doing scaling and some other
calculations that need to be performed only when the frequency command changes.

What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update, we want to run
freqgen.update_freq to load the new values into the step pulse generator. Finally we need to
run freqgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position
feedback, we don’t need to run freqgen.capture_position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what
threads we have available:

halcmd: show thread
Realtime Threads:

Period FP Name
1005720 YES slow (0, 0)

50286 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every
millisecond, and is capable of running floating point functions. We will use it for siggen.0.update
and freqgen.update_freq. The second thread is fast, which runs every 50 microseconds, and
does not support floating point. We will use it for freqgen.make_pulses. To connect the functions
to the proper thread, we use the addf command. We specify the function first, followed by the
thread:

halcmd: addf siggen.0.update slow
halcmd: addf freqgen.update_freq slow
halcmd: addf freqgen.make_pulses fast

After we give these commands, we can run the show thread command again to see what
happened:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
1005720 YES slow (0, 0)

1 siggen.0.update
2 freqgen.update-freq

50286 NO fast (0, 0)
1 freqgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

CHAPTER 7. HAL TUTORIAL 64

7.5.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the
step pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per
second with an input of 1.000. It is unlikely that one step per second will give us one inch per
second of table movement. Let’s assume instead that we have a 5 turn per inch leadscrew,
connected to a 200 step per rev stepper with 10x microstepping. So it takes 2000 steps for one
revolution of the screw, and 5 revolutions to travel one inch. that means the overall scaling is
10000 steps per inch. We need to multiply the velocity input to the step pulse generator by 10000
to get the proper output. That is exactly what the parameter freqgen.n.velocity-scale is for.
In this case, both the X and Y axis have the same scaling, so we set the scaling parameters for
both to 10000:

halcmd: setp freqgen.0.velocity-scale 10000
halcmd: setp freqgen.1.velocity-scale 10000

This velocity scaling means that when the pin freqgen.0.velocity is 1.000, the step generator
will generate 10000 pulses per second (10KHz). With the motor and leadscrew described above,
that will result in the axis moving at exactly 1.000 inches per second. This illustrates a key HAL
concept - things like scaling are done at the lowest possible level, in this case in the step pulse
generator. The internal signal X_vel is the velocity of the table in inches per second, and other
components such as siggen don’t know (or care) about the scaling at all. If we changed the
leadscrew, or motor, we would change only the scaling parameter of the step pulse generator.

7.5.5 Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we
use the start command:

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10KHz forward to 10KHz reverse and back again every second. Later in
this tutorial we’ll see how to bring those internal signals out to run motors in the real world, but
first we want to look at them and see what is happening.

7.6 Taking a closer look with halscope.

The previous example generates some very interesting signals. But much of what happens is far
too fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an
oscilloscope. Fortunately HAL has one, called halscope.

7.6.1 Starting Halscope

Halscope has two parts - a realtime part that is loaded as a kernel module, and a user part that
supplies the GUI and display. However, you don’t need to worry about this, because the userspace
portion will automatically request that the realtime part be loaded.

halcmd: loadusr halscope

CHAPTER 7. HAL TUTORIAL 65

The scope GUI window will open, immediately followed by a “Realtime function not linked” dialog
that looks like figure 7.45.

Figure 7.4: “Realtime function not linked” dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample
once per millisecond, so click on the 1.03mS thread “slow” (formerly “siggen.thread”, see footnote),
and leave the multiplier at 1. We will also leave the record length at 4047 samples, so that we can
use up to four channels at one time. When you select a thread and then click “OK”, the dialog
disappears, and the scope window looks something like figure 7.5.

5Several of these screen captures refer to threads named “siggen.thread” and “stepgen.thread” instead of “slow” and
“fast”. When the screenshots were captured, the “threads” component didn’t exist, and a different method was used to create
threads, giving them different names. Also, the screenshots show pins, etc, as “stepgen.xxx” rather than “freqgen.xxx”. The
original name of the freqgen module was stepgen, and I haven’t gotten around to re-doing all the screen shots since it was
renamed. The name “stepgen” now refers to a different step pulse generator, one that accepts position instead of velocity
commands. Both are described in detail later in this document.

CHAPTER 7. HAL TUTORIAL 66

Figure 7.5: Initial scope window

CHAPTER 7. HAL TUTORIAL 67

7.6.2 Hooking up the “scope probes”

At this point, Halscope is ready to use. We have already selected a sample rate and record length,
so the next step is to decide what to look at. This is equivalent to hooking “virtual scope probes” to
the HAL. Halscope has 16 channels, but the number you can use at any one time depends on the
record length - more channels means shorter records, since the memory available for the record is
fixed at approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button “1”, and you will
see the “Select Channel Source” dialog, figure 7.6. This dialog is very similar to the one used by
Halmeter. We would like to look at the signals we defined earlier, so we click on the “Signals” tab,
and the dialog displays all of the signals in the HAL (only two for this example).

Figure 7.6: Select Channel Source dialog

To choose a signal, just click on it. In this case, we want to use channel 1 to display the signal
“X_vel”. When we click on “X_vel”, the dialog closes and the channel is now selected. The channel 1
button is pressed in, and channel number 1 and the name “X_vel” appear below the row of
buttons. That display always indicates the selected channel - you can have many channels on the
screen, but the selected one is highlighted, and the various controls like vertical position and scale
always work on the selected one. To add a signal to channel 2, click the “2” button. When the
dialog pops up, click the “Signals” tab, then click on “Y_vel”.

We also want to look at the square and triangle wave outputs. There are no signals connected to
those pins, so we use the “Pins” tab instead. For channel 3, select “siggen.0.triangle” and for
channel 4, select “siggen.0.square”.

CHAPTER 7. HAL TUTORIAL 68

7.6.3 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the “Normal” button in the “Run Mode” section of the screen (upper right). Since
we have a 4000 sample record length, and are acquiring 1000 samples per second, it will take
halscope about 2 seconds to fill half of its buffer. During that time a progress bar just above the
main screen will show the buffer filling. Once the buffer is half full, the scope waits for a trigger.
Since we haven’t configured one yet, it will wait forever. To manually trigger it, click the “Force”
button in the “Trigger” section at the top right. You should see the remainder of the buffer fill, then
the screen will display the captured waveforms. The result will look something like figure 7.7.

Figure 7.7: Captured Waveforms

The “Selected Channel” box at the bottom tells you that the green trace is the currently selected
one, channel 4, which is displaying the value of the pin “siggen.1.square”. Try clicking channel
buttons 1 through 3 to highlight the other three traces.

CHAPTER 7. HAL TUTORIAL 69

7.6.4 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use
the “Vertical” controls in the box to the right of the screen. These controls act on the currently
selected channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope,
this one can display signals ranging from very tiny (pico-units) to very large (Tera-units). The
position control moves the displayed trace up and down over the height of the screen only. For
larger adjustments the offset button should be used (see the halscope reference in section ?? for
details).

7.6.5 Triggering

Using the “Force” button is a rather unsatisfying way to trigger the scope. To set up real triggering,
click on the “Source” button at the bottom right. It will pop up the “Trigger Source” dialog, which is
simply a list of all the probes that are currently connected (Figure 7.8). Select a probe to use for
triggering by clicking on it. For this example we will use channel 3, the triangle wave.

Figure 7.8: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the
sliders in the “Trigger” box along the right edge. The level can be adjusted from the top to the
bottom of the screen, and is displayed below the sliders. The position is the location of the trigger
point within the overall record. With the slider all the way down, the trigger point is at the end of
the record, and halscope displays what happened before the trigger point. When the slider is all
the way up, the trigger point is at the beginning of the record, displaying what happened after it
was triggered. The trigger point is visible as a vertical line in the progress box above the screen.
The trigger polarity can be changed by clicking the button just below the trigger level display. Note
that changing the trigger position stops the scope, once the position is adjusted you restart the
scope by clicking the “Normal” button in the “Run Mode” box.

Now that we have adjusted the vertical controls and triggering, the scope display looks something
like figure 7.9.

CHAPTER 7. HAL TUTORIAL 70

Figure 7.9: Waveforms with Triggering

CHAPTER 7. HAL TUTORIAL 71

7.6.6 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to
expand the waveforms horizontally, and the position slider to determine which part of the zoomed
waveform is visible. However, sometimes simply expanding the waveforms isn’t enough and you
need to increase the sampling rate. For example, we would like to look at the actual step pulses
that are being generated in our example. Since the step pulses may be only 50uS long, sampling at
1KHz isn’t fast enough. To change the sample rate, click on the button that displays the record
length and sample rate to bring up the “Select Sample Rate” dialog, figure . For this example, we
will click on the 50uS thread, “fast”, which gives us a sample rate of about 20KHz. Now instead of
displaying about 4 seconds worth of data, one record is 4000 samples at 20KHz, or about 0.20
seconds.

Figure 7.10: Sample Rate Dialog

CHAPTER 7. HAL TUTORIAL 72

7.6.7 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only
4 at a time. Before we select any more channels, we need to turn off a couple. Click on the channel
2 button, then click the “Off” button at the bottom of the “Vertical” box. Then click on channel 3,
turn if off, and do the same for channel 4. Even though the channels are turned off, they still
remember what they are connected to, and in fact we will continue to use channel 3 as the trigger
source. To add new channels, select channel 5, and choose pin “stepgen.1.dir”, then channel 6,
and select “stepgen.1.step”. Then click run mode “Normal” to start the scope, and adjust the
horizontal zoom to 5mS per division. You should see the step pulses slow down as the velocity
command (channel 1) approaches zero, then the direction pin changes state and the step pulses
speed up again. You might want to increase the gain on channel 1 to about 20m per division to
better see the change in the velocity command. The result should look like figure 7.11.

Figure 7.11: Looking at Step Pulses

CHAPTER 7. HAL TUTORIAL 73

Chapter 8

Hardware Drivers

8.1 Parport

Parport is a driver for the traditional PC parallel port. The port has a total of 17 physical pins. The
original parallel port divided those pins into three groups: data, control, and status. The data
group consists of 8 output pins, the control group consists of 4 pins, and the status group consists
of 5 input pins.

In the early 1990’s, the bidirectional parallel port was introduced, which allows the data group to
be used for output or input. The HAL driver supports the bidirectional port, and allows the user to
set the data group as either input or output. If configured as output, a port provides a total of 12
outputs and 5 inputs. If configured as input, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by
an external gate. On a board with open collector control pins, the “x” mode allows a more flexible
mode with 8 dedicated outputs, 5 dedicated inputs, and 4 open collector pins. In other parallel
ports, the control group has push-pull drivers and cannot be used as an input.1

No other combinations are supported, and a port cannot be changed from input to output once the
driver is installed. Figure 8.1 shows two block diagrams, one showing the driver when the data
group is configured for output, and one showing it configured for input.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports
are numbered starting at zero.

8.1.1 Installing

From command line:

emc2$ halcmd loadrt hal_parport cfg="<config-string>"2

1HAL cannot automatically determine if the “x” mode bidirectional pins are actually open collectors (OC). If they are not,
they cannot be used as inputs, and attempting to drive them LOW from an external source can damage the hardware.

To determine whether your port has “open collector” pins, load hal_parport in “x” mode, output a HIGH value on the pin.
HAL should read the pin as TRUE. Next, insert a 470Ω resistor from one of the control pins to GND. If the resulting voltage
on the control pin is close to 0V, and HAL now reads the pin as FALSE, then you have an OC port. If the resulting voltage is
far from 0V, or HAL does not read the pin as FALSE, then your port cannot be used in “x” mode.

The external hardware that drives the control pins should also use open collector gates (e.g., 74LS05). Generally, the -out
HAL pins should be set to TRUE when the physical pin is being used as an input.

On some machines, BIOS settings may affect whether “x” mode can be used. “SPP” mode is most most likely to work.
2The single quotes around the entire cfg= argument are needed to prevent the shell from misinterpreting the double

quotes around the string, and any spaces or special characters in the string. Single quotes should not be used in a file or
from the halcmd prompt.

74

CHAPTER 8. HARDWARE DRIVERS 75

From a file or at the halcmd: prompt:

loadrt hal_parport cfg="<config-string>"

The config string consists of a hex port address, followed by an optional direction, repeated for
each port. The direction is “in”, “out”, or “x” and determines the direction of the physical pins 2
through 9, and whether to create input HAL pins for the physical control pins. If the direction is
not specified, the data group defaults to output. For example:

loadrt hal_parport cfg="0x278 0x378 in 0x20A0 out"

This example installs drivers for one port at 0x0278, with pins 2-9 as outputs (by default, since
neither “in” nor “out” was specified), one at 0x0378, with pins 2-9 as inputs, and one at 0x20A0,
with pins 2-9 explicitly specified as outputs. Note that you must know the base address of the
parallel port to properly configure the driver. For ISA bus ports, this is usually not a problem,
since the port is almost always at a “well known” address, like 0278 or 0378 which is typically
configured in the system BIOS. The address for a PCI card is usally shown in “lspci -v” in an “I/O
ports” line. There is no default address; if <config-string> does not contain at least one address,
it is an error.

8.1.2 Removing

emc2$ halcmd unloadrt hal_parport

8.1.3 Pins

• (BIT) parport.<portnum>.pin-<pinnum>-out – Drives a physical output pin.

• (BIT) parport.<portnum>.pin-<pinnum>-in – Tracks a physical input pin.

• (BIT) parport.<portnum>.pin-<pinnum>-in-not – Tracks a physical input pin, but
inverted.

For each pin, <portnum> is the port number, and <pinnum> is the physical pin number in the 25
pin D-shell connector.

For each physical output pin, the driver creates a single HAL pin, for example
parport.0.pin-14-out. Pins 1, 14, 16, and 17 are always outputs. Pins 2 through 9 are part of
the data group and are output pins if the port is defined as an output port. (Output is the default.)
These HAL pins control the state of the corresponding physical pins.

For each physical input pin, the driver creates two HAL pins, for example parport.0.pin-12-in
and parport.0.pin-12-in-not. Pins 10, 11, 12, 13, and 15 are always input pins. Pins 2
through 9 are input pins only if the port is defined as an input port. The -in HAL pin is TRUE if
the physical pin is high, and FALSE if the physical pin is low. The -in-not HAL pin is inverted – it
is FALSE if the physical pin is high. By connecting a signal to one or the other, the user can
determine the state of the input.

8.1.4 Parameters

• (BIT) parport.<portnum>.pin-<pinnum>-out-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

CHAPTER 8. HARDWARE DRIVERS 76

pin
-8

-in
-n

ot
pin

-8
-in

pin
-7

-in
-n

ot
pin

-7
-in

pin
-6

-in
-n

ot
pin

-6
-in

pin
-5

-in
-n

ot
pin

-5
-in

pin
-4

-in
-n

ot
pin

-4
-in

pin
-3

-in
-n

ot
pin

-3
-in

pin
-2

-in
-n

ot
pin

-2
-in

pin
-9

-in
-n

ot
pin

-9
-in

pin
-1

5-
in-

no
t

pin
-1

5-
in

pin
-1

3-
in-

no
t

pin
-1

3-
in

pin
-1

2-
in-

no
t

pin
-1

2-
in

pin
-1

1-
in-

no
t

pin
-1

1-
in

pin
-1

0-
in-

no
t

pin
-1

0-
in

pin
-1

7-
ou

t-i
nv

er
t

pin
-1

7-
ou

t

pin
-1

6-
ou

t-i
nv

er
t

pin
-1

6-
ou

t

pin
-1

4-
ou

t-i
nv

er
t

pin
-1

4-
ou

t

pin
-1

-o
ut

-in
ve

rt
pin

-1
-o

ut

pin
-1

0-
in-

no
t

pin
-1

0-
in

pin
-1

1-
in-

no
t

pin
-1

1-
in

pin
-1

2-
in-

no
t

pin
-1

2-
in

pin
-1

3-
in-

no
t

pin
-1

3-
in

pin
-1

5-
in-

no
t

pin
-1

5-
in

pin
-8

-o
ut

-in
ve

rt
pin

-8
-o

ut

pin
-7

-o
ut

-in
ve

rt
pin

-7
-o

ut

pin
-6

-o
ut

-in
ve

rt
pin

-6
-o

ut

pin
-5

-o
ut

-in
ve

rt
pin

-5
-o

ut

pin
-4

-o
ut

-in
ve

rt
pin

-4
-o

ut

pin
-3

-o
ut

-in
ve

rt
pin

-3
-o

ut

pin
-2

-o
ut

-in
ve

rt
pin

-2
-o

ut

pin
-9

-o
ut

-in
ve

rt
pin

-9
-o

ut

pin
-1

7-
ou

t-i
nv

er
t

pin
-1

7-
ou

t

pin
-1

6-
ou

t-i
nv

er
t

pin
-1

6-
ou

t

pin
-1

4-
ou

t-i
nv

er
t

pin
-1

4-
ou

t

pin
-1

-o
ut

-in
ve

rt
pin

-1
-o

ut

25
25

13
13

24
24

12
12

11
11

10
10

9
9

8
8

7
7

6
6

5
5

4
4

3
3

2
2

1
1

23
23

22
22

21
21

20
20

19
19

18
18

17
17

16
16

15
15

14
14

pa
rp

or
t.0

pa
rp

or
t.0

co
nf

igu
re

d
as

 in
pu

t
co

nf
igu

re
d

as
 o

ut
pu

t

Figure 8.1: Parport Block Diagram

CHAPTER 8. HARDWARE DRIVERS 77

8.1.5 Functions

• (FUNCT) parport.<portnum>.read– Reads physical input pins of port <portnum> and
updates HAL -in and -in-not pins.

• (FUNCT) parport.read-all – Reads physical input pins of all ports and updates HAL -in
and -in-not pins.

• (FUNCT) parport.<portnum>.write – Reads HAL -out pins of port <portnum> and updates
that port’s physical output pins.

• (FUNCT) parport.write-all – Reads HAL -out pins of all ports and updates all physical
output pins.

The individual functions are provided for situations where one port needs to be updated in a very
fast thread, but other ports can be updated in a slower thread to save CPU time. It is probably not
a good idea to use both an -all function and an individual function at the same time.

8.1.6 Common problems

If loading the module reports

insmod: error inserting ’/home/jepler/emc2/rtlib/hal_parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport_pc is not loaded and that no other device in
the system has claimed the I/O ports.

If the module loads but does not appear to function, then the port address is incorrect or the
probe_parport module is required.

8.2 probe_parport

In modern PCs, the parallel port may require plug and play (PNP) configuration before it can be
used. The probe_parport module performs configuration of any PNP ports present, and should be
loaded before hal_parport. On machines without PNP ports, it cannot be loaded.

8.2.1 Installing

loadrt probe_parport
loadrt hal_parport ...

If the Linux kernel prints a message similar to

parport: PnPBIOS parport detected.

when the parport_pc module is loaded (sudo modprobe -a parport_pc) then use of this module
is probably required

8.3 AX5214H

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an
ISA bus, and resembles a pair of 8255 chips.3

3In fact it may be a pair of 8255 chips, but I’m not sure. If/when someone starts a driver for an 8255 they should look at
the ax5214 code, much of the work is already done.

CHAPTER 8. HARDWARE DRIVERS 78

8.3.1 Installing

From command line:

emc2$ halcmd loadrt hal_ax5214h ’cfg="<config-string>"’4

From a file:

loadrt hal_ax5214h cfg="<config-string>"

The config string consists of a hex port address, followed by an 8 character string of “I” and “O”
which sets groups of pins as inputs and outputs. The first two character set the direction of the
first two 8 bit blocks of pins (0-7 and 8-15). The next two set blocks of 4 pins (16-19 and 20-23).
The pattern then repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4 bits
(40-43 and 44-47). If more than one board is installed, the data for the second board follows the
first. As an example, the string "0x220 IIIOIIOO 0x300 OIOOIOIO" installs drivers for two
boards. The first board is at address 0x220, and has 36 inputs (0-19 and 24-39) and 12 outputs
(20-23 and 40-47). The second board is at address 0x300, and has 20 inputs (8-15, 24-31, and
40-43) and 28 outputs (0-7. 16-23, 32-39, and 44-47).

8.3.2 Removing

emc2$ halcmd unloadrt hal_ax5214

8.3.3 Pins

• (BIT) ax5214.<boardnum>.out-<pinnum> – Drives a physical output pin.

• (BIT) ax5214.<boardnum>.in-<pinnum> – Tracks a physical input pin.

• (BIT) ax5214.<boardnum>.in-<pinnum>-not – Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel
number (0 to 47).

Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will
work correctly (TRUE means output ON, or input energized). If the signals are being used directly
without buffering or isolation the inversion needs to be accounted for. The in- HAL pin is TRUE if
the physical pin is low (OPTO-22 module energized), and FALSE if the physical pin is high
(OPTO-22 module off). The in-<pinnum>-not HAL pin is inverted – it is FALSE if the physical pin
is low (OPTO-22 module energized). By connecting a signal to one or the other, the user can
determine the state of the input.

8.3.4 Parameters

• (BIT) ax5214.<boardnum>.out-<pinnum>-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL out- pin TRUE drives the physical pin low, turning ON an attached
OPTO-22 module, and FALSE drives it high, turning OFF the OPTO-22 module. If -invert is
TRUE, then setting the HAL out- pin TRUE will drive the physical pin high and turn the module
OFF.

4The single quotes around the entire cfg= argument are needed to prevent the shell from misinterpreting the double
quotes around the string, and any spaces or special characters in the string. Single quotes should not be used in a file or
from the halcmd prompt.

CHAPTER 8. HARDWARE DRIVERS 79

8.3.5 Functions

• (FUNCT) ax5214.<boardnum>.read – Reads all digital inputs on one board.

• (FUNCT) ax5214.<boardnum>.write – Writes all digital outputs on one board.

8.4 Servo-To-Go

The Servo-To-Go is one of the first PC motion control cards5 supported by EMC. It is an ISA card
and it exists in different flavours (all supported by this driver). The board includes up to 8
channels of quadrature encoder input, 8 channels of analog input and output, 32 bits digital I/O,
an interval timer with interrupt and a watchdog.

8.4.1 Installing:

emc2$ halcmd loadrt hal_stg [base=<address>] [num_chan=<nr>] \
[dio="<dio-string>"] [model=<model>]

The base address field is optional; if it’s not provided the driver attempts to autodetect the board.
The num_chan field is used to specify the number of channels available on the card, if not used
the 8 axis version is assumed. The digital inputs/outputs configuration is determined by a config
string passed to insmod when loading the module. The format consists of a four character string
that sets the direction of each group of pins. Each character of the direction string is either "I" or
"O". The first character sets the direction of port A (Port A - DIO.0-7), the next sets port B (Port B -
DIO.8-15), the next sets port C (Port C - DIO.16-23), and the fourth sets port D (Port D -
DIO.24-31). The model field can be used in case the driver doesn’t autodetect the right card
version6. For example:

emc2$ halcmd loadrt hal_stg base=0x300 num_chan=4 dio="IOIO"

This example installs the stg driver for a card found at the base address of 0x300, 4 channels of
encoder feedback, DAC’s and ADC’s, along with 32 bits of I/O configured like this: the first 8 (Port
A) configured as Input, the next 8 (Port B) configured as Output, the next 8 (Port C) configured as
Input, and the last 8 (Port D) configured as Output

emc2$ halcmd loadrt hal_stg

This example installs the driver and attempts to autodetect the board address and board model, it
installs 8 axes by default along with a standard I/O setup: Port A & B configured as Input, Port C
& D configured as Output.

8.4.2 Removing

emc2$ halcmd unloadrt hal_stg

5a motion control card usually is a board containing devices to control one or more axes (the control devices are usually
DAC’s to set an analog voltage, encoder counting chips for feedback, etc.)

6hint: after starting up the driver, ’dmesg’ can be consulted for messages relevant to the driver (e.g. autodetected version
number and base address)

CHAPTER 8. HARDWARE DRIVERS 80

8.4.3 Pins

• (S32) stg.<channel>.counts – Tracks the counted encoder ticks.

• (FLOAT) stg.<channel>.position – Outputs a converted position.

• (FLOAT) stg.<channel>.dac-value – Drives the voltage for the corresponding DAC.

• (FLOAT) stg.<channel>.adc-value – Tracks the measured voltage from the corresponding
ADC.

• (BIT) stg.in-<pinnum> – Tracks a physical input pin.

• (BIT) stg.in-<pinnum>-not – Tracks a physical input pin, but inverted.

• (BIT) stg.out-<pinnum> – Drives a physical output pin

For each pin, <channel> is the axis number, and <pinnum> is the logic pin number of the STG7.

The in- HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The
in-<pinnum>-not HAL pin is inverted – it is FALSE if the physical pin is high. By connecting a
signal to one or the other, the user can determine the state of the input.

8.4.4 Parameters

• (FLOAT) stg.<channel>.position-scale – The number of counts / user unit (to convert
from counts to units).

• (FLOAT) stg.<channel>.dac-offset – Sets the offset for the corresponding DAC.

• (FLOAT) stg.<channel>.dac-gain – Sets the gain of the corresponding DAC.

• (FLOAT) stg.<channel>.adc-offset – Sets the offset of the corresponding ADC.

• (FLOAT) stg.<channel>.adc-gain – Sets the gain of the corresponding ADC.

• (BIT) stg.out-<pinnum>-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL out- pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL out- pin TRUE will drive the physical pin low.

8.4.5 Functions

• (FUNCT) stg.capture-position – Reads the encoder counters from the axis <channel>.

• (FUNCT) stg.write-dacs – Writes the voltages to the DACs.

• (FUNCT) stg.read-adcs – Reads the voltages from the ADCs.

• (FUNCT) stg.di-read – Reads physical in- pins of all ports and updates all HAL in- and
in-<pinnum>-not pins.

• (FUNCT) stg.do-write – Reads all HAL out- pins and updates all physical output pins.

7if IIOO is defined, there are 16 input pins (in-00 .. in-15) and 16 output pins (out-00 .. out-15), and they correspond to
PORTs ABCD (in-00 is PORTA.0, out-15 is PORTD.7)

CHAPTER 8. HARDWARE DRIVERS 81

8.5 Mesa Electronics m5i20 “Anything I/O Card”

The Mesa Electronics m5i20 card consists of an FPGA that can be loaded with a wide variety of
configurations, and has 72 pins that leave the PC. The assignment of the pins depends on the
FPGA configuration. Currently there is a HAL driver for the “4 axis host based motion control”
configuration, and this FPGA configurations is also provided with EMC2. It provides 8 encoder
counters, 4 PWM outputs (normally used as DACs) and up to 48 digital I/O channels, 32 inputs
and 16 outputs.8

Installing:

emc2$ halcmd loadrt hal_m5i20 [loadFpga=1|0] [dacRate=<rate>]

If loadFpga is 1 (the default) the driver will load the FPGA configuration on startup. If it is 0, the
driver assumes the configuration is already loaded. dacRate sets the carrier frequency for the
PWM outputs, in Hz. The default is 32000, for 32KHz PWM.9 The driver prints some usefull
debugging message to the kernel log, which can be viewed with dmesg.

8.5.1 Removing

emc2$ halcmd unloadrt hal_m5i20

8.5.2 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero, however this driver uses the PCI
board ID, so it may be non-zero even if there is only one board. The driver attempts to emulate the
“canonical encoder”, however there are some differences.10

• (S32) m5i20.<board>.enc-<channel>-count – Encoder position, in counts.

• (FLOAT) m5i20.<board>.enc-<channel>-position – Encoder position, in user units.

• (BIT) m5i20.<board>.enc-<channel>-index – Current status of index pulse input

• (BIT) m5i20.<board>.enc-<channel>-index-enable – Bidirectional - if TRUE, counter will
reset on next index pulse, and index-enable will be cleared

• (BIT) m5i20.<board>.enc-<channel>-reset-count – Bidirectional - if TRUE, counter will
reset immediately, and reset-count will be cleared.

• (BIT) m5i20.<board>.dac-<channel>-enable – Enables DAC if true. DAC outputs zero
volts if false?

• (FLOAT) m5i20.<board>.dac-<channel>-value – Analog output value for PWM “DAC” (in
user units, see -scale and -offset)

• (BIT) m5i20.<board>.in-<channel> – State of digital input pin, see canonical digital input.

8Ideally the encoders, “DACs”, and digital I/O would comply with the canonical interfaces defined earlier, but they don’t.
Fixing that is on the things-to-do list.

9I don’t know what the maximum (and minimum, if any) PWM frequency is, it should be documented here. Also, this is
the kind of thing that ideally is controlled by a HAL parameter, rather than being set when the driver is initially loaded. I
don’t know if that is possible, it depends on the hardware and I don’t have the neccessary information.

10Versions 2.1.6 and earlier had a significantly different encoder interface, and had bugs in the indexing code. Normal
motion control worked, but homing to index, threading, and rigid tapping did not, since all of those features require the
index pulse to work properly. This documentation is for versions 2.1.7 and later.

CHAPTER 8. HARDWARE DRIVERS 82

• (BIT) m5i20.<board>.in-<channel>-not – Inverted state of digital input pin, see canonical
digital input.

• (BIT) m5i20.<board>.out-<channel> – Value to be written to digital output, see canonical
digital output.

• (BIT) m5i20.<board>.estop-in – Dedicated estop input, more details needed.

• (BIT) m5i20.<board>.estop-in-not – Inverted state of dedicated estop input.

• (BIT) m5i20.<board>.watchdog-reset – Bidirectional, - Set TRUE to reset watchdog once,
is automatically cleared. If bit value 16 is set in watchdog-control then this value is not
used, and the hardware watchdog is cleared every time the dac-write function is executed.

8.5.3 Parameters

• (FLOAT) m5i20.<board>.enc-<channel>-scale – The number of counts / user unit (to
convert from counts to units).

• (FLOAT) m5i20.<board>.dac-<channel>-offset – Sets the DAC offset.

• (FLOAT) m5i20.<board>.dac-<channel>-gain – Sets the DAC gain (scaling).

• (BIT) m5i20.<board>.dac-<channel>-interlaced – Sets the DAC to interlaced mode. Use
this mode if you are filtering the PWM to generate an anaolg voltage.11

• (BIT) m5i20.<board>.out-<channel>-invert – Inverts a digital output, see canonical
digital output.

• (U32) m5i20.<board>.watchdog-control – Configures the watchdog. The value may be a
bitwise OR of the following values:
Bit # Value Meaning

0 1 Watchdog is enabled
1 2 Watchdog is automatically reset by DAC writes (the HAL dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 3 (watchdog enabled, cleared by
dac-write).

• (U32) m5i20.<board>.led-view – Maps some of the I/O to onboard LEDs. See table below.

8.5.4 Functions

• (FUNCT) m5i20.<board>.encoder-read – Reads all encoder counters.

• (FUNCT) m5i20.<board>.digital-in-read – Reads digital inputs.

• (FUNCT) m5i20.<board>.dac-write – Writes the voltages (PWM duty cycles) to the “DACs”.

• (FUNCT) m5i20.<board>.digital-out-write – Writes digital outputs.

• (FUNCT) m5i20.<board>.misc-update – Writes watchdog timer configuration to hardware.
Resets watchdog timer. Updates E-stop pin (more info needed). Updates onboard LEDs.

8.5.5 Connector pinout

The Hostmot-4 FPGA configuration has the following pinout. There are three 50-pin ribbon cable
connectors on the card: P2, P3, and P4. There are also 8 status LEDs.

11With normal 10 bit PWM, 50% duty cycle would be 512 cycles on and 512 cycles off = ca 30 kHz with 33 MHz reference
counter. With fully interleaved PWM this would be 1 cycle on, 1 cycle off for 1024 cycles (16.66 MHz if the PWM reference
counter runs at 33 MHz) = much easier to filter. The 5I20 configuration interlace is somewhat between non and fully
interlaced (to make it easy to filter but not have as many transistions as fully interleaved).

CHAPTER 8. HARDWARE DRIVERS 83

8.5.5.1 Connecor P2

m5i20 card connector P2 Function/HAL-pin
1 enc-01 A input
3 enc-01 B input
5 enc-00 A input
7 enc-00 B input
9 enc-01 index input
11 enc-00 index input
13 dac-01 output
15 dac-00 output
17 DIR output for dac-01
19 DIR output for dac-00
21 dac-01-enable output
23 dac-00-enable output
25 enc-03 B input
27 enc-03 A input
29 enc-02 B input
31 enc-02 A input
33 enc-03 index input
35 enc-02 index input
37 dac-03 output
39 dac-02 output
41 DIR output for dac-03
43 DIR output for dac-02
45 dac-03-enable output
47 dac-02-enable output
49 Power +5 V (or +3.3V ?)

all even pins Ground

8.5.5.2 Connector P3

Encoder counters 4 - 7 work simultaneously with in-00 to in-11.

If you are using in-00 to in-11 as general purpose IO then reading enc-<4-7> will produce some
random junk number.

CHAPTER 8. HARDWARE DRIVERS 84

m5i20 card connector P3 Function/HAL-pin Secondary Function/HAL-pin
1 in-00 enc-04 A input
3 in-01 enc-04 B input
5 in-02 enc-04 index input
7 in-03 enc-05 A input
9 in-04 enc-05 B input
11 in-05 enc-05 index input
13 in-06 enc-06 A input
15 in-07 enc-06 B input
17 in-08 enc-06 index input
19 in-09 enc-07 A input
21 in-10 enc-07 B input
23 in-11 enc-07 index input
25 in-12
27 in-13
29 in-14
31 in-15
33 out-00
35 out-01
37 out-02
39 out-03
41 out-04
43 out-05
45 out-06
47 out-07
49 Power +5 V (or +3.3V ?)

all even pins Ground

Note!: This is the intended pinout of P3. Unfortunately, in the current FPGA configuration
distributed with EMC212, the secondary encoders, enc-04, enc-05, enc-06, and enc-07 are wrongly
configured. The input pins for enc-04 and enc-05 partly overlap, as do the pins for enc-06 and
enc-07. Thus it is possible to use enc-04 and enc-06 simultaneously, but using enc-04 and enc-05
is not possible since counts on enc-04 will make the count on enc-05 jump by +/- 1. If you are
using pins in-00 to in-11 as general purpose inputs you are not affected by this bug.

8.5.5.3 Connector P4

The index mask masks the index input of the encoder so that the encoder index can be combined
with a mechanical switch or opto detector to clear or latch the encoder counter only when the
mask input bit is in proper state (selected by mask polarity bit) and encoder index occurs. This is
useful for homing. The behaviour of these pins is controlled by the Counter Control Register (CCR),
however there is currently no function in the driver to change the CCR. See REGMAP413 for a
description of the CCR.

12emc2/src/hal/drivers/m5i20_HM5-4E.h dated 2005/06/07
13emc2/src/hal/drivers/m5i20/REGMAP4E

CHAPTER 8. HARDWARE DRIVERS 85

m5i20 card connector P4 Function/HAL-pin Secondary Function/HAL-pin
1 in-16 enc-00 index mask
3 in-17 enc-01 index mask
5 in-18 enc-02 index mask
7 in-19 enc-03 index mask
9 in-20
11 in-21
13 in-22
15 in-23
17 in-24 enc-04 index mask
19 in-25 enc-05 index mask
21 in-26 enc-06 index mask
23 in-27 enc-07 index mask
25 in-28
27 in-29
29 in-30
31 in-31
33 out-08
35 out-09
37 out-10
39 out-11
41 out-12
43 out-13
45 out-14
47 out-15
49 Power +5 V (or +3.3V ?)

all even pins Ground

8.5.5.4 LEDs

The status LEDs will monitor one motion channel set by the m5i20.<board>.led-view parameter.
A call to m5i20.<board>.misc-update is required to update the LEDs.

LED name Output
LED0 IRQLatch ?
LED1 enc-<channel> A
LED2 enc-<channel> B
LED3 enc-<channel> index
LED4 dac-<channel> DIR
LED5 dac-<channel>
LED6 dac-<channel>-enable
LED7 watchdog timeout ?

8.6 Vital Systems Motenc-100 and Motenc-LITE

The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The
Motenc-100 provides 8 quadrature encoder counters, 8 analog inputs, 8 analog outputs, 64 (68?)
digital inputs, and 32 digital outputs. The Motenc-LITE has only 4 encoder counters, 32 digital
inputs and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver
automatically identifies the installed board and exports the appropriate HAL objects.14

Installing:
14Ideally the encoders, DACs, ADCs, and digital I/O would comply with the canonical interfaces defined earlier, but they

don’t. Fixing that is on the things-to-do list.

CHAPTER 8. HARDWARE DRIVERS 86

emc2$ halcmd loadrt hal_motenc

During loading (or attempted loading) the driver prints some usefull debugging message to the
kernel log, which can be viewed with dmesg.

8.6.1 Removing

emc2$ halcmd unloadrt hal_motenc

8.6.2 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the baord, so it may be non-zero even if there is only one board.

• (S32) motenc.<board>.enc-<channel>-count – Encoder position, in counts.

• (FLOAT) motenc.<board>.enc-<channel>-position – Encoder position, in user units.

• (BIT) motenc.<board>.enc-<channel>-index – Current status of index pulse input.

• (BIT) motenc.<board>.enc-<channel>-idx-latch – Driver sets this pin true when it
latches an index pulse (enabled by latch-index). Cleared by clearing latch-index.

• (BIT) motenc.<board>.enc-<channel>-latch-index – If this pin is true, the driver will
reset the counter on the next index pulse.

• (BIT) motenc.<board>.enc-<channel>-reset-count – If this pin is true, the counter will
immediately be reset to zero, and the pin will be cleared.

• (FLOAT) motenc.<board>.dac-<channel>-value – Analog output value for DAC (in user
units, see -gain and -offset)

• (FLOAT) motenc.<board>.adc-<channel>-value – Analog input value read by ADC (in user
units, see -gain and -offset)

• (BIT) motenc.<board>.in-<channel> – State of digital input pin, see canonical digital
input.

• (BIT) motenc.<board>.in-<channel>-not – Inverted state of digital input pin, see
canonical digital input.

• (BIT) motenc.<board>.out-<channel> – Value to be written to digital output, seen
canonical digital output.

• (BIT) motenc.<board>.estop-in – Dedicated estop input, more details needed.

• (BIT) motenc.<board>.estop-in-not – Inverted state of dedicated estop input.

• (BIT) motenc.<board>.watchdog-reset – Bidirectional, - Set TRUE to reset watchdog once,
is automatically cleared.

CHAPTER 8. HARDWARE DRIVERS 87

8.6.3 Parameters

• (FLOAT) motenc.<board>.enc-<channel>-scale – The number of counts / user unit (to
convert from counts to units).

• (FLOAT) motenc.<board>.dac-<channel>-offset – Sets the DAC offset.

• (FLOAT) motenc.<board>.dac-<channel>-gain – Sets the DAC gain (scaling).

• (FLOAT) motenc.<board>.adc-<channel>-offset – Sets the ADC offset.

• (FLOAT) motenc.<board>.adc-<channel>-gain – Sets the ADC gain (scaling).

• (BIT) motenc.<board>.out-<channel>-invert – Inverts a digital output, see canonical
digital output.

• (U32) motenc.<board>.watchdog-control – Configures the watchdog. The value may be a
bitwise OR of the following values:
Bit # Value Meaning

0 1 Timeout is 16ms if set, 8ms if unset
2 4 Watchdog is enabled
4 16 Watchdog is automatically reset by DAC writes (the HAL dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 20 (8ms watchdog enabled, cleared
by dac-write).

• (U32) motenc.<board>.led-view – Maps some of the I/O to onboard LEDs?

8.6.4 Functions

• (FUNCT) motenc.<board>.encoder-read – Reads all encoder counters.

• (FUNCT) motenc.<board>.adc-read – Reads the analog-to-digital converters.

• (FUNCT) motenc.<board>.digital-in-read – Reads digital inputs.

• (FUNCT) motenc.<board>.dac-write – Writes the voltages to the DACs.

• (FUNCT) motenc.<board>.digital-out-write – Writes digital outputs.

• (FUNCT) motenc.<board>.misc-update – Updates misc stuff.

8.7 Pico Systems PPMC (Parallel Port Motion Control)

Pico Systems has a family of boards for doing servo, stepper, and pwm control. The boards connect
to the PC through a parallel port working in EPP mode. Although most users connect one board to
a parallel port, in theory any mix of up to 8 or 16 boards can be used on a single parport. One
driver serves all types of boards. The final mix of I/O depends on the connected board(s). The
driver doesn’t distinguish between boards, it simply numbers I/O channels (encoders, etc) starting
from 0 on the first card.

Installing:

emc2$ halcmd loadrt hal_ppmc port_addr=<addr1>[,<addr2>[,<addr3>]]

The port_addr parameter tells the driver what parallel port(s) to check. By default, <addr1> is
0x0378, and <addr2> and <addr3> are not used.The driver searches the entire address space of
the enhanced parallel port(s) at port_addr, looking for any board(s) in the PPMC family. It then
exports HAL pins for whatever it finds. During loading (or attempted loading) the driver prints
some usefull debugging message to the kernel log, which can be viewed with dmesg.

CHAPTER 8. HARDWARE DRIVERS 88

8.7.1 Removing

emc2$ halcmd unloadrt hal_ppmc

8.7.2 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the baord, so it may be non-zero even if there is only one board.

• (S32) ppmc.<port>.encoder.<channel>.count – Encoder position, in counts.

• (S32) ppmc.<port>.encoder.<channel>.delta – Change in counts since last read.

• (FLOAT) ppmc.<port>.encoder.<channel>.position – Encoder position, in user units.

• (BIT) ppmc.<port>.encoder.<channel>.index – Something to do with index pulse.15

• (BIT) ppmc.<port>.pwm.<channel>.enable – Enables a PWM generator.

• (FLOAT) ppmc.<port>.pwm.<channel>.value – Value which determines the duty cycle of
the PWM waveforms. The value is divided by pwm.<channel>.scale, and if the result is 0.6
the duty cycle will be 60%, and so on. Negative values result in the duty cycle being based on
the absolute value, and the direction pin is set to indicate negative.

• (BIT) ppmc.<port>.stepgen.<channel>.enable – Enables a step pulse generator.

• (FLOAT) ppmc.<port>.stepgen.<channel>.velocity – Value which determines the step
frequency. The value is multiplied by stepgen.<channel>.scale, and the result is the
frequency in steps per second. Negative values result in the frequency being based on the
absolute value, and the direction pin is set to indicate negative.

• (BIT) ppmc.<port>.in-<channel> – State of digital input pin, see canonical digital input.

• (BIT) ppmc.<port>.in.<channel>.not – Inverted state of digital input pin, see canonical
digital input.

• (BIT) ppmc.<port>.out-<channel> – Value to be written to digital output, seen canonical
digital output.

8.7.3 Parameters

• (FLOAT) ppmc.<port>.enc.<channel>.scale – The number of counts / user unit (to
convert from counts to units).

• (FLOAT) ppmc.<port>.pwm.<channel-range>.freq – The PWM carrier frequency, in Hz.
Applies to a group of four consecutive PWM generators, as indicated by <channel-range>.
Minimum is 153Hz, maximum is 500KHz.

• (FLOAT) ppmc.<port>.pwm.<channel>.scale – Scaling for PWM generator. If scale is X,
then the duty cycle will be 100% when the value pin is X (or -X).

• (FLOAT) ppmc.<port>.pwm.<channel>.max-dc – Maximum duty cycle, from 0.0 to 1.0.

• (FLOAT) ppmc.<port>.pwm.<channel>.min-dc – Minimum duty cycle, from 0.0 to 1.0.

• (FLOAT) ppmc.<port>.pwm.<channel>.duty-cycle – Actual duty cycle (used mostly for
troubleshooting.)

15Index handling does _not_ comply with the canonical encoder interface, and should be changed.

CHAPTER 8. HARDWARE DRIVERS 89

• (BIT) ppmc.<port>.pwm.<channel>.bootstrap – If true, the PWM generator will generate
a short sequence of pulses of both polarities when it is enabled, to charge the bootstrap
capacators used on some MOSFET gate drivers.

• (U32) ppmc.<port>.stepgen.<channel-range>.setup-time – Sets minimum time
between direction change and step pulse, in units of 100nS. Applies to a group fof four
consecutive PWM generators, as indicated by <channel-range>.

• (U32) ppmc.<port>.stepgen.<channel-range>.pulse-width – Sets width of step pulses,
in units of 100nS. Applies to a group fof four consecutive PWM generators, as indicated by
<channel-range>.

• (U32) ppmc.<port>.stepgen.<channel-range>.pulse-space-min – Sets minimum time
between pulses, in units of 100nS. The maximum step rate is 1/(100nS * (pulse-width +
pulse-space-min)). Applies to a group fof four consecutive PWM generators, as indicated by
<channel-range>.

• (FLOAT) ppmc.<port>.stepgen.<channel>.scale – Scaling for step pulse generator. The
step frequency in Hz is the absolute value of velocity * scale.

• (FLOAT) ppmc.<port>.stepgen.<channel>.max-vel – The maximum value for velocity.
Commands greater than max-vel will be clamped. Also applies to negative values. (The
absolute value is clamped.)

• (FLOAT) ppmc.<port>.stepgen.<channel>.frequency – Actual step pulse frequency in Hz
(used mostly for troubleshooting.)

• (BIT) ppmc.<port>.out.<channel>.invert – Inverts a digital output, see canonical digital
output.

8.7.4 Functions

• (FUNCT) ppmc.<port>.read – Reads all inputs (digital inputs and encoder counters) on one
port.

• (FUNCT) ppmc.<port>.write – Writes all outputs (digital outputs, stepgens, PWMs) on one
port.

Part III

Using EMC2

90

Chapter 9

Using the AXIS Graphical Interface

9.1 Introduction

AXIS is a graphical front-end for emc2 which features a live preview and backplot. It is written in
Python and uses Tk and OpenGL to display its user interface.

Figure 9.1: AXIS Window

91

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 92

9.2 Getting Started

To select AXIS as the front-end for emc2, edit the .ini file. In the section [DISPLAY] change the
DISPLAY line to read

DISPLAY = axis

Then, start emc2 and select that ini file. The sample configuration sim/axis.ini is already config-
ured to use AXIS as its front-end.

When you start AXIS, a window like the one in Figure 9.1 is shown.

9.2.1 A typical session with AXIS

1. Start emc and select a configuration file.

2. Clear the “ESTOP” condition and turn the machine on.

3. “Home” all axes.

4. Load the file to be milled.

5. Use the preview plot to verify that the program is correct.

6. Put the stock to be milled on the table.

7. Set the proper offsets for each axis by jogging and using the “Touch Off” button.

8. Run the program.

9. To mill the same file again, return to step 6. To mill a different file, return to step 4. When
you’re done, exit AXIS.

9.3 Elements of the AXIS window

The AXIS window contains the following elements:

• A display area that shows a preview of the loaded file (in this case, “axis.ngc”), as well as the
current location of the CNC machine’s “controlled point”. Later, this area will display the path
the CNC machine has moved through, called the “backplot”

• A menubar and toolbar that allow you to perform various actions

• “Manual Control”, which allows you to make the machine move, turn the spindle on or off, and
turn the coolant on or off

• “Code Entry” (also called MDI), where G-code programs can be entered manually, one line at a
time.

• “Feed Override”, which allows you to increase or decrease the speed at which EMC executes
the selected program.

• A text display area that shows the G-code source of the loaded file.

• A status bar which shows the state of the machine. In this screenshot, the machine is turned
on, does not have a tool inserted, and the displayed position is “Relative” to the machine offset
(as opposed to “Absolute”), and the “Actual” (as opposed to “Commanded” position)

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 93

9.3.1 Toolbar buttons

From left to right, the toolbar buttons are:

1. Toggle “Emergency Stop” (also called E-Stop)

2. Toggle machine power

3. Open a file

4. Reload the opened file

5. Run the program

6. Run the next line of the program

7. Pause the program

8. Stop the program

9. Zoom In

10. Zoom Out

11. Preset view “Z”

12. Preset view “Rotated Z”

13. Preset view “X”

14. Preset view “Y”

15. Preset view “P”

16. Clear backplot

9.3.2 Graphical Program Display Area

9.3.2.1 Coordinate Display

In the upper-left corner of the program display is the coordinate display. It shows the position of the
machine. To the left of the axis name, an origin symbol () is shown if the axis has been properly

homed. To the right of the axis name, a limit symbol () is shown if the axis is on one of its limit
switches.

To properly interpret these numbers, refer to the “Position:” indicator in the status bar. If the posi-
tion is “Absolute”, then the displayed number is in the machine coordinate system. If it is “Relative”,
then the displayed number is in the offset coordinate system. When the coordinates displayed are
relative, the display will include a cyan “machine origin” marker (). If the position is “Commanded”,
then it is the ideal position–for instance, the exact coordinate given in a G0 command. If it is “Ac-
tual”, then it is the position the machine has actually been moved to. These values can differ for
several reasons: Following error, deadband, encoder resolution, or step size. For instance, if you
command a movement to X 0.0033 on your mill, but one step of your stepper motor is 0.00125,
then the “Commanded” position will be 0.0033 but the “Actual” position will be 0.0025 (2 steps) or
0.00375 (3 steps).

9.3.2.2 Preview Plot

When a file is loaded, a preview of it is shown in the display area. Fast moves (such as those
produced by the G0 command) are shown as dotted green lines. Moves at a feed rate (such as those
produced by the G1 command) are shown as solid white lines. Dwells (such as those produced by
the G4 command) are shown as small “X” marks.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 94

9.3.2.3 Program Extents

The “extents” of the program in each axis are shown. At each end, the least or greatest coordinate
value is indicated. In the middle, the difference between the coordinates is shown. In Figure 9.1,
the X extent of the file is from -2.05 to 2.09 inches, a total of 4.13 inches.

When some coordinates exceed the “soft limits” in the .ini file, the relevant dimension is shown in a
different color. Here, the maximum limit is exceeded on the X axis:

9.3.2.4 Tool Cone

The location of the tip of the tool is indicated by the “tool cone”. The cone does not indicate anything
about the shape, length, or radius of the tool.

When a tool is loaded (for instance, with the MDI command T1M6), the cone changes to a cylinder
which shows the diameter of the tool given in the tool table file.

9.3.2.5 Backplot

When the machine moves, it leaves a trail called the backplot. The color of the line indicates the
type of motion: Yellow for jogs, faint green for rapid movements, red for straight moves at a feed
rate, and magenta for circular moves at a feed rate.

9.3.2.6 Interacting with the display

By left-clicking on a portion of the preview plot, the line will be highlighted in both the graphical
and text displays. By left-clicking on an empty area, the highlighting will be removed.

By dragging with the left mouse button pressed, the preview plot will be shifted (panned).

By dragging with shift and the left mouse button pressed, or by dragging with the mouse wheel
pressed, the preview plot will be rotated. When a line is highlighted, the center of rotation is the
center of the line. Otherwise, the center of rotation is the center of the file as a whole.

By rotating the mouse wheel, or by dragging with the right mouse button pressed, or by dragging
with control and the left mouse button pressed, the preview plot will be zoomed in or out.

By clicking one of the “Preset View” icons, or by pressing “V”, several preset views may be selected.

9.3.3 Text Program Display Area

By left-clicking a line of the program, the line will be highlighted in both the graphical and text
displays.

When the program is running, the line currently being executed is highlighted in red. If no line has
been selected by the user, the text display will automatically scroll to show the current line.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 95

Figure 9.2: Current and Selected Lines

9.3.4 Manual Control

While the machine is turned on but not running a program, the items in the “Manual Control” tab
can be used to move the machining center or turn different parts of it on and off.

When the machine is not turned on, or when a program is running, the manual controls are un-
available.

Many of the items described below are not useful on all machines. When AXIS detects that a partic-
ular pin is not connected in HAL, the corresponding item in the Manual Control tab is removed. For
instance, if the HAL pin motion.spindle-brake is not connected, then the “Brake” button will not
appear on the screen. If the environment variable AXIS_NO_AUTOCONFIGURE is set, this behavior is
disabled and all the items will appear.

9.3.4.1 The “Axis” group

“Axis” allows you to manually move the machine. This action is known as “jogging”. First, select the
axis to be moved by clicking it. Then, click and hold the “+” or “-” button depending on the desired
direction of motion. The first four axes can also be moved by the arrow keys (X and Y), PAGE UP
and PAGE DOWN keys (Z) and the [and] keys (A).

If “Continuous” is selected, the motion will continue as long as the button or key is pressed. If
another value is selected, the machine will move exactly the displayed distance each time the button
is clicked or the key is pressed. By default, the available values are:

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 96

0.1000 0.0100 0.0010 0.0001

The .ini file setting [DISPLAY]INCREMENTS can be used to override the default. Its value can contain
decimal numbers (e.g., 0.1000) or fractional numbers (e.g., 1/16). For machines configured as
metric, a good setting might be

INCREMENTS = 1 0.1 0.01 0.001

For a machine configured as imperial (inches), a good setting might be

INCREMENTS = 1/8 .1 1/16 1/32 .01 0.001 0.0001

If your machine has a homing sequence defined, the “Home All” button or the Ctrl-HOME key
will send all axes home. Otherwise, the button will read “Home”, and will send the current axis
home. Pressing the HOME key sends the current axis home, even if a homing sequence is defined.
Depending on your configuration, homing may just set the axis value to be the absolute position
0.0, or it may make the machine move to a specific home location through use of “home switches”.
See section 5.4 for more information on homing.

By pressing “Touch Off” or the END key, the “G54 offset” for the current axis is changed so that
the current axis value will be the specified value. Expressions may be entered using the rules for
rs274ngc programs, except that variables may not be referred to. The resulting value is shown as a
number.

Figure 9.3: Touch Off

By pressing “Override Limits”, the machine will temporarily be permitted to jog outside the limits
defined in the .ini file.

9.3.4.2 The “Spindle” group

The buttons on the first row select the direction for the spindle to rotate: Counterclockwise, Stopped,
Clockwise. The buttons on the next row increase or decrease the rotation speed. The checkbox on
the third row allows the spindle brake to be engaged or released. Depending on your machine
configuration, not all the items in this group may appear.

9.3.4.3 The “Coolant” group

The two buttons allow the “Mist” and “Flood” coolants to be turned on and off. Depending on your
machine configuration, not all the items in this group may appear.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 97

9.3.5 Code Entry

Code Entry” (also called MDI), allows G-code programs can be entered manually, one line at a time.
When the machine is not turned on, or when a program is running, the code entry controls are
unavailable.

Figure 9.4: The Code Entry tab

9.3.5.1 History

This shows MDI commands that have been typed earlier in this session.

9.3.5.2 MDI Command

This allows you to enter a g-code command to be executed. Execute the command by pressing Enter
or by clicking “Go”.

9.3.5.3 Active G-Codes

This shows the “modal codes” that are active in the interpreter. For instance, “G54” indicates that
the “G54 offset” is applied to all coordinates that are entered.

9.3.6 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests
F60 and the slider is set to 120%, then the resulting feed rate will be 72.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 98

9.3.7 Spindle Speed Override

By moving this slider, the programmed spindle feed rate can be modified. For instance, if a program
requests F8000 and the slider is set to 80%, then the resulting spindle speed will be 6400. This
item only appears when the HAL pin motion.spindle-speed-out is connected.

9.3.8 Jog Speed

By moving this slider, the speed of jogs can be modified. For instance, if the slider is set to 1 in/min,
then a .01 inch jog will complete in about .6 seconds, or 1/100 of a minute. Near the left side (slow
jogs) the values are spaced closely together, while near the right side (fast jogs) they are spaced
much further apart, allowing a wide range of jog speeds with fine control when it is most important.

On machines with a rotary axis, a second jog speed slider is shown. This slider sets the jog rate for
the rotary axes (A, B and C).

9.4 Keyboard Controls

Almost all actions in AXIS can be accomplished with the keyboard. A full list of keyboard shortcuts
can be found in the AXIS Quick Reference, which can be displayed by choosing HELP > QUICK

REFERENCE. Many of the shortcuts are unavailable when in Code Entry mode.

The most frequently used keyboard shortcuts are shown in Table 10.1.

Table 9.1: Most Common Keyboard Shortcuts
Keystroke Action Taken

F1 Toggle Emergency Stop
F2 Turn machine on/off

‘, 1 .. 9, 0 Set feed override from 0% to 100%
X, ‘ Activate first axis
Y, 1 Activate second axis
Z, 2 Activate third axis
A, 3 Activate fourth axis

I Select jog increment
C Continuous jog

Control-Home Perform homing sequence
End Touch off: Set G54 offset for active axis

Left, Right Jog first axis
Up, Down Jog second axis

Pg Up, Pg Dn Jog third axis
[,] Jog fourth axis
O Open File

Control-R Reload File
R Run file
P Pause execution
S Resume Execution

ESC Stop execution
Control-K Clear backplot

V Cycle among preset views

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 99

9.5 emctop: Show EMC Status

AXIS includes a program called “emctop” which shows some of the details of emc’s state. You can
run this program by invoking MACHINE > SHOW EMC STATUS

Figure 9.5: EMC Status Window

The name of each item is shown in the left column. The current value is shown in the right column.
If the value has recently changed, it is shown on a red background.

9.6 mdi: Text-mode MDI interface

AXIS includes a program called “mdi” which allows text-mode entry of MDI commands to a running
emc session. You can run this program by opening a terminal and typing

mdi /path/to/emc.nml

Once it is running, it displays the prompt MDI>. When a blank line is entered, the machine’s current
position is shown. When a command is entered, it is sent to emc to be executed. A sample session
of mdi is shown in Figure 9.6.

9.7 axis-remote: Send remote commands to the AXIS GUI

AXIS includes a program called “axis-remote” which can send certain commands to a running
AXIS. The available commands are shown by running axis-remote --help and include check-
ing whether AXIS is running (--ping), loading a file by name, reloading the currently loaded file
(--reload), and making AXIS exit (--quit).

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 100

Figure 9.6: MDI Session
$ mdi ~/emc2/configs/sim/emc.nml
MDI>
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
MDI> G1 F5 X1
MDI>
(0.5928500000000374, 0.0, 0.0, 0.0, 0.0, 0.0)
MDI>
(1.0000000000000639, 0.0, 0.0, 0.0, 0.0, 0.0)

9.8 hal_manualtoolchange: Prompt the user to exchange tools

AXIS includes a userspace hal component called “hal_manualtoolchange”, which shows a window
(Figure 9.7) when a M6 command is issued. After the OK button is pressed, execution of the program
will continue.

The HAL configuration file configs/sim/axis_manualtoolchange.hal shows the HAL commands
necessary to use this component.

hal_manualtoolchange can be used even when AXIS is not used as the GUI.

Figure 9.7: The Manual Toolchange Window

9.9 Python modules

AXIS includes several Python modules which may be useful to others. For more information on one
of these modules, use “pydoc <module name>” or read the source code. These modules include:

• emc provides access to the emc command, status, and error channels

• gcode provides access to the rs274ngc interpreter

• rs274 provides additional tools for working with rs274ngc files

• hal allows the creation of userspace HAL components written in Python

• _togl provides an OpenGL widget that can be used in Tkinter applications

• minigl provides access to the subset of OpenGL used by AXIS

To use these modules in your own scripts, you must ensure that the directory where they reside is
on Python’s module path. When running an installed version of emc2, this should happen auto-
matically. When running “in-place”, this can be done by using scripts/emc-environment.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 101

9.10 Using AXIS to control a CNC Lathe

By including the line

[DISPLAY]
LATHE = 1

in the ini file, AXIS selects lathe mode. The “Y” axis is not shown in coordinate readouts, the view
is changed to show the Z axis extending to the right and the X axis extending towards the bottom
of the screen, and several controls (such as those for preset views) are removed.

Pressing “V” zooms out to show the entire file, if one is loaded.

When in lathe mode, the shape of the loaded tool (if any) is shown.

Figure 9.8: Lathe Mode showing the lathe tool shape

9.11 Advanced configuration of AXIS

9.11.1 Program Filters

AXIS has the ability to send loaded files through a “filter program”. This filter can do any desired
task: Something as simple as making sure the file ends with ’M2’, or something as complicated as
detecting whether the input is a depth image, and generating g-code to mill the shape it defines.

The [FILTER] section of the ini file controls how filters work. First, for each type of file, write a
PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program
is given the name of the input file as its first argument, and must write rs274ngc code to standard
output. This output is what will be displayed in the text area, previewed in the display area, and
executed by emc when “Run”.

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 102

[FILTER]
PROGRAM_EXTENSION = .png,.gif Greyscale Depth Image
png = image-to-gcode
gif = image-to-gcode

It is also possible to specify an interpreter:

PROGRAM_EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example
script is available at nc_files/holecircle.py. This script creates g-code for drilling a series of
holes along the circumference of a circle.

Figure 9.9: Circular Holes

9.11.2 The X Resource Database

The colors of most elements of the AXIS user interface can be customized through the X Resource
Database. The sample file axis_light_background changes the colors of the backplot window to a
“dark lines on white background” scheme, and also serves as a reference for the configurable items
in the display area.

For information about the other items which can be configured in Tk applications, see the Tk
manpages.

Because modern desktop environments automatically make some settings in the X Resource Database
that adversely affect AXIS, by default these settings are ignored. To make the X Resource Database
items override AXIS defaults, include the following line in your X Resources:

CHAPTER 9. USING THE AXIS GRAPHICAL INTERFACE 103

*Axis*optionLevel: widgetDefault

this causes the built-in options to be created at the option level “widgetDefault”, so that X Resources
(which are level “userDefault”) can override them.

9.11.3 Physical jog wheels

To improve the interaction of AXIS with physical jog wheels, the axis currently selected in the GUI
is also reported on a pin with a name like axisui.jog.x. Except for a short time when the active
axis has just been changed, exactly one of these pins is TRUE at one time, and the rest are FALSE.

After AXIS has created these HAL pins, it executes the halfile named in [HAL]POSTGUI_HALFILE.
Unlike [HAL]HALFILE, only one such file may be used.

9.11.4 ~/.axisrc

If it exists, the contents of ~/.axisrc are executed as Python source code just before the AXIS gui
is displayed. The details of what may be written in the axisrc are subject to change during the
development cycle.

The lines shown in Figure 9.10 add Control-Q as a keyboard shortcut for Quit.

Figure 9.10: Sample .axisrc file

root_window.bind("<Control-q>", "destroy .")
help2.append(("Control-Q", "Quit"))

Chapter 10

Using the TkEMC Graphical Interface

10.1 Introduction

TkEMC is one of the most traditional graphical front-ends for EMC. It is written in Tcl and uses
the Tk toolkit for the display. Being written in TCL makes it very portable (runs on a multitude of
platforms).

Figure 10.1: TkEMC Window

10.2 Getting Started

To select TkEMC as the front-end for emc2, edit the .ini file. In the section [DISPLAY] change the
DISPLAY line to read

104

CHAPTER 10. USING THE TKEMC GRAPHICAL INTERFACE 105

DISPLAY = tkemc

Then, start emc2 and select that ini file. The sample configuration sim/tkemc.ini is already
configured to use TkEMC as its front-end.

When you start emc2 with TkEMC, a window like the one in Figure 10.1 is shown.

10.2.1 A typical session with TkEMC

1. Start emc and select a configuration file.

2. Clear the “E-STOP” condition and turn the machine on (by pressing F1 then F2).

3. “Home” each axis.

4. Load the file to be milled.

5. Put the stock to be milled on the table.

6. Set the proper offsets for each axis by jogging and either homing again or richt-clicking an axis
name and entering an offset value.

7. Run the program.

8. To mill the same file again, return to step 6. To mill a different file, return to step 4. When
you’re done, exit emc2.

10.3 Elements of the TkEMC window

The TkEMC window contains the following elements:

• A menubar that allows you to perform various actions ;

• A set of buttons that allow you to change the current working mode, start/stop spindle and
other relevant I/O ;

• Status bar for various offset related displays ;

• Coordinate display area ;

• A set of sliders which control “Jogging speed”, “Feed Override”, and “Spindle speed Override”
which allow you to increase or decrease those settings ;

• Manual data input text box ;

• Status bar display with active G-codes, M-codes, F- and S-words ;

• Interpreter related buttons ;

• A text display area that shows the G-code source of the loaded file.

CHAPTER 10. USING THE TKEMC GRAPHICAL INTERFACE 106

10.3.1 Main buttons

From left to right, the buttons are:

1. Machine enable: “ESTOP” / “ESTOP RESET” / “ON”

2. Toggle mist

3. Decrease spindle speed

4. Set spindle direction “SPINDLE OFF” / “SPINDLE FORWARD” / “SPINDLE REVERSE”

5. Increase spindle speed

6. Abort

then on the second line:

1. Operation mode: “MANUAL” / “MDI” / “AUTO”

2. Toggle flood

3. Toggle spindle brake control

10.3.2 Offset display status bar

The Offset display status bar displays the currently selected tool (selected with Txx M6), the tool
length offset (if active), and the work offsets (set by right clicking the coordinates).

10.3.3 Coordinate Display Area

The main part of the display shows the current position of the tool. The colour of the position
readout depends on the state of the axis. If the axis is unhomed the axis will be displayed in yellow
letters. Once homed it will be displayed in green letters. If there is an error with the current axis
TkEMC will use red letter to show that. (for example if an hardware limit switch is tripped).

To properly interpret these numbers, refer to the radio boxes on the right. If the position is “Ma-
chine”, then the displayed number is in the machine coordinate system. If it is “Relative”, then the
displayed number is in the offset coordinate system. Further down the choices can be “actual” or
“commanded”. Actual refers to the feedback coming from encoders (if you have a servo machine),
and the “commanded” refers to the position command send out to the motors. These values can dif-
fer for several reasons: Following error, deadband, encoder resolution, or step size. For instance, if
you command a movement to X 0.0033 on your mill, but one step of your stepper motor is 0.00125,
then the “Commanded” position will be 0.0033 but the “Actual” position will be 0.0025 (2 steps) or
0.00375 (3 steps).

Another set of radio buttons allows you to choose between “joint” and “world” view. These make little
sense on a normal type of machine (e.g. trivial kinematics), but helps on machines with non-trivial
kinematics like robots or stewart platforms. (you can read more about kinematics in the Integrators
Handbook).

10.3.3.1 Backplot

When the machine moves, it leaves a trail called the backplot. You can start the backplot window
by selecting View->Backplot.

CHAPTER 10. USING THE TKEMC GRAPHICAL INTERFACE 107

Figure 10.2: TkEMC Interpreter / program control

10.3.4 Automatic control

10.3.4.1 Buttons for control

The buttons in the lower part of TkEMC (seen in Figure 10.2) are used to control the execution of a
program: “Open” to load a program, “Verify” to check it for errors, “Run” to start the actual cutting,
“Pause” to stop it while running, “Resume” to resume an already paused program, “Step” to advance
one line in the program and “Optional Stop” to toggle the optional stop switch (if the button is green
the program execution will be stopped on any M1 encountered).

10.3.4.2 Text Program Display Area

When the program is running, the line currently being executed is highlighted in white. The text
display will automatically scroll to show the current line.

10.3.5 Manual Control

10.3.5.1 Implicit keys

TkEMC allows you to manually move the machine. This action is known as “jogging”. First, select
the axis to be moved by clicking it. Then, click and hold the “+” or “-” button depending on the
desired direction of motion. The first four axes can also be moved by the arrow keys (X and Y),
PAGE UP and PAGE DOWN keys (Z) and the [and] keys (A).

If “Continuous” is selected, the motion will continue as long as the button or key is pressed. If
another value is selected, the machine will move exactly the displayed distance each time the button
is clicked or the key is pressed. The available values are:

1.0000 0.1000 0.0100 0.0010 0.0001

By pressing “Home” or the HOME key, the selected axis will be homed. Depending on your con-
figuration, this may just set the axis value to be the absolute position 0.0, or it may make the
machine move to a specific home location through use of “home switches” (see section 5.4 for more
information on homing)

By pressing “Override Limits”, the machine will temporarily be permitted to jog outside the limits
defined in the .ini file. (Note: if “Override Limits” is active the button will be displayed using a red
colour).

CHAPTER 10. USING THE TKEMC GRAPHICAL INTERFACE 108

Figure 10.3: TkEMC Override Limits & Jogging increments example

10.3.5.2 The “Spindle” group

The buttons on the first row select the direction for the spindle to rotate: Counterclockwise, Stopped,
Clockwise. The buttons on the next row increase or decrease the rotation speed. The checkbox on
the third row allows the spindle brake to be engaged or released. Depending on your machine
configuration, not all the items in this group may appear.

10.3.5.3 The “Coolant” group

The two buttons allow the “Mist” and “Flood” coolants to be turned on and off. Depending on your
machine configuration, not all the items in this group may appear.

10.3.6 Code Entry

Manual Data Input (also called MDI), allows G-code programs to be entered manually, one line at
a time. When the machine is not turned on, and not set to MDI mode, the code entry controls are
unavailable.

Figure 10.4: The Code Entry tab

10.3.6.1 MDI:

This allows you to enter a g-code command to be executed. Execute the command by pressing
Enter.

10.3.6.2 Active G-Codes

This shows the “modal codes” that are active in the interpreter. For instance, “G54” indicates that
the “G54 offset” is applied to all coordinates that are entered.

CHAPTER 10. USING THE TKEMC GRAPHICAL INTERFACE 109

10.3.7 Jog Speed

By moving this slider, the speed of jogs can be modified. The numbers above refer to axis units
/ second. The text box with the number is clickable. Once clicked a popup window will appear,
allowing for a number to be entered.

10.3.8 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests
F60 and the slider is set to 120%, then the resulting feed rate will be 72. The text box with the
number is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

10.3.9 Spindle speed Override

The spindle speed override slider works exactly like the feed override slider, but it controls to the
spindle speed. If a program requested S500 (spindle speed 500 RPM), and the slider is set to 80%,
then the resulting spindle speed will be 400 RPM. This slider has a minimum and maximum value
defined in the ini file. If those are missing the slider is stuck at 100%. The text box with the number
is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

10.4 Keyboard Controls

Almost all actions in TkEMC can be accomplished with the keyboard. Many of the shortcuts are
unavailable when in MDI mode.

The most frequently used keyboard shortcuts are shown in Table 10.1.

Table 10.1: Most Common Keyboard Shortcuts
Keystroke Action Taken

F1 Toggle Emergency Stop
F2 Turn machine on/off

‘, 1 .. 9, 0 Set feed override from 0% to 100%
X, ‘ Activate first axis
Y, 1 Activate second axis
Z, 2 Activate third axis
A, 3 Activate fourth axis

Home Send active axis Home
Left, Right Jog first axis
Up, Down Jog second axis

Pg Up, Pg Dn Jog third axis
[,] Jog fourth axis

ESC Stop execution

Chapter 11

Using The MINI Graphical Interface

11.1 Introduction1

Figure 11.1: The Mini Graphical Interface

Mini was designed to be a full screen graphical interface. It was first written for the Sherline CNC
but is available for anyone to use, copy, and distribute under the terms of the GPL copyright.

Rather than popup new windows for each thing that an operator might want to do, Mini allows you
to display these within the regular screen. Parts of this chapter are copied from the instructions
that were written for that mill by Joe Martin and Ray Henry.

1Much of this chapter quotes from a chapater of the Sherline CNC operators manual.

110

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 111

11.2 Screen layout

Figure 11.2: Mini Display for a Running EMC

The Mini screen is laid out in several sections. (See Figure11.1) These include a menu across the
top, a set of main control buttons just below the menu and two rather large columns of information
that show the state of your machine and allow you to enter commands or programs.

When you compare figure11.1 with figure 11.2 you will see many differences. In the second figure

• each axis has been homed – the display numbers are dark green

• the EMC mode is auto – the auto button has a light green background

• the backplotter has been turned on – backplot is visible in the pop-in window

• the tool path from the program is showing in the display.

Once you start working with Mini you will quickly discover how easily it shows the conditions of the
EMC and allows you to make changes to it.

11.3 Menu Bar

The first row is the menu bar across the top. Here you can configure the screen to display additional
information. Some of the items in this menu are very different from what you may be acustomed
to with other programs. You should take a few minutes and look under each menu item in order to
familiarize yourself with the features that are there.

The menu includes each of the following sections and subsections.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 112

Program This menu includes both reset and exit functions. Reset will return the EMC to the
condition that it was in when it started. Some startup configuration items like the normal
program units can be specified in the ini file.

View This menu includes several screen elements that can be added so that you can see additional
information during a run. These include

Position_Type This menu item adds a line above the main position displays that shows
whether the displays are in inches or metric and whether they are Machine or Relative
location and if they are Actual positions or Commanded positions. These can be changed
using the Settings menu described below.

Tool_Info This adds a line immediately below the main position displays that shows which
tool has been selected and the length of offset applied.

Offset_Info adds a line immediately below the tool info that shows what offsets have been
applied. This is a total distance for each axis from machine zero.

Show_Restart adds a block of buttons to the right of the program display in auto mode. These
allow the operator to restart a program after an abort or estop. These will pop in whenever
estop or abort is pressed but can be shows by the operator anytime auto mode is active
by selecting this menu item.

Hide_Restart removes the block of buttons that control the restart of a program that has been
aborted or estopped.

Show_Split_Right changes the nature of the right hand column so that it shows both mode
and pop-in information.

Show_Mode_Full changes the right hand column so that the mode buttons or displays fill
the entire right side of the screen. In manual mode, running with mode full you will see
spindle and lube control buttons as well as the motion buttons.

Show_Popin_Full changes the right hand column so that the popin fills the entire right side
of the screen.

Settings These menu items allow the operator to control certain parameters during a run.

Actual_Position sets the main position displays to actual(machine based) values.

Commanded_Position sets the main position displays to the values that they were com-
manded to.

Machine_Position sets the main position displays to the absolute distance from where the
machine was homed.

Relative_Position sets the main position displays to show the current position including any
offsets like part zeros that are active. For more information on offsets see the chapter on
coordinate systems.

Info lets you see a number of active things by writing their values into the MESSAGE pad.

Program_File will write the currently active program file name.

Editor_File will write the currently active file if the editor pop in is active and a file has been
selected for editing.

Parameter_File will write the name of the file being used for program parameters. You can
find more on this in the chapters on offsets and using variables for programming.

Tool_File will write the name of the tool file that is being used during this run.

Active_G-Codes will write a list of all of the modal program codes that are active whenever
this item is selected. For more information about modal codes see the introductory part
programming chapter.

Help opens a text window pop in that displays the contents of the help file.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 113

You will notice between the info menu and the help menu there are a set of four buttons. These
are called check buttons because they have a small box that shows red if they have been selected.
These four buttons, Editor, Backplot, Tools, and Offsets pop in each of these screens. If more than
one pop-in is active (button shown as red) you can toggle between these pop-ins by right clicking
your mouse.

11.4 Control Button Bar

Below the menu line is a horizontal line of control buttons. These are the primary control buttons
for the interface. Using these buttons you can change mode from [MANUAL] to [AUTO] to [MDI]
(Manual Data Input). These buttons show a light green background whenever that mode is active.

You can also use the [FEEDHOLD], [ABORT], and [ESTOP] buttons to control a programmed move.

11.4.1 MANUAL

This button or pressing <F3> sets the EMC to Manual mode and displays an abreviated set of
buttons the operator can use to issue manual motion commands. The labels of the jog buttons
change to match the active axis. Whenever Show_Mode_Full is active in in manual mode, you will
see spindle and lube control buttons as well as the motion buttons. A keyboard <i> or <I> will
switch from continuous jog to incremental jog. Pressing that key again will toggle the increment
size through the available sizes.

Figure 11.3: Manual Mode Buttons

A button has been added to designate the present position as the home position. We
felt that a machine of this type (Sherline 5400) would be simpler to operate if it didn’t use
a machine home position. This button will zero out any offsets and will home all axes
right where they are.

Axis focus is important here. Notice (in figure 11.1) that in manual mode you see a
line or groove around the X axis to highlight its position display. This groove says that
X is the active axis. It will be the target for jog moves made with the plus and minus jog
buttons. You can change axis focus by clicking on any other axis display. You can also
change axis focus in manual mode if you press its name key on your keyboard. Case is
not important here. [Y] or [y] will shift the focus to the Y axis. [A] or [a] will shift the focus
to the A axis. To help you remember which axis will jog when you press the jog buttons,
the active axis name is displayed on them.

The EMC can jog (move a particular axis) as long as you hold the button down when it
is set for continuous, or it can jog for a preset distance when it is set for incremental. You
can also jog the active axis by pressing the plus [+] or minus [-] keys on the keyboard.
Again, case is not important for keyboard jogs. The two small buttons between the large
jog buttons let you set which kind of jog you want. When you are in incremental mode,
the distance buttons come alive. You can set a distance by pressing it with the mouse.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 114

You can toggle between distances by pressing [i] or [I] on the keyboard. Incremental jog
has an interesting and often unexpected effect. If you press the jog button while a jog is in
progress, it will add the distance to the position it was at when the second jog command
was issued. Two one-inch jog presses in close succession will not get you two inches of
movement. You have to wait until the first one is complete before jogging again.

Jog speed is displayed above the slider. It can be set using the slider by clicking in the
slider’s open slot on the side you want it to move toward, or by clicking on the [Default]
or [Rapid] buttons. This setting only affects the jog move while in manual mode. Once a
jog move is initiated, jog speed has no effect on the jog. As an example of this, say you
set jog mode to incremental and the increment to 1 inch. Once you press the [Jog] button
it will travel that inch at the rate at which it started.

11.4.2 AUTO

When the Auto button is pressed, or <F4> on the keyboard, the EMC is changed into that mode, a
set of the traditional auto operation buttons is displayed, and a small text window opens to show a
part program. During run the active line will be displayed as white lettering on a red background.

In the auto mode, many of the keyboard keys are bound to controls. For example the numbers
above the querty keys are bound to feedrate override. The 0 sets 100%, 9 sets 90% and such. Other
keys work much the same as they do with the tkemc graphical interface.

Figure 11.4: Auto Mode

Auto mode does not normally display the active or modal codes. If the operator wishes to check
these, use menu Info -> Active_G-Codes. This will write all modal codes onto the message scratch
pad.

If abort or estop is pressed during a run a set of buttons displays to the right of the text that allows
the operator to shift the restart line forward or backwards. If the restart line is not the last active
line, it will be highlighted as white letters on a blue background. Caution, a very slow feedrate, and
a finger poised over the pause button is advised during any program restart.

The real heart of CNC machine tool work is the auto mode. Sherline’s auto mode
displays the typical functions that people have come to expect from the EMC. Along the
top are a set of buttons which control what is happening in auto mode. Below them is
the window that shows the part of the program currently being executed. As the program
runs, the active line shows in white letters on a red background. The first three buttons,
[Open], [Run], and [Pause] do about what you’d expect. [Pause] will stop the run right
where it is. The next button, [Resume], will restart motion. They are like feedhold if used
this way. Once [Pause] is pressed and motion has stopped, [Step] will resume motion and
continue it to the end of the current block. Press [Step] again to get the motion of the
next block. Press [Resume] and the interpreter goes back to reading ahead and running
the program. The combination of [Pause] and [Step] work a lot like single block mode on
many controllers. The difference is that [Pause] does not let motion continue to the end
of the current block. Feedrate Override ... can be very handy as you approach a first cut.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 115

Move in quickly at 100 percent, throttle back to 10% and toggle between [Feedhold] and
10% using the pause button. When you are satisfied that you’ve got it right, hit the zero
to the right of nine and go.

The [Verify] button runs the interpreter through the code without initiating any motion.
If Verify finds a problem it will stop the read near the problem block and put up some sort
of message. Most of the time you will be able to figure out the problem with your program
by reading the message and looking in the program window at the highlighted line. Some
of the messages are not very helpful. Sometimes you will need to read a line or two ahead
of the highlight to see the problem. Occasionally the message will refer to something well
ahead of the highlight line. This often happens if you forget to end your program with an
acceptable code like %, m2, m30, or m60.

11.4.3 MDI

The MDI button or <F5> sets the Manual Data Input mode. This mode displays a single line of text
for block entry and shows the currently active modal codes for the interpreter.

MDI mode allows you to enter single blocks and have the interpreter execute them as
if they were part of a program (kind of like a one-line program). You can execute circles,
arcs, lines and such. You can even test sets of program lines by entering one block,
waiting for that motion to end, and then enter the next block. Below the entry window,
there is a listing of all of the current modal codes. This listing can be very handy. I often
forget to enter a g00 before I command a motion. If nothing happens I look down there to
see if g80 is in effect. G80 stops any motion. If it’s there I remember to issue a block like
g00 x0 y0 z0. In MDI you are entering text from the keyboard so none of the main keys
work for commands to the running machine. [F1] will Estop the control.

Since many of the keyboard keys are needed for entry, most of the bindings that were available in
auto mode are not available here.

11.4.4 [FEEDHOLD] – [CONTINUE]

Feedhold is a toggle. When the EMC is ready to handle or is handling a motion command this
button shows the feedhold label on a red backgrouund. If feedhold has been pressed then it will
show the continue label. Using it to pause motion has the advantage of being able to restart the
program from where you stopped it. Feedhold will toggle between zero speed and whatever feedrate
override was active before it was pressed. This button and the function that it activates is also
bound to the pause button on most keyboards.

11.4.5 [ABORT]

The abort button stops any motion when it is pressed. It also removes the motion command from
the EMC. No further motions are cued up after this button is pressed. If you are in auto mode, this
button removes the rest of the program from the motion cue. It also records the number of the line
that was executing when it was pressed. You can use this line number to restart the program after
you have cleared up the reasons for pressing it.

11.4.6 [ESTOP]

The estop button is also a toggle but it works in three possible settings.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 116

• When Mini starts up it will show a raised button with red background with black letters that
say “ESTOP PUSH.” This is the correct state of the machine when you want to run a program
or jog an axis. Estop is ready to work for you when it looks like this.

• If you push the estop button while a motion is being executed, you will see a recessed gray
button that says “ESTOPPED.” You will not be able to move an axis or do any work from the
Mini gui when the estop button displays this way. Pressing it with your mouse will return Mini
to normal ready condition.

• A third view is possible here. A recessed green button means that estop has been take off but
the machine has not been turned on. Normally this only happens when <F1> estop has been
pressed but <F2> has not been pressed.

Joe Martin says, “When all else fails press a software [ESTOP].” This does everything that abort does
but adds in a reset so that the EMC returns to the standard settings that it wakes up on. If you
have an external estop circuit that watches the relevant parallel port or DIO pin, a software estop
can turn off power to the motors.

Most of the time, when we abort or E-Stop it’s because something went wrong. Perhaps
we broke a tool and want to change it. We switch to manual mode and raise the spindle,
change tools, and assuming that we got the length the same, get ready to go on. If we
return the tool to the same place where the abort was issued, the EMC will work perfectly.
It is possible to move the restart line back or ahead of where the abort happened. If
you press the [Back] or [Ahead] buttons you will see a blue highlight that shows the
relationship between the abort line and the one on which the EMC will start up again.
By thinking through what is happening at the time of the restart you can place the tool
tip where it will resume work in an acceptable manner. You will need to think through
things like tool offsets barriers to motion along a diagonal line and such before you press
the [Restart] button.

11.5 Left Column

There are two columns below the control line. The left side of the screen displays information of
interest to the operator. There are very few buttons to press here.

11.5.1 Axis Position Displays

The axis position displays work exactly like they do with tkemc. The color of the letters is important.

• Red indicates that the machine is sitting on a limit switch or the polarity of a min or max limit
is set wrong in the ini file.

• Yellow indicates that the machine is ready to be homed.

• Green indicates that the machine has been homed.

The position can be changed to display any one of several values by using the menu settings. The
startup or default settings can be changed in the ini file so these displays wake up just the way that
you want them.

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 117

11.5.2 Feedrate Override

Immediately below the axis position displays is the feedrate override slider. You can operate feed
rate override and feedhold in any mode of operation. Override will change the speed of jogs or feed
rate in manual or MDI modes. You can adjust feed rate override by grabbing the slider with your
mouse and dragging it along the groove. You can also change feed rate a percent at a time by
clicking in the slider’s groove. In auto mode you can also set feed override in 10% increments by
pressing the top row of numbers. This slider is a handy visual reference to how much override is
being applied to programmed feedrate.

11.5.3 Messages

The message display located under the axis positions is a sort of scratch pad for the EMC. If there
are problems it will report them there. If you try to home or move an axis when the [ESTOP] button
is pressed, you’ll get a message that says something about commanding motion when the EMC is
not ready. If an axis faults out for something like falling behind, the message pad will show what
happened. If you want to remind an operator to change a tool, for example, you can add a line of
code to your program that will display in the message box. An example might be (msg, change to
tool #3 and press resume). This line of code, included in a program, will display “change to tool #3
and press resume” in the message box. The word msg, (with comma included) is the command to
make this happen; without msg, the message wouldn’t be displayed. It will still show in the auto
modes’ display of the program file.

To erase messages simply click the message button at the top of the pad or on the keyboard hold
down the [Alt] key and press the [m] key.

11.6 Right Column

The right column is a general purpose place to display and work. Here you can see the modal
buttons and text entry or displays. Here you can view a plot of the tool path that will be commanded
by your program. You can also write programs and control tools and offsets here. The modal screens
have been described above. Each of the popin displays are described in detail below.

11.6.1 Program Editor

Figure 11.5: Mini Text Editor

The editor is rather limited compared to many modern text editors. It does not have undo nor paste
between windows with the clipboard.These were eliminated because of interaction with a running
program. Future releases will replace these functions so that it will work the way you’ve come
to expect from a text editor. It is included because it has the rather nice feature of being able to
number and renumber lines in the way that the interpreter expects of a file. It will also allow you to

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 118

cut and paste from one part of a file to another. In addition, it will allow you to save your changes
and submit them to the EMC interpreter with the same menu click. You can work on a file in here
for a while and then save and load if the EMC is in Auto mode. If you have been running a file and
find that you need to edit it, that file will be placed in the editor when you click on the editor button
on the top menu.

11.6.2 Backplot Display

Figure 11.6: Mini’s Backplotter

Backplot [Backplot] will show the tool path that can be viewed from a chosen direction. ’3-D’ is the
default. Other choices and controls are displayed along the top and right side of the pop-in. If you
are in the middle of a cut when you press one of these control buttons the machine will pause long
enough to re-compute the view.

Along the right side of the pop-in there is a small pyramid shaped graphic that tries to show the
angle you are viewing the tool path from. Below it are a series of sliders that allow you to change the
angle of view and the size of the plot. You can rotate the little position angle display with these. They
take effect when you press the [Refresh] button. The [Reset] button removes all of the paths from
the display and readies it for a new run of the program but retains your settings for that session.

If backplot is started before a program is started, it will try to use some color lines to indicate the
kind of motion that was used to make it. A green line is a rapid move. A black line is a feedrate
move. Blue and red indicate arcs in counterclockwise and clockwise directions.

The backplotter with Mini allows you to zoom and rotate views after you have run your program but
it is not intended to store a tool path for a long period of time.

11.6.3 Tool Page

The tool page is pretty much like the others. You can set length and diameter values here and
they become effective when you press the [Enter] key. You will need to set up your tool information
before you begin to run a program. You can’t change tool offsets while the program is running or
when the program is paused.

The [Add Tools] and [Remove Tools] buttons work on the bottom of the tool list so you will want to fill
in tool information in decending order. Once a new tool has been added, you can use it in a program
with the usual G-code commands. There is a 32 tool limit in the current EMC configuration files
but you will run out of display space in Mini long before you get there. (Hint You can use menu ->
view -> show popin full to see more tools if you need.)

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 119

Figure 11.7: Mini Tool Display

11.6.4 Offset Page

The offset page can be used to display and setup work offsets. The coordinate system is selected
along the left hand side of the window. Once you have selected a coordinate system you can enter
values or move an axis to a teach position. You can also teach using an edgefinder by adding the

Figure 11.8: Mini Offset Display

radius and length to the offset_by widgets. When you do this you may need to add or subtract the
radius depending upon which surface you choose to touch from. This is selected with the add or
subtract radiobuttons below the offset windows.

The zero all for the active coordinate system button will remove any offsets that you have showing
but they are not set to zero in the variable file until you press the write and load file button as well.
This write and load file button is the one to use when you have set all of the axis values that you
want for a coordinate system.

11.7 Keyboard Bindings

A number of the bindings used with tkemc have been preserved with mini. A few of the bindings
have been changed to extend that set or to ease the operation of a machine using this interface.
Some keys operate the same regradless of the mode. Others change with the mode that EMC is
operating in.

11.7.1 Common Keys

Pause Toggle feedhold

Escape abort motion

F1 toggle estop/estop reset state

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 120

F2 toggle machine off/machine on state

F3 manual mode

F4 auto mode

F5 MDI mode

F6 reset interpreter

The following only work for machines using auxiliary I/O

F7 toggle mist on/mist off

F8 toggle flood on/flood off

F9 toggle spindle forward/off

F10 toggle spindle reverse/off

F11 decrease spindle speed

F12 increase spindle speed

11.7.2 Manual Mode

1-9 0 set feed override to 10%-90%, 0 is 100%

~ set feed override to 0 or feedhold

x select X axis

y select Y axis

z select Z axis

a select A axis

b select B axis

c select C axis

Left Right Arrow jog X axis

Up Down Arrow jog Y axis

Page Up Down jog Z axis

- _ jog the active axis in the minus direction

+ = jog the active axis in the plus direction.

Home home selected axis

i I toggle through jog increments

The following only work with a machine using auxiliary I/O

b take spindle brake off

Alt-b put spindle brake on

CHAPTER 11. USING THE MINI GRAPHICAL INTERFACE 121

11.7.3 Auto Mode

1-9,0 set feed override to 10%-90%, 0 is 100%

~ set feed override to 0 or feedhold

o/O open a program

r/R run an opened program

p/P pause an executing program

s/S resume a paused program

a/A step one line in a paused program

11.8 Misc

One of the features of Mini is that it displays any axis above number 2 as a rotary and will display
degree units for it. It also converts to degree units for incremental jogs when a rotary axis has the
focus.

Chapter 12

return Machining Center Overview

This section gives a brief description of how a machining center is viewed from the input and output
ends of the Interpreter. It is assumed the reader is already familiar with machining centers.

Both the RS274/NGC input language and the output canonical machining functions have a view
of (1) mechanical components of a machining center being controlled and (2) what activities of the
machining center may be controlled, and what data is used in control.

The view here includes some items that a given machining center may not have, such as a pallet
shuttle. The RS274/NGC language and canonical machining functions may be used with such a
machine provided that no NC program used with the controller includes commands intended to
activate physical capabilities the machine does not have. For such a machine, it would be useful
to modify the Interpreter so it will reject input commands and will not produce output canonical
function calls addressed to non-existent equipment.

12.1 Mechanical Components

A machining center has many mechanical components that may be controlled or may affect the way
in which control is exercised. This section describes the subset of those components that interact
with the Interpreter. Mechanical components that do not interact directly with the Interpreter, such
as the jog buttons, are not described here, even if they affect control.

12.1.1 Linear Axes

A machining center has independent mechanisms1 for producing relative linear motion of the tool
and workpiece in three mutually orthogonal directions. These are the X, Y and Z axes.

12.1.2 Rotational axes

Three additional independent mechanisms produce relative rotation of the workpiece and the tool
around an axis. These mechanisms (often a rotary table on which the workpiece is mounted or a
drum on which the spindle is mounted) are called rotational axes and labelled A, B, and C. The
A-axis is parallel to the X-axis. B is parallel to the Y-axis, and C parallel to the Z-axis2. Each
rotational mechanism may or may not have a mechanical limit on how far it can rotate.

1If the motion of mechanical components is not independent, as with hexapod machines, the RS274/NGC language and
the canonical machining functions will still be usable, as long as the lower levels of control know how to control the actual
mechanisms to produce the same relative motion of tool and workpiece as would be produced by independent axes.

2The requirement of parallelism is not used by either language, so both languages are usable if any rotational axis is
not parallel to any linear axis. Rotational axis commands flow through both languages to lower levels of control without
significant change in nature.

122

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 123

12.1.3 Spindle

A machining center has a spindle which holds one cutting tool, probe, or other item. The spindle can
rotate in either direction, and it can be made to rotate at a constant rate, which may be changed.
Except on machines where the spindle may be moved by moving a rotational axis, the axis of the
spindle is kept parallel to the Z-axis and is coincident with the Z-axis when X and Y are zero. The
spindle can be stopped in a fixed orientation or stopped without specifying orientation.

12.1.4 Coolant

A machining center has components to provide mist coolant and/or flood coolant.

12.1.5 Pallet Shuttle

A machining center has a pallet shuttle system. The system has two movable pallets on which
workpieces can be fixtured. Only one pallet at a time is in position for machining.

12.1.6 Tool Carousel

A machining center has a tool carousel with slots for tools fixed in tool holders.

12.1.7 Tool Changer

A machining center has a mechanism for changing tools (fixed in tool holders) between the spindle
and the tool carousel.

12.1.8 Message Display

A machining center has a device that can display messages.

12.1.9 Feed and Speed Override Switches

A machining center has separate feed and speed override switches, which let the operator specify
that the actual feed rate or spindle speed used in machining should be some percentage of the
programmed rate. See Section 12.3.1.

12.1.10 Block Delete Switch

A machining center has a block delete switch. See Section 12.3.2.

12.1.11 Optional Program Stop Switch

A machining center has an optional program stop switch. See Section 12.3.3.

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 124

12.2 Control and Data Components

12.2.1 Linear Axes

The X, Y, and Z axes form a standard right-handed coordinate system of orthogonal linear axes.
Positions of the three linear motion mechanisms are expressed using coordinates on these axes.

12.2.2 Rotational Axes

The rotational axes are measured in degrees as wrapped linear axes in which the direction of positive
rotation is counterclockwise when viewed from the positive end of the corresponding X, Y, or Z-axis.
By “wrapped linear axis,” we mean one on which the angular position increases without limit (goes
towards plus infinity) as the axis turns counterclockwise and deceases without limit (goes towards
minus infinity) as the axis turns clockwise. Wrapped linear axes are used regardless of whether or
not there is a mechanical limit on rotation.

Clockwise or counterclockwise is from the point of view of the workpiece. If the workpiece is fastened
to a turntable which turns on a rotational axis, a counterclockwise turn from the point of view of the
workpiece is accomplished by turning the turntable in a direction that (for most common machine
configurations) looks clockwise from the point of view of someone standing next to the machine3

12.2.3 Controlled Point

The controlled point is the point whose position and rate of motion are controlled. When the tool
length offset is zero (the default value), this is a point on the spindle axis (often called the gauge
point) that is some fixed distance beyond the end of the spindle, usually near the end of a tool
holder that fits into the spindle. The location of the controlled point can be moved out along the
spindle axis by specifying some positive amount for the tool length offset. This amount is normally
the length of the cutting tool in use, so that the controlled point is at the end of the cutting tool.

12.2.4 Coordinate Linear Motion

To drive a tool along a specified path, a machining center must often coordinate the motion of several
axes. We use the term “coordinated linear motion” to describe the situation in which, nominally,
each axis moves at constant speed and all axes move from their starting positions to their end
positions at the same time. If only the X, Y, and Z axes (or any one or two of them) move, this
produces motion in a straight line, hence the word “linear” in the term. In actual motions, it is
often not possible to maintain constant speed because acceleration or deceleration is required at
the beginning and/or end of the motion. It is feasible, however, to control the axes so that, at all
times, each axis has completed the same fraction of its required motion as the other axes. This
moves the tool along same path, and we also call this kind of motion coordinated linear motion.

Coordinated linear motion can be performed either at the prevailing feed rate, or at traverse rate. If
physical limits on axis speed make the desired rate unobtainable, all axes are slowed to maintain
the desired path.

12.2.5 Feed Rate

The rate at which the controlled point or the axes move is nominally a steady rate which may be set
by the user. In the Interpreter, the interpretation of the feed rate is as follows unless inverse time
feed rate mode is being used in the RS274/NGC view (see Section 14.20).

3If the parallelism requirement is violated, the system builder will have to say how to distinguish clockwise from counter-
clockwise.

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 125

1. For motion involving one or more of the X, Y, and Z axes (with or without simultaneous rota-
tional axis motion), the feed rate means length units per minute along the programmed XYZ
path, as if the rotational axes were not moving.

2. For motion of one rotational axis with X, Y, and Z axes not moving, the feed rate means degrees
per minute rotation of the rotational axis.

3. For motion of two or three rotational axes with X, Y, and Z axes not moving, the rate is applied
as follows. Let dA, dB, and dC be the angles in degrees through which the A, B, and C axes,
respectively, must move. Let D =

√
(dA)2 + (dB)2 + (dC)2 . Conceptually, D is a measure of

total angular motion, using the usual Euclidean metric. Let T be the amount of time required
to move through D degrees at the current feed rate in degrees per minute. The rotational axes
should be moved in coordinated linear motion so that the elapsed time from the start to the
end of the motion is T plus any time required for acceleration or deceleration.

12.2.6 Coolant

Flood coolant and mist coolant may each be turned on independently. The RS274/NGC language
turns them off together (see Section 15.4).

12.2.7 Dwell

A machining center may be commanded to dwell (i.e., keep all axes unmoving) for a specific amount
of time. The most common use of dwell is to break and clear chips, so the spindle is usually turning
during a dwell. Regardless of the Path Control Mode (see Section 12.2.15) the machine will stop
exactly at the end of the previous programmed move, as though it was in exact path mode.

12.2.8 Units

Units used for distances along the X, Y, and Z axes may be measured in millimeters or inches.
Units for all other quantities involved in machine control cannot be changed. Different quantities
use different specific units. Spindle speed is measured in revolutions per minute. The positions
of rotational axes are measured in degrees. Feed rates are expressed in current length units per
minute or in degrees per minute, as described in Section 12.2.5.

12.2.9 Current Position

The controlled point is always at some location called the “current position,” and the controller
always knows where that is. The numbers representing the current position must be adjusted in
the absence of any axis motion if any of several events take place:

1. Length units are changed.

2. Tool length offset is changed.

3. Coordinate system offsets are changed.

12.2.10 Selected Plane

There is always a “selected plane”, which must be the XY-plane, the YZ-plane, or the XZ-plane of
the machining center. The Z-axis is, of course, perpendicular to the XY-plane, the X-axis to the
YZ-plane, and the Y-axis to the XZ-plane.

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 126

12.2.11 Tool Carousel

Zero or one tool is assigned to each slot in the tool carousel.

12.2.12 Tool Change

A machining center may be commanded to change tools.

12.2.13 Pallet Shuttle

The two pallets may be exchanged by command.

12.2.14 Feed and Speed Override Switches

The feed and speed override switches may be enabled (so they work as expected) or disabled (so they
have no effect on the feed rate or spindle speed). The RS274/NGC language has one command that
enables both switches and one command that disables both (see Section 15.5). See Section 12.3.1
for further details.

12.2.15 Path Control Mode

The machining center may be put into any one of three path control modes: (1) exact stop mode, (2)
exact path mode, or (3) continuous mode with optional tolerance. In exact stop mode, the machine
stops briefly at the end of each programmed move. In exact path mode, the machine follows the
programmed path as exactly as possible, slowing or stopping if necessary at sharp corners of the
path. In continuous mode, sharp corners of the path may be rounded slightly so that the feed rate
may be kept up (but by no more than the tolerance, if specified). See Section 14.15.

12.3 Interpreter Interaction with Switches

The Interpreter interacts with several switches. This section describes the interactions in more
detail. In no case does the Interpreter know what the setting of any of these switches is.

12.3.1 Feed and Speed Override Switches

The Interpreter will interpret RS274/NGC commands which enable (M48) or disable (M49) the feed
and speed override switches. It is useful to be able to override these switches for some machining
operations. The idea is that optimal settings have been included in the program, and the operator
should not change them.

EMC2 reacts to the setting of the speed or feed override switches on the control panel, when these
switches are enabled.

12.3.2 Block Delete Switch

If the block delete switch is on, lines of RS274/NGC code which start with a slash (the block delete
character) are not interpreted. If the switch is off, such lines are interpreted.

The Interpreter runs in two stages (read and execute). The driver tells the Interpreter when to
perform each stage. When the Interpreter reads a line starting with a slash, it informs the driver,

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 127

“I just read a line starting with a slash.” The driver checks the setting of the block delete switch. If
the switch is off, it tells the Interpreter, “Execute that line.” If the switch is on, the driver does not
tell the Interpreter to execute the line. Instead, it tells the Interpreter to read another line, with the
result that the line starting with the slash is not executed.

12.3.3 Optional Program Stop Switch

The optional program stop switch works as follows. If this switch is on and an input RS274/NGC
code line contains an M1 code, program execution is supposed to stop until the cycle start button
is pushed.

EMC2 checks the optional stop switch when the OPTIONAL_PROGRAM_STOP canonical function
call is executed and either stops (if the switch is on) or not (if the switch is off).

12.4 Tool File

A tool file is required to use the Interpreter. The file tells which tools are in which carousel slots and
what the length and diameter of each tool are.

The format of a tool file is exemplified in Table 12.1.

Table 12.1: Sample Tool File
Pocket FMS TLO Diameter Comment

1 1 2.0 1.0
2 2 1.0 0.2
5 5 1.5 0.25 endmill
10 10 2.4 -0.3 for testing
21 21 173.740 0 1/2” spot drill
32 32 247.615 0 8.5mm drill
41 41 228.360 0 10mm tap
60 60 0 0 large chuck

The file consists of any number of header lines, followed by one blank line, followed by any number
of lines of data. The header lines are ignored. It is important that there be exactly one blank line
(with no spaces or tabs, even) before the data. The header line shown in Table 12.1 describes the
data columns, so it is suggested (but not required) that such a line always be included in the header.

Each data line of the file contains the data for one tool. Each line has five entries. The first four
entries are required. The last entry (a comment) is optional. It makes reading easier if the entries
are arranged in columns, as shown in the table, but the only format requirement is that there be at
least one space or tab after each of the first three entries on a line and a space, tab, or newline at
the end of the fourth entry. The meanings of the columns and the type of data to be put in each are
as follows.

The “Pocket” column contains an unsigned integer which represents the pocket number (slot num-
ber) of the tool carousel slot in which the tool is placed. The entries in this column must all be
different.

The “FMS” column contains an unsigned integer which represents a code number for the tool. The
user may use any code for any tool, as long as the codes are unsigned integers.

The “TLO” column contains a real number which represents the tool length offset. This number will
be used if tool length offsets are being used and this pocket is selected. This is normally a positive
real number, but it may be zero or any other number if it is never to be used.

The “Diameter” column contains a real number. This number is used only if tool radius compensa-
tion is turned on using this pocket. If the programmed path during compensation is the edge of the

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 128

material being cut, this should be a positive real number representing the measured diameter of the
tool. If the programmed path during compensation is the path of a tool whose diameter is nominal,
this should be a small number (positive, negative, or zero) representing the difference between the
measured diameter of the tool and the nominal diameter. If cutter radius compensation is not used
with a tool, it does not matter what number is in this column.

The “Comment” column may optionally be used to describe the tool. Any type of description is OK.
This column is for the benefit of human readers only.

The units used for the length and diameter of the tool may be in either millimeters or inches, but if
the data is used by an NC program, the user must be sure the units used for a tool in the file are
the same as the units in effect when NC code that uses the tool data is interpreted. The table shows
a mixture of types of units.

The lines do not have to be in any particular order. Switching the order of lines has no effect unless
the same slot number is used on two or more lines, which should not normally be done, in which
case the data for only the last such line will be used.

12.5 Parameters

In the RS274/NGC language view, a machining center maintains an array of 5400 numerical pa-
rameters. Many of them have specific uses. The parameter array persists over time, even if the
machining center is powered down. EMC2 uses a parameter file to ensure persistence and gives the
Interpreter the responsibility for maintaining the file. The Interpreter reads the file when it starts
up, and writes the file when it exits.

Table 12.2: Parameters Used by the RS274NGC Interpreter
Parameter Number(s) Meaning
5061-5066 Result of “G38.2” Probe
5161-5166 “G28” Home
5181-5186 “G30” Home
5211-5216 “G92” offset
5220 Coordinate System Number
5221-5226 Coordinate System 1
5241-5246 Coordinate System 2
5261-5266 Coordinate System 3
5281-5286 Coordinate System 4
5301-5306 Coordinate System 5
5321-5326 Coordinate System 6
5341-5346 Coordinate System 7
5361-5366 Coordinate System 8
5381-5386 Coordinate System 9

The format of a parameter file is shown in Table 12.3. The file consists of any number of header
lines, followed by one blank line, followed by any number of lines of data. The Interpreter skips over
the header lines. It is important that there be exactly one blank line (with no spaces or tabs, even)
before the data. The header line shown in Table 12.3 describes the data columns, so it is suggested
(but not required) that that line always be included in the header.

The Interpreter reads only the first two columns of the table. The third column, “Comment,” is not
read by the Interpreter.

Each line of the file contains the index number of a parameter in the first column and the value to
which that parameter should be set in the second column. The value is represented as a double-
precision floating point number inside the Interpreter, but a decimal point is not required in the file.
All of the parameters shown in Table 12.3 are required parameters and must be included in any

CHAPTER 12. RETURN MACHINING CENTER OVERVIEW 129

parameter file, except that any parameter representing a rotational axis value for an unused axis
may be omitted. An error will be signalled if any required parameter is missing. A parameter file
may include any other parameter, as long as its number is in the range 1 to 5400. The parameter
numbers must be arranged in ascending order. An error will be signalled if not. Any parameter
included in the file read by the Interpreter will be included in the file it writes as it exits. The
original file is saved as a backup file when the new file is written. Comments are not preserved
when the file is written.

Table 12.3: Parameter File Format
Parameter Number Parameter Value Comment

5161 0.0 G28 Home X
5162 0.0 G28 Home Y

12.6 Coordinate Systems

In the RS274/NGC language view, a machining center has an absolute coordinate system and nine
program coordinate systems.

You can set the offsets of the nine program coordinate systems using G10 L2 Pn (n is the number
of the coordinate system) with values for the axes in terms of the absolute coordinate system. See
Section 14.6.

You can select one of the nine systems by using G54, G55, G56, G57, G58, G59, G59.1, G59.2, or
G59.3 (see Section 14.14). It is not possible to select the absolute coordinate system directly.

You can offset the current coordinate system using G92 or G92.3. This offset will then apply to all
nine program coordinate systems. This offset may be cancelled with G92.1 or G92.2. See Section
14.19.

You can make straight moves in the absolute machine coordinate system by using G53 with either
G0 or G1. See Section 14.13.

Data for coordinate systems is stored in parameters.

During initialization, the coordinate system is selected that is specified by parameter 5220. A value
of 1 means the first coordinate system (the one G54 activates), a value of 2 means the second
coordinate system (the one G55 activates), and so on. It is an error for the value of parameter 5220
to be anything but a whole number between one and nine.

Chapter 13

Language Overview

The RS274/NGC language is based on lines of code. Each line (also called a “block”) may include
commands to a machining center to do several different things. Lines of code may be collected in a
file to make a program.

A typical line of code consists of an optional line number at the beginning followed by one or more
“words.” A word consists of a letter followed by a number (or something that evaluates to a number).
A word may either give a command or provide an argument to a command. For example, “G1 X3”
is a valid line of code with two words. “G1” is a command meaning “move in a straight line at the
programmed feed rate”, and “X3” provides an argument value (the value of X should be 3 at the end
of the move). Most RS274/NGC commands start with either G or M (for General and Miscellaneous).
The words for these commands are called “G codes” and “M codes.”

The RS274/NGC language has no indicator for the start of a program. The Interpreter, however,
deals with files. A single program may be in a single file, or a program may be spread across several
files. A file may demarcated with percents in the following way. The first non-blank line of a file
may contain nothing but a percent sign, “%”, possibly surrounded by white space, and later in the
file (normally at the end of the file) there may be a similar line. Demarcating a file with percents is
optional if the file has an M2 or M30 in it, but is required if not. An error will be signalled if a file
has a percent line at the beginning but not at the end. The useful contents of a file demarcated by
percents stop after the second percent line. Anything after that is ignored.

The RS274/NGC language has two commands (M2 or M30), either of which ends a program. A
program may end before the end of a file. Lines of a file that occur after the end of a program are
not to be executed. The interpreter does not even read them.

13.1 Format of a line

A permissible line of input RS274/NGC code consists of the following, in order, with the restriction
that there is a maximum (currently 256) to the number of characters allowed on a line.

1. an optional block delete character, which is a slash “/” .

2. an optional line number.

3. any number of words, parameter settings, and comments.

4. an end of line marker (carriage return or line feed or both).

Any input not explicitly allowed is illegal and will cause the Interpreter to signal an error.

130

CHAPTER 13. LANGUAGE OVERVIEW 131

Spaces and tabs are allowed anywhere on a line of code and do not change the meaning of the line,
except inside comments. This makes some strange-looking input legal. The line “g0x +0. 12 34y
7” is equivalent to “g0 x+0.1234 y7”, for example.

Blank lines are allowed in the input. They are to be ignored.

Input is case insensitive, except in comments, i.e., any letter outside a comment may be in upper
or lower case without changing the meaning of a line.

13.2 Line Number

A line number is the letter N followed by an integer (with no sign) between 0 and 99999 written with
no more than five digits (000009 is not OK, for example). Line numbers may be repeated or used
out of order, although normal practice is to avoid such usage. Line numbers may also be skipped,
and that is normal practice. A line number is not required to be used, but must be in the proper
place if used.

13.3 Word

A word is a letter other than N followed by a real value.

Words may begin with any of the letters shown in Table 13.1. The table includes N for completeness,
even though, as defined above, line numbers are not words. Several letters (I, J, K, L, P, R) may
have different meanings in different contexts.

Table 13.1: Words and their meanings
Letter Meaning

A A axis of machine
B B axis of machine
C C axis of machine
D Tool radius compensation number
F Feedrate
G General function (See table 5)
H Tool length offset index
I X offset for arcs and G87 canned cycles
J Y offset for arcs and G87 canned cycles
K Z offset for arcs and G87 canned cycles.

Spindle-Motion Ratio for G33 synchronized movements.
M Miscellaneous function (See table 7)
N Line number
P Dwell time in canned cycles and with G4.

Key used with G10.
Q Feed increment in G83 canned cycle
R Arc radius or canned cycle plane
S Spindle speed
T Tool selection
X X axis of machine
Y Y axis of machine
Z Z axis of machine

CHAPTER 13. LANGUAGE OVERVIEW 132

13.3.1 Number

The following rules are used for (explicit) numbers. In these rules a digit is a single character
between 0 and 9.

• A number consists of (1) an optional plus or minus sign, followed by (2) zero to many digits,
followed, possibly, by (3) one decimal point, followed by (4) zero to many digits - provided that
there is at least one digit somewhere in the number.

• There are two kinds of numbers: integers and decimals. An integer does not have a decimal
point in it; a decimal does.

• Numbers may have any number of digits, subject to the limitation on line length. Only about
seventeen significant figures will be retained, however (enough for all known applications).

• A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the decimal
point and the last non-zero digit) zeros are allowed but not required. A number written with initial
or trailing zeros will have the same value when it is read as if the extra zeros were not there.

Numbers used for specific purposes in RS274/NGC are often restricted to some finite set of values
or some to some range of values. In many uses, decimal numbers must be close to integers; this
includes the values of indexes (for parameters and carousel slot numbers, for example), M codes,
and G codes multiplied by ten. A decimal number which is supposed be close to an integer is
considered close enough if it is within 0.0001 of an integer.

13.3.2 Parameter Value

A parameter value is the pound character # followed by a real value. The real value must evaluate to
an integer between 1 and 5399. The integer is a parameter number, and the value of the parameter
value is whatever number is stored in the numbered parameter.

The # character takes precedence over other operations, so that, for example, “#1+2” means the
number found by adding 2 to the value of parameter 1, not the value found in parameter 3. Of
course, #[1+2] does mean the value found in parameter 3. The # character may be repeated; for
example ##2 means the value of the parameter whose index is the (integer) value of parameter 2.

13.3.3 Expressions and Binary Operations

An expression is a set of characters starting with a left bracket [and ending with a balancing right
bracket]. In between the brackets are numbers, parameter values, mathematical operations, and
other expressions. An expression may be evaluated to produce a number. The expressions on a
line are evaluated when the line is read, before anything on the line is executed. An example of an
expression is [1 + acos[0] - [#3 ** [4.0/2]]].

Binary operations appear only inside expressions. There are four basic mathematical operations:
addition (+), subtraction (-), multiplication (*), and division (/). There are three logical operations:
non-exclusive or (OR), exclusive or (XOR), and logical and (AND). The eighth operation is the modulus
operation (MOD). The ninth operation is the “power” operation (**) of raising the number on the left
of the operation to the power on the right. The relational operators are equality (EQ), inequality (NE),
strictly greater than (GT), greater than or equal to (GE), strictly less than (LT), and less than or equal
to (LE).

The binary operations are divided into three groups. The first group is: power. The second group
is: multiplication, division, and modulus. The third group is: addition, subtraction, logical non-
exclusive or, logical exclusive or, and logical and. If operations are strung together (for example in

CHAPTER 13. LANGUAGE OVERVIEW 133

the expression [2.0 / 3 * 1.5 - 5.5 / 11.0]), operations in the first group are to be performed
before operations in the second group and operations in the second group before operations in the
third group. If an expression contains more than one operation from the same group (such as the
first / and * in the example), the operation on the left is performed first. Thus, the example is
equivalent to: [((2.0 / 3) * 1.5) - (5.5 / 11.0)] , which simplifies to [1.0 - 0.5] , which
is 0.5.

The logical operations and modulus are to be performed on any real numbers, not just on integers.
The number zero is equivalent to logical false, and any non-zero number is equivalent to logical
true.

13.3.4 Unary Operation Value

A unary operation value is either “ATAN” followed by one expression divided by another expression
(for example “ATAN[2]/[1+3]”) or any other unary operation name followed by an expression (for
example “SIN[90]”). The unary operations are: ABS (absolute value), ACOS (arc cosine), ASIN (arc
sine), ATAN (arc tangent), COS (cosine), EXP (e raised to the given power), FIX (round down), FUP
(round up), LN (natural logarithm), ROUND (round to the nearest whole number), SIN (sine), SQRT
(square root), and TAN (tangent). Arguments to unary operations which take angle measures (COS,
SIN, and TAN) are in degrees. Values returned by unary operations which return angle measures
(ACOS, ASIN, and ATAN) are also in degrees.

The FIX operation rounds towards the left (less positive or more negative) on a number line, so that
FIX[2.8] =2 and FIX[-2.8] = -3, for example. The FUP operation rounds towards the right (more
positive or less negative) on a number line; FUP[2.8] = 3 and FUP[-2.8] = -2, for example.

13.4 Parameter Setting

A parameter setting is the following four items one after the other: (1) a pound character # , (2) a
real value which evaluates to an integer between 1 and 5399, (3) an equal sign = , and (4) a real
value. For example “#3 = 15” is a parameter setting meaning “set parameter 3 to 15.”

A parameter setting does not take effect until after all parameter values on the same line have been
found. For example, if parameter 3 has been previously set to 15 and the line “#3=6 G1 x#3” is
interpreted, a straight move to a point where x equals 15 will occur and the value of parameter 3
will be 6.

13.5 Comments and Messages

Printable characters and white space inside parentheses is a comment. A left parenthesis always
starts a comment. The comment ends at the first right parenthesis found thereafter. Once a left
parenthesis is placed on a line, a matching right parenthesis must appear before the end of the
line. Comments may not be nested; it is an error if a left parenthesis is found after the start of a
comment and before the end of the comment. Here is an example of a line containing a comment:
“G80 M5 (stop motion)”. Comments do not cause a machining center to do anything.

A comment contains a message if “MSG,” appears after the left parenthesis and before any other
printing characters. Variants of “MSG,” which include white space and lower case characters are
allowed. The rest of the characters before the right parenthesis are considered to be a message.
Messages should be displayed on the message display device. Comments not containing messages
need not be displayed there.

A comment can also be used to specify a file for the results of G38.2 probing. See section 14.10.

CHAPTER 13. LANGUAGE OVERVIEW 134

13.6 Repeated Items

A line may have any number of G words, but two G words from the same modal group (see Section
13.9) may not appear on the same line.

A line may have zero to four M words. Two M words from the same modal group may not appear on
the same line.

For all other legal letters, a line may have only one word beginning with that letter.

If a parameter setting of the same parameter is repeated on a line, “#3=15 #3=6”, for example, only
the last setting will take effect. It is silly, but not illegal, to set the same parameter twice on the
same line.

If more than one comment appears on a line, only the last one will be used; each of the other
comments will be read and its format will be checked, but it will be ignored thereafter. It is expected
that putting more than one comment on a line will be very rare.

13.7 Item order

The three types of item whose order may vary on a line (as given at the beginning of this section)
are word, parameter setting, and comment. Imagine that these three types of item are divided into
three groups by type.

The first group (the words) may be reordered in any way without changing the meaning of the line.

If the second group (the parameter settings) is reordered, there will be no change in the meaning of
the line unless the same parameter is set more than once. In this case, only the last setting of the
parameter will take effect. For example, after the line “#3=15 #3=6” has been interpreted, the value
of parameter 3 will be 6. If the order is reversed to “#3=6 #3=15” and the line is interpreted, the
value of parameter 3 will be 15.

If the third group (the comments) contains more than one comment and is reordered, only the last
comment will be used.

If each group is kept in order or reordered without changing the meaning of the line, then the three
groups may be interleaved in any way without changing the meaning of the line. For example, the
line “g40 g1 #3=15 (foo) #4=-7.0” has five items and means exactly the same thing in any of
the 120 possible orders (such as “#4=-7.0 g1 #3=15 g40 (foo)”) for the five items.

13.8 Commands and Machine Modes

In RS274/NGC, many commands cause a machining center to change from one mode to another,
and the mode stays active until some other command changes it implicitly or explicitly. Such
commands are called “modal”. For example, if coolant is turned on, it stays on until it is explicitly
turned off. The G codes for motion are also modal. If a G1 (straight move) command is given on one
line, for example, it will be executed again on the next line if one or more axis words is available on
the line, unless an explicit command is given on that next line using the axis words or cancelling
motion.

“Non-modal” codes have effect only on the lines on which they occur. For example, G4 (dwell) is
non-modal.

13.9 Modal Groups

Modal commands are arranged in sets called “modal groups”, and only one member of a modal
group may be in force at any given time. In general, a modal group contains commands for which

CHAPTER 13. LANGUAGE OVERVIEW 135

it is logically impossible for two members to be in effect at the same time - like measure in inches
vs. measure in millimeters. A machining center may be in many modes at the same time, with one
mode from each modal group being in effect. The modal groups are shown in Table 13.2.

Table 13.2: Modal Groups
Modal Group Meaning Member Words
Motion (“Group 1”) G0 G1 G2 G3 G33 G38.2 G80 G81 G82

G83 G84 G85 G86 G87 G88 G89
Plane selection G17 G18 G19
Distance Mode G90 G91
Feed Rate Mode G93, G94
Units G20, G21
Cutter Radius Compensation G40, G41, G42
Tool Length Offset G43, G49
Return Mode in Canned Cycles G98, G99
Coordinate System Selection G54, G55, G56, G57, G58,

G59, G59.1, G59.2, G59.3
Stopping M0, M1, M2, M30, M60
Tool Change M6
Spindle Turning M3, M4, M5
Coolant M7, M8, M9. Special case:

M7 and M8 may be active at the same time
Override Switches M48, M49
Flow Control O-
Non-modal codes (“Group 0”) G4, G10, G28, G30, G53

G92, G92.1, G92.2, G92.3
M100 to M199

For several modal groups, when a machining center is ready to accept commands, one member of
the group must be in effect. There are default settings for these modal groups. When the machining
center is turned on or otherwise re-initialized, the default values are automatically in effect.

Group 1, the first group on the table, is a group of G codes for motion. One of these is always in
effect. That one is called the current motion mode.

It is an error to put a G-code from group 1 and a G-code from group 0 on the same line if both of
them use axis words. If an axis word-using G-code from group 1 is implicitly in effect on a line (by
having been activated on an earlier line), and a group 0 G-code that uses axis words appears on
the line, the activity of the group 1 G-code is suspended for that line. The axis word-using G-codes
from group 0 are G10, G28, G30, and G92.

It is an error to include any unrelated words on a line with O- flow control.

Chapter 14

G Codes

G codes of the RS274/NGC language are shown in Table 5 and described following that.

In the command prototypes, the hypen (-) stands for a real value. As described earlier, a real value
may be (1) an explicit number, 4, for example, (2) an expression, [2+2], for example, (3) a parameter
value, #88, for example, or (4) a unary function value, acos[0], for example.

In most cases, if axis words (any or all of X-, Y-, Z-, A-, B-, C-) are given, they specify a destination
point. Axis numbers are in the currently active coordinate system, unless explicitly described as
being in the absolute coordinate system. Where axis words are optional, any omitted axes will have
their current value. Any items in the command prototypes not explicitly described as optional are
required. It is an error if a required item is omitted.

In the prototypes, the values following letters are often given as explicit numbers. Unless stated
otherwise, the explicit numbers can be real values. For example, G10 L2 could equally well be
written G[2*5] L[1+1]. If the value of parameter 100 were 2, G10 L#100 would also mean the
same. Using real values which are not explicit numbers as just shown in the examples is rarely
useful.

If L- is written in a prototype the “-” will often be referred to as the “L number”. Similarly the “-” in
H- may be called the “H number”, and so on for any other letter.

14.1 G0: Rapid Linear Motion

For rapid linear motion, program G0 X- Y- Z- A- B- C-, where all the axis words are optional,
except that at least one must be used. The G0 is optional if the current motion mode is G0. This will
produce coordinated linear motion to the destination point at the current traverse rate (or slower if
the machine will not go that fast). It is expected that cutting will not take place when a G0 command
is executing.

It is an error if:

• all axis words are omitted.

If cutter radius compensation is active, the motion will differ from the above; see Chapter ??. If G53
is programmed on the same line, the motion will also differ; see Section 14.13.

14.2 G1: Linear Motion at Feed Rate

For linear motion at feed rate (for cutting or not), program G1 X- Y- Z- A- B- C-, where all the
axis words are optional, except that at least one must be used. The G1 is optional if the current

136

CHAPTER 14. G CODES 137

motion mode is G1. This will produce coordinated linear motion to the destination point at the
current feed rate (or slower if the machine will not go that fast).

It is an error if:

• all axis words are omitted.

If cutter radius compensation is active, the motion will differ from the above; see Chapter ??. If G53
is programmed on the same line, the motion will also differ; see Section 14.13.

14.3 G2, G3: Arc at Feed Rate

A circular or helical arc is specified using either G2 (clockwise arc) or G3 (counterclockwise arc).
The axis of the circle or helix must be parallel to the X, Y, or Z-axis of the machine coordinate
system. The axis (or, equivalently, the plane perpendicular to the axis) is selected with G17 (Z-axis,
XY-plane), G18 (Y-axis, XZ-plane), or G19 (X-axis, YZ-plane). If the arc is circular, it lies in a plane
parallel to the selected plane.

If a line of RS274/NGC code makes an arc and includes rotational axis motion, the rotational axes
turn at a constant rate so that the rotational motion starts and finishes when the XYZ motion starts
and finishes. Lines of this sort are hardly ever programmed.

If cutter radius compensation is active, the motion will differ from what is described here. See
Chapter ??.

Two formats are allowed for specifying an arc: Center Format and Radius Format.

14.3.1 Center format arcs (preferred format)

In the center format, the coordinates of the end point of the arc in the selected plane are specified
along with the offsets of the center of the arc from the current location. In this format, it is OK if
the end point of the arc is the same as the current point. It is an error if:

• When the arc is projected on the selected plane, the distance from the current point to the
center differs from the distance from the end point to the center by more than 0.0002 inch (if
inches are being used) or 0.002 millimeter (if millimeters are being used).

When the XY-plane is selected, program G2 X- Y- Z- A- B- C- I- J- (or use G3 instead of G2).
The axis words are all optional except that at least one of X and Y must be used. I and J are the
offsets from the current location (in the X and Y directions, respectively) of the center of the circle.
I and J are optional except that at least one of the two must be used. It is an error if:

• X and Y are both omitted

• or I and J are both omitted.

When the XZ-plane is selected, program G2 X- Y- Z- A- B- C- I- K- (or use G3 instead of G2).
The axis words are all optional except that at least one of X and Z must be used. I and K are the
offsets from the current location (in the X and Z directions, respectively) of the center of the circle.
I and K are optional except that at least one of the two must be used. It is an error if:

• X and Z are both omitted,

• or I and K are both omitted.

CHAPTER 14. G CODES 138

When the YZ-plane is selected, program G2 X- Y- Z- A- B- C- J- K- (or use G3 instead of G2).
The axis words are all optional except that at least one of Y and Z must be used. J and K are the
offsets from the current location (in the Y and Z directions, respectively) of the center of the circle.
J and K are optional except that at least one of the two must be used. It is an error if:

• Y and Z are both omitted

• or J and K are both omitted.

Here is an example of a center format command to mill an arc: G17 G2 x10 y16 i3 j4 z9.

That means to make a clockwise (as viewed from the positive z-axis) circular or helical arc whose
axis is parallel to the Z-axis, ending where X=10, Y=16, and Z=9, with its center offset in the X
direction by 3 units from the current X location and offset in the Y direction by 4 units from the
current Y location. If the current location has X=7, Y=7 at the outset, the center will be at X=10,
Y=11. If the starting value of Z is 9, this is a circular arc; otherwise it is a helical arc. The radius of
this arc would be 5.

In the center format, the radius of the arc is not specified, but it may be found easily as the distance
from the center of the circle to either the current point or the end point of the arc.

14.3.2 Radius format arcs (discouraged format)

In the radius format, the coordinates of the end point of the arc in the selected plane are specified
along with the radius of the arc. Program G2 X- Y- Z- A- B- C- R- (or use G3 instead of G2). R
is the radius. The axis words are all optional except that at least one of the two words for the axes
in the selected plane must be used. The R number is the radius. A positive radius indicates that
the arc turns through less than 180 degrees, while a negative radius indicates a turn of more than
180 degrees. If the arc is helical, the value of the end point of the arc on the coordinate axis parallel
to the axis of the helix is also specified.

It is an error if:

• both of the axis words for the axes of the selected plane are omitted

• the end point of the arc is the same as the current point.

It is not good practice to program radius format arcs that are nearly full circles or nearly semicircles
because a small change in the location of the end point will produce a much larger change in the
location of the center of the circle (and, hence, the middle of the arc). The magnification effect is
large enough that rounding error in a number can produce out-of-tolerance cuts. For instance, a
1% displacement of the endpoint of a 180 degree arc produced a 7% displacement of the point 90
degrees along the arc. Nearly full circles are even worse. Other size arcs (in the range tiny to 165
degrees or 195 to 345 degrees) are OK.

Here is an example of a radius format command to mill an arc: G17 G2 x 10 y 15 r 20 z 5.

That means to make a clockwise (as viewed from the positive Z-axis) circular or helical arc whose
axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with a radius of 20. If the starting
value of Z is 5, this is an arc of a circle parallel to the XY-plane; otherwise it is a helical arc.

14.4 G33: Spindle-Synchronized Motion

For spindle-synchronized motion, code G33 X- Y- Z- K- where K gives the distance moved in XYZ
for each revolution of the spindle. This syntax is subject to change (In particular, to use F- instead

CHAPTER 14. G CODES 139

of K-). For instance, G33 Z1 K.0625 produces a 1 inch motion in Z over 16 revolutions of the
spindle. This command might be part of a program to produce a 16TPI thread.

All the axis words are optional, except that at least one must be used. This will produce coordinated
linear motion to the destination point at a rate dependant on the speed of the spindle.

It is an error if:

• all axis words are omitted.

• the spindle is not turning when this command is executed

• the requested linear motion exceeds machine velocity limits due to the spindle speed

14.5 G4: Dwell

For a dwell, program G4 P- . This will keep the axes unmoving for the period of time in seconds
specified by the P number. It is an error if:

• the P number is negative.

14.6 G10: Set Coordinate System Data

The RS274/NGC language view of coordinate systems is described in Section12.6.

To set the coordinate values for the origin of a coordinate system, program G10 L2 P - X- Y- Z-
A- B- C-, where the P number must evaluate to an integer in the range 1 to 9 (corresponding
to G54 to G59.3) and all axis words are optional. The coordinates of the origin of the coordinate
system specified by the P number are reset to the coordinate values given (in terms of the absolute
coordinate system). Only those coordinates for which an axis word is included on the line will be
reset.

It is an error if:

• the P number does not evaluate to an integer in the range 1 to 9.

If origin offsets (made by G92 or G92.3) were in effect before G10 is used, they will continue to be in
effect afterwards.

The coordinate system whose origin is set by a G10 command may be active or inactive at the time
the G10 is executed.

Example: G10 L2 P1 x 3.5 y 17.2 sets the origin of the first coordinate system (the one selected
by G54) to a point where X is 3.5 and Y is 17.2 (in absolute coordinates). The Z coordinate of the
origin (and the coordinates for any rotational axes) are whatever those coordinates of the origin were
before the line was executed.

14.7 G17, G18, G19: Plane Selection

Program G17 to select the XY-plane, G18 to select the XZ-plane, or G19 to select the YZ-plane. The
effects of having a plane selected are discussed in Section 14.3 and Section 14.18

CHAPTER 14. G CODES 140

14.8 G20, G21: Length Units

Program G20 to use inches for length units. Program G21 to use millimeters.

It is usually a good idea to program either G20 or G21 near the beginning of a program before any
motion occurs, and not to use either one anywhere else in the program. It is the responsibility of
the user to be sure all numbers are appropriate for use with the current length units.

14.9 G28, G30: Return to Predefined Absolute Position

Two positions are defined (by parameters 5161-5166 for G28 and parameters 5181-5186 for G30).
The parameter values are in terms of the absolute coordinate system and the machine’s native
coordinate system.

To return to the predefined position by way of the programmed position, program G28 X- Y- Z- A-
B- C- (or use G30 ...). All axis words are optional. The path is made by a traverse move from the
current position to the programmed position, followed by a traverse move to the predefined position.
If no axis words are programmed, the intermediate point is the current point, so only one move is
made.

G28 and G30 do not use home switches to find the predefined position. They merely command a
rapid motion to the position defined by the parameters, assuming that the machine has already
been homed.

14.10 G38.2: Straight Probe

Program G38.2 X- Y- Z- A- B- C- to perform a straight probe operation. The axis words are optional,
except that at least one of them must be used. The tool in the spindle must be a probe.

It is an error if:

• the current point is the same as the programmed point.

• no axis word is used

• cutter radius compensation is enabled

• the feed rate is zero

In response to this command, the machine moves the controlled point (which should be at the
end of the probe tip) in a straight line at the current feed rate toward the programmed point. In
inverse time feed mode, the feed rate is such that the whole motion from the current point to the
programmed point would take the specified time. If the probe does not trip during the move, an
error is signalled.

After successful probing, parameters 5061 to 5066 will be set to the coordinates of the location of
the controlled point at the time the probe tripped.

A comment of the form (PROBEOPEN filename.txt) will open filename.txt and store the coordinate
of each successful straight probe in it. The file must be closed with (PROBECLOSE).

CHAPTER 14. G CODES 141

14.11 G40, G41, G42: Cutter Radius Compensation.

To turn cutter radius compensation off, program G40. It is OK to turn compensation off when it is
already off.

Cutter radius compensation may be performed only if the XY-plane is active.

To turn cutter radius compensation on left (i.e., the cutter stays to the left of the programmed path
when the tool radius is positive), program G41 D- . To turn cutter radius compensation on right
(i.e., the cutter stays to the right of the programmed path when the tool radius is positive), program
G42 D- . The D word is optional; if there is no D word, the radius of the tool currently in the spindle
will be used. If used, the D number should normally be the slot number of the tool in the spindle,
although this is not required. It is OK for the D number to be zero; a radius value of zero will be
used.

It is an error if:

• the D number is not an integer, is negative or is larger than the number of carousel slots,

• the XY-plane is not active,

• or cutter radius compensation is commanded to turn on when it is already on.

The behavior of the machining center when cutter radius compensation is on is described in Chapter
??

14.12 G43, G49: Tool Length Offsets

To use a tool length offset, program G43 H-, where the H number is the desired index in the tool
table. It is expected that all entries in this table will be positive. The H number should be, but does
not have to be, the same as the slot number of the tool currently in the spindle. It is OK for the H
number to be zero; an offset value of zero will be used.

It is an error if:

• the H number is not an integer, is negative, or is larger than the number of carousel slots.

To use no tool length offset, program G49.

It is OK to program using the same offset already in use. It is also OK to program using no tool
length offset if none is currently being used.

14.13 G53: Move in absolute coordinates

For linear motion to a point expressed in absolute coordinates, program G1 G53 X- Y- Z- A- B-
C- (or use G0 instead of G1), where all the axis words are optional, except that at least one must
be used. The G0 or G1 is optional if it is the current motion mode. G53 is not modal and must
be programmed on each line on which it is intended to be active. This will produce coordinated
linear motion to the programmed point. If G1 is active, the speed of motion is the current feed rate
(or slower if the machine will not go that fast). If G0 is active, the speed of motion is the current
traverse rate (or slower if the machine will not go that fast).

It is an error if:

• G53 is used without G0 or G1 being active,

• or G53 is used while cutter radius compensation is on.

See Section 12.6 for an overview of coordinate systems.

CHAPTER 14. G CODES 142

14.14 G54 to G59.3: Select Coordinate System

To select coordinate system 1, program G54, and similarly for other coordinate systems. The
system-number-G-code pairs are: (1-G54), (2-G55), (3-G56), (4-G57), (5-G58), (6-G59), (7-G59.1),
(8-G59.2), and (9-G59.3).

It is an error if:

• one of these G-codes is used while cutter radius compensation is on.

See Section 12.6 for an overview of coordinate systems.

14.15 G61, G61.1, G64: Set Path Control Mode

Program G61 to put the machining center into exact path mode, G61.1 for exact stop mode, or G64
P- for continuous mode with optional tolerance. It is OK to program for the mode that is already
active. See Section 12.2.15 for a discussion of these modes.

14.16 G80: Cancel Modal Motion

Program G80 to ensure no axis motion will occur. It is an error if:

• Axis words are programmed when G80 is active, unless a modal group 0 G code is programmed
which uses axis words.

14.17 G76: Threading Canned Cycle

Program G76 P- Z- I- J- R- K- Q- H- to perform a threading canned cycle. It is an error if:

• The active plane is not the ZX plane

• Other axis words, such as X- or Y-, are specified

• The R- degression value is less than 1.0.

• All the required words are not specified

• J-, K- or H- is negative

The “drive line” is a safe line outside the thread material. The “drive line” goes from the initial
location to the Z- value specified with G76. The Z extent of the thread is the same as the drive line.

The “thread pitch”, or distance per revolution, is given by the P- value.

The “thread peak” is given by the I- value, which is an offset from the drive line. Negative I values
indicate external threads, and positive I values indicate internal threads. Generally the material
has been turned to this size before the canned cycle.

The “initial cut depth” is given by the J- value. The first threading cut will be J beyond the “thread
peak” position. J- is positive, even when I- is negative.

The “full thread depth” is given by the K- value. The final threading cut will be K beyond the “thread
peak” position. K- is positive, even when I- is negative.

CHAPTER 14. G CODES 143

The “depth degression” is given by the R- value. R1.0 selects constant depth on successive threading
passes. R2.0 selects constant area. Values between 1.0 and 2.0 select decreasing depth and
increasing area. Values above 2.0 select decreasing area.

The “compound slide angle” Q- is the angle (in degrees) describing to what extent successive passes
should be offset along the drive line. This is used to cause one side of the tool to remove more
material than the other. A positive Q value causes the leading edge of the tool to cut more heavily.
Typical values are 29, 29.5 or 30.

The number of “spring passes” is given by the H- value. Spring passes are additional passes at full
thread depth. If no additional passes are desired, program H0.

Each pass begins at a position on the drive line. It consists of

1. An X traverse to the depth for this pass

2. A pause for the spindle to reach index position

3. A spindle-synchronized Z feed along the thread

4. A traverse to the original X

5. On all passes but the last, a traverse Z move to the beginning point for the next pass

The tool will pause briefly before each threading pass, so a relief groove will be required at the entry
unless the beginning of the thread is past the end of the material.

The exit move (traverse to original X) is not synchronized to the spindle speed. With a slow spindle,
the exit move might take only a small fraction of a revolution. If the spindle speed is increased after
several passes are complete, subsequent exit moves will require a larger portion of a revolution,
resulting in a very heavy cut during the exit move. This can be avoided by providing a relief groove
at the exit, or by not changing the spindle speed while threading.

The sample program g76.ngc shows the use of the G76 canned cycle, and can be previewed and
executed on any machine using the sim/lathe.ini configuration.

Figure 14.1: G76 canned cycle

14.18 G81 to G89: Canned Cycles

The canned cycles G81 through G89 have been implemented as described in this section. Two
examples are given with the description of G81 below.

All canned cycles are performed with respect to the currently selected plane. Any of the three
planes (XY, YZ, ZX) may be selected. Throughout this section, most of the descriptions assume the
XY-plane has been selected. The behavior is always analogous if the YZ or XZ-plane is selected.

CHAPTER 14. G CODES 144

Rotational axis words are allowed in canned cycles, but it is better to omit them. If rotational
axis words are used, the numbers must be the same as the current position numbers so that the
rotational axes do not move.

All canned cycles use X, Y, R, and Z numbers in the NC code. These numbers are used to determine
X, Y, R, and Z positions. The R (usually meaning retract) position is along the axis perpendicular
to the currently selected plane (Z-axis for XY-plane, X-axis for YZ-plane, Y-axis for XZ-plane). Some
canned cycles use additional arguments.

For canned cycles, we will call a number “sticky” if, when the same cycle is used on several lines
of code in a row, the number must be used the first time, but is optional on the rest of the lines.
Sticky numbers keep their value on the rest of the lines if they are not explicitly programmed to be
different. The R number is always sticky.

In incremental distance mode: when the XY-plane is selected, X, Y, and R numbers are treated
as increments to the current position and Z as an increment from the Z-axis position before the
move involving Z takes place; when the YZ or XZ-plane is selected, treatment of the axis words is
analogous. In absolute distance mode, the X, Y, R, and Z numbers are absolute positions in the
current coordinate system.

The L number is optional and represents the number of repeats. L = 0 is not allowed. If the repeat
feature is used, it is normally used in incremental distance mode, so that the same sequence of
motions is repeated in several equally spaced places along a straight line. In absolute distance
mode, L > 1 means “do the same cycle in the same place several times,” Omitting the L word is
equivalent to specifying L = 1. The L number is not sticky.

When L > 1 in incremental mode with the XY-plane selected, the X and Y positions are determined
by adding the given X and Y numbers either to the current X and Y positions (on the first go-around)
or to the X and Y positions at the end of the previous go-around (on the repetitions). The R and Z
positions do not change during the repeats.

The height of the retract move at the end of each repeat (called “clear Z” in the descriptions below)
is determined by the setting of the retract mode: either to the original Z position (if that is above the
R position and the retract mode is G98, OLD_Z), or otherwise to the R position. See Section 14.21

It is an error if:

• X, Y, and Z words are all missing during a canned cycle,

• a P number is required and a negative P number is used,

• an L number is used that does not evaluate to a positive integer,

• rotational axis motion is used during a canned cycle,

• inverse time feed rate is active during a canned cycle,

• or cutter radius compensation is active during a canned cycle.

When the XY plane is active, the Z number is sticky, and it is an error if:

• the Z number is missing and the same canned cycle was not already active,

• or the R number is less than the Z number.

When the XZ plane is active, the Y number is sticky, and it is an error if:

• the Y number is missing and the same canned cycle was not already active,

• or the R number is less than the Y number.

When the YZ plane is active, the X number is sticky, and it is an error if:

• the X number is missing and the same canned cycle was not already active,

• or the R number is less than the X number.

CHAPTER 14. G CODES 145

14.18.1 Preliminary and In-Between Motion

At the very beginning of the execution of any of the canned cycles, with the XY-plane selected, if the
current Z position is below the R position, the Z-axis is traversed to the R position. This happens
only once, regardless of the value of L.

In addition, at the beginning of the first cycle and each repeat, the following one or two moves are
made

1. a straight traverse parallel to the XY-plane to the given XY-position,

2. a straight traverse of the Z-axis only to the R position, if it is not already at the R position.

If the XZ or YZ plane is active, the preliminary and in-between motions are analogous.

14.18.2 G81: Drilling Cycle

The G81 cycle is intended for drilling. Program G81 X- Y- Z- A- B- C- R- L-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Retract the Z-axis at traverse rate to clear Z.

Example 1. Suppose the current position is (1, 2, 3) and the XY-plane has been selected, and the
following line of NC code is interpreted.

G90 G81 G98 X4 Y5 Z1.5 R2.8

This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the G81
drilling cycle to be performed once. The X number and X position are 4. The Y number and Y
position are 5. The Z number and Z position are 1.5. The R number and clear Z are 2.8. Old Z is 3.
The following moves take place.

1. a traverse parallel to the XY-plane to (4,5,3)

2. a traverse parallel to the Z-axis to (4,5,2.8)

3. a feed parallel to the Z-axis to (4,5,1.5)

4. a traverse parallel to the Z-axis to (4,5,3)

Example 2. Suppose the current position is (1, 2, 3) and the XY-plane has been selected, and the
following line of NC code is interpreted.

G91 G81 G98 X4 Y5 Z-0.6 R1.8 L3

This calls for incremental distance mode (G91) and OLD_Z retract mode (G98) and calls for the G81
drilling cycle to be repeated three times. The X number is 4, the Y number is 5, the Z number is
-0.6 and the R number is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5), the
clear Z position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). Old Z is 3.

The first move is a traverse along the Z-axis to (1,2,4.8), since old Z < clear Z.

The first repeat consists of 3 moves.

CHAPTER 14. G CODES 146

1. a traverse parallel to the XY-plane to (5,7,4.8)

2. a feed parallel to the Z-axis to (5,7, 4.2)

3. a traverse parallel to the Z-axis to (5,7,4.8)

The second repeat consists of 3 moves. The X position is reset to 9 (=5+4) and the Y position to 12
(=7+5).

1. a traverse parallel to the XY-plane to (9,12,4.8)

2. a feed parallel to the Z-axis to (9,12, 4.2)

3. a traverse parallel to the Z-axis to (9,12,4.8)

The third repeat consists of 3 moves. The X position is reset to 13 (=9+4) and the Y position to 17
(=12+5).

1. a traverse parallel to the XY-plane to (13,17,4.8)

2. a feed parallel to the Z-axis to (13,17, 4.2)

3. a traverse parallel to the Z-axis to (13,17,4.8)

14.18.3 G82: Drilling Cycle with Dwell

The G82 cycle is intended for drilling. Program G82 X- Y- Z- A- B- C- R- L- P-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Dwell for the P number of seconds.

4. Retract the Z-axis at traverse rate to clear Z.

14.18.4 G83: Peck Drilling

The G83 cycle (often called peck drilling) is intended for deep drilling or milling with chip breaking.
The retracts in this cycle clear the hole of chips and cut off any long stringers (which are common
when drilling in aluminum). This cycle takes a Q number which represents a “delta” increment
along the Z-axis. Program G83 X- Y- Z- A- B- C- R- L- Q-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate downward by delta or to the Z position, whichever
is less deep.

3. Rapid back out to the clear_z.

4. Rapid back down to the current hole bottom, backed off a bit.

5. Repeat steps 1, 2, and 3 until the Z position is reached at step 1.

6. Retract the Z-axis at traverse rate to clear Z.

It is an error if:

• the Q number is negative or zero.

CHAPTER 14. G CODES 147

14.18.5 G84: Right-Hand Tapping

This code is currently unimplemented in EMC2. It is accepted, but the behavior is undefined.

14.18.6 G85: Boring, No Dwell, Feed Out

The G85 cycle is intended for boring or reaming, but could be used for drilling or milling. Program
G85 X- Y- Z- A- B- C- R- L-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Retract the Z-axis at the current feed rate to clear Z.

14.18.7 G86: Boring, Spindle Stop, Rapid Out

The G86 cycle is intended for boring. This cycle uses a P number for the number of seconds to dwell.
Program G86 X- Y- Z- A- B- C- R- L- P-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Dwell for the P number of seconds.

4. Stop the spindle turning.

5. Retract the Z-axis at traverse rate to clear Z.

6. Restart the spindle in the direction it was going.

The spindle must be turning before this cycle is used. It is an error if:

• the spindle is not turning before this cycle is executed.

14.18.8 G87: Back Boring

This code is currently unimplemented in EMC2. It is accepted, but the behavior is undefined.

14.18.9 G88: Boring, Spindle Stop, Manual Out

This code is currently unimplemented in EMC2. It is accepted, but the behavior is undefined.

14.18.10 G89: Boring, Dwell, Feed Out

The G89 cycle is intended for boring. This cycle uses a P number, where P specifies the number of
seconds to dwell. program G89 X- Y- Z- A- B- C- R- L- P-

1. Preliminary motion, as described above.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Dwell for the P number of seconds.

4. Retract the Z-axis at the current feed rate to clear Z.

CHAPTER 14. G CODES 148

14.18.11 G90, G91: Set Distance Mode

Interpretation of RS274/NGC code can be in one of two distance modes: absolute or incremental.

To go into absolute distance mode, program G90. In absolute distance mode, axis numbers (X,
Y, Z, A, B, C) usually represent positions in terms of the currently active coordinate system. Any
exceptions to that rule are described explicitly in this Section 14.18.

To go into incremental distance mode, program G91. In incremental distance mode, axis numbers
(X, Y, Z, A, B, C) usually represent increments from the current values of the numbers.

I and J numbers always represent increments, regardless of the distance mode setting. K numbers
represent increments in all but one usage (see Section 14.18.8), where the meaning changes with
distance mode.

14.19 G92, G92.1, G92.2, G92.3: Coordinate System Offsets

See Section 12.6 for an overview of coordinate systems.

To make the current point have the coordinates you want (without motion), program G92 X- Y- Z-
A- B- C- , where the axis words contain the axis numbers you want. All axis words are optional,
except that at least one must be used. If an axis word is not used for a given axis, the coordinate
on that axis of the current point is not changed. It is an error if:

1. all axis words are omitted.

When G92 is executed, the origin of the currently active coordinate system moves. To do this, origin
offsets are calculated so that the coordinates of the current point with respect to the moved origin
are as specified on the line containing the G92. In addition, parameters 5211 to 5216 are set to the
X, Y, Z, A, B, and C-axis offsets. The offset for an axis is the amount the origin must be moved so
that the coordinate of the controlled point on the axis has the specified value.

Here is an example. Suppose the current point is at X=4 in the currently specified coordinate system
and the current X-axis offset is zero, then G92 x7 sets the X-axis offset to -3, sets parameter 5211
to -3, and causes the X-coordinate of the current point to be 7.

The axis offsets are always used when motion is specified in absolute distance mode using any of
the nine coordinate systems (those designated by G54 - G59.3). Thus all nine coordinate systems
are affected by G92.

Being in incremental distance mode has no effect on the action of G92.

Non-zero offsets may be already be in effect when the G92 is called. If this is the case, the new value
of each offset is A+B, where A is what the offset would be if the old offset were zero, and B is the old
offset. For example, after the previous example, the X-value of the current point is 7. If G92 x9 is
then programmed, the new X-axis offset is -5, which is calculated by [[7-9] + -3].

To reset axis offsets to zero, program G92.1 or G92.2. G92.1 sets parameters 5211 to 5216 to zero,
whereas G92.2 leaves their current values alone.

To set the axis offset values to the values given in parameters 5211 to 5216, program G92.3.

You can set axis offsets in one program and use the same offsets in another program. Program G92
in the first program. This will set parameters 5211 to 5216. Do not use G92.1 in the remainder
of the first program. The parameter values will be saved when the first program exits and restored
when the second one starts up. Use G92.3 near the beginning of the second program. That will
restore the offsets saved in the first program. If other programs are to run between the the program
that sets the offsets and the one that restores them, make a copy of the parameter file written by
the first program and use it as the parameter file for the second program.

CHAPTER 14. G CODES 149

14.20 G93, G94: Set Feed Rate Mode

Two feed rate modes are recognized: units per minute and inverse time. Program G94 to start the
units per minute mode. Program G93 to start the inverse time mode.

In units per minute feed rate mode, an F word is interpreted to mean the controlled point should
move at a certain number of inches per minute, millimeters per minute, or degrees per minute,
depending upon what length units are being used and which axis or axes are moving.

In inverse time feed rate mode, an F word means the move should be completed in [one divided by
the F number] minutes. For example, if the F number is 2.0, the move should be completed in half
a minute.

When the inverse time feed rate mode is active, an F word must appear on every line which has a
G1, G2, or G3 motion, and an F word on a line that does not have G1, G2, or G3 is ignored. Being
in inverse time feed rate mode does not affect G0 (rapid traverse) motions. It is an error if:

• inverse time feed rate mode is active and a line with G1, G2, or G3 (explicitly or implicitly) does
not have an F word.

14.21 G98, G99: Set Canned Cycle Return Level

When the spindle retracts during canned cycles, there is a choice of how far it retracts: (1) retract
perpendicular to the selected plane to the position indicated by the R word, or (2) retract perpen-
dicular to the selected plane to the position that axis was in just before the canned cycle started
(unless that position is lower than the position indicated by the R word, in which case use the R
word position).

To use option (1), program G99. To use option (2), program G98. Remember that the R word has
different meanings in absolute distance mode and incremental distance mode.

Chapter 15

M Codes

15.1 M0, M1, M2, M30, M60: Program Stopping and Ending

To stop a running program temporarily (regardless of the setting of the optional stop switch), pro-
gram M0.

To stop a running program temporarily (but only if the optional stop switch is on), program M1.

It is OK to program M0 and M1 in MDI mode, but the effect will probably not be noticeable, because
normal behavior in MDI mode is to stop after each line of input, anyway.

To exchange pallet shuttles and then stop a running program temporarily (regardless of the setting
of the optional stop switch), program M60.

If a program is stopped by an M0, M1, or M60, pressing the cycle start button will restart the program
at the following line.

To end a program, program M2. To exchange pallet shuttles and then end a program, program M30.
Both of these commands have the following effects.

1. Axis offsets are set to zero (like G92.2) and origin offsets are set to the default (like G54).

2. Selected plane is set to CANON_PLANE_XY (like G17).

3. Distance mode is set to MODE_ABSOLUTE (like G90).

4. Feed rate mode is set to UNITS_PER_MINUTE (like G94).

5. Feed and speed overrides are set to ON (like M48).

6. Cutter compensation is turned off (like G40).

7. The spindle is stopped (like M5).

8. The current motion mode is set to G_1 (like G1).

9. Coolant is turned off (like M9).

No more lines of code in an RS274/NGC file will be executed after the M2 or M30 command is
executed. Pressing cycle start will start the program back at the beginning of the file.

150

CHAPTER 15. M CODES 151

15.2 M3, M4, M5: Spindle Control

To start the spindle turning clockwise at the currently programmed speed, program M3.

To start the spindle turning counterclockwise at the currently programmed speed, program M4.

To stop the spindle from turning, program M5.

It is OK to use M3 or M4 if the spindle speed is set to zero. If this is done (or if the speed override
switch is enabled and set to zero), the spindle will not start turning. If, later, the spindle speed is
set above zero (or the override switch is turned up), the spindle will start turning. It is OK to use M3
or M4 when the spindle is already turning or to use M5 when the spindle is already stopped.

15.3 M6: Tool Change

To change a tool in the spindle from the tool currently in the spindle to the tool most recently
selected (using a T word - see Section 17.3), program M6. When the tool change is complete:

• The spindle will be stopped.

• The tool that was selected (by a T word on the same line or on any line after the previous tool
change) will be in the spindle. The T number is an integer giving the changer slot of the tool
(not its id).

• If the selected tool was not in the spindle before the tool change, the tool that was in the spindle
(if there was one) will be in its changer slot.

• The coordinate axes will be stopped in the same absolute position they were in before the tool
change (but the spindle may be re-oriented).

• No other changes will be made. For example, coolant will continue to flow during the tool
change unless it has been turned off by an M9.

The tool change may include axis motion while it is in progress. It is OK (but not useful) to program
a change to the tool already in the spindle. It is OK if there is no tool in the selected slot; in that case,
the spindle will be empty after the tool change. If slot zero was last selected, there will definitely be
no tool in the spindle after a tool change.

15.4 M7, M8, M9: Coolant Control

To turn mist coolant on, program M7.

To turn flood coolant on, program M8.

To turn all coolant off, program M9.

It is always OK to use any of these commands, regardless of what coolant is on or off.

15.5 M48, M49: Override Control

To enable the spindle speed and feedrate override switches, program M48. To disable both switches,
program M49. See Section 12.3.1 for more details. It is OK to enable or disable the switches when
they are already enabled or disabled. These switches can also be toggled individually using M50
and M51 as described in the sections 15.6 and 15.7.

CHAPTER 15. M CODES 152

15.6 M50: Feed Override Control

To enable the feedrate override switch, program M50 or M50 P1. To disable the switch program M50
P0. While disabled the feed override will have no influence, and the motion will be executed at
programmed feedrate. (unless there is an adaptive feedrate override active).

15.7 M51: Spindle Speed Override Control

To enable the spindle speed override switch, program M51 or M51 P1. To disable the switch program
M51 P0. While disabled the spindle speed override will have no influence, and the spindle speed will
have the exact program specified value (using the S-word as described in 17.2).

15.8 M52: Adaptive Feed Control

To use an adaptive feed, program M52 or M52 P1. To stop using adaptive feed, program M52 P0.
When adaptive feed is enabled, some external input value is used together with the user interface
feed override value and the commanded feed rate to set the actual feed rate. In EMC2, the HAL pin
motion.adaptive-feed is used for this purpose. Values on motion.adaptive-feed should range
from 0 (feed hold) to 1 (full speed).

15.9 M53: Feed Stop Control

To enable the feed stop switch, program M53 or M53 P1. To disable the switch program M53 P0.
Enabling the feed stop switch will allow motion to be interrupted by means of the feedstop control.
In EMC2, the HAL pin motion.feed-hold is used for this purpose. Values of 1 will cause the
motion to stop (if M53 is active).

15.10 M62 to M65: Digital IO Control

To control a digital output bit, program M- P-, where the M-word ranges from 62 to 65, and the
P-word ranges from 0 to an implementation-defined maximum.

M62 Turn on digital output synched with motion

M63 Turn off digital output synched with motion

M64 Turn on digital output immediately

M65 Turn off digital output immediately

15.11 M100 to M199: User Defined Commands

To invoke a user-defined command, program M- P- Q- where P- and Q- are both optional. The
external program “Mnnn” in the directory [DISPLAY]PROGRAM_PREFIX is executed with the P and Q
values as its two arguments. Execution of the RS274NGC file pauses until the invoked program
exits.

It is an error if

• The specified User Defined Command does not exist

Chapter 16

O Codes

O-codes provide for flow control in NC programs. Each block has an associated number, which is
the number used after O. Care must be taken to properly match the O-numbers.

The behavior is undefined if

• Other words are used on a line with an O- word

16.1 Subroutines: “sub”, “endsub”, “return”, “call”

Subroutines extend from a O- sub to an O- endsub. The lines inside the subroutine (the “body”)
are not executed in order; instead, they are executed each time the subroutine is called with O-
call.

O100 sub (subroutine to move to machine home)
G0 X0 Y0 Z0
O100 endsub
(many intervening lines)
O100 call

Inside a subroutine, O- return can be executed. This immediately returns to the calling code, just
as though O- endsub was encountered.

O- call takes up to 30 optional arguments, which are passed to the subroutine as #1, #2, ..., #N.
Parameters from #N+1 to #30 have the same value as in the calling context. On return from the
subroutine the previous values parameters #1 through #30 (regardless of the number of arguments)
will be restored to the values they had before the call.

Because “1 2 3” is parsed as the number 123, the parameters must be enclosed in square brackets.
The following calls a subroutine with 3 arguments:

O200 call [1] [2] [3]

Subroutine bodies may not be nested. They may only be called after they are defined. They may
be called from other functions, and may call themselves recursively if it makes sense to do so. The
maximum subroutine nesting level is 10.

Subroutines do not have “return values”, but they may change the value of parameters above #30
and those changes will be visible to the calling code.

153

CHAPTER 16. O CODES 154

16.2 Looping: “do”, “while”, “endwhile”, “break”, “continue”

The “while loop” has two structures: while/endwhile, and do/while. In each case, the loop is exited
when the “while” condition evaluates to false.

(draw a sawtooth shape)
F100
#1 = 0
O101 while [#1 lt 10]
G1 X0
G1 Y[#1/10] X1
#1 = [#1+1]
O101 endwhile

Inside a while loop, O- break immediately exits the loop, and O- continue immediately skips to
the next evaluation of the while condition. If it is still true, the loop begins again at the top. If it is
false, it exits the loop.

16.3 Conditional: “if”, “else”, “endif”

The “if” conditional executes one group of statements if a condition is true and another if it is false.

(Set feed rate depending on a variable)
O102 if [#2 GT 5]
F100
O102 else
F200
O102 endif

16.4 Indirection

The O- value may be given by a parameter or calculation.

O[#101+2] call

Chapter 17

Other Codes

17.1 F: Set Feed Rate

To set the feed rate, program F- . The application of the feed rate is as described in Section 12.2.5,
unless inverse time feed rate mode is in effect, in which case the feed rate is as described in Section
14.20.

17.2 S: Set Spindle Speed

To set the speed in revolutions per minute (rpm) of the spindle, program S- . The spindle will turn
at that speed when it has been programmed to start turning. It is OK to program an S word whether
the spindle is turning or not. If the speed override switch is enabled and not set at 100%, the speed
will be different from what is programmed. It is OK to program S0; the spindle will not turn if that
is done. It is an error if:

• the S number is negative.

As described in Section 14.18.5, if a G84 (tapping) canned cycle is active and the feed and speed
override switches are enabled, the one set at the lower setting will take effect. The speed and feed
rates will still be synchronized. In this case, the speed may differ from what is programmed, even if
the speed override switch is set at 100%.

17.3 T: Select Tool

To select a tool, program T-, where the T number is the carousel slot for the tool. The tool is not
changed until an M6 is programmed (see Section 15.3). The T word may appear on the same line as
the M6 or on a previous line. It is OK, but not normally useful, if T words appear on two or more
lines with no tool change. The carousel may move a lot, but only the most recent T word will take
effect at the next tool change. It is OK to program T0; no tool will be selected. This is useful if you
want the spindle to be empty after a tool change. It is an error if:

• a negative T number is used,

• or a T number larger than the number of slots in the carousel is used.

155

CHAPTER 17. OTHER CODES 156

On some machines, the carousel will move when a T word is programmed, at the same time ma-
chining is occurring. On such machines, programming the T word several lines before a tool change
will save time. A common programming practice for such machines is to put the T word for the next
tool to be used on the line after a tool change. This maximizes the time available for the carousel to
move.

Chapter 18

Order of Execution

The order of execution of items on a line is critical to safe and effective machine operation. Items
are executed in the order shown below if they occur on the same line.

1. Comment (including message)

2. set feed rate mode (G93, G94).

3. set feed rate (F).

4. set spindle speed (S).

5. select tool (T).

6. change tool (M6).

7. spindle on or off (M3, M4, M5).

8. coolant on or off (M7, M8, M9).

9. enable or disable overrides (M48, M49).

10. dwell (G4).

11. set active plane (G17, G18, G19).

12. set length units (G20, G21).

13. cutter radius compensation on or off (G40, G41, G42)

14. cutter length compensation on or off (G43, G49)

15. coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3).

16. set path control mode (G61, G61.1, G64)

17. set distance mode (G90, G91).

18. set retract mode (G98, G99).

19. home (G28, G30) or change coordinate system data (G10) or set axis offsets (G92, G92.1,
G92.2, G94).

20. perform motion (G0 to G3, G33, G80 to G89), as modified (possibly) by G53.

21. stop (M0, M1, M2, M30, M60).

157

Chapter 19

G-Code Best Practices

19.1 Use an appropriate decimal precision

Use at least 3 digits after the decimal when milling in millimeters, and at least 4 digits after the
decimal when milling in inches. In particular, arc tolerance checks are made to .001 and .0001
depending on the active units.

19.2 Use consistent white space

G-code is most legible when at least one space appears before words. While it is permitted to insert
whitespace in the middle of numbers, there is no reason to do so.

19.3 Prefer “Center-format” arcs

Center-format arcs (which use I- J- K- instead of R-) behave more consistently than R-format
arcs, particularly for included angles near 180 or 360 degrees.

19.4 Put important modal settings at the top of the file

When correct execution of your program depends on modal settings, be sure to set them at the
beginning of the part program. Modes can carry over from previous programs and from the MDI
commands.

As a good preventative measure, put a line similar to the following at the top of all your programs:

G17 G20 G40 G49 G54 G80 G90 G94

(XY plane, inch mode, cancel diameter compensation, cancel length offset, coordinate system 1,
cancel motion, non-incremental motion, feed/minute mode)

Perhaps the most critical modal setting is the distance units–If you do not include G20 or G21, then
different machines will mill the program at different scales. Other settings, such as the return mode
in canned cycles may also be important.

158

CHAPTER 19. G-CODE BEST PRACTICES 159

19.5 Don’t put too many things on one line

Ignore everything in Section 18, and instead write no line of code that is the slightest bit ambiguous.
Similarly, don’t use and set a parameter on the same line, even though the semantics are well
defined. (Exception: Updating a variable to a new value, such as #1=#1+#2)

19.6 Don’t use line numbers

Line numbers offer no benefits. When line numbers are reported in error messages, the numbers
refer to the line number in the file, not the N-word value.

Chapter 20

Tool File and Compensation

20.1 Tool File

The EMC uses a tool file that is read in when a machine control is started. In a standard release
this file is named emc.var, generic.var, or sim.var and is used by the similarly named run file. The
specific name of the file that will be used is set by the ini file that is read at startup.

A tool file is required. It tells which tools are in which carousel slots and what the length and
diameter of each tool are. The Interpreter does not deal directly with tool files. A tool file is read by
the EMC system and the Interpreter gets the tool information by making calls to canonical functions
that obtain it.

The header line shown in Table 20.1 is essential for some of the graphical interfaces, so it is sug-
gested (but not required) that such a line always be included as the first line in the file.

Each data line of the file contains the
Figure 20.1: Typical Tool File

POC FMS LEN DIAM COMMENT
1 1 1.565 0.250 Drill
2 2 1.000 0.247 Reground End Mill
3 3 1.125 2.000 Carbide Insert Face Mill
4 4 - - -
5 5 - - -
32 32 - - -

data for one tool. Each line has five
entries. The first four entries are re-
quired. The last entry (a comment) is
optional. It makes reading easier if
the entries are arranged in columns,
as shown in the table, but the only

format requirement is that there be at least one space or tab after each of the first three entries on
a line and a space, tab, or newline at the end of the fourth entry. The meanings of the columns and
the type of data to be put in each are as follows.

The "POC" column contains an unsigned integer which represents the pocket number (slot number)
of the tool carousel slot in which the tool is placed. The entries in this column must all be different.

The "FMS" column contains an unsigned integer which represents a code number for the tool. The
user may use any code for any tool, as long as the codes are unsigned integers.

The "LEN" column contains a real number which represents the tool length offset. This number will
be used if tool length offsets are being used and this pocket is selected. This is normally a positive
real number, but it may be zero.

The "DIAM" column contains a real number. This number is used if tool radius compensation is
turned on using this pocket number. If the programmed path during compensation is the edge of
the material being cut, this should be a positive real number representing the measured diameter
of the tool. If the programmed path during compensation is the path of a tool whose diameter
is nominal, this should be a small number (positive, negative, or zero) representing the difference
between the measured diameter of the tool and the nominal diameter used when the G-code for the
part was written.

160

CHAPTER 20. TOOL FILE AND COMPENSATION 161

The "COMMENT" column may optionally be used to describe the tool. Any type of description is OK.
This column is for the benefit of human readers only.

The units used for the length and diameter of the tool may be in either millimeters or inches, but if
the data is used by an NC program, the user must be sure the units used for a tool in the file are
the same as the units in effect when NC code that uses the tool data is interpreted.

The lines do not have to be in any particular order. Switching the order of lines has no effect. If the
same pocket number is used on two or more lines, which should not normally be done, the data for
only the last such line will persist and be used.

20.2 Tool Compensation

Tool compensation can cause problems for the best of nc code programmers. But it can be a
powerful aid when used to help an operator get a part to size. By setting and reseting length and
diameter of tools in a single tool table, offsets can be made durring a production run that allow
for variation in tool size, or for minor deviation from the programmed distances and size. And
these changes can be made without the operator having to search through and cange numbers in a
program file.

Throughout this unit you will find ocasional references to cannonical functions where these are nec-
essary for the reader to understand how a tool offset works in a specific situation. These references
are intended to give the reader a sense of sequence rather than requiring the reader to understand
the way that cannonical functions themselves work within the EMC.

20.3 Tool Length Offsets

Tool length offsets are given as positive numbers in the tool table. A tool length offset is programmed
using G43 Hn, where n is the desired table index. It is expected that all entries in the tool table
will be positive. The H number is checked for being a non-negative integer when it is read. The
interpreter behaves as follows.

1. If G43 Hn is programmed, A USE_TOOL_LENGTH_OFFSET(length) function call is made (where
length is the value of the tool length offset entry in the tool table whose index is n), tool_length_offset
is reset in the machine settings model, and the value of current_z in the model is adjusted. Note
that n does not have to be the same as the slot number of the tool currently in the spindle.

2. If G49 is programmed, USE_TOOL_LENGTH_OFFSET(0.0) is called, tool_length_offset is reset to
0.0 in the machine settings model, and the value of current_z in the model is adjusted. The effect
of tool length compensation is illustrated in the screen shot below. Notice that the length of the
tool is subtracted from the z setting so that the tool tip appears at the programmed setting.ă You
should note that the effect of tool length compensation is immediate when you view the z position
as a relative coordinate but it does affect actual machine position until you program a z move.

Test tool length program.
Tool #1 is 1 inch long.
N01 G1 F15 X0 Y0 Z0
N02 G43 H1 Z0 X1
N03 G49 X0 Z0
N04 G0 X2
N05 G1 G43 H1 G4 P10 Z0 X3
N06 G49 X2 Z0
N07 G0 X0

CHAPTER 20. TOOL FILE AND COMPENSATION 162

The effect of this is that in most cases the machine will pick up the offset as a ramp during the next
xyz move after the g43 word.

20.4 Cutter Radius Compensation

Cutter Diameter Compensation (also called Cutter Radius Compensation) is something that was
obviously added onto the RS-274D specification at the demand of users, as it is VERY useful, but
the implementation was poorly thought out. The purpose of this feature is to allow the programmer
of the tool path program to ’virtualize’ the tool path, so that the control can, at run time, determine
the correct offset from the surface to be cut, based on the tools available. If you resharpen the side
cutting edges of end mills, then they will end up smaller than the standard diameters.

The problem is to describe to the control whether the tool is going to be cutting on the outside of
an imaginary path, or on the inside. Since these paths are not necessarily closed paths (although
they can be), it is essentially impossible for the control to know which side of the line it is supposed
to offset to. It was decided that there would only be two choices, tool ’left’ of path, and tool ’right’
of path. This is to be interpreted as left or right ’when facing the direction of cutter motion’. The
interpretation is as if you were standing on the part, walking behind the tool as it progresses across
the part.

20.4.1 Cutter Radius Compensation Detail

The cutter radius compensation capabilities of the interpreter enable the programmer to specify that
a cutter should travel to the right or left of an open or closed contour in the XY-plane composed
of arcs of circles and straight line segments. The contour may be the outline of material not to be
machined away, or it may be a tool path to be followed by an exactly sized tool. This figure shows
two examples of the path of a tool cutting using cutter radius compensation so that it leaves a
triangle of material remaining.

In both examples, the shaded triangle represents
material which should remain after cutting, and
the line outside the shaded triangle represents the
path of the tip of a cutting tool. Both paths will
leave the shaded triangle uncut. The one on the
left (with rounded corners) is the path the inter-
preter will generate. In the method on the right
(the one not used), the tool does not stay in con-
tact with the shaded triangle at sharp corners.

Z axis motion may take place while the contour is being followed in the XY plane. Portions of the
contour may be skipped by retracting the Z axis above the part, following the contour to the next
point at which machining should be done, and re-extending the Z-axis. These skip motions may be
performed at feed rate (G1) or at traverse rate (G0). Inverse time feed rate (G93) or units per minute
feed rate (G94) may be used with cutter radius compensation. Under G94, the feed rate will apply
to the actual path of the cutter tip, not to the programmed contour.

Programming Instructions

• To start cutter radius compensation, program either G41 (for keeping the tool to the left of the
contour) or G42 (for keeping the tool to the right of the contour). In Figure 7, for example, if
G41 were programmed, the tool would stay left and move clockwise around the triangle, and
if G42 were programmed, the tool would stay right and move counterclockwise around the
triangle.

CHAPTER 20. TOOL FILE AND COMPENSATION 163

• To stop cutter radius compensation, program G40.

• If G40, G41, or G42 is programmed in the same block as tool motion, cutter compensation
will be turned on or off before the motion is made. To make the motion come first, the motion
must be programmed in a separate, previous block.

D Number

The current interpreter requires a D number on each line that has the G41 or G42 word. The value
specified with D must be a non-negative integer. It represents the slot number of the tool whose
radius (half the diameter given in the tool table) will be used, or it may be zero (which is not a slot
number). If it is zero, the value of the radius will also be zero. Any slot in the tool table may be
selected this way. The D number does not have to be the same as the slot number of the tool in the
spindle.

Tool Table

Cutter radius compensation uses data from the machining center’s tool table. For each slot in the
tool carrousel, the tool table contains the diameter of the tool in that slot (or the difference between
the actual diameter of the tool in the slot and its nominal value). The tool table is indexed by slot
number. How to put data into the table when using the stand-alone interpreter is discussed in the
tool table page.

Two Kinds of Contour

The interpreter handles compensation for two types of contour:

• The contour given in the NC code is the edge of material that is not to be machined away. We
will call this type a "material edge contour".

• The contour given in the NC code is the tool path that would be followed by a tool of exactly
the correct radius. We will call this type a "tool path contour".

The interpreter does not have any setting that determines which type of contour is used, but the
description of the contour will differ (for the same part geometry) between the two types and the
values for diameters in the tool table will be different for the two types.

Material Edge Contour

When the contour is the edge of the material, the outline of the edge is described in the NC program.
For a material edge contour, the value for the diameter in the tool table is the actual value of the
diameter of the tool. The value in the table must be positive. The NC code for a material edge
contour is the same regardless of the (actual or intended) diameter of the tool.

Example 1 :

Here is an NC program which cuts material away from the outside of the triangle in figure above. In
this example, the cutter compensation radius is the actual radius of the tool in use, which is 0.5,
The value for the diameter in the tool table is twice the radius, which is 1.0.

N0010 G41 G1 X2 Y2 (turn compensation on and make entry move)

N0020 Y-1 (follow right side of triangle)

N0030 X-2 (follow bottom side of triangle)

CHAPTER 20. TOOL FILE AND COMPENSATION 164

N0040 X2 Y2 (follow hypotenuse of triangle)

N0050 G40 (turn compensation off)

This will result in the tool following a path consisting of an entry move and the path shown on
the left going clockwise around the triangle. Notice that the coordinates of the triangle of material
appear in the NC code. Notice also that the tool path includes three arcs which are not explicitly
programmed; they are generated automatically.

Tool Path Contour

When the contour is a tool path contour, the path is described in the NC program. It is expected
that (except for during the entry moves) the path is intended to create some part geometry. The path
may be generated manually or by a post-processor, considering the part geometry which is intended
to be made. For the interpreter to work, the tool path must be such that the tool stays in contact
with the edge of the part geometry, as shown on the left side of Figure 7. If a path of the sort shown
on the right of Figure 7 is used, in which the tool does not stay in contact with the part geometry all
the time, the interpreter will not be able to compensate properly when undersized tools are used.

For a tool path contour, the value for the cutter diameter in the tool table will be a small positive
number if the selected tool is slightly oversized and will be a small negative number if the tool is
slightly undersized. As implemented, if a cutter diameter value is negative, the interpreter compen-
sates on the other side of the contour from the one programmed and uses the absolute value of the
given diameter. If the actual tool is the correct size, the value in the table should be zero.

Tool Path Contour example

Suppose the diameter of the cutter currently in the spindle is 0.97, and the diameter assumed in
generating the tool path was 1.0. Then the value in the tool table for the diameter for this tool
should be -0.03. Here is an NC program which cuts material away from the outside of the triangle
in the figure.

N0010 G1 X1 Y4.5 (make alignment move)
N0020 G41 G1 Y3.5 (turn compensation on and make first entry move)
N0030 G3 X2 Y2.5 I1 (make second entry move)
N0040 G2 X2.5 Y2 J-0.5 (cut along arc at top of tool path)
N0050 G1 Y-1 (cut along right side of tool path)
N0060 G2 X2 Y-1.5 I-0.5 (cut along arc at bottom right of tool path)
N0070 G1 X-2 (cut along bottom side of tool path)
N0080 G2 X-2.3 Y-0.6 J0.5 (cut along arc at bottom left of tool path)
N0090 G1 X1.7 Y2.4 (cut along hypotenuse of tool path)
N0100 G2 X2 Y2.5 I0.3 J-0.4 (cut along arc at top of tool path)
N0110 G40 (turn compensation off)

This will result in the tool making an alignment move and two entry moves, and then following
a path slightly inside the path shown on the left in Figure 7 going clockwise around the triangle.
This path is to the right of the programmed path even though G41 was programmed, because the
diameter value is negative.

Programming Errors and Limitations

The interpreter will issue the following messages involving cutter radius compensation.

1. Cannot change axis offsets with cutter radius comp

2. Cannot change units with cutter radius comp

3. Cannot turn cutter radius comp on out of XY-plane

4. Cannot turn cutter radius comp on when already on

CHAPTER 20. TOOL FILE AND COMPENSATION 165

5. Cannot use G28 or G30 with cutter radius comp

6. Cannot use G53 with cutter radius comp

7. Cannot use XZ plane with cutter radius comp

8. Cannot use YZ plane with cutter radius comp

9. Concave corner with cutter radius comp

10. Cutter gouging with cutter radius comp

11. D word on line with no cutter comp on (G41 or G42) command

12. Tool radius index too big

13. Tool radius not less than arc radius with cutter radius comp

14. Two G codes used from same modal group.

For some of these messages additional explanation is given below.

Changing a tool while cutter radius compensation is on is not treated as an error, although it is
unlikely this would be done intentionally. The radius used when cutter radius compensation was
first turned on will continue to be used until compensation is turned off, even though a new tool is
actually being used.

When cutter radius compensation is
on, it must be physically possible for a
circle whose radius is the half the
diameter given in the tool table to be
tangent to the contour at all points of
the contour.

In particular, the interpreter treats concave corners and concave arcs into which the circle will not
fit as errors, since the circle cannot be kept tangent to the contour in these situations. This error
detection does not limit the shapes which can be cut, but it does require that the programmer
specify the actual shape to be cut (or path to be followed), not an approximation. In this respect,
the interpreter differs from interpreters used with many other controllers, which often allow these
errors silently and either gouge the part or round the corner. If cutter radius compensation has
already been turned on, it cannot be turned on again. It must be turned off first; then it can be
turned on again. It is not necessary to move the cutter between turning compensation off and back
on, but the move after turning it back on will be treated as a first move, as described below.

It is not possible to change from one cutter radius index to another while compensation is on
because of the combined effect of rules 4 and 11. It is also not possible to switch compensation
from one side to another while compensation is on. If the tool is already covering up the next XY
destination point when cutter radius compensation is turned on, the gouging message is given when
the line of NC code which gives the point is reached. In this situation, the tool is already cutting
into material it should not cut.

If a D word is programmed that is larger than the number of tool carrousel slots, an error message
is given. In the current implementation, the number of slots is 68.

The error message. "two G Codes Used from Same Modal Group," is a generic message used for
many sets of G codes. As applied to cutter radius compensation, it means that more than one of
G40, G41, and G42 appears on a line of NC code. This is not allowed.

CHAPTER 20. TOOL FILE AND COMPENSATION 166

First Move

The algorithm used for the first move
when the first move is a straight line is
to draw a straight line from the desti-
nation point which is tangent to a cir-
cle whose center is at the current point
and whose radius is the radius of the
tool. The destination point of the tool
tip is then found as the center of a circle
of the same radius tangent to the tan-
gent line at the destination point. This
is shown in Figure 9. If the programmed
point is inside the initial cross section of
the tool (the circle on the left), an error
is signalled.

If the first move after cutter radius compensation has been turned on is an arc, the arc which is
generated is derived from an auxiliary arc which has its center at the programmed center point,
passes through the programmed end point, and is tangent to the cutter at its current location. If
the auxiliary arc cannot be constructed, an error is signalled. The generated arc moves the tool so
that it stays tangent to the auxiliary arc throughout the move. This is shown in Figure 10.

Regardless of whether the first move is a straight line or an arc, the Z axis may also move at the same
time. It will move linearly, as it does when cutter radius compensation is not being used.Rotary axis
motions (A, B, and C axes) are allowed with cutter radius compensation, but using them would be
very unusual.

After the entry moves of cutter radius compensation, the interpreter keeps the tool tangent to the
programmed path on the appropriate side. If a convex corner is on the path, an arc is inserted to
go around the corner. The radius of the arc is half the diameter given in the tool table.

When cutter radius compensation is turned off, no special exit move takes place. The next move is
what it would have been if cutter radius compensation had never been turned on and the previous
move had placed the tool at its current position.

Programming Entry Moves

In general, an alignment move and two entry moves are needed to begin compensation correctly.
However, where the programmed contour is a material edge contour and there is a convex corner on
the contour, only one entry move (plus, possibly, a pre-entry move) is needed. The general method,
which will work in all situations, is described first. We assume here that the programmer knows
what the contour is already and has the job of adding entry moves.

General Method

The general method includes programming an alignment move and two entry moves. The entry
moves given above will be used as an example. Here is the relevant code again:

N0010 G1 X1 Y4.5 (make aligment move to point C)
N0020 G41 G1 Y3.5 (turn compensation on and make first entry move to point B)
N0030 G3 X2 Y2.5 I1 (make second entry move to point A)

CHAPTER 20. TOOL FILE AND COMPENSATION 167

See Figure 11. The figure shows the two entry moves but not the alignment move.

First, pick a point A on the contour where it is convenient to attach an entry arc. Specify an arc
outside the contour which begins at a point B and ends at A tangent to the contour (and going in
the same direction as it is planned to go around the contour). The radius of the arc should be larger
than half the diameter given in the tool table. Then extend a line tangent to the arc from B to some
point C, located so that the line BC is more than one radius long.

After the construction is finished, the
code is written in the reverse order from
the construction. Cutter radius com-
pensation is turned on after the align-
ment move and before the first entry
move. In the code above, line N0010 is
the alignment move, line N0020 turns
compensation on and makes the first
entry move, and line N0030 makes the
second entry move.

In this example, the arc AB and the line BC are fairly large, but they need not be. For a tool path
contour, the radius of arc AB need only be slightly larger than the maximum possible deviation of the
radius of the tool from the exact size. Also for a tool path contour, the side chosen for compensation
should be the one to use if the tool is oversized. As mentioned earlier, if the tool is undersized, the
interpreter will switch sides.

Simple Method

If the contour is a material edge contour and there is a convex corner somewhere on the contour, a
simpler method of making an entry is available. See Figure 12.

First, pick a convex corner, D. Decide which way you want to go along the contour from D. In our
example we are keeping the tool to the left of the contour and going next towards F. Extend the line
FD (if the next part of the contour is an arc, extend the tangent to arc FD from D) to divide the area
outside the contour near D into two regions. Make sure the center of the tool is currently in the
region on the same side of the extended line as the material inside the contour near D. If not, move
the tool into that region. In the example, point E represents the current location of the center of the
tool. Since it is on the same side of line DF as the shaded triangle, no additional move is needed.
Now write a line of NC code that turns compensation on and moves to point D

N0010 G41 G1 X2 Y2 (turn
compensation on and make entry
move)

This method will also work at a concave
corner on a tool path contour, if the ac-
tual tool is oversized, but it will fail with
a tool path contour if the tool is under-
sized.

CHAPTER 20. TOOL FILE AND COMPENSATION 168

Other Items Where Cutter Radius Compensation is Performed.

The complete set of canonical functions includes functions which turn cutter radius on and off,
so that cutter radius compensation can be performed in the controller executing the canonical
functions. In the interpreter, however, these commands are not used. Compensation is done by
the interpreter and reflected in the output commands, which continue to direct the motion of the
center of the cutter tip. This simplifies the job of the motion controller while making the job of the
interpreter a little harder.

Algorithms for Cutter Radius Compensation

The interpreter allows the entry and exit moves to be arcs. The behavior for the intermediate moves
is the same, except that some situations treated as errors in the interpreter are not treated as errors
in other machine controls.

Data for Cutter Radius Compensation

The interpreter machine model keeps three data items for cutter radius compensation: the setting
itself (right, left, or off), program_x, and program_y. The last two represent the X and Y positions
which are given in the NC code while compensation is on. When compensation is off, these both
are set to a very small number (10 -20) whose symbolic value (in a #define) is "unknown". The
interpreter machine model uses the data items current_x and current_y to represent the position of
the center of the tool tip (in the currently active coordinate system) at all times.

Jon Elson’s Example

All further system-specific information refers to NIST’s EMC program, but much of it applies to
most modern CNC controls. My method of checking these programs is to first select tool zero, which
always has a diameter of zero, so offset commands are essentially ignored. Then, I tape a sheet of
paper to a piece of material that sits level in my vise, as a sort of platen. I install a spring-loaded pen
in the spindle. This is a standard ballpoint pen refill cartridge made of metal, in a 1/2" diameter
steel housing. It has a spring that loads the pen against the front, and a ’collet’ at the front that
allows the pen to retract against the spring, but keeps it centered within a few thousandths of an
inch. I run the program with tool zero selected, and it draws a line at the actual part’s outline. (see
figure below) Then, I select a tool with the diameter of the tool I intend to use, and run the program
again. (Note that Z coordinates in the program may need to be changed to prevent plunging the pen
through the platen.) Now, I get to see whether the G41 or G42 compensation that I specified will cut
on the desired side of the part. If it doesn’t, I then edit the opposite compensation command into
the program, and try again. Now, with the tool on the correct side of the work, you get to see if there
are any places where the tool is ’too fat’ to fit in a concave part of the surface. My old Allen-Bradley
7320 was pretty forgiving on this, but EMC is a complete stickler. If you have ANY concavity where
two lines meet at less than 180 degrees on the side that a tool of finite size cuts on, EMC will stop
with an error message there. Even if the gouge will be .0001" deep. So, I always make the approach
on the lead-in and lead-out moves such that they just nip the corner of the part a tiny bit, providing
an angle just over 180 degrees, so that EMC won’t squawk. This requires some careful adjustment
of the starting and ending points, which are not compensated by cutter radius, but must be chosen
with an approximate radius in mind.

The operative commands are :

G40 - Cancel Cutter compensation
G41 - Cutter Compensation, Tool Left of Path
G42 - Cutter Compensation, Tool Right of Path

Here is a short file that cuts one side of a part with multiple convex and concave arcs, and several
straight cuts, too. It is to clamp a high speed drilling spindle to the side of the main Bridgeport

CHAPTER 20. TOOL FILE AND COMPENSATION 169

spindle. Most of these commands are straight from Bobcad/CAM, but lines N15 and N110 were
added by me, and some of the coordinates around those lines had to be fudged a bit by me.

N10 G01 G40 X-1.3531 Y3.4
N15 F10 G17 G41 D4 X-0.7 Y3.1875 (COMP LEAD IN)
N20 X0. Y3.1875
N40 X0.5667 F10
N50 G03 X0.8225 Y3.3307 R0.3
N60 G02 X2.9728 Y4.3563 R2.1875
N70 G01 X7.212 Y3.7986
N80 G02 X8.1985 Y3.2849 R1.625
N90 G03 X8.4197 Y3.1875 R0.3
N100 G01 X9.
N110 G40 X10.1972 Y3.432 (COMP LEAD OUT
N220 M02

Line 15 contains G41 D4, which means that the diameter of the tool described as tool #4 in the tool
table will be used to offset the spindle by 1/2 the diameter, which is, of course, the tool’s radius.
Note that the line with the G41 command contains the endpoint of the move where the radius
compensation is interpolated in. What this means is that at the beginning of this move, there is
no compensation in effect, and at the end, the tool is offset by 100% of the selected tool radius.
Immediately after the G41 is D4, meaning that the offset is by the radius of tool number 4 in the
tool table. Note that tool DIAMETERS are entered in the tool table. (Jon’s tool diameter is about
0.4890)

But, note that in line 110, where the G40 ’cancel cutter compensation’ command is, that cutter
compensation will be interpolated out in this move. The way I have these set up, the moves in lines
15 and 110 are almost exactly parallel to the X axis, and the difference in Y coordinates is to line
the tool up outside the portion of the program where cutter compensation is in force.

Some other things to note are that the program starts with a G40, to turn off any compensation
that was in effect. This saves a lot of hassle when the program stops due to a concavity error, but
leaves the compensation turned on. Also note in line 15 that G17 is used to select the XY plane
for circular interpolation. I have used the radius form of arc center specification rather than the I,J
form. EMC is very picky about the radius it computes from I,J coordinates, and they must match at
the beginning and end of the move to within 10^-11 internal units, so you will have lots of problems
with arbitrary arcs. Usually, if you do an arc of 90 degrees, centered at (1.0,1.0) with a radius of
1", everything will go fine, but if it has a radius that can not be expressed exactly in just a few
significant digits, or the arc is a strange number of degrees, then there will be trouble with EMC.
The R word clears up all that mess, and is a lot easier to work with, anyway. If the arc is more than
180 degrees, R should be negative.

20.5 Tool Compensation Sources

This unit borrows heavily from the published works of Tom Kramer and Fred Proctor at NIST and
the cutter compensation web page of Jon Elson.

CHAPTER 20. TOOL FILE AND COMPENSATION 170

Papers by Tom Kramer and Fred Proctor
http://www.isd.mel.nist.gov/personnel/kramer/publications.html
http://www.isd.mel.nist.gov/personnel/kramer/pubs/RS274NGC_22.pdf
http://www.isd.mel.nist.gov/personnel/kramer/pubs/RS274VGER_11.pdf

Pages by Jon Elson
http://artsci.wustl.edu/~jmelson/
http://206.19.206.56/diacomp.htm
http://206.19.206.56/lencomp.htm

Chapter 21

Coordinate System and G92 Offsets

21.1 Introduction

You have seen how handy a tool length offset can be. Having this allows the programmer to ignore
the actual tool length when writing a part program. In the same way, it is really nice to be able to
find a prominent part of a casting or block of material and work a program from that point rather
than having to take account of the location at which the casting or block will be held during the
machining.

This chapter introduces you to offsets as they are used by the EMC. These include;

• machine coordinates (G53)

• nine offsets (G54-G59.3)

• a set of global offsets (G92).

21.2 The Machine Position Command (G53)

Regardless of any offsets that may be in effect, putting a G53 in a block of code tells the interpreter
to go to the real or absolute axis positions commanded in the block. For example

g53 g0 x0 y0 z0

will get you to the actual position where these three axes are zero. You might use a command like
this if you have a favorite position for tool changes or if your machine has an auto tool changer. You
might also use this command to get the tool out of the way so that you can rotate or change a part
in a vice.

G53 is not a modal command. It must be used on each line where motion based upon absolute
machine position is desired.

21.3 Fixture Offsets (G54-G59.3)

Work or fixture offset are used to make a part home that is different from the absolute, machine
coordinate system. This allows the part programmer to set up home positions for multiple parts. A
typical operation that uses fixture offsets would be to mill multiple copies of parts on "islands" in a
piece, similar to figure 21.1

The values for offsets are stored in the VAR file that is requested by the INI file during the startup
of an EMC. In our example below we’ll use G55. The values for each axis for G55 are stored as
variable numbers.

171

CHAPTER 21. COORDINATE SYSTEM AND G92 OFFSETS 172

Figure 21.1: Work Offsets

5241 0.000000

5242 0.000000

5243 0.000000

5244 0.000000

5245 0.000000

5246 0.000000

In the VAR file scheme, the first variable number stores the X offset, the second the Y offset and so
on for all six axes. There are numbered sets like this for each of the fixture offsets.

Each of the graphical interfaces has a way to set values for these offsets. You can also set these
values by editing the VAR file itself and then issuing a [reset] so that the EMC reads the new values.
For our example let’s directly edit the file so that G55 takes on the following values.

5241 2.000000

5242 1.000000

5243 -2.000000

5244 0.000000

5245 0.000000

5246 0.000000

You should read this as moving the zero positions of G55 to X = 2 units, Y= 1 unit, and Z = -2 units
away from the absolute zero position.

Once there are values assigned, a call to G55 in a program block would shift the zero reference by
the values stored. The following line would then move each axis to the new zero position. Unlike
G53, G54 through G59.3 are modal commands. They will act on all blocks of code after one of
them has been set. The program that might be run using figure 21.1 would require only a single
coordinate reference for each of the locations and all of the work to be done there. The following
code is offered as an example of making a square using the G55 offsets that we set above.

G55 G0 x0 y0 z0

g1 f2 z-0.2000

x1

CHAPTER 21. COORDINATE SYSTEM AND G92 OFFSETS 173

y1

x0

y0

g0 z0

g54 x0 y0 z0

m2

“But,” you say, “why is there a G54 in there near the end.” Many programmers leave the G54
coordinate system with all zero values so that there is a modal code for the absolute machine based
axis positions. This program assumes that we have done that and use the ending command as a
command to machine zero. It would have been possible to use g53 and arrive at the same place but
that command would not have been modal and any commands issued after it would have returned
to using the G55 offsets because that coordinate system would still be in effect.

G54 use preset work coordinate system 1

G55 use preset work coordinate system 2

G56 use preset work coordinate system 3

G57 use preset work coordinate system 4

G58 use preset work coordinate system 5

G59 use preset work coordinate system 6

G59.1 use preset work coordinate system 7

G59.2 use preset work coordinate system 8

G59.3 use preset work coordinate system 9

21.3.1 Default coordinate system

One other variable in the VAR file becomes important when we think about offset systems. This
variable is named 5220. In the default files its value is set to 1.00000. This means that when the
EMC starts up it should use the first coordinate system as its default. If you set this to 9.00000
it would use the nineth offset system as its default for startup and reset. Any value other than an
interger (decimal really) between 1 and 9 will cause the EMC to fault on startup.

21.3.2 Setting coordinate system values within G-code.

In the general programming chapter we listed a G10 command word. This command can be used
to change the values of the offsets in a coordinate system. (add here)

21.4 G92 Offsets

G92 is the most misunderstood and maligned part of EMC programming. The way that it works
has changed just a bit from the early days to the current releases. This change has confused many
users. It should be thought of as a temporary offset that is applied to all other offsets.

In response to criticism of it, Ray Henry studied it by comparing the way the interpreter authors
expected it to work and the way that it worked on his Grizzly minimill. The following quoted para-
graphs are extracted from his paper which is available in several text formats in the dropbox at
http://www.linuxcnc.org.

http://www.linuxcnc.org

CHAPTER 21. COORDINATE SYSTEM AND G92 OFFSETS 174

21.4.1 The G92 commands

This set of commands include;

G92 This command, when used with axis names, sets values to offset variables.

G92.1 This command sets zero values to the g92 variables.

G92.2 This command suspends but does not zero out the g92 variables.

G92.3 This command applies offset values that have been suspended.

When the commands are used as described above, they will work pretty much as you would expect.

A user must understand the correct ways that the g92 values work. They are set based
upon the location of each axis when the g92 command is invoked. The NIST document
is clear that, “To make the current point have the coordinates” x0, y0, and z0 you would
use g92 x0 y0 z0. G92 does not work from absolute machine coordinates. It works from
current location.

G92 also works from current location as modified by any other offsets that are in effect
when the g92 command is invoked. While testing for differences between work offsets
and actual offsets it was found that a g54 offset could cancel out a g92 and thus give
the appearance that no offsets were in effect. However, the g92 was still in effect for all
coordinates and did produce expected work offsets for the other coordinate systems.

It is likely that the absence of home switches and proper home procedures will result in
very large errors in the application of g92 values if they exist in the var file. Many EMC
users do not have home switches in place on their machines. For them home should be
found by moving each axis to a location and issuing the home command. When each
axis is in a known location, the home command will recalculate how the g92 values are
applied and will produce consistent results. Without a home sequence, the values are
applied to the position of the machine when the EMC begins to run.

21.4.2 Setting G92 values

There are at least two ways to set G92 values.

• right mouse click on position displays of tkemc will popup a window into which you can type
a value.

• the g92 command

Both of these work from the current location of the axis to which the offset is to be applied.

Issuing g92 x y z a b c does in fact set values to the g92 variables such that each axis
takes on the value associated with its name. These values are assigned to the current
position of the machine axis. These results satisfy paragraphs one and two of the NIST
document.

G92 commands work from current axis location and add and subtract correctly to give
the current axis position the value assigned by the g92 command. The effects work even
though previous offsets are in.

So if the X axis is currently showing 2.0000 as its position a G92 x0 will set an offset of -2.0000 so
that the current location of X becomes zero. A G92 X2 will set an offset of 0.0000 and the displayed
position will not change. A G92 X5.0000 will set an offset of 3.0000 so that the current displayed
position becomes 5.0000.

CHAPTER 21. COORDINATE SYSTEM AND G92 OFFSETS 175

21.4.3 G92 Cautions

Sometimes the values of a G92 offset get stuck in the VAR file. When this happens reset or a startup
will cause them to become active again. The variables are named

5211 0.000000

5212 0.000000

5213 0.000000

5214 0.000000

5215 0.000000

5216 0.000000

where 5211 is the X axis offset and so on. If you are seeing unexpected positions as the result of a
commanded move, or even unexpected numbers in the position displays when you start up, look at
these variables in the VAR file and see if they contain values. If they do, set them to zeros and the
problems should go away.

With these tests we can see that reset returns g92 to the condition that it had when the
interpreter started up. The reader should note that we have established ... that no write
of these values occurs during a normal run so if no g92 was set at the startup, none will
be read in during a reset.

It may be that this is the heart of the problem that some have experienced with differences
between the old and the new interpreter. It may well be, but I leave it to others to test,
that the old interpreter and task programs immediately wrote values to the var file and
then found those values during a reset.

On the other hand, if G92 values existed in the VAR file when the EMC started up

... starting the EMC with g92 values in the var file is that it will apply the values to current
location of each axis. If this is home position and home position is set as machine zero
everything will be correct. Once home has been established using real machine switches
or moving each axis to a known home position and issuing an axis home command, g92
commands and values work as advertised.

These tests did not study the effect of re-reading the var file while they contain numbers.
This could cause problems if g92 offsets had been removed with g92.1 but the var file still
contained the previous numbers.

It is this complexity that causes us to say that G92 values must be treated as temporary. They
should be used to set global short term offsets. The G54-59.3 coordinate systems should be used
whenever long lasting and predictable offsets are needed.

21.5 Sample Program Using Offsets

This sample engraving project mills a set of four .1 radius circles in roughly a star shape around a
center circle. We can setup the individual circle pattern like this.

G10 L2 P1 x0 y0 z0 (ensure that g54 is set to machine zero)

g0 x-.1 y0 z0

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g0 z0

m2

CHAPTER 21. COORDINATE SYSTEM AND G92 OFFSETS 176

We can issue a set of commands to create offsets for the four other circles like this.

G10 L2 P2 x0.5 (offsets g55 x value by 0.5 inch)

G10 L2 P3 x-0.5 (offsets g56 x value by -0.5 inch)

G10 L2 P4 y0.5 (offsets g57 y value by 0.5 inch)

G10 L2 P5 y-0.5 (offsets g58 y value by -0.5 inch)

We put these together in the following program.

(a program for milling five small circles in a diamond shape)

G10 L2 P1 x0 y0 z0 (ensure that g54 is machine zero)

G10 L2 P2 x0.5 (offsets g55 x value by 0.5 inch)

G10 L2 P3 x-0.5 (offsets g56 x value by -0.5 inch)

G10 L2 P4 y0.5 (offsets g57 y value by 0.5 inch)

G10 L2 P5 y-0.5 (offsets g58 y value by -0.5 inch)

g54 g0 x-.1 y0 z0 (center circle)

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g0 z0

g55 g0 x-.1 y0 z0 (first offset circle)

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g0 z0

g56 g0 x-.1 y0 z0 (second offset circle)

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g0 z0

g57 g0 x-.1 y0 z0 (third offset circle)

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g0 z0

g58 g0 x-.1 y0 z0 (fourth offset circle)

g1 f1 z-.25

g3 x-.1 y0 i.1 j0

g54 g0 x0 y0 z0

m2

Now comes the time when we might apply a set of G92 offsets to this program. You’ll see that it is
running in each case at z0. If the mill were at the zero position, a g92 z1.0000 issued at the head
of the program would shift everything down an inch. You might also shift the whole pattern around
in the XY plane by adding some x and y offsets with g92. If you do this you should add a G92.1
command just before the m2 that ends the program. If you do not, other programs that you might
run after this one will also use that g92 offset. Furthermore it would save the g92 values when you
shut down the EMC and they will be recalled when you start up again.

Chapter 22

Canned Cycles

Canned Cycles G81 through G89 have been implemented for milling. This section describes how
each cycle has been implemented. In addition G80 and G98/G99 are considered here because their
primary use is related to canned cycles.

All canned cycles are performed with respect to the XY plane With the current 3 axis interpreter,
no A, B, C-axis motion is allowed during canned cycles inverse time feed rate is not allowed cutter
radius compensation is not allowed Each of the canned cycles defines a new machine motion mode.
As a motion mode, they will stay in effect until replaced by another motion G word or by G80 as
described below.

All canned cycles use X, Y, R, and Z values in the NC code. These values are used to determine X,
Y, R, and Z positions. The R (usually meaning retract) position is along the Z-axis. Some canned
cycles use additional arguments that are listed with the specific cycle.

In absolute distance mode, the X, Y, R, and Z values are absolute positions in the current coordinate
system. In incremental distance mode, X, Y, and R values are treated as increments to the current
position and Z as an increment from the Z-axis position before the move involving Z takes place.

A repeat feature has been implemented. The L word represents the number of repeats. If the repeat
feature is used, it is normally used in incremental distance mode, so that the same sequence of
motions is repeated in several equally spaced places along a straight line. EMC allows L > 1 in
absolute distance mode to mean "do the same cycle in the same place several times." Omitting the
L value is equivalent to specifying L=1.

When L>1 in incremental mode, the X and Y positions are determined by adding the given X and Y
values either to the current X and Y positions (on the first go-around) or to the X and Y positions
at the end of the previous go-around (on the second and successive go-arounds). The R and Z
positions do not change during the repeats.

The number of repeats of a canned cycle only works for in the block containing L word. If you want
to repeat a canned cycle using the repeat feature by placing a new L word on each line for which
you want repeats.

The height of the retract move at the end of each repeat (called "clear Z" in the descriptions below)
is determined by the setting of the retract_mode: either to the original Z position (if that is above
the R position and the retract_mode is G98, OLD_Z), or otherwise to the R position. (See G98/G99
below)

22.1 Preliminary Motion

Preliminary motion may be confusing on first read. It should come clear as you work through the
examples in G80 and G81 below. Preliminary motion is a set of motions that is common to all

177

CHAPTER 22. CANNED CYCLES 178

of the milling canned cycles. These motions are computed at the time the canned cycle block is
encountered by the interpreter. They move the tool into the proper location for the execution of the
canned cycle itself.

These motions will be different depending on whether the canned cycle is to be executed using
absolute distances or incremental distances. These motions will also be affected by the initial
position of the z axis when the canned cycle block is encountered in a program.

If the current Z position is below the R position, the Z axis is traversed to the R position. This
happens only once, regardless of the value of L.

In addition, for each repeat as specified by L, one or two moves are made before the rest of the cycle:
1. a straight traverse parallel to the XY-plane to the given XY-position 2. a straight traverse of the
Z-axis only to the R position, if it is not already at the R position.

22.2 G80

G80 turns off all motion. You should think of it as the off position on a rotary switch where the
other positions are the different possible motion modes. In the EMC interpreter, G80 is one of the
modal codes so any other code will replace it. The result of the following lines of code is the same.
N1000 G90 G81 X1 Y1 Z1.5 R2.8 (absolute distance canned cycle)
N1001 G80 (turn off canned cycle motion)
N1002 G0 X0 Y0 Z0 (turn on rapid traverse and move to coordinate home)

produces the same final position and machine state as
N1000 G90 G81 X1 Y1 Z1.5 R2.8 (absolute distance canned cycle)
N1001 G0 X0 Y0 Z0 (turn on rapid traverse and move to coordinate home)

The advantage of the first set is that, the G80 line clearly turns off the G81 canned cycle. With the
first set of blocks, the programmer must turn motion back on with G0, as is done in the next line,
or any other motion mode G word.

Example 1 - Use of a canned cycle as a modal motion code

If a canned cycle is not turned off with G80 or another motion word, the canned cycle will attempt
to repeat itself using the next block of code that contains an X, Y, or Z word. The following file drills
(G81) a set of eight holes as shown. (note the z position change after the first four holes.)

N100 G90 G0 X0 Y0 Z0 (coordinate home)

N110 G1 X0 G4 P0.1

N120 G81 X1 Y0 Z0 R1 (canned drill cycle)

N130 X2

N140 X3

N150 X4

N160 Y1 Z0.5

N170 X3

N180 X2

N190 X1

N200 G80 (turn off canned cycle)

N210 G0 X0 (rapid home moves)

N220 Y0

N220 Z0

N220 M2 (program end)

The use of G80 in line n200 is optional because the G0 on the next line will turn off the G81 cycle.
But using the G80. as example 1 shows, will provide for an easily readable canned cycle. Without
it, it is not so obvious that all of the blocks between N120 and N200 belong to the canned cycle.

If you use G80 and do not set another modal motion code soon after, you may get one of the following
error messages.

CHAPTER 22. CANNED CYCLES 179

Cannot use axis commands with G80
Coordinate setting given with G80

These should serve as a reminder that you need to write in a new motion word.

22.3 G81 Cycle

The G81 cycle is intended for drilling.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Retract the Z-axis at traverse rate to clear Z. This cycle was used in the description of G80 above
but is explained in detail here.

Example 2 - Absolute Position G81

Suppose the current position is (1, 2, 3) and the following line of NC code is interpreted.

G90 G81 G98 X4 Y5 Z1.5 R2.8

This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the G81
drilling cycle to be performed once. The X value and X position are 4. The Y value and Y position
are 5. The Z value and Z position are 1.5. The R value and clear Z are 2.8. OLD_Z is 3.

The following moves take place.

1. a traverse parallel to the XY plane to (4,5,3)

2. a traverse parallel to the Z-axis to (4,5,2.8).

3. a feed parallel to the Z-axis to (4,5,1.5)

4. a traverse parallel to the Z-axis to (4,5,3)

Example 2 - Absolute Position G81

Suppose the current position is (1, 2, 3) and the following line of NC code is interpreted.

G91 G81 G98 X4 Y5 Z-0.6 R1.8 L3

This calls for incremental distance mode (G91) and OLD_Z retract mode (G98). It also calls for the
G81 drilling cycle to be repeated three times. The X value is 4, the Y value is 5, the Z value is -0.6

CHAPTER 22. CANNED CYCLES 180

and the R value is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5), the clear
Z position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). OLD_Z is 3.

The first preliminary move is a traverse along the Z axis to (1,2,4.8), since OLD_Z < clear Z.

The first repeat consists of 3 moves.

1. a traverse parallel to the XY-plane to (5,7,4.8)

2. a feed parallel to the Z-axis to (5,7, 4.2)

3. a traverse parallel to the Z-axis to (5,7,4.8) The second repeat consists of 3 moves. The X position
is reset to 9 (=5+4) and the Y position to 12 (=7+5).

1. a traverse parallel to the XY-plane to (9,12,4.8)

2. a feed parallel to the Z-axis to (9,12, 4.2)

3. a traverse parallel to the Z-axis to (9,12,4.8) The third repeat consists of 3 moves. The X position
is reset to 13 (=9+4) and the Y position to 17 (=12+5).

1. a traverse parallel to the XY-plane to (13,17,4.8)

2. a feed parallel to the Z-axis to (13,17, 4.2)

3. a traverse parallel to the Z-axis to (13,17,4.8)

Example 3 - Relative Position G81

CHAPTER 22. CANNED CYCLES 181

Now suppose that you execute the first g81 block of code but from (0, 0, 0) rather than from (1, 2,
3).

G90 G81 G98 X4 Y5 Z1.5 R2.8 Since OLD_Z is below the R value, it adds nothing for the motion
but since the initial value of Z is less than the value specified in R, there will be an initial Z move
during the preliminary moves.

Example 4 - Absolute G81 R > Z

This is a plot of the path of motion for the second g81 block of code.

G91 G81 G98 X4 Y5 Z-0.6 R1.8 L3

Since this plot starts with (0, 0, 0), the interpreter adds the initial Z 0 and R 1.8 and rapids to that
location. After that initial z move, the repeat feature works the same as it did in example 3 with the
final z depth being 0.6 below the R value.

Example 5 - Relative position R > Z

22.4 G82 Cycle

The G82 cycle is intended for drilling.

CHAPTER 22. CANNED CYCLES 182

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Dwell for the given number of seconds.

3. Retract the Z-axis at traverse rate to clear Z. The motion of a G82 canned cycle looks just like
g81 with the addition of a dwell at the bottom of the Z move. The length of the dwell is specified by
a p# word in the g82 block.

G90 G82 G98 X4 Y5 Z1.5 R2.8 P2

Would be equivalent to example 2 above with a dwell added at the bottom of the hole.

22.5 G83 Cycle

The G83 cycle is intended for deep drilling or milling with chip breaking. The dwell in this cycle
causes any long stringers (which are common when drilling in aluminum) to be cut off. This cycle
takes a Q value which represents a "delta" increment along the Z-axis. Machinists often refer to this
as peck drilling.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate downward by delta or to the Z position, whichever
is less deep.

2. Dwell for 0.25 second.

3. Retract at traverse rate to clear Z

4. Repeat steps 1 - 3 until the Z position is reached.

5. Retract the Z-axis at traverse rate to clear Z.

NIST lists the elements of the command as G83 X- Y- Z- A- B- C- R- L- Q-

I find this command very handy for many of my deep drilling projects. I have not tried to use the L
for a repeat so can’t say much about that feature. A typical g83 line that I would write might look
like G83 X0.285 Y0.00 Z-0.500 R0.2 L1 Q0.05. EMC moves to position X0.285 Y0.00 at the z height
before the block. It then pecks its way down to Z-0.500. Each peck pulls the drill tip up to R0.2
after moving Q0.05.

22.6 G84 Cycle

The G84 cycle is intended for right-hand tapping.

0. Preliminary motion, as described above.

1. Start speed-feed synchronization.

2. Move the Z-axis only at the current feed rate to the Z position.

3. Stop the spindle.

4. Start the spindle counterclockwise.

5. Retract the Z-axis at the current feed rate to clear Z.

6. If speed-feed synch was not on before the cycle started, stop it.

7. Stop the spindle.

8. Start the spindle clockwise.

CHAPTER 22. CANNED CYCLES 183

22.7 G85 Cycle

The G85 cycle is intended for boring or reaming.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Retract the Z-axis at the current feed rate to clear Z. This motion is very similar to g81 except
that the tool is retracted from the hole at feedrate rather than rapid.

22.8 G86 Cycle

The G86 cycle is intended for boring.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Dwell for the given number of seconds.

3. Stop the spindle turning.

4. Retract the Z-axis at traverse rate to clear Z.

5. Restart the spindle in the direction it was going. This cycle is very similar to g82 except that it
stops the spindle before it retracts the tool and restarts the spindle when it reaches the clearance
value R.

22.9 G87 Cycle

The G87 cycle is intended for back boring.

The situation is that you have a through hole and you want to counter bore the bottom of hole. To
do this you put an L-shaped tool in the spindle with a cutting surface on the UPPER side of its base.
You stick it carefully through the hole when it is not spinning and is oriented so it fits through the
hole, then you move it so the stem of the L is on the axis of the hole, start the spindle, and feed the
tool upward to make the counter bore. Then you stop the tool, get it out of the hole, and restart it.

This cycle uses I and J values to indicate the position for inserting and removing the tool. I and
J will always be increments from the X position and the Y position, regardless of the distance
mode setting. This cycle also uses a K value to specify the position along the Z-axis of the top of
counterbore. The K value is an absolute Z-value in absolute distance mode, and an increment (from
the Z position) in incremental distance mode.

0. Preliminary motion, as described above.

1. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.

2. Stop the spindle in a specific orientation.

3. Move the Z-axis only at traverse rate downward to the Z position.

4. Move at traverse rate parallel to the XY-plane to the X,Y location.

5. Start the spindle in the direction it was going before.

6. Move the Z-axis only at the given feed rate upward to the position indicated by K.

7. Move the Z-axis only at the given feed rate back down to the Z position.

8. Stop the spindle in the same orientation as before.

CHAPTER 22. CANNED CYCLES 184

9. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.

10. Move the Z-axis only at traverse rate to the clear Z.

11. Move at traverse rate parallel to the XY-plane to the specified X,Y location.

12. Restart the spindle in the direction it was going before.

Example 6 - Backbore

Example six uses a incremental distances from (0, 0, 0) so the preliminary moves look much like
those in example five but they are done using the G87 backbore canned cycle.

G91 G87 M3 S1000 X1 Y1 Z-0.4 R1.4 I-0.1 J-0.1 K-0.1

You will notice that the preliminary moves shift the tool to
directly above the center axis of the existing bore.
Next it increments that location by the I and J values. I
offsets X with a plus value being added to the current X. J
does the same for the Y axis.
For our example block both I and J are negative so they
move back from the hole axis along the path just made
by the tool. The amount of offset required should be just
enough that the tool tip will slide down through the bore.

Next the canned cycle moves the tool down in z and at the
bottom location represented in the block by the Z 0.4 value
it moves the tool back to the center of the bore.

Now the g87 canned cycle turns the spindle on and moves back up into the bore at the programmed
feedrate. This is the real cutting action of this canned cycle. With the proper tool in a boring bar
this cycle will produce a chamfer on the bottom side of the bore. G87 can also be used to produce
a larger diameter bore on the bottom side of the bore.

CHAPTER 22. CANNED CYCLES 185

When the tool has reached the K position it is returned to
the bottom location, the spindle is stopped and oriented and
follows the earlier path back out of the bore to the initial
position above.

This canned cycle assumes spindle orientation which has not been implemented in the EMC to date.
The proper alignment of the tool tip to the oriented spindle is critical to the successful insertion of
the tool through the hole to be backbored.

22.10 G88 Cycle

The G88 cycle is intended for boring. This cycle uses a P value, where P specifies the number of
seconds to dwell.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Dwell for the given number of seconds.

3. Stop the spindle turning.

4. Stop the program so the operator can retract the spindle manually.

5. Restart the spindle in the direction it was going. It is unclear how the operator is to manually
move the tool because a change to manual mode resets the program to the top. We will attempt to
clarify that step in this procedure.

22.11 G89 Cycle

The G89 cycle is intended for boring. This cycle uses a P value, where P specifies the number of
seconds to dwell.

0. Preliminary motion, as described above.

1. Move the Z-axis only at the current feed rate to the Z position.

2. Dwell for the given number of seconds.

3. Retract the Z-axis at the current feed rate to clear Z. This cycle is like G82 except that the tool is
drawn back at feedrate rather than rapid.

22.12 G98 G99

G98 - initial level return in canned cycles

G99 - R value return in canned cycles

These codes are treated together because they behave very much alike.ăYou will recall that when
Z is above R the preparatory move is from the current location to the X, Y values. If G98 is not
specified, then the canned cycle will return to the R value rather than the Z value that was used on
the approach.

CHAPTER 22. CANNED CYCLES 186

N01 G0 X1 Y2 Z3
N02 G90 G81 X4 Y5 Z-0.6 R1.8
Adding G98 to the second line above means that the return
move will be to the value of OLD_Z since it is higher that the
R value specified.

Neither code will have any affect when incremental moves with a positive R value are specified
because the R value is added to OLD_Z and that result is used as the initial level for a G98. The
same value is the computed R value so G99 will also return to the same place.

When the value of R is less than OLD_Z and incremental
distance mode is turned on, G98 will return the tool to the
value of OLD_Z. Under those conditions G99 will retract
the tool to OLD_Z plus the negative R value. The return
will be below OLD_Z.

22.13 Why use a canned cycle?

There are at least two reasons for using canned cycles. The first is the economy of code. A single
bore would take several lines of code to execute.

Example 1 above demonstrated how a canned cycle could be used to produce 8 holes with ten lines
of nc code within the canned cycle mode. The program below will produce the same set of 8 holes
using five lines for the canned cycle. It does not follow exactly the same path nor does it drill in the
same order as the earlier example. But the program writing economy of a good canned cycle should
be obvious.
Example 7 - Eight Holes Revisited

n100 g90 g0 x0 y0 z0 (move coordinate home)

n110 g1 f10 x0 g4 p0.1

n120 g91 g81 x1 y0 z-1 r1 l4(canned drill cycle)

n130 g90 g0 x0 y1

n140 z0

n150 g91 g81 x1 y0 z-.5 r1 l4(canned drill cycle)

n160 g80 (turn off canned cycle)

n170 m2 (program end)

CHAPTER 22. CANNED CYCLES 187

Example 8 - Twelve holes in a square

This example demonstrates the use of the L word to repeat a set of incremental drill cycles for
successive blocks of code within the same G81 motion mode. Here we produce 12 holes using five
lines of code in the canned motion mode.

N1000 G90 G0 X0 Y0 Z0 (move coordinate home)

N1010 G1 F50 X0 G4 P0.1

N1020 G91 G81 X1 Y0 Z-0.5 R1 L4 (canned drill cycle)

N1030 X0 Y1 R0 L3 (repeat)

N1040 X-1 Y0 L3 (repeat)

N1050 X0 Y-1 L2 (repeat)

N1060 G80 (turn off canned cycle)

N1070 G90 G0 X0 (rapid home)

N1080 Y0

N1090 Z0

N1100 M2 (program end)

The second reason to use a canned cycle is that they all produce preliminary moves and returns
that you can anticipate and control regardless of the start point of the canned cycle.

Chapter 23

Image-to-gcode: Milling “depth
maps”

23.1 What is a depth map?

A depth map is a greyscale image where the brightness of each pixel corresponds to the depth (or
height) of the object at each point.

23.2 Integrating image-to-gcode with the AXIS user interface

Add the following lines to the [FILTER] section of your .ini file to make AXIS automatically invoke
image-to-gcode when you open a .png, .gif, or .jpg image:

188

CHAPTER 23. IMAGE-TO-GCODE: MILLING “DEPTH MAPS” 189

PROGRAM_EXTENSION = .png,.gif,.jpg Grayscale Depth Image
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode

The standard sim/axis.ini configuration file is already configured this way.

23.3 Using image-to-gcode

Start image-to-gcode either by opening an image file in AXIS, or by invoking image-to-gcode from
the terminal, as follows:

image-to-gcode torus.png > torus.ngc

Verify all the settings in the right-hand column, then press OK to create the gcode. Depending on
the image size and options chosen, this may take from a few seconds to a few minutes. If you are
loading the image in AXIS, the gcode will automatically be loaded and previewed once image-to-
gcode completes. In AXIS, hitting reload will show the image-to-gcode option screen again, allowing
you to tweak them.

23.4 Option Reference

23.4.1 Units

Specifies whether to use G20 (inches) or G21 (mm) in the generated g-code and as the units for each
option labeled (units).

23.4.2 Invert Image

If “no”, the black pixel is the lowest point and the white pixel is the highest point. If “yes”, the black
pixel is the highest point and the white pixel is the lowest point.

23.4.3 Normalize Image

If “yes”, the darkest pixel is remapped to black, the lightest pixel is remapped to white.

23.4.4 Tolerance (units)

When a series of points are within tolerance of being a straight line, they are output as a straight
line. Increasing tolerance can lead to better contouring performance in emc, but can also remove or
blur small details in the image.

23.4.5 Pixel Size (units)

One pixel in the input image will be this many units–usually this number is much smaller than 1.0.
For instance, to mill a 2.5x2.5-inch object from a 400x400 image file, use a pixel size of .00625,
because 2.5 / 400 = .00625.

CHAPTER 23. IMAGE-TO-GCODE: MILLING “DEPTH MAPS” 190

23.4.6 Plunge Feed Rate (units per minute)

The feed rate for the initial plunge movement

23.4.7 Feed Rate (units per minute)

The feed rate for other parts of the path

23.4.8 Spindle Speed (RPM)

23.4.9 Scan Pattern

Possible scan patterns are:

• Rows

• Columns

• Rows, then Columns

• Columns, then Rows

23.4.10 Scan Direction

Possible scan directions are:

• Positive: Start milling at a low X or Y axis value, and move towards a high X or Y axis value

• Negative: Start milling at a high X or Y axis value, and move towards a low X or Y axis value

• Alternating: Start on the same end of the X or Y axis travel that the last move ended on. This
reduces the amount of traverse movements

• Up Milling: Start milling at low points, moving towards high points

• Down Milling: Start milling at high points, moving towards low points

23.4.11 Depth (units)

The top of material is always at Z=0. The deepest cut into the material is Z=-depth.

23.4.12 Step Over (pixels)

The distance between adjacent rows or columns. To find the number of pixels for a given units
distance, compute distance/pixel size and round to the nearest whole number. For example, if
pixel size=.006 and the desired step over distance=.015, then use a Step Over of 2 or 3 pixels,
because .015/.006=2.5.

23.4.13 Tool Diameter

The diameter of the cutting part of the tool.

CHAPTER 23. IMAGE-TO-GCODE: MILLING “DEPTH MAPS” 191

23.4.14 Safety Height

The height to move to for traverse movements. image-to-gcode always assumes the top of material
is at Z=0.

23.4.15 Tool Type

The shape of the cutting part of the tool. Possible tool shapes are:

• Ball End

• Flat End

• 45 degree “vee”

• 60 degree “vee”

23.4.16 Lace bounding

This controls whether areas that are relatively flat along a row or column are skipped. This option
only makes sense when both rows and columns are being milled. Possible bounding options are:

• None: Rows and columns are both fully milled.

• Secondary: When milling in the second direction, areas that do not strongly slope in that
direction are skipped.

• Full: When milling in the first direction, areas that strongly slope in the second direction are
skipped. When milling in the second direction, areas that do not strongly slope in that direction
are skipped.

23.4.17 Contact angle

When Lace bounding is not None, slopes greater than Contact angle are considered to be “strong”
slopes, and slopes less than that angle are considered to be weak slopes.

Appendix A

Glossary of Common Terms Used in
the EMC Documents

A listing of terms and what they mean. Some terms have a general meaning and several additional
meanings for users, installers, and developers.

Acme Screw A type of lead-screw A that uses an acme thread form. Acme threads have somewhat
lower friction and wear than simple triangular threads, but ball-screws A are lower yet. Most
manual machine tools use acme lead-screws.

Axis One of the computer control movable parts of the machine. For a typical vertical mill, the table
is the X axis, the saddle is the Y axis, and the quill or knee is the Z axis. Additional linear axes
parallel to X, Y, and Z are called U, V, and W respectively. Angular axes like rotary tables are
referred to as A, B, and C.

Backlash The amount of "play" or lost motion that occurs when direction is reversed in a lead
screw A. or other mechanical motion driving system. It can result from nuts that are loose
on leadscrews, slippage in belts, cable slack, "wind-up" in rotary couplings, and other places
where the mechanical system is not "tight". Backlash will result in inaccurate motion, or in
the case of motion caused by external forces (think cutting tool pulling on the work piece) the
result can be broken cutting tools. This can happen because of the sudden increase in chip
load on the cutter as the work piece is pulled across the backlash distance by the cutting tool.

Backlash Compensation - Any technique that attempts to reduce the effect of backlash without
actually removing it from the mechanical system. This is typically done in software in the
controller. This can correct the final resting place of the part in motion but fails to solve
problems related to direction changes while in motion (think circular interpolation) and motion
that is caused when external forces (think cutting tool pulling on the work piece) are the source
of the motion.

Ball Screw A type of lead-screw that uses small hardened steel balls between the nut A and screw
to reduce friction. Ball-screws have very low friction and backlash A, but are usually quite
expensive.

Ball Nut A special nut designed for use with a ball-screw. It contains an internal passage to re-
circulate the balls from one end of the screw to the other.

CNC Computer Numerical Control. The general term used to refer to computer control of machin-
ery. Instead of a human operator turning cranks to move a cutting tool, CNC uses a computer
and motors to move the tool, based on a part program A.

Coordinate Measuring Machine A Coordinate Measuring Machine is used to make many accurate
measurements on parts. These machines can be used to create CAD data for parts where no

192

APPENDIX A. GLOSSARY OF COMMON TERMS USED IN THE EMC DOCUMENTS 193

drawings can be found, when a hand-made prototype needs to be digitized for moldmaking, or
to check the accuracy of machined or molded parts.

DRO A Digital Read Out is a device attached to the slides of a machine tool or other device which
has parts that move in a precise manner to indicate the current location of the tool with respect
to some reference position. Nearly all DRO’s use linear quadrature encoders to pick up position
information from the machine.

EDM EDM is a method of removing metal in hard or difficult to machine or tough metals, or where
rotating tools would not be able to produce the desired shape in a cost-effective manner. An
excellent example is rectangular punch dies, where sharp internal corners are desired. Milling
operations can not give sharp internal corners with finite diameter tools. A wire EDM machine
can make internal corners with a radius only slightly larger than the wire’s radius. A ’sinker’
EDM cam make corners with a radius only slightly larger than the radius on the corner of the
convex EDM electrode.

EMC The Enhanced Machine Controller. Initially a NIST A project. EMC is able to run a wide range
of motion devices.

EMCIO The module within EMCA that handles general purpose I/O, unrelated to the actual motion
of the axes.

EMCMOT The module within EMC A that handles the actual motion of the cutting tool. It runs as
a real-time program and directly controls the motors.

Encoder A device to measure position. Usually a machanical-optical device, which outputs a
quadrature signal. The signal can be counted by special hardware, or directly by the par-
port with emc2.

Feed Relatively slow, controlled motion of the tool used when making a cut.

Feedrate The speed at which a motion occurs. In manual mode, jog speed can be set from the
graphical interface. In auto or mdi mode feedrate is commanded using a (f) word. F10 would
mean ten units per minute.

Feedback

Feedrate Override A manual, operator controlled change in the rate at which the tool moves while
cutting. Often used to allow the operator to adjust for tools that are a little dull, or anything
else that requires the feed rate to be “tweaked”.

G-Code The generic term used to refer to the most common part programming language. There are
several dialects of G-code, EMC uses RS274/NGC A.

GUI Graphical User Interface.

General A type of interface that allows communications between a computer and human (in
most cases) via the manipulation of icons and other elements (widgets) on a computer
screen.

EMC An application that presents a graphical screen to the machine operator allowing manip-
ulation of machine and the corresponding controlling program.

Home A specific location in the machine’s work envelope that is used to make sure the computer
and the actual machine both agree on the tool position.

ini file A text file that contains most of the information that configures EMC A for a particular
machine

Joint_Coordinates: These specify the angles between the individual joints of the machine. Kine-
matics

APPENDIX A. GLOSSARY OF COMMON TERMS USED IN THE EMC DOCUMENTS 194

Jog Manually moving an axis of a machine. Jogging either moves the axis a fixed amount for each
key-press, or moves the axis at a constant speed as long as you hold down the key.

kernel-space

Kinematics The position relationship between world coordinates A and joint coordinates A of a
machine. There are two types of kinematics. Forward kinematics is used to calculate world co-
ordinates from joint coordinates. Inverse kinematics is used for exactly opposite purpose.Note
that kinematics does not take into account, the forces, moments etc. on the machine. It is for
positioning only.

Lead-screw An screw that is rotated by a motor to move a table or other part of a machine. Lead-
screws are usually either ball-screws A or acme screws A, although conventional triangular
threaded screws may be used where accuracy and long life are not as important as low cost.

MDI Manual Data Input. This is a mode of operation where the controller executes single lines of
G-code A as they are typed by the operator.

NIST National Institute of Standards and Technology. An agency of the Department of Commerce
in the United States.

Offsets

Part Program A description of a part, in a language that the controller can understand. For EMC,
that language is RS-274/NGC, commonly known as G-code A.

Rapid Fast, possibly less precise motion of the tool, commonly used to move between cuts. If the
tool meets the material during a rapid, it is probably a bad thing!

Real-time Software that is intended to meet very strict timing deadlines. Under Linux, in order to
meet these requirements it is necessary to install RTAI A or RTLINUX A and build the software
to run in those special environments. For this reason real-time software runs in kernel-space.

RTAI Real Time Application Interface, see http://www.aero.polimi.it/ rtai/ http://www.aero.
polimi.it/~rtai/, one of two real-time extensions for Linux that EMC can use to achieve
real-time A performance.

RTLINUX See http://www.rtlinux.org http://www.rtlinux.org, one of two real-time extensions
for Linux that EMC can use to achieve real-time A performance.

RS-274/NGC The formal name for the language used by EMC A part programs A.

Servo Motor

Servo Loop

Spindle On a mill or drill, the spindle holds the cutting tool. On a lathe, the spindle holds the
workpiece.

Stepper Motor A type of motor that turns in fixed steps. By counting steps, it is possible to deter-
mine how far the motor has turned. If the load exceeds the torque capability of the motor, it
will skip one or more steps, causing position errors.

TASK The module within EMC A that coordinates the overall execution and interprets the part
program.

Tcl/Tk A scripting language and graphical widget toolkit with which EMC’s most popular GUI’s A
were written.

World Coordinates This is the absolute frame of reference. It gives coordinates in terms of a fixed
reference frame that is attached to some point (generally the base) of the machine tool.

http://www.aero.polimi.it/~rtai/
http://www.aero.polimi.it/~rtai/
http://www.rtlinux.org

Appendix B

Legal Section

Handbook Copyright Terms

Copyright (c) 2000 LinuxCNC.org
Permission is granted to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
one Back-Cover Text: "This EMC Handbook is the product of several authors writing for
linuxCNC.org. As you find it to be of value in your work, we invite you to contribute to its
revision and growth." A copy of the license is included in the section entitled "GNU Free
Documentation License". If you do not find the license you may order a copy from Free
Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307

B.1 GNU Free Documentation License Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

B.1.1 GNU Free Documentation License Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

195

APPENDIX B. LEGAL SECTION 196

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specifi-
cation is available to the general public, whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a vari-
ety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LATEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free

APPENDIX B. LEGAL SECTION 197

of added material, which the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission. B. List
on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five). C. State on the Title page the name of the publisher of the Modified Version, as
the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for
your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices,
a license notice giving the public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve
the network location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the "History" section. You may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles. M. Delete any section entitled
"Endorsements". Such a section may not be included in the Modified Version. N. Do not retitle any existing
section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Mod-
ified Version by various parties–for example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

APPENDIX B. LEGAL SECTION 198

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is
called an "aggregate", and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also
include the original English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

APPENDIX B. LEGAL SECTION 199

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant.
If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Index

.axisrc, 103

.emcrc, 28

ABORT, 10
Acme Screw, 192
ANGULAR UNITS, 32
Auto, 8, 9, 106, 111, 114, 121
AXIS, 5, 29, 91, 100
AXIS 0,1,2,.., 29

Backlash, 192
Backlash Compensation, 192
backplot, 111, 118
Ball Nut, 192
Ball Screw, 192
BASE PERIOD, 30
Block Delete, 126
blocks, 46
break, 154
Bridgeport, 4

call, 153
classicladder, 46
CNC, 4, 43, 92, 110, 192
Comments, 29
continue, 154
Coolant, 96, 108, 123, 125
Coordinate Systems, 129
CVS, 4

DISPLAY, 29
do, 154
DRO, 193
Dwell, 125

EDM, 193
else, 154
EMC, 29, 193
emcgui, 5
EMCIO, 7, 29, 193
EMCMOT, 29, 193
emcpanel, 5
EMCTASK, 7
enable signal, 27
Encoder, 193
encoder, 33, 46
endif, 154
endsub, 153

endwhile, 154
ESTOP, 10, 27, 92, 93, 105, 106, 115

Feed, 193
Feed Override, 92, 97, 105, 117, 123, 193
Feed Rate, 124
Feedrate, 193
Feedrate Override, 10
FERROR, 33
freqgen, 46

G-Code, 193
G-code, 8
G0, 135, 136
G1, 135, 136
G10, 135, 139
G17, 135, 139
G18, 135, 139
G19, 135, 139
G2, 135, 137
G20, 135, 140
G21, 135, 140
G28, 135, 140
G3, 135, 137
G30, 135, 140
G33, 135, 138
G38.2, 135, 140
G4, 135, 139
G40, 135, 141
G41, 135, 141
G42, 135, 141
G43, 135, 141
G49, 135, 141
G53, 135, 141, 171
G54, 135, 142, 171, 173
G55, 135, 142, 171, 173
G56, 135, 142, 171, 173
G57, 135, 142, 171, 173
G58, 135, 142, 171, 173
G59, 135, 142, 171, 173
G59.1, 135, 142, 171, 173
G59.2, 135, 142, 171, 173
G59.3, 135, 142, 171, 173
G61, 142
G61.1, 142
G64, 142
G76, 142
G80, 135, 142, 178

200

INDEX 201

G81, 135, 143, 145, 179
G82, 135, 146, 181, 182
G83, 135, 146
G84, 135, 147, 182
G85, 135, 147, 183
G86, 135, 147, 183
G87, 135, 147, 183
G88, 135, 147, 185
G89, 135, 143, 147, 185
G90, 135, 148
G91, 135, 148
G92, 135, 148, 171, 173
G92.1, 135, 148, 174
G92.2, 135, 148, 174
G92.3, 135, 148, 174
G93, 135, 149
G94, 135, 149
G98, 135, 149, 185
G99, 135, 149, 185
GNU-Linux, 3
GPL, 4

HAL, 5, 12, 24, 28, 29, 43
HAL Component, 45
HAL Function, 45
HAL Parameter, 45
HAL Physical-Pin, 45
HAL Pin, 45
HAL Signal, 45
HAL Thread, 46
HAL Type, 45
hal-ax5214h, 47
hal-m5i20, 47
hal-motenc, 47
hal-parport, 47
hal-ppmc, 47
hal-stg, 47
hal-vti, 47
halcmd, 47
halmeter, 47
halscope, 47
halui, 46
HOME, 40
Home, 105, 193
HOME IGNORE LIMITS, 40
HOME IS SHARED, 40
HOME LATCH VEL, 38
HOME OFFSET, 40
HOME SEARCH VEL, 34, 38
HOME SEQUENCE, 40
HOME USE INDEX, 40

if, 154
INI, 6, 12, 28, 193
INPUT SCALE, 33
Installing: LiveCD, 15
Installing: manual, 15

Installing: script, 15
iocontrol, 46

Java, 5
Jog Speed, 98, 105

keystick, 5, 29

Lathe, 101
LeadScrew, 194
LINEAR UNITS, 32
Linux, 4

M0, 135, 150
M1, 135, 150
M100..199, 135, 152
M2, 135, 150
M3, 135, 151
M30, 135, 150
M4, 135, 151
M48, 135, 151
M49, 135, 151
M5, 135, 151
M50, 152
M51, 152
M52, 152
M53, 152
M6, 135, 151
M60, 135, 150
M62, 152
M63, 152
M64, 152
M65, 152
M7, 135, 151
M8, 135, 151
M9, 135, 151
MachineOn, 27, 93
Manual, 9, 92, 95, 106, 113, 120
MAX ACCELERATION, 32
MAX LIMIT, 33
MAX VELOCITY, 32
MDI, 8, 9, 92, 97, 105, 106, 115, 194
MIN FERROR, 33
MIN LIMIT, 33
mini, 5, 29, 110
MIST, 106
motion, 46

NIST, 3, 194
NML, 12, 28

OMAC, 3
Open, 107
Open Source, 14
OpenGL, 91
Optional Block Delete, 123
Optional Program Stop, 123, 127
Optional Stop, 107

INDEX 202

Pallet Shuttle, 123
Parameters, 128
Parport, 74
Path Control Mode, 126
Pause, 107
pid, 46
Pinout, 23
PLC, 7
Position: Absolute, 92
Position: Actual, 11, 92
Position: Commanded, 11, 92
Position: Machine, 11
Position: Relative, 11, 92
Preview Plot, 93
Program Extents, 94
Python, 91, 100

RCS, 3
Resume, 107
return, 153
RS274NGC, 29, 122, 130, 194
RS274NGC STARTUP CODE, 30
RTAI, 194
RTLINUX, 194
Run, 107

Servo Motor, 194
SERVO PERIOD, 31
Sherline, 4, 110
siggen, 46
Signal Polarity, 26
Spindle, 96, 106, 108, 123, 194
Spindle Speed Control, 27
Spindle Speed Override, 98, 105, 123
standard pinout, 24
Step, 107
Step Rate, 23
stepgen, 46
stepper, 23
Stepper Motor, 194
sub, 153
supply, 46

TASK, 29
TBL, 12, 28
Tcl, 104
Tk, 91, 104
tkemc, 5, 29, 104
Tool Carousel, 123
Tool Changer, 123
Touch Off, 92
TRAJ, 29
TRAJ PERIOD, 31

Ubuntu, 3, 14
UNITS, 34
Units, 12, 125

units, 6

VAR, 12, 28
Verify, 107

while, 154

xemc, 5

yemc, 5

	I Introduction & installing EMC2
	The Enhanced Machine Control
	Introduction
	The Big CNC Picture
	Computer Operating Systems
	History of the Software
	How the EMC2 Works
	Graphical User Interfaces
	Motion Controller EMCMOT
	Discrete I/O Controller EMCIO
	Task Executor EMCTASK

	Thinking Like a Machine Operator
	Modes of Operation
	Information Display

	Thinking Like An Integrator
	Units
	Some things we may not want to change.
	Some things we will need to change.

	Installing the EMC2 software
	Introduction
	EMC Download Page
	EMC2 Live CD
	EMC2 install script
	Manual installing using apt commands.

	II Configuring EMC2
	Running EMC2
	Configuration Selector
	Copying Sample Configurations
	Copy and Paste
	Drag and Drop
	Comand Line Copy

	Starting a Custom Configuration

	Basic configurations for a stepper based system
	Introduction
	Maximum step rate
	Pinout
	standard_pinout.hal
	Overview of the standard_pinout.hal
	Changing the standard_pinout.hal
	Changing the polarity of a signal
	Adding PWM Spindle Speed Control
	Adding an enable signal
	Adding an external ESTOP button

	INI Configuration
	Files Used for Configuration
	The INI File Layout
	Comments
	Sections
	Variables

	INI Variable Definitions
	[EMC] Section
	[DISPLAY] Section
	[EMCMOT] Section
	[TASK] Section
	[HAL] section
	[TRAJ] Section
	[AXIS_<num>] Section
	Homing-related items
	Servo-related items
	Stepper-related items

	[EMCIO] Section

	Homing
	Overview
	Homing Sequence
	Configuration
	HOME_SEARCH_VEL
	HOME_LATCH_VEL
	HOME_IGNORE_LIMITS
	HOME_USE_INDEX
	HOME_OFFSET
	HOME
	HOME_IS_SHARED
	HOME_SEQUENCE

	Introduction
	What is HAL?
	HAL is based on traditional system design techniques
	Part Selection
	Interconnection Design
	Implementation
	Testing

	Summary

	HAL Concepts
	HAL components
	External Programs with HAL hooks
	Internal Components
	Hardware Drivers
	Tools and Utilities

	Tinkertoys, Erector Sets, Legos and the HAL
	Tower
	Erector SetsThe Erector Set was an invention of AC Gilbert
	TinkertoysTinkertoy is now a registered trademark of the Hasbro company.
	A Lego ExampleThe Lego name is a trademark of the Lego company.

	Timing Issues In HAL
	Dynamic Linking and Configuration

	HAL Tutorial
	Before we start
	Notation
	The RTAPI environment

	Tab-completion
	A Simple Example
	Loading a realtime component
	Examining the HAL
	Making realtime code run
	Changing parameters
	Saving the HAL configuration
	Restoring the HAL configuration

	Looking at the HAL with halmeter
	Starting halmeter
	Using halmeter

	A slightly more complex example.
	Installing the components
	Connecting pins with signals
	Setting up realtime execution - threads and functions
	Setting parameters
	Run it!

	Taking a closer look with halscope.
	Starting Halscope
	Hooking up the ``scope probes''
	Capturing our first waveforms
	Vertical Adjustments
	Triggering
	Horizontal Adjustments
	More Channels

	Hardware Drivers
	Parport
	Installing
	Removing
	Pins
	Parameters
	Functions
	Common problems

	probe_parport
	Installing

	AX5214H
	Installing
	Removing
	Pins
	Parameters
	Functions

	Servo-To-Go
	Installing:
	Removing
	Pins
	Parameters
	Functions

	Mesa Electronics m5i20 ``Anything I/O Card''
	Removing
	Pins
	Parameters
	Functions
	Connector pinout
	Connecor P2
	Connector P3
	Connector P4
	LEDs

	Vital Systems Motenc-100 and Motenc-LITE
	Removing
	Pins
	Parameters
	Functions

	Pico Systems PPMC (Parallel Port Motion Control)
	Removing
	Pins
	Parameters
	Functions

	III Using EMC2
	Using the AXIS Graphical Interface
	Introduction
	Getting Started
	A typical session with AXIS

	Elements of the AXIS window
	Toolbar buttons
	Graphical Program Display Area
	Coordinate Display
	Preview Plot
	Program Extents
	Tool Cone
	Backplot
	Interacting with the display

	Text Program Display Area
	Manual Control
	The ``Axis'' group
	The ``Spindle'' group
	The ``Coolant'' group

	Code Entry
	History
	MDI Command
	Active G-Codes

	Feed Override
	Spindle Speed Override
	Jog Speed

	Keyboard Controls
	emctop: Show EMC Status
	mdi: Text-mode MDI interface
	axis-remote: Send remote commands to the AXIS GUI
	hal_manualtoolchange: Prompt the user to exchange tools
	Python modules
	Using AXIS to control a CNC Lathe
	Advanced configuration of AXIS
	Program Filters
	The X Resource Database
	Physical jog wheels
	~/.axisrc

	Using the TkEMC Graphical Interface
	Introduction
	Getting Started
	A typical session with TkEMC

	Elements of the TkEMC window
	Main buttons
	Offset display status bar
	Coordinate Display Area
	Backplot

	Automatic control
	Buttons for control
	Text Program Display Area

	Manual Control
	Implicit keys
	The ``Spindle'' group
	The ``Coolant'' group

	Code Entry
	MDI:
	Active G-Codes

	Jog Speed
	Feed Override
	Spindle speed Override

	Keyboard Controls

	Using The MINI Graphical Interface
	IntroductionMuch of this chapter quotes from a chapater of the Sherline CNC operators manual.
	Screen layout
	Menu Bar
	Control Button Bar
	MANUAL
	AUTO
	MDI
	[FEEDHOLD] -- [CONTINUE]
	[ABORT]
	[ESTOP]

	Left Column
	Axis Position Displays
	Feedrate Override
	Messages

	Right Column
	Program Editor
	Backplot Display
	Tool Page
	Offset Page

	Keyboard Bindings
	Common Keys
	Manual Mode
	Auto Mode

	Misc

	return Machining Center Overview
	Mechanical Components
	Linear Axes
	Rotational axes
	Spindle
	Coolant
	Pallet Shuttle
	Tool Carousel
	Tool Changer
	Message Display
	Feed and Speed Override Switches
	Block Delete Switch
	Optional Program Stop Switch

	Control and Data Components
	Linear Axes
	Rotational Axes
	Controlled Point
	Coordinate Linear Motion
	Feed Rate
	Coolant
	Dwell
	Units
	Current Position
	Selected Plane
	Tool Carousel
	Tool Change
	Pallet Shuttle
	Feed and Speed Override Switches
	Path Control Mode

	Interpreter Interaction with Switches
	Feed and Speed Override Switches
	Block Delete Switch
	Optional Program Stop Switch

	Tool File
	Parameters
	Coordinate Systems

	Language Overview
	Format of a line
	Line Number
	Word
	Number
	Parameter Value
	Expressions and Binary Operations
	Unary Operation Value

	Parameter Setting
	Comments and Messages
	Repeated Items
	Item order
	Commands and Machine Modes
	Modal Groups

	G Codes
	G0: Rapid Linear Motion
	G1: Linear Motion at Feed Rate
	G2, G3: Arc at Feed Rate
	Center format arcs (preferred format)
	Radius format arcs (discouraged format)

	G33: Spindle-Synchronized Motion
	G4: Dwell
	G10: Set Coordinate System Data
	G17, G18, G19: Plane Selection
	G20, G21: Length Units
	G28, G30: Return to Predefined Absolute Position
	G38.2: Straight Probe
	G40, G41, G42: Cutter Radius Compensation.
	G43, G49: Tool Length Offsets
	G53: Move in absolute coordinates
	G54 to G59.3: Select Coordinate System
	G61, G61.1, G64: Set Path Control Mode
	G80: Cancel Modal Motion
	G76: Threading Canned Cycle
	G81 to G89: Canned Cycles
	Preliminary and In-Between Motion
	G81: Drilling Cycle
	G82: Drilling Cycle with Dwell
	G83: Peck Drilling
	G84: Right-Hand Tapping
	G85: Boring, No Dwell, Feed Out
	G86: Boring, Spindle Stop, Rapid Out
	G87: Back Boring
	G88: Boring, Spindle Stop, Manual Out
	G89: Boring, Dwell, Feed Out
	G90, G91: Set Distance Mode

	G92, G92.1, G92.2, G92.3: Coordinate System Offsets
	G93, G94: Set Feed Rate Mode
	G98, G99: Set Canned Cycle Return Level

	M Codes
	M0, M1, M2, M30, M60: Program Stopping and Ending
	M3, M4, M5: Spindle Control
	M6: Tool Change
	M7, M8, M9: Coolant Control
	M48, M49: Override Control
	M50: Feed Override Control
	M51: Spindle Speed Override Control
	M52: Adaptive Feed Control
	M53: Feed Stop Control
	M62 to M65: Digital IO Control
	M100 to M199: User Defined Commands

	O Codes
	Subroutines: ``sub'', ``endsub'', ``return'', ``call''
	Looping: ``do'', ``while'', ``endwhile'', ``break'', ``continue''
	Conditional: ``if'', ``else'', ``endif''
	Indirection

	Other Codes
	F: Set Feed Rate
	S: Set Spindle Speed
	T: Select Tool

	Order of Execution
	G-Code Best Practices
	Use an appropriate decimal precision
	Use consistent white space
	Prefer ``Center-format'' arcs
	Put important modal settings at the top of the file
	Don't put too many things on one line
	Don't use line numbers

	Tool File and Compensation
	Tool File
	Tool Compensation
	Tool Length Offsets
	Cutter Radius Compensation
	Cutter Radius Compensation Detail

	Tool Compensation Sources

	Coordinate System and G92 Offsets
	Introduction
	The Machine Position Command (G53)
	Fixture Offsets (G54-G59.3)
	Default coordinate system
	Setting coordinate system values within G-code.

	G92 Offsets
	The G92 commands
	Setting G92 values
	G92 Cautions

	Sample Program Using Offsets

	Canned Cycles
	Preliminary Motion
	G80
	G81 Cycle
	G82 Cycle
	G83 Cycle
	G84 Cycle
	G85 Cycle
	G86 Cycle
	G87 Cycle
	G88 Cycle
	G89 Cycle
	G98 G99
	Why use a canned cycle?

	Image-to-gcode: Milling ``depth maps''
	What is a depth map?
	Integrating image-to-gcode with the AXIS user interface
	Using image-to-gcode
	Option Reference
	Units
	Invert Image
	Normalize Image
	Tolerance (units)
	Pixel Size (units)
	Plunge Feed Rate (units per minute)
	Feed Rate (units per minute)
	Spindle Speed (RPM)
	Scan Pattern
	Scan Direction
	Depth (units)
	Step Over (pixels)
	Tool Diameter
	Safety Height
	Tool Type
	Lace bounding
	Contact angle

	Glossary of Common Terms Used in the EMC Documents
	Legal Section
	GNU Free Documentation License Version 1.1, March 2000
	GNU Free Documentation License Version 1.1, March 2000

