LinuxCNC(1) The Enhanced Machine Controller LinuxCNC(1)

NAME
linuxcne — LinuxCNC (The Enhanced Machine Controller)

SYNOPSIS
linuxcnc [-v] [-d] [INIFILE]

DESCRIPTION
linuxcenc is used to start LinuxCNC (The Enhanced Machine Controller). It starts the realtime system and
then initializes a number of LinuxCNC components (IO, Motion, GUI, HAL, etc). The most important pa-
rameter is INIFILE, which specifies the configuration name you would like to run. If INIFILE is not speci-
fied, the linuxcene script presents a graphical wizard to let you choose one.

OPTIONS

-v Be a little bit verbose. This causes the script to print information as it works.

—d Print lots of debug information. All executed commands are echoed to the screen. This mode is
useful when something is not working as it should.

-1 Use the last-used INI file without prompting. This is often a good choice for a shortcut command
or startup item.

INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ever, the most important one, because it is the file that holds the configuration together. It can ad-
just a lot of parameters itself, but it also tells linuxenc which other files to load and use.

There are several ways to specify which config to use:

Specify the absolute path to an ini, e.g.
linuxenc /usr/local/linuxcnc/configs/sim/sim.ini

Specify a relative path from the current directory, e.g.
linuxenc configs/sim/sim.ini

Otherwise, in the case where the INIFILE is not specified, the behavior will depend on whether
you configured linuxcnc with --enable-run-in-place. If so, the linuxcnc config chooser will
search only the configs directory in your source tree. If not (or if you are using a packaged version
of linuxcnc), it may search several directories. The config chooser is currently set to search the
path:

“Nlinuxcnc/configs:/usr/local/etc/linuxcenc/configs:/usr/share/doc/linuxcnc/examples/sample-configs

EXAMPLES

linuxcne
linuxenc configs/sim/sim.ini

linuxenc /etc/linuxcnc/sample-configs/stepper/stepper_mm.ini

SEE ALSO
halemd(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

LinuxCNC Documentation 2006-02-20 1

LinuxCNC(1) The Enhanced Machine Controller LinuxCNC(1)

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC Enhanced Machine Controller project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2 2006-02-20 LinuxCNC Documentation

S5Axisgui(1) The Enhanced Machine Controller S5Axisgui(1)

NAME
Saxisgui — Vismach Virtual Machine GUI

DESCRIPTION
Saxisgui is one of the sample Vismach GUIs for LinuxCNC

See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 3

axis-remote(1) The Enhanced Machine Controller axis-remote(1)

NAME

axis—remote — AXIS Remote Interface

SYNOPSIS
axis—remote OPTIONS|FILENAME

DESCRIPTION
axis—remote is a small script that triggers commands in a running AXIS GUI. Use axis—remote —help
for further information.

OPTIONS
—-ping, -p
Check whether AXIS is running.

——reload, -r
Make AXIS reload the currently loaded file.

——clear, —c
Make AXIS clear the backplot.
——quit, —q
Make AXIS quit.
——help, -h, -?
Display a list of valid parameters for axis—remote.

——mdi COMMAND, -m COMMAND
Run the MDI command COMMAND.

FILENAME
Load the G-code file FILENAME.

SEE ALSO

axis(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4 2007-04-01 LinuxCNC Documentation

AXIS(1) The Enhanced Machine Controller AXIS(1)

NAME
axis — AXIS LinuxCNC Graphical User Interface
SYNOPSIS
axis —ini INIFILE
DESCRIPTION
axis is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript usually.
OPTIONS
INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ever, the most important one, because it is the file that holds the configuration together. It can ad-
just a lot of parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2007-04-01 5

DEBUGLEVEL(1) The Enhanced Machine Controller DEBUGLEVEL(1)

NAME

debuglevel — sets the debug level for the userspace part of LinuxCNC
SYNOPSIS

debuglevel —ini INIFILE
DESCRIPTION

debuglevel displays a checkbox gui to select the current debug level of some parts of LinuxCNC.

SEE ALSO
halemd(1) - debug subcommand LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

6 2020-08-26 LinuxCNC Documentation

LinuxCNC(1) LinuxCNC(1)

NAME

elbpcom — Communicate with Mesa ethernet cards

SYNOPSIS

Common options:

elbpcom [——ip=IP] [-—port=PORT] [-—timeout=TIMEOUT]

Reading data:
elbpcom [common options] ——space=SPACE [——info] ——address=ADDRESS ——read=LENGTH

Writing data:
elbpcom [common options] ——space=SPACE ——address=ADDRESS ——write=HEXDATA

Sending arbitrary packets:
elbpcom [common options] HEXDATA

DESCRIPTION
Read or write data from a Mesa ethernet card that uses the LBP16 protocol, such as the 7i80. This can be
useful for performing certain low-level tasks.

For more information about the meaning of each address space, see the card documentation. Incorrect use
of this utility can have negative effects such as changing the board’s IP address or even corrupting the
FPGA bitfile in the eeprom. For some tasks, such as updating FPGA bitfiles and setting IP addresses,
mesaflash(1) is a more appropriate tool.

If not specified, the default values are
——ip=192.168.1.121 —port=27181 ——timeout=.2

This example demonstrates reading the HOSTMOT?2 identifying string from the IDROM in space O:
$ elbpcom ——space 0 ——address 0x104 ——read 8
> 82420401
< 484£53544d4£5432
HOSTMOT?2
First the request is shown in hex. Then the response (if any) is shown in hex. Finally, the response is
shown in ASCII, with "." replacing any non-ASCII characters. This is similar to the following invocations

of mesaflash:
$ /mesaflash ——device 7i80 ——rpo 0x104
54534F48
$ /mesaflash ——device 7i80 —rpo 0x108
32544F4D

but notice its different treatment of byte order.

SEE ALSO
mesaflash(1), hostmot2(9), hm2_eth(9), Mesa’s documentation for the Anything I/O boards
(http://www.mesanet.com[]

LinuxCNC Documentation 2015-04-18 7

GLADEVCP(1) The Enhanced Machine Controller GLADEVCP(1)

NAME
gladevcp — Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets
SYNOPSIS
gladevep [-g WxH+X+Y] [-c component-name] [—u handler] [-U useroption] [-H halfile] [-d] myfile.ui
OPTIONS
-g WxH+X+Y
This sets the initial geometry of the root window. Use "WxH’ for just size, *+X+Y" for just posi-
tion, or "WxH+X+Y’ for both. Size / position use pixel units. Position is referenced from top left.
—c component-name
Use component-name as the HAL component name. If the component name is not specified, the
basename of the ui file is used.
—u handler
Instructs gladevcp to inspect the Python script handler for event handlers, and connect them to sig-
nals in the ui file.
—-U useroption
gladevcp collects all useroption strings and passes them to the handler init() method as a list of
strings without further inspection.
—x XID Reparent gladevcp into an existing window XID instead of creating a new top level window.
—H halfile
gladevcp runs halfile - a list of HAL commands - by executing halcmd —c halfile after the HAL
component is finalized.
—d enable debug output.
—R gtkrcfile
explicitly load a gtkrc file.
—t THEME
set gtk theme. Default is system theme. Different panels can have different themes.
-m MAXIMUM
force panel window to maxumize. Together with the —g geometry option one can move the panel
to a second monitor and force it to use all of the screen
-R explicitly deactivate workaround for a gtk bug which makes matches of widget and widget_class
matches in gtk theme and gtkrc files fail. Normally not needed.
SEE ALSO

GladeVCP in the LinuxCNC documentation for a description of gladevcp’s capabilities and the associated
HAL widget set, along with examples

8 2010-12-20 LinuxCNC Documentation

GLADEVCP_DEMO(1) The Enhanced Machine Controller GLADEVCP_DEMO(1)

NAME - used by sample configs to deonstrate Glade Virtual
gladevcp_demo

SYNOPSIS

gladevcp_demo Control Panels

DESCRIPTION
gladevep_demo is a sample GladeVCP handler

SEE ALSO
http://linuxcnc.org/docs/html/gui/gladevep.html LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 9

GMOCCAPY(1) The Enhanced Machine Controller GMOCCAPY(1)

NAME
gmoccapy — TOUCHY LinuxCNC Graphical User Interface
SYNOPSIS
gmoccapy —ini INIFILE
DESCRIPTION
gmoccapy is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript usually.
OPTIONS
INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ever, the most important one, because it is the file that holds the configuration together. It can ad-
just a lot of parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

10 2020-08-26 LinuxCNC Documentation

GREMLIN_VIEW(1)

gremlin_view — G-code graphical preview

SYNOPSIS

gremlin_view

DESCRIPTION

gremlin_view is a python wrapper for the gremlin G-code graphical preview

PGremlinView for gremlin with buttons for simpler embedding Standalone functionality if linuxcne run-
ning A default ui file (gremlin_view.ui) is provided for a default button arrangement but a user may provide
their own by supplying the glade_file argument. The following objects are mandatory:

toplevel window
“gremlin_view_hal_gremlin’ hal_gremlin
"gremlin_view_box’ HBox or VBox’ containing hal_gremlin Optional radiobutton group names:

"gremlin_view_window’

“select_p_view’
’select_x_view’
‘select_y_view’
’select_z_view’

The Enhanced Machine Controller

“select_z2_view’ Optional Checkbuttons names:

’enable_dro’
’show_machine_speed
’show_distance_to_go’
’show_limits’
’show_extents’
’show_tool’

’show_metric’ Callbacks are provided for the following buttons actions
on_clear_live_plotter_clicked

on_enable_dro_clicked
on_zoomin_pressed
on_zoomout_pressed
on_pan_x_minus_pressed
on_pan_x_plus_pressed
on_pan_y_minus_pressed
on_pan_y_plus_pressed
on_show_tool_clicked
on_show_metric_clicked
on_show_extents_clicked
on_select_p_view_clicked
on_select_x_view_clicked
on_select_y_view_clicked
on_select_z_view_clicked

on_select_z2 view_clicked
on_show_distance_to_go_clicked
on_show_machine_speed_clicked

on_show_limits_clicked

SEE ALSO

http://wiki.linuxcnc.org/cgi-bin/wiki.pl? Gremlin LinuxCNC(1)

GREMLIN_VIEW(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,

found at /usr/share/doc/LinuxCNC/.

LinuxCNC Documentation

2020-08-26

11

GREMLIN_VIEW(1) The Enhanced Machine Controller GREMLIN_VIEW(1)

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

12 2020-08-26 LinuxCNC Documentation

gs2_vfd(1l) LinuxCNC Documentation gs2_vfd(1l)

NAME
gs2_vfd — HAL userspace component for Automation Direct GS2 VFD’s

SYNOPSIS
gs2_vfd [OPTIONS]

DESCRIPTION

This manual page explains the gs2_vfd component. This component reads and writes to the GS2 via a mod-
bus connection.

gs2_vfd is for use with LinuxCNC

OPTIONS
—-b, ——bits <n>
(default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive

—d, —device <path>
(default /dev/ttyS0O) Set the name of the serial device node to use.

-v, ——verbose
Turn on verbose mode.

—g, ——debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug
mode will cause all modbus messages to be printed in hex on the terminal.

—n, ——name <string>
(default gs2_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

—p, ——parity [even,odd,none]
(default odd) Set serial parity to even, odd, or none.

-1, ——Trate <n>
(default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

-s, ——stopbits [1,2]
(default 1) Set serial stop bits to 1 or 2

—t, ——target <n>
(default 1) Set MODBUS target (slave) number. This must match the device number you set on the
GS2.

—-A, ——accel-seconds <n>
(default 10.0) Seconds to accelerate the spindle from 0 to Max RPM.

-D, ——decel-seconds <n>
(default 0.0) Seconds to decelerate the spindle from Max RPM to 0. If set to 0.0 the spindle will

be allowed to coast to a stop without controlled deceleration.

—R, ——braking-resistor
This argument should be used when a braking resistor is installed on the GS2 VFD (see Appendix
A of the GS2 manual). It disables deceleration over-voltage stall prevention (see GS2 modbus Pa-
rameter 6.05), allowing the VFD to keep braking even in situations where the motor is regenerat-
ing high voltage. The regenerated voltage gets safely dumped into the braking resistor.

PINS

GS2 VFD January 1, 2009 13

gs2_vfd(1l) LinuxCNC Documentation gs2_vfd(1l)

<name>.DC-bus-volts (float, out)
from the VFD

<name>.at-speed (bit, out)
when drive is at commanded speed

<name>.err-reset (bit, in)
reset errors sent to VFD

<name>.firmware-revision (s32, out)
from the VFD

<name>.frequency—command (float, out)
from the VFD

<name>.frequency—out (float, out)
from the VFD

<name>.is—stopped (bit, out)
when the VFD reports 0 Hz output

<name>.load—percentage (float, out)
from the VFD

<name>.motor—RPM (float, out)
from the VFD

<name>.output—current (float, out)
from the VFD

<name>.output—voltage (float, out)
from the VFD

<name>.power—factor (float, out)
from the VFD

<name>.scale—frequency (float, out)
from the VFD

<name>.speed—command (float, in)
speed sent to VFD in RPM It is an error to send a speed faster than the Motor Max RPM as set in
the VFD

<name>.spindle—fwd (bit, in)

1 for FWD and O for REV sent to VFD
<name>.spindle—on (bit, in)

1 for ON and 0 for OFF sent to VFD, only on when running
<name>.spindle-reyv (bit, in)

1 for ON and O for OFF, only on when running

<name>.status—1 (s32, out)
Drive Status of the VFD (see the GS2 manual)

<name>.status-2 (s32, out)
Drive Status of the VFD (see the GS2 manual) Note that the value is a sum of all the bits that are
on. So a 163 which means the drive is in the run mode is the sum of 3 (run) + 32 (freq set by se-
rial) + 128 (operation set by serial).

PARAMETERS

<name>.error—count (s32, RW)

14 January 1, 2009 GS2 VFD

gs2_vfd(1l) LinuxCNC Documentation gs2_vfd(1l)

<name>.loop-time (float, RW)
how often the modbus is polled (default 0.1)

<name>.nameplate—HZ (float, RW)
Nameplate Hz of motor (default 60)

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1730)

<name>.retval (s32, RW)
the return value of an error in HAL

<name>.tolerance (float, RW)
speed tolerance (default 0.01)

<name>.ack—delay (s32, RW)
number of read/write cycles before checking at—speed (default 2)

SEE ALSO
GS2 Driver in the LinuxCNC documentation for a full description of the GS2 syntax

GS2 Examples in the LinuxCNC documentation for examples using the GS2 component

BUGS
AUTHOR

John Thornton

LICENSE
GPL

GS2 VFD January 1, 2009 15

GSCREEN(1) The Enhanced Machine Controller GSCREEN(1)

NAME
gscreen — TOUCHY LinuxCNC Graphical User Interface
SYNOPSIS
gscreen —ini INIFILE
DESCRIPTION
gscreen is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript usually.
OPTIONS
INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ever, the most important one, because it is the file that holds the configuration together. It can ad-
just a lot of parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

16 2020-08-26 LinuxCNC Documentation

HAL-HISTOGRAM(1) The Enhanced Machine Controller HAL-HISTOGRAM(1)

NAME

hal-histogram — plots the value of a HAL pin as a histogram

SYNOPSIS

hal-histogram

DESCRIPTION

hal-histogram represents the values of a hal pin graphically.

Details:

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 17

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

NAME

hal_input — control HAL pins with any Linux input device, including USB HID devices
SYNOPSIS

loadusr hal_input [—-KRAL] inputspec ...
DESCRIPTION

hal_input is an interface between HAL and any Linux input device, including USB HID devices. For each
device named, hal_input creates pins corresponding to its keys, absolute axes, and LEDs. At a fixed rate of
approximately 10ms, it synchronizes the device and the HAL pins.

INPUT SPECIFICATION
The inputspec may be in one of several forms:
A string S
A substring or shell-style pattern match will be tested against the "name" of the device, the "phys"
(which gives information about how it is connected), and the "id", which is a string of the form

"Bus=... Vendor=... Product=... Version=...". You can view the name, phys, and id of attached de-
vices by executing less /proc/bus/input/devices. Examples:
SpaceBall
"Vendor=001f Product=0001"
serio*/input0
A number N

This opens /dev/input/eventN. Except for devices that are always attached to the system, this
number may change over reboots or when the device is removed. For this reason, using an integer
is not recommended.

When several devices are identified by the same string, add ":N" where N is the index of the desired device.
For example, if Mouse matches input3 and input10, then Mouse and Mouse:0 select input3. Specifying
mouse:1 selects input10.

For devices that appear as multiple entries in /dev/input, these indices are likely to stay the same every time.
For multiple identical devices, these indices are likely to depend on the insertion order, but stay the same
across reboots as long as the devices are not moved to different ports or unplugged while the machine is
booted.

If the first character of the inputspec is a "+", then hal_input requests exclusive access to the device. The
first device matching an inputspec is used. Any number of inputspecs may be used.

A subset option may precede each inputspec. The subset option begins with a dash. Each letter in the sub-
set option specifies a device feature to include. Features that are not specified are excluded. For instance,
to export keyboard LEDs to HAL without exporting keys, use

hal_input —L keyboard ...

DEVICE FEATURES SUPPORTED
 EV_KEY (buttons and keys). Subset —K

* EV_ABS (absolute analog inputs). Subset —A
EV_REL (relative analog inputs). Subset —R
. EV_LED (LED outputs). Subset —L

HAL PINS AND PARAMETERS

For buttons
input.N.btn—name bit out
input.N.btn—name—not bit out
Created for each button on the device.

18 2007-02-25 LinuxCNC Documentation

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

For keys

input.N.key—-name
input.N.key—name—not
Created for each key on the device.

For absolute axes

input.N.abs—name—counts s32 out

input.N.abs—name—position float out

input.N.abs—name—scale parameter float rw

input.N.abs—name—offset parameter float rw

input.N.abs—name—fuzz parameter s32 rw

input.N.abs—name—flat parameter s32 rw

input.N.abs—name—min parameter s32 r

input.N.abs—name—max parameter s32 r
Created for each absolute axis on the device. Device positions closer than flat to offset are re-
ported as offset in counts, and counts does not change until the device position changes by at least
fuzz. The position is computed as position = (counts — offset) / scale. The default value of scale
and offset map the range of the axis reported by the operating system to [-1,1]. The default values
of fuzz and flat are those reported by the operating system. The values of min and max are those
reported by the operating system.

For relative axes

input.N.rel-name—counts s32 out

input.N.rel-name—position float out

input.N.rel-name—reset bit in

input.N.rel-name—scale parameter float rw

input.N.rel-name—absolute parameter s32 rw

input.N.rel-name—precision parameter s32 rw

input.N.rel-name-last parameter s32 rw
Created for each relative axis on the device. As long as reset is true, counts is reset to zero re-
gardless of any past or current axis movement. Otherwise, counts increases or decreases accord-
ing to the motion of the axis. counts is divided by position—scale to give position. The default
value of position is 1. There are some devices, notably scroll wheels, which return signed values
with less resolution than 32 bits. The default value of precision is 32. precision can be set to 8
for a device that returns signed 8 bit values, or any other value from 1 to 32. absolute, when set
true, ignores duplicate events with the same value. This allows for devices that repeat events with-
out any user action to work correctly. last shows the most recent count value returned by the de-
vice, and is used in the implementation of absolute.

For LEDs

input.N.led—name bit out
input.N.led—name—invert parameter bit rw
Created for each LED on the device.

PERMISSIONS AND UDEV

BUGS

By default, the input devices may not be accessible to regular users--hal_input requires read-write access,
even if the device has no outputs.

Different versions of udev have slightly different, incompatible syntaxes. For this reason, it is not possible
for this manual page to give an accurate example. The udev(7) manual page documents the syntax used on
your Linux distribution. To view it in a terminal, the command is man 7 udev.

The initial state of keys, buttons, and absolute axes are erroneously reported as FALSE or O until an event is
received for that key, button, or axis.

LinuxCNC Documentation 2007-02-25 19

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

SEE ALSO
udev(8), udev(7)

20 2007-02-25 LinuxCNC Documentation

hal_manualtoolchange(1) HAL Userspace Component hal_manualtoolchange(1)

NAME

hal_manualtoolchange — HAL userspace component to enable manual tool changes.

SYNOPSIS

loadusr hal_manualtoolchange

DESCRIPTION

hal_manualtoolchange is a LinuxCNC userspace component that allows users with machines lacking auto-
matic tool changers to make manual tool changes. In use when a M6 tool change is encountered, the mo-
tion component will stop the spindle and pause the program. The hal_manualtoolchange component will
then receive a signal from the motion component causing it to display a tool change window prompting the
user which tool number to load based on the last T— number programmed. The dialog will stay active until
the "continue" button is pressed. When the "continue" button is pressed, hal_manualtoolchange will then
signal the motion component that the tool change is complete thus allowing motion to turn the spindle back
on and resume program execution.

Additionally, The hal_manualtoolchange component includes a hal pin for a button that can be connected to
a physical button to complete the tool change and remove the window prompt (hal_manual-
toolchange.change_button).

hal_manualtoolchange can be used even when AXIS is not used as the GUI. This component is most useful
if you have presettable tools and you use the tool table.

PINS
hal_manualtoolchange.number s32 in
Receives last programmed T— number.

hal_manualtoolchange.change bit in
Receives signal to do tool change.

hal_manualtoolchange.changed bit out
Signifies that the tool change is complete.

hal_manualtoolchange.change_button bit in
Pin to allow an external switch to signify that the tool change is complete.

USAGE
Normal usage is to load the component in your HAL file and net the appropriate pins from the motion and
io components. The following lines are typical in a HAL file when using the hal_manualtoolchange
userspace component.

loadusr —W hal_manualtoolchange
This will load the hal_manualtoolchange userspace component waiting for the component to be
ready before continuing.

net tool-change iocontrol.0.tool-change => hal_manualtoolchange.change
When an M6 code is run, motion sets iocontrol.0.tool—-change to high indicating a tool change.
This pin should be netted to hal_manualtoolchange.change. This causes the Tool change dialog
to be displayed on screen and wait for the user to either click the continue button on the dialog or
press an externally connected button.

net tool-changed iocontrol.0.tool-changed <= hal_manualtoolchange.changed
When the Tool change dialog’s continue button is pressed, it will set the hal_manual-
toolchange.changed pin to high, this should be netted to the iocontrol.0.tool—changed pin, indicat-
ing to the motion controller that the tool change has been completed and can continue with the ex-
ecution of the G-code program.

net tool-number iocontrol.).tool-prep—number => hal_manualtoolchange.number
When a T- command is executed in a G-code program, the tool number will held in the iocon-
trol.0.tool—prep—number. This pin should be netted to hal_manualtoolchange.number. The value
of this pin, the tool number is displayed in the Tool change dialog to let the user know which tool
should be loaded.

LinuxCNC Documentation 04 APR 2017 21

hal_manualtoolchange(1) HAL Userspace Component hal_manualtoolchange(1)

net tool-prepare—loopback iocontrol.0.tool-prepare => iocontrol.0.tool—prepared
The iocontrol.0.tool—prepare pin will go true when a Tn tool prepare is requested. Since there is
not automated tool changer this pin should be netted to iocontrol.0.tool—prepared to indocate that
the tool has been prepared.

If you wish to use an external button to signal the hal_manualtoolchange component that the tool change is
complete simply bring the button into HAL (via a parport input pin or a hostmot2 gpio input or similar),
and wire it directly to the hal_manualtoolchange.change_button pin. For Example:

net tool-changed—btn hal_manualtoolchange.change_button <= parport.0.pin—15—-in

SEE ALSO

motion(1) iocontrol(1) halcmd(1)

22 04 APR 2017 LinuxCNC Documentation

hal_parport(1) HAL Realtime Component hal_parport(1)

NAME

hal_parport — Realtime HAL component to communicate with one or more pc parallel ports.
SYNOPSIS

loadrt hal_parport cfg=""port_addr [type] [[port_addr [type] ...]"
DESCRIPTION

The hal_parport component is a realtime component that provides connections from HAL via halpins to the
physical pins of one or more parallel ports. It provides a read and write function to send and receive data to
the attached parallel port(s).

The hal_parport component supports up to 8 physical parallel ports.

OPTIONS
cfg=""port_addr [type] [[port_addr [type] ...]"

The cfg string tells hal_parport the address(es) of the parallel port(s) and whether the port(s) is/are
used as an input or output port(s). Up to eight parallel ports are supported by the component.

The port_addr parameter of the configuration string may be either the physical base address of a
parallel port or specified as the detected parallel port via Linux parport_pc driver. In which case, a
port_addr of 0 is the first parallel port detected on the system, / is the next, and so on.

The type parameter of the configuration string determines how the I/O bits of the port are used.
There are four possible options and if none is specified will default to out.

in — Sets the 8 bits of the data port to input. In this mode the parallel port has a total of 13 input
pins and 4 output pins.

out — Sets the 8 bits of the data port to output. In this mode the parallel port has a total of 5 input
pins and 12 output pins.

epp — This option is the same as setting to out, but can cause the computer to change the electrical
characteristics of the port. (See USAGE below.)

x — The option allows ports with open collectorts on the control group pins to be configured as in-
puts resulting in 8 output pins and 9 input pins. (See USAGE below.)

PINS

"N

The pins created by the hal_parport component depends on how it is configured in the cfg=""" string passed

to it. (See OPTIONS.)
parport.<p>.pin—<n>-out (bit) Drives a physical output pin.
parport.<p>.pin—<n>—in (bit) Tracks a physical input pin.
parport.<p>.pin—<n>-in—not (bit) Tracks a physical input pin, but inverted.

For each pin created, <p> is the port number, and <n> is the physical pin number in the 25 pin
D-shell connector.

For each physical output pin, the driver creates a single HAL pin, for example: par-
port.0.pin—14—out.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin—-12—in
and parport.0.pin—-12—in—not.

LinuxCNC Documentation 12 APR 2017 23

hal_parport(1) HAL Realtime Component hal_parport(1)

The —in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The
—in—not HAL pin is inverted and is FALSE if the physical pin is high.

"nn

The following lists the input and output pins by the type setting used in the cfg="" string.
in: Pins 2,3,4,5,6,7,8,9,10,11,12,13,15 are input pins and pins 1,14,16 and 17 are output pins.

out/epp: Pins 10,11,12,13 and 15 are input pins and pins 1,2,3,4,5,6,7,8,9,14,16 and 17 are output
pins.

x: Pins 1,10,11,12,13,14,15,16 and 17 are input pins and pins 2,3,4,5,6,7,8,9 are output pins. (See
USAGE section.)

PARAMETERS

parport.<p>.pin—<n>-out—invert (bit)

Inverts an output pin.
parport.<p>.pin—<n>-out-reset (bit)

(only for out pins) TRUE if this pin should be reset when the .reset function is executed.
parport.<p>.reset—time’ (U32)

The time (in nanoseconds) between a pin is set by write and reset by the reset function if it is en-
abled.

FUNCTIONS

parport.<p>.read(funct)
Reads physical input pins of port <portnum> and updates HAL —in and —in—not pins.

parport.read—all (funct)
Reads physical input pins of all ports and updates HAL —in and —in—not pins.

parport.<p>.write (funct)
Reads HAL —out pins of port <p> and updates that portds physical output pins.

parport.write—all (funct)
Reads HAL —out pins of all ports and updates all physical output pins.

parport.<p>.reset (funct)
Waits until reset—time has elapsed since the associated write, then resets pins to values indicated
by —out—reset and —out—invert settings. reset must be later in the same thread as write. "If
*—out—reset is TRUE, then the reset function will set the pin to the value of —our—invert. This can
be used in conjunction with stepgenas doublefreq to produce one step per period. The stepgen
stepspace for that pin must be set to 0 to enable doublefreq.

USAGE

24

The hal_parport component is a driver for the traditional PC parallel port. The port has a total of 25 physi-
cal pins of which 17 are used for signals. The original parallel port divided those pins into three groups:
data, control, and status. The data group consists of 8 output pins, the control group consists of 4 output
pins, and the status group consists of 5 input pins.

In the early 19904s, the bidirectional parallel port was introduced, which allows the data group to be used
for output or input. The HAL driver supports the bidirectional port, and allows the user to set the data group
as either input or output. If configured as out, a port provides a total of 12 outputs and 5 inputs. If config-
ured as in, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an ex-
ternal gate. On a board with open collector control pins, if configured as x, it provides 8 outputs, and 9 in-

puts.

In some parallel ports, the control group has push-pull drivers and cannot be used as an input.

12 APR 2017 LinuxCNC Documentation

hal_parport(1) HAL Realtime Component hal_parport(1)

Note: HAL and Open Collectors
HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors
(OC). If they are not, they cannot be used as inputs, and attempting to drive them LOW from an
external source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no de-
vice attached, HAL should read the pin as TRUE. Next, insert a 470 ohm resistor from one of the
control pins to GND. If the resulting voltage on the control pin is close to 0V, and HAL now reads
the pin as FALSE, then you have an OC port. If the resulting voltage is far from 0V, or HAL does
not read the pin as FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates (e.g.,
74LS05).

On some computers, BIOS settings may affect whether x mode can be used. SPP mode is most
likely to work.

No other combinations are supported, and a port cannot be changed from input to output once the driver is
installed.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are
numbered starting at zero.

Loading the hal_parport component
The hal_parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types.

If the configuration string does not describe at least one port, it is an error.

loadrt hal_parport cfg=""port [type] [port [type] ...]"
Specifying the Port
Numbers below 16 refer to parallel ports detected by the system. This is the simplest way to con-

figure the hal_parport driver, and cooperates with the Linux parport_pc driver if it is loaded. A port
of 0 is the first parallel port detected on the system, 1 is the next, and so on.

Basic configuration
This will use the first parallel port Linux detects:

loadrt hal_parport cfg="0"
Using the Port Address

Instead, the port address may be specified using the hex notation Ox then the address.

loadrt hal_parport cfg=""0x378"
Specifying a port Type

For each parallel port handled by the hal_parport driver, a type can optionally be specified. The
type is one of in, out, epp, or X.

If the type is not specified, the default is out.

A type of epp is the same as out, but the hal_parport driver requests that the port switch into EPP
mode. The hal_parport driver does not use the EPP bus protocol, but on some systems EPP mode

LinuxCNC Documentation 12 APR 2017 25

hal_parport(1) HAL Realtime Component hal_parport(1)

changes the electrical characteristics of the port in a way that may make some marginal hardware
work better. The Gecko G540as charge pump is known to require this on some parallel ports.

See the Note above about mode x.

Example with two parallel ports

This will enable two system-detected parallel ports, the first in output mode and the second in in-
put mode:

loadrt hal_parport cfg=""0 out 1 in"

Functions single port
You must also direct LinuxCNC to run the read and write functions.

addf parport.read—all base—thread
addf parport.write—all base—thread

Functions multiple ports
You can direct LinuxCNC to ruin the read and write functions for all the attached ports.

addf parport.0.read base—thread
addf parport.0.write base—thread

The individual functions are provided for situations where one port needs to be updated in a very
fast thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a
good idea to use both an —all function and an individual function at the same time.

SEE ALSO
Parallel Port Driver (Hardware Drivers Section of LinuxCNC Docs) PCI Parallel Port Example (Hardware
Examples Section of LinuxCNC Docs)

AUTHOR
This man page written by Joe Hildreth as part of the LinuxCNC project. Most of this information was taken
from the parallel-port docs located in the Hardware Drivers section of the documentation. To the best of
my knowledge that documentation was written by Sebastian Kuzminsky and Chris Radek.

26 12 APR 2017 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

NAME

halemd — manipulate the LinuxCNC HAL from the command line

SYNOPSIS
halemd [OPTIONS] [COMMAND [ARG]]

DESCRIPTION
halemd is used to manipulate the HAL (Hardware Abstraction Layer) from the command line. halemd can
optionally read commands from a file, allowing complex HAL configurations to be set up with a single
command.

If the readline library is available when LinuxCNC is compiled, then halemd offers commandline editing
and completion when running interactively. Use the up arrow to recall previous commands, and press tab to
complete the names of items such as pins and signals.

OPTIONS
-1 Before tearing down the realtime environment, run an interactive halcmd. halrun only. If I is
used, it must precede all other commandline arguments.

—f [file] Ignore commands on command line, take input from file instead. If file is not specified, take input

from stdin.

—i inifile
Use variables from inifile for substitutions. See SUBSTITUTION below.

-k Keep going after failed command(s). The default is to stop and return failure if any command
fails.

—q display errors only (default)
-Q display nothing, execute commands silently

—-s Script-friendly mode. In this mode, show will not output titles for the items shown. Also, module
names will be printed instead of ID codes in pin, param, and funct listings. Threads are printed on
a single line, with the thread period, FP usage and name first, followed by all of the functions in
the thread, in execution order. Signals are printed on a single line, with the type, value, and signal
name first, followed by a list of pins connected to the signal, showing both the direction and the

pin name.

-R Release the HAL mutex. This is useful for recovering when a HAL component has crashed while
holding the HAL mutex.

-v display results of each command

-V display lots of debugging junk

—h [command]
display a help screen and exit, displays extended help on command if specified

COMMANDS
Commands tell halemd what to do. Normally halemd reads a single command from the command line and
executes it. If the *—f option is used to read commands from a file, halemd reads each line of the file as a
new command. Anything following *# on a line is a comment.

loadrt modname
(load realtime module) Loads a realtime HAL module called modname. halemd looks for the
module in a directory specified at compile time.

In systems with realtime, halemd calls the linuxenc_module_helper to load realtime modules.
linuxenc_module_helper is a setuid program and is compiled with a whitelist of modules it is al-
lowed to load. This is currently just a list of LinuxCNC-related modules. The linuxenc_mod-
ule_helper execs insmod, so return codes and error messages are those from insmod. Administra-
tors who wish to restrict which users can load these LinuxCNC-related kernel modules can do this

LinuxCNC Documentation 2003-12-18 27

HALCMD(1) HAL User’s Manual HALCMD(1)

28

by setting the permissions and group on linuxenc_module_helper appropriately.

In systems without realtime halemd calls the rtapi_app which creates the simulated realtime en-
vironment if it did not yet exist, and then loads the requested component with a call to dlopen(3).

unloadrt modname
(unload realtime module) Unloads a realtime HAL module called modname. If modname is "all",
it will unload all currently loaded realtime HAL modules. unloadrt also works by execing linux-
cnc_module_helper or rtapi_app, just like loadrt.

loadusr [flags] unix-command
(load Userspace component) Executes the given unix-command, usually to load a userspace com-
ponent. [flags] may be one or more of:

* —W to wait for the component to become ready. The component is assumed to have the same
name as the first argument of the command.

* —Wn name to wait for the component, which will have the given name.

e —w to wait for the program to exit

* —itoignore the program return value (with —w)

waitusr name
(wait for Userspace component) Waits for user space component name to disconnect from HAL
(usually on exit). The component must already be loaded. Useful near the end of a HAL file to
wait until the user closes some user interface component before cleaning up and exiting.

unloadusr compname
(unload Userspace component) Unloads a userspace component called compname. If compname
is "all", it will unload all userspace components. unloadusr works by sending SIGTERM to all
userspace components.

unload compname
Unloads a userspace component or realtime module. If compname is "all", it will unload all
userspace components and realtime modules.

newsig signame type
(OBSOLETE - use net instead) (new signal) Creates a new HAL signal called signame that may
later be used to connect two or more HAL component pins. #ype is the data type of the new signal,
and must be one of "bit", "s32", "u32", or "float". Fails if a signal of the same name already ex-
1sts.

delsig signame
(delete signal) Deletes HAL signal signame. Any pins currently linked to the signal will be un-
linked. Fails if signame does not exist.

sets signame value
(set signal) Sets the value of signal signame to value. Fails if signame does not exist, if it already
has a writer, or if value is not a legal value. Legal values depend on the signals’s type.

stype name
(signal type) Gets the type of signal name. Fails if name does not exist as a signal.

gets signame
(get signal) Gets the value of signal signame. Fails if signame does not exist.

linkps pinname [arrow] signame
(OBSOLETE - use net instead) (/ink pin to signal) Establishs a link between a HAL component
pin pinname and a HAL signal signame. Any previous link to pinname will be broken. arrow can
be "=>", "<=", "<=>", or omitted. halemd ignores arrows, but they can be useful in command
files to document the direction of data flow. Arrows should not be used on the command line since
the shell might try to interpret them. Fails if either pinname or signame does not exist, or if they

2003-12-18 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

are not the same type type.

linksp signame [arrow] pinname
(OBSOLETE - use net instead) (/ink signal to pin) Works like linkps but reverses the order of the
arguments. halemd treats both link commands exactly the same. Use whichever you prefer.

linkpp pinnamel [arrow] pinname2
(OBSOLETE - use net instead) (/ink pin to pin) Shortcut for linkps that creates the signal (named
like the first pin), then links them both to that signal. halemd treats this just as if it were:
halemd newsig pinnamel
halemd linksp pinnamel pinnamel
halemd linksp pinnamel pinname?2

net signame pinname ...
Create signname to match the type of pinname if it does not yet exist. Then, link signame to each
pinname in turn. Arrows may be used as in linkps. When linking a pin to a signal for the first
time, the signal value will inherit the pin’s default value.

unlinkp pinname
(unlink pin) Breaks any previous link to pinname. Fails if pinname does not exist. An unlinked
pin will retain the last value of the signal it was linked to.

setp name value
(set parameter or pin) Sets the value of parameter or pin name to value. Fails if name does not ex-
ist as a pin or parameter, if it is a parameter that is not writable, if it is a pin that is an output, if it is
a pin that is already attached to a signal, or if value is not a legal value. Legal values depend on
the type of the pin or parameter. If a pin and a parameter both exist with the given name, the pa-
rameter is acted on.

paramname = value

pinname = value
Identical to setp. This alternate form of the command may be more convenient and readable when
used in a file.

ptype name
(parameter or pin type) Gets the type of parameter or pin name. Fails if name does not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

getp name
(get parameter or pin) Gets the value of parameter or pin name. Fails if name does not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

addf functname threadname
(add function) Adds function functname to realtime thread threadname. functname will run after
any functions that were previously added to the thread. Fails if either functname or threadname
does not exist, or if they are incompatible.

delf functname threadname
(delete function) Removes function functname from realtime thread threadname. Fails if either
functname or threadname does not exist, or if functname is not currently part of threadname.

start Starts execution of realtime threads. Each thread periodically calls all of the functions that were
added to it with the addf command, in the order in which they were added.

stop Stops execution of realtime threads. The threads will no longer call their functions.

LinuxCNC Documentation 2003-12-18 29

HALCMD(1) HAL User’s Manual HALCMD(1)

show [item]
Prints HAL items to stdout in human readable format. item can be one of "comp" (components),
"pin", "sig" (signals), "param" (parameters), "funct" (functions), "thread", or "alias". The type
"all" can be used to show matching items of all the preceding types. If item is omitted, show will

print everything.

item This is equivalent to show all [item].

save [item]
Prints HAL items to stdout in the form of HAL commands. These commands can be redirected to
a file and later executed using halemd —f to restore the saved configuration. item can be one of the
following:

"comp" generates a loadrt command for realtime component.
"alias" generates an alias command for each pin or parameter alias pairing

"sig" (or "signal") generates a newsig command for each signal, and "sigu" generates a newsig
command for each unlinked signal (for use with netl and netla).

"link" and "linka" both generate linkps commands for each link. (linka includes arrows, while
link does not.)

"net" and "neta" both generate one newsig command for each signal, followed by linksp com-
mands for each pin linked to that signal. (neta includes arrows.)

"netl" generates one net command for each linked signal, and "netla" (or "netal") generates a sim-
ilar command using arrows.

"param" (or "parameter) "generates one setp command for each parameter.
"thread" generates one addf command for each function in each realtime thread.
"unconnectedinpins generates a setp command for each unconnected hal input pin.

If item is allu), save does the equivalent of comp, alias, sigu, netla, param, thread, and uncon-
nectedinpins.

If item is omitted (or all), save does the equivalent of comp, alias, sigu, netla, param, and
thread.

source filename.hal
Execute the commands from filename.hal.

alias rype name alias
Assigns "alias" as a second name for the pin or parameter "name". For most operations, an alias
provides a second name that can be used to refer to a pin or parameter, both the original name and
the alias will work.

"type" must be pin or param.

"name" must be an existing name or alias of the specified type. Note that the "show" command
will only show the aliased name, but the original name is still valid to use in HAL. The original
names can still be seen with "show all" or "show alias" Existing nets will be preserved when a pin
name is aliased.

30 2003-12-18 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

unalias type alias
Removes any alias from the pin or parameter alias.
"type" must be pin or param
"alias" must be an existing name or alias of the specified type.

list type [pattern]
Prints the names of HAL items of the specified type.
‘type’ is *comp’, ‘pin’, ’sig’, ’param’, 'funct’, or
“thread’. If "pattern’ is specified it prints only
those names that match the pattern, which may be a
’shell glob’.
For ’sig’, "pin’ and param’, the first pattern may be
—tdatatype where datatype is the data type (e.g., 'float’)
in this case, the listed pins, signals, or parameters
are restricted to the given data type
Names are printed on a single line, space separated.

lock [all|tune|none]
Locks HAL to some degree.
none - no locking done.
tune - some tuning is possible (setp & such).
all - HAL completely locked.

unlock [all|tune]
Unlocks HAL to some degree.
tune - some tuning is possible (setp & such).
all - HAL completely unlocked.

status [type]
Prints status info about HAL.
‘type’ is ’lock’, 'mem’, or ’all’.
If *type’ is omitted, it assumes "all’.
debug [level]
Sets the rtapi messaging level (see man3 rtapi_set_msg_level)

help [command]
Give help information for command.
If ’command’ is omitted, list command and brief description

SUBSTITUTION

After a command is read but before it is executed, several types of variable substitution take place.

Environment Variables
Environment variables have the following formats:

$ENVVAR followed by end-of-line or whitespace
$(ENVVAR)

Inifile Variables
Inifile variables are available only when an inifile was specified with the halcmd —i flag. They have the fol-
lowing formats:

[SECTION]VAR followed by end-of-line or whitespace
[SECTION](VAR)
LINE CONTINUATION

The backslash character (\) may be used to indicate the line is extended to the next line. The backslash
character must be the last character before the newline.

LinuxCNC Documentation 2003-12-18 31

HALCMD(1) HAL User’s Manual HALCMD(1)

EXAMPLES
HISTORY
BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Now includes major contributions by
several members of the project.

REPORTING BUGS
Report bugs to the LinuxCNC bug tracker (http://sf.net/p/emc/bugs/U

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

halrun(1) -- a convenience script to start a realtime environment, process a .hal or a .tcl file, and optionally
start an interactive command session using halemd (described here) or haltel(1).

32 2003-12-18 LinuxCNC Documentation

HALCMD_TWOPASS(1) The Enhanced Machine Controller HALCMD_TWOPASS(1)

NAME

halemd_twopass — short description

SYNOPSIS

{name}

DESCRIPTION
halemd_twopass is a utility script used when parsing HAL files. It is of little relevance to normal users
and is used internally by the system.

SEE ALSO
http://linuxcnc.org/docs/html/hal/twopass.html
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 33

halcompile(1)

NAME

The Enhanced Machine Controller halcompile(1)

halcompile — Build, compile and install LinuxCNC HAL components

SYNOPSIS

halcompile [-—compile|-—preprocess|-—document|—-view—doc] compfile...

sudo halcompile [-—install|-—install-doc] compfile...

halcompile ——compile ——userspace cfile...

sudo halcompile ——install ——userspace cfile...
sudo halcompile ——install ——userspace pyfile...

When personalities are used in a comp file, hal instances are exported sequentially (typically by the mutu-
ally exclusive count= or names= parameters). If the number of exports excedes the maximum number of
personalities, subsequent personalities are assigned modulo the maximum number of personalities allowed.

By default, the maximum number of personalities is 64. To alter this limit, use the --personalities= option
with halcompile. For example, to set the maximum of personality items to 4:

[sudo] halcompile --personalities=4 --install ...

DESCRIPTION

halcompile performs many different functions:

SEE ALSO

Compile .comp and .c files into .so or .ko HAL realtime components (the ——compile flag)
Compile .comp and .c files into HAL userspace components (the ——compile ——userspace flag)
Preprocess .comp files into .c files (the ——preprocess flag)

Extract documentation from .comp files into .9 manpage files (the ——document flag)

Display documentation from .comp files onscreen (the ——view—doc flag)

Compile and install .comp and .c files into the proper directory for HAL realtime components (the
——install flag), which may require sudo to write to system directories.

Install .c and .py files into the proper directory for HAL userspace components (the ——install
——userspace flag), which may require sudo to write to system directories.

Extract documentation from .comp files into .9 manpage files in the proper system directory (the
——install flag), which may require sudo to write to system directories.

Preprocess .comp files into .c files (the ——preprocess flag)

Halcompile HAL Component Generator in the LinuxCNC documentation for a full description of the
.comp syntax, along with examples

pydoc hal and Creating Userspace Python Components in the LinuxCNC documentation for documenta-
tion on the Python interface to HAL components

34

2007-10-17 LinuxCNC Documentation

HALMETER(1) HAL User’s Manual HALMETER(1)

NAME

halmeter — observe HAL pins, signals, and parameters
SYNOPSIS

halmeter [—s] [pin|sig|param name] [-g X-positon Y-position [Width]]
DESCRIPTION

halmeter is used to observe HAL (Hardware Abstraction Layer) pins, signals, or parameters. It serves the
same purpose as a multimeter does when working on physical systems.

OPTIONS
pin name
display the HAL pin name.

sig name
display the HAL signal name.

param name
display the HAL parameter name.

If neither pin, sig, or param are specified, the
window starts out blank and the user must select an item to observe.

-S small window. Non-interactive, must be used with pin, sig, or param to select the item to display.
The item name is displayed in the title bar instead of the window, and there are no "Select” or
"Exit" buttons. Handy when you want a lot of meters in a small space.

-g geometry position. allows one to specify the initial starting position and optionally the width of
the meter. Referenced from top left of screen in pixel units. Handy when you want to load a lot of
meters in a script with out them displaying on top of each other.

USAGE
Unless \-s is specified, there are two buttons, "Select" and "Exit". "Select" opens a dialog box to select the
item (pin, signal, or parameter) to be observed. "Exit" does what you expect.

The selection dialog has "OK" "Apply", and "Cancel" buttons. OK displays the selected item and closes
the dialog. "Apply" displays the selected item but keeps the selection dialog open. "Cancel" closes the dia-
log without changing the displayed item.

EXAMPLES
halmeter
Opens a meter window, with nothing initially displayed. Use the "Select" button to choose an item
to observe. Does not return until the window is closed.

halmeter &
Open a meter window, with nothing initially displayed. Use the "Select" button to choose an item.
Runs in the background leaving the shell free for other commands.

halmeter pin parport.0.pin—03-out &
Open a meter window, initially displaying HAL pin parport.0.pin—03—out. The "Select" button
can be used to display other items. Runs in background.

halmeter —s pin parport.0.pin—03—-out &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. The displayed item can-
not be changed. Runs in background.

halmeter —s pin parport.0.pin—03—out —g 100 500 &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. places it 100 pixels to
the left and 500 pixels down from top of screen. The displayed item cannot be changed. Runs in
background.

LinuxCNC Documentation 2006-03-13 35

HALMETER(1) HAL User’s Manual HALMETER(1)

halmeter —s pin parport.0.pin—03—out —g 100 500 400 &
Open a small meter window, displaying HAL pin parport.0.pin—03—out. places it 100 pixels to
the left and 500 pixels down from top of screen. The width will be 400 pixels (270 is default) The
displayed item cannot be changed. Runs in background.

SEE ALSO

HISTORY

BUGS

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

36 2006-03-13 LinuxCNC Documentation

HALREPORT(1) The Enhanced Machine Controller HALREPORT(1)

NAME
halreport — creates a report on the status of the HAL

SYNOPSIS

halreport [outfilename]

DESCRIPTION
halreport

1) supports components made by halcompile and numerous
legacy components

2) Known unhandled components:
at_pid -- naming conflicts with pid, seldom used
boss_plc -- no manpage or docs (any users?)
watchdog -- seldom used (no users in-tree)

3) deprecated/obsolete components
counter

supply

Identificaion of functions used according to pin name.

Default handling works for components that:

1) use names=|count= (.comp components created with halcompile)
2) have a *single* function

Full docs:

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 37

HALRMT(1) The Enhanced Machine Controller HALRMT(1)

NAME

halrmt — short description

SYNOPSIS

halrmt

DESCRIPTION

halrmt is a remote-control interface for LinuxCNC.

USAGE
halrmt {-- --port <port number> --name <server name> --connectpw <password>
--enablepw <password> --sessions <max sessions> -ini<inifile>}

With -- --port Waits for socket connections (Telnet) on specified socket, without port
uses default port 5006. (note: linuxcnersh uses 5007 as default)
With -- --name <server name> Sets the server name to specified name for Hello.
With -- --connectpw <password> Sets the connection password to *password’. Default EMC
With -- --enablepw <password> Sets the enable password to "password’. Default EMCTOO
With -- --sessions <max sessions> Sets the maximum number of simultaneous connextions
to max sessions. Default is no limit (-1).
With -- -ini <inifile>, uses inifile instead of emc.ini.

There are six commands supported, Where the commands set and get contain HAL
specific sub-commands based on the commands supported by halcmd. Commands and
most parameters are not case sensitive. The exceptions are passwords,

file paths and text strings.

The supported commands are as follows:

==> HELLO <==

Hello <password> <client> <version>
If a valid password was entered the server will respond with

HELLO ACK <Server Name> <Server Version>

Where server name and server version are looked up from the implementation.
if an invalid password or any other syntax error occurs then the server
responds with:

HELLO NAK

==> Get <==

The get command includes one of the hal sub-commands, described below and
zero or more additional parameters.

==> Set <==

The set command inclides one of the hal sub-commands, described below and
one or more additional parameters.

==> Qult <==

38 2020-08-26 LinuxCNC Documentation

HALRMT(1) The Enhanced Machine Controller HALRMT(1)

The quit command disconnects the associated socket connection.
==> Shutdown <==

The shutdown command tells EMC to shutdown before quitting the connection. This
command may only be issued if the Hello has been successfully negotiated and the
connection has control of the CNC (see enable sub-command below). This command
has no parameters.

==> Help <==

The help command will return help information in text format over the telnet
connection. If no parameters are specified, it will itemize the available commands.
If a command is specified, it will provide usage information for the specified
command. Help will respond regardless of whether a "Hello" has been
successsfully negotiated.

HAL sub-commands:

echo on | off

With get will return the current echo state, with set, sets the echo

state. When echo is on, all commands will be echoed upon receipt. This
state is local to each connection.

verbose on | off

With get will return the current verbose state, with set, sets the

verbose state. When in verbose mode is on, all set commands return

positive acknowledgement in the form SET <COMMAND> ACK. In addition,
text error messages will be issued when in verbose mode. This state

is local to each connection.

enable <pwd> | off

With get will return On or Off to indicate whether the current connection
is enabled to perform control functions. With set and a valid password,
the current connection is enabled for control functions. "OFF" may not
be used as a password and disables control functions for this connection.

config [TBD]

comm_mode ascii | binary

With get, will return the current communications mode. With set, will
set the communications mode to the specified mode. The binary protocol
is TBD.

comm_prot <version no>

With get, returns the current protocol version used by the server,
with set, sets the server to use the specified protocol version,
provided it is lower than or equal to the highest version number
supported by the server implementation.

Comps [<substring>]

Get only, returns all components beginning with the specified substring.

LinuxCNC Documentation 2020-08-26 39

HALRMT(1) The Enhanced Machine Controller HALRMT(1)

40

If no substring is specified then it returns all components.
Pins [<substring>]

Get only, returns all information about all pins beginning with the
specified substring. If no substring is specified then it returns all pins.

PinVals [<substring>]

Get only, returns only value information about all pins beginning with the
specified substring. If no substring is specified then it returns all pins.

Signals [<substring>]

Get only, returns all information about all signals beginning with the
specified substring. If no substring is specified then it returns all signals.

SigVals [<substring>]

Get only, returns only value information about all signals beginning with the
specified substring. If no substring is specified then it returns all pins.

Params [<substring>]

Get only, returns all information about all parameters beginning with the
specified substring. If no substring is specified then it returns all
parameters.

ParamVals [<substring>]

Get only, returns only value information about all parameters beginning with the
specified substring. If no substring is specified then it returns all pins
parameters.

Functs [<substring>]

Get only, returns all information about all functions beginning with the
specified substring. If no substring is specified then it returns all
functions.

Threads

Get only, returns all information about all functions.

Comp <name>

Get only, returns the component matching the specified name.

Pin <name>

Get only, returns all information about the pin matching the specified
name.

PinVal <name>

2020-08-26 LinuxCNC Documentation

HALRMT(1) The Enhanced Machine Controller HALRMT(1)

Get only, returns the value of the pin matching the specified name.
Sig <name>

Get only, returns all information about the pin matching the specified
name.

SigVal <name>

Get only, returns just the value of the signal matching the specified
name.

Param <name>

Get only, returns all information about the parameter matching the
specified name.

ParamVal <name>

Get only, returns just the value of the parameter matching the specified
name.

Funct <name>

Get only, returns all information about the parameter matching the
specified name.

Thread <name>

Get only, returns all information about the thread matching the
specified name.

LoadRt <name>

Set only, loads the real time executable specified by name.
Unload <name>

Set only, unloads the executable specified by name.
LoadUsr <name>

Set only, loads the user executable specified by name.
Linkps <pin name> <signal name>

Set only, links the specified pin to the specified signal.
Linksp <signal name> <pin name>

Set only, links the specified signal to the specified pin.

Linkpp <pin name 1> <pin name 2>

LinuxCNC Documentation 2020-08-26 41

HALRMT(1) The Enhanced Machine Controller

Set only, links the pin specified by pin 1 with the pin specified by pin 2.
Net <net list>

Set only, nets the specified net list.

Unlinkp <pin name 1> <pin name 2>

Set only, unlinks the specified pins

Lock

Unlock

NewSig <name> <type>

Set only, creates the signal specified by name and of type specified by type.
DelSig <name>

Set only, deletes the signal specified by name.

SetP <name> <value>

Set only, sets the parameter specified by name to the value specified by value.
SetS <name> <value>

Set only, sets the signal specified by name to the value specified by value.
AddF <name> <thread> [<parameters>]

Set only, adds the function specified by name, to the thread specified by
thread, with the optional parameters specified by parameters.

DelF <name>

Set only, deletes the function specified by name.
Save

Start

Stop

SEE ALSO

LinuxCNC(1)

HALRMT(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,

found at /usr/share/doc/LinuxCNC/.

HISTORY

42

2020-08-26

LinuxCNC Documentation

HALRMT(1) The Enhanced Machine Controller HALRMT(1)

BUGS

It is not know if this interface currently works.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 43

HALRUN(1) HAL User’s Manual HALRUN(1)

NAME

halrun — manipulate the LinuxCNC HAL from the command line
SYNOPSIS

halrun -/

halrun [-1] [halcmd_opts] [filename[.hal|.tcl]]
halrun -7 [halemd_opts] [filename[.hal|.tcl]]
halrun -U

DESCRIPTION

halrun is a convenience script used to manipulate the HAL (Hardware Abstraction Layer) from the com-
mand line. When invoked, halrun:

Sets up the realtime environment.

Executes a command interpreter (halemd or haltcl).
(Optionally) runs an interactive session.

Tears down the realtime environment.

If no filename is specified, an interactive session is started.
The session will use halemd(1) unless —T is specified in
which case haltel(1) will be used.

If a filename is specified and neither the —I nor the —T option
is included, the filename will be processed by the command
interpreter corresponding to the filename extension (halemd
or haltcl). After processing, the realtime environment

will be torn down.

If a filename is specified and the —I or —T option is included,
the file is processed by the appropriate command interpreter and
then an interactive session is started for halemd or

haltel according to the —I or —T option.

OPTIONS
halecmd_opts
When a .hal file is specified, the halemd_opts are passed to halemd. See the man page for hal-
cmd(1). When a .tcl file is specified, the only valid options are:
—i inifile
—f filename[.tcl|.hal] (alternate means of specifying a file)

| Run an interactive halemd session
-T Run an interactive haltel session.
-U Forcibly cause the realtime environment to exit. It releases the HAL mutex, requests that all HAL
components unload, and stops the realtime system. —U must be the only commandline argument.
-h display a brief help screen and exit
EXAMPLES
HISTORY
BUGS
None known at this time.
AUTHOR

Original version by John Kasunich, as part of the LinuxCNC Enhanced Machine Controller project. Now
includes major contributions by several members of the project.

44 2012-01-31 LinuxCNC Documentation

HALRUN(1) HAL User’s Manual HALRUN(1)

REPORTING BUGS
Report bugs to the LinuxCNC bug tracker (URL: http://sf.net/p/emc/bugs/ L]

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO
halemd(1), haltel(1)

LinuxCNC Documentation 2012-01-31 45

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

NAME

halsampler — sample data from HAL in realtime

SYNOPSIS

halsampler [options]

DESCRIPTION

sampler(9) and halsampler are used together to sample HAL data in real time and store it in a file. sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then be-
gins sampling data from the HAL and storing it to the FIFO. halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS

—-c CHAN
instructs halsampler to read from FIFO CHAN. FIFOs are numbered from zero, and the default
value is zero, so this option is not needed unless multiple FIFOs have been created.

-n COUNT
instructs halsampler to read COUNT samples from the FIFO, then exit. If —n is not specified,
halsampler will read continuously until it is killed.

-t instructs halsampler to tag each line by printing the sample number in the first column.

FILENAME
instructs halsampler to write to FILENAME instead of to stdout.

USAGE

A FIFO must first be created by loading sampler(9) with halemd loadrt or a loadrt command in a .hal file.
Then halsampler can be invoked to begin printing data from the FIFO to stdout.

Data is printed one line per sample. If —t was specified, the sample number is printed first. The data fol-
lows, in the order that the pins were defined in the config string. For example, if the sampler config string
was "ffbs" then a typical line of output (without —t) would look like:

123.5533.40-12

halsampler prints data as fast as possible until the FIFO is empty, then it retries at regular intervals, until it
is either killed or has printed COUNT samples as requested by —n. Usually, but not always, data printed by
halsampler will be redirected to a file or piped to some other program.

The FIFO size should be chosen to absorb samples captured during any momentary disruptions in the flow
of data, such as disk seeks, terminal scrolling, or the processing limitations of subsequent program in a
pipeline. If the FIFO gets full and sampler is forced to overwrite old data, halsampler will print ’overrun’
on a line by itself to mark each gap in the sampled data. If —t was specified, gaps in the sequential sample
numbers in the first column can be used to determine exactly how many samples were lost.

The data format for halsampler output is the same as for halstreamer(1) input, so *waveforms’ captured
with halsampler can be replayed using halstreamer. The —t option should not be used in this case.

EXIT STATUS

If a problem is encountered during initialization, halsampler prints a message to stderr and returns failure.

Upon printing COUNT samples (if —n was specified) it will shut down and return success. If it is termi-
nated before printing the specified number of samples, it returns failure. This means that when —n is not
specified, it will always return failure when terminated.

SEE ALSO

46

sampler(9) streamer(9) halstreamer(1)

2006-11-18 LinuxCNC Documentation

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

HISTORY

BUGS

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-11-18 47

HALSCOPE(1) The Enhanced Machine Controller HALSCOPE(1)

NAME

halscope — short description

SYNOPSIS

halscope

DESCRIPTION
halscope Software oscilloscope for LinuxCNC/HAL

Digital oscilloscope for viewing real time waveforms of hal pins and signals

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

48 2020-08-26 LinuxCNC Documentation

HALSHOW(1) The Enhanced Machine Controller HALSHOW(1)

NAME

halshow — short description

SYNOPSIS

halshow

DESCRIPTION
halshow creates a GUI interface to view and interact with a running HAL session. It is documented in the
PDF and HTML docs much more completely than is possible in a manpage: http://linux-
cnc.org/docs/html/hal/halshow.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 49

HALSTREAMER(1) LinuxCNC Documentation HALSTREAMER(1)

NAME

halstreamer — stream file data into HAL in real time
SYNOPSIS

halstreamer [options]
DESCRIPTION

streamer(9) and halstreamer are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so that streamer can write
it to the HAL pins.

OPTIONS
—-c CHAN
Instructs halstreamer to write to FIFO CHAN. FIFOs are numbered from zero, and the default value
is zero, so this option is not needed unless multiple FIFOs have been created.

FILENAME
Instructs halsampler to read from FILENAME instead of from stdin.

USAGE
A FIFO must first be created by loading streamer(9) with halemd loadrt or a loadrt command in a .hal
file. Then halstreamer can be invoked to begin writing data into the FIFO.

Data is read from stdin, and is almost always either redirected from a file or piped from some other
program, since keyboard input would be unable to keep up with even slow streaming rates.

Each line of input must match the pins that are attached to the FIFO, for example, if the streamer config
string was "ffbs" then each line of input must consist of two floats, a bit, and a signed integer, in that order
and separated by whitespace. Floats must be formatted as required by strtod(3), signed and unsigned
integers must be formatted as required by strtol(3) and strtoul(3), and bits must be either 0 or /.

Input lines that begin with # will be treated as comments and silently skipped.

halstreamer transfers data to the FIFO as fast as possible until the FIFO is full, then it retries at regular
intervals, until it is either killed or reads EOF from stdin. Data can be redirected from a file or piped from
some other program.

The FIFO size should be chosen to ride through any momentary disruptions in the flow of data, such as disk
seeks. If the FIFO is big enough, halstreamer can be restarted with the same or a new file before the FIFO
empties, resulting in a continuous stream of data.

The data format for halstreamer input is the same as for halsampler(1) output, so waveforms captured
with halsampler can be replayed using halstreamer.

EXIT STATUS

If a problem is encountered during initialization, halstreamer prints a message to stderr and returns failure.

If a badly formatted line is encountered while writing to the FIFO, it prints a message to stderr, skips the
line, and continues (this behavior may be revised in the future).

Upon reading EOF from the input, it returns success. If it is terminated before the input ends, it returns
failure.

SEE ALSO

streamer(9) sampler(9) halsampler(1)

50 08/16/2020 LinuxCNC

HALSTREAMER(1) LinuxCNC Documentation HALSTREAMER(1)

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich. This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 08/16/2020 51

HALTCL(1) HAL User’s Manual HALTCL(1)

NAME
haltcl — manipulate the LinuxCNC HAL from the command line using a tcl interpreter.

SYNOPSIS
haltcl [—i inifile] [filename]

DESCRIPTION
haltcl is used to manipulate the HAL (Hardware Abstraction Layer) from the command line using a tcl
interpreter. haltel can optionally read commands from a file (filename), allowing complex HAL
configurations to be set up with a single command.

OPTIONS
—i inifile
If specified, the inifile is read and used to create tcl global variable arrays. An array is created for
each SECTION of the inifile with elements for each ITEM in the section.

For example, if the inifile contains:
[SECTION_AJITEM_1 = 1
[SECTION_AJITEM_2 = 2
[SECTION_BIJITEM_1 =10

The corresponding tcl variables are:
SECTION_A(ITEM_1)=1
SECTION_A(ITEM_2) = 2
SECTION_B(TEM_1)=10

—ini inifile -- declining usage, use —i inifile

filename
If specified, the tcl commands of filename are executed. If no filename is specified, haltcl opens

an interactive session.

COMMANDS
haltcl includes the commands of a tcl interpreter augmented with commands for the hal language as
described for halemd(1). The augmented commands can be listed with the command:

haltcl: hal ——commands

addf alias delf delsig getp gets ptype stype help linkpp linkps linksp list loadrt loadusr lock net newsig
save setexact_for_test_suite_only setp sets show source start status stop unalias unlinkp unload unloadrt
unloadusr unlock waitusr

Two of the augmented commands, ’list” and ’gets’, require special treatment to avoid conflict with tcl built-
in commands having the same names. To use these commands, precede them with the keyword "hal’:

hal list
hal gets

REPORTING BUGS
Report bugs to the LinuxCNC bug tracker (URL: http://sf.net/p/emc/bugs/ L]

COPYRIGHT
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

52 2012-01-31 LinuxCNC Documentation

HALTCL(1) HAL User’s Manual HALTCL(1)

SEE ALSO
halemd(1), halrun(1)

LinuxCNC Documentation 2012-01-31 53

HALUI(1) HAL User Interface HALUI(1)

NAME
halui — observe HAL pins and command LinuxCNC through NML

SYNOPSIS
halui [-ini <path-to-ini>]
DESCRIPTION

halui is used to build a User Interface using hardware knobs and switches. It exports a big number of pins,
and acts accordingly when these change.

OPTIONS
—ini name
use the name as the configuration file. Note: halui must find the nml file specified in the ini,
usually that file is in the same folder as the ini, so it makes sense to run halui from that folder.
USAGE

When run, halui will export a large number of pins. A user can connect those to his physical knobs &
switches & leds, and when a change is noticed halui triggers an appropriate event.

halui expects the signals to be debounced, so if needed (bad knob contact) connect the physical button to a
HAL debounce filter first.

PINS
abort
halui.abort bit in
pin for clearing most errors

tool
halui.tool.length—offset.a float out
current applied tool length offset for the A axis

halui.tool.length—offset.b float out
current applied tool length offset for the B axis

halui.tool.length—offset.c float out
current applied tool length offset for the C axis

halui.tool.length—offset.u float out
current applied tool length offset for the U axis

halui.tool.length—offset.v float out
current applied tool length offset for the V axis

halui.tool.length—offset.w float out
current applied tool length offset for the W axis

halui.tool.length—offset.x float out
current applied tool length offset for the X axis

halui.tool.length—offset.y float out
current applied tool length offset for the Y axis

halui.tool.length—offset.z float out
current applied tool length offset for the Z axis

halui.tool.diameter float out
Current tool diameter, or O if no tool is loaded.

halui.tool.number u32 out
current selected tool

54 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

spindle
halui.spindle.N.brake—is—on bit out
status pin that tells us if brake is on

halui.spindle.N.brake—off bit in
pin for deactivating the spindle brake

halui.spindle.N.brake—on bit in
pin for activating the spindle brake

halui.spindle.N.decrease bit in
a rising edge on this pin decreases the current spindle speed by 100

halui.spindle.N.forward bit in
a rising edge on this pin makes the spindle go forward

halui.spindle.N.increase bit in
a rising edge on this pin increases the current spindle speed by 100

halui.spindle.N.is—on bit out
status pin telling if the spindle is on

halui.spindle.N.reverse bit in
arising edge on this pin makes the spindle go reverse

halui.spindle.N.runs—backward bit out
status pin telling if the spindle is running backward

halui.spindle.N.runs—forward bit out
status pin telling if the spindle is running forward

halui.spindle.N.start bit in
a rising edge on this pin starts the spindle

halui.spindle.N.stop bit in
arising edge on this pin stops the spindle

spindle override
halui.spindle.N.override.count—enable bit in (default: TRUE)
When TRUE, modify spindle override when counts changes.

halui.spindle.N.override.counts s32 in
counts X scale = spindle override percentage

halui.spindle.N.override.decrease bit in
pin for decreasing the SO (—=scale)

halui.spindle.N.override.direct—value bit in
pin to enable direct spindle override value input

halui.spindle.N.override.increase bit in
pin for increasing the SO (+=scale)

halui.spindle.N.override.scale float in
pin for setting the scale of counts for SO

halui.spindle.N.override.value float out
current FO value

program
halui.program.block—delete.is—on bit out
status pin telling that block delete is on

LinuxCNC Documentation 2006-07-22 55

HALUI(1) HAL User Interface

56

halui.program.block—delete.off bit in
pin for requesting that block delete is off

halui.program.block—delete.on bit in
pin for requesting that block delete is on

halui.program.is—idle bit out
status pin telling that no program is running

halui.program.is—paused bit out
status pin telling that a program is paused

halui.program.is—running bit out
status pin telling that a program is running

halui.program.optional—stop.is—on bit out
status pin telling that the optional stop is on

halui.program.optional—stop.off bit in
pin requesting that the optional stop is off

halui.program.optional—stop.on bit in
pin requesting that the optional stop is on

halui.program.pause bit in
pin for pausing a program

halui.program.resume bit in
pin for resuming a program

halui.program.run bit in
pin for running a program

halui.program.step bit in
pin for stepping in a program

halui.program.stop bit in

HALUI(1)

pin for stopping a program (note: this pin does the same thing as halui.abort)

mode

halui.mode.auto bit in
pin for requesting auto mode

halui.mode.is—auto bit out
pin for auto mode is on

halui.mode.is—joint bit out
pin showing joint by joint jog mode is on

halui.mode.is—manual bit out
pin for manual mode is on

halui.mode.is—mdi bit out
pin for mdi mode is on

halui.mode.is—teleop bit out
pin showing coordinated jog mode is on

halui.mode.joint bit in
pin for requesting joint by joint jog mode

halui.mode.manual bit in
pin for requesting manual mode

2006-07-22

LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.mode.mdi bit in
pin for requesting mdi mode

halui.mode.teleop bit in
pin for requesting coordinated jog mode

mdi (optional)
halui.mdi—command-XX bit in
halui looks for ini variables named [HALUIJMDI_COMMAND, and exports a pin for each
command it finds. When the pin is driven TRUE, halui runs the specified MDI command. XX is
a two digit number starting at 00. If no [HALUI]MDI_COMMAND variables are set in the ini
file, no halui.mdi—command—XX pins will be exported by halui.

mist
halui.mist.is—on bit out
pin for mist is on

halui.mist.off bit in
pin for stopping mist

halui.mist.on bit in
pin for starting mist

max-—velocity
halui.max-velocity.count—enable bit in (default: TRUE)
When True, modify max velocity when halui.max—velocity.counts changes.

halui.max-velocity.counts s32 in
When .count—enable is True, halui changes the max velocity in response to changes to this pin.
It’s usually connected to an MPG encoder on an operator’s panel or jog pendant. When
.count—enable is False, halui ignores this pin.

halui.max-velocity.direct—value bit in
When this pin is True, halui commands the max velocity directly to (.counts * .scale). When this
pin is False, halui commands the max velocity in a relative way: change max velocity by an
amount equal to (change in .counts * .scale).

halui.max-velocity.increase bit in
A positive edge (a False to True transition) on this pin increases the max velocity by the value of
the .scale pin. (Note that halui always responds to this pin, independent of the .count—enable pin.)

halui.max-velocity.decrease bit in
A positive edge (a False to True transition) on this pin decreases the max velocity by the value of
the .scale pin. (Note that halui always responds to this pin, independent of the .count—enable pin.)

halui.max-velocity.scale float in
This pin controls the scale of changes to the max velocity. Each unit change in .counts, and each
positive edge on .increase and .decrease, changes the max velocity by .scale. The units of the
.scale pin are machine—units per second.

halui.max-velocity.value float out
Current value for maximum velocity, in machine—units per second.

machine
halui.machine.units—per—-mm float out
pin for machine units—per—mm (inch:1/25.4, mm:1) according to inifile setting:
[TRAJJLINEAR_UNITS

LinuxCNC Documentation 2006-07-22 57

HALUI(1) HAL User Interface HALUI(1)

halui.machine.is—on bit out
pin for machine is On/Off

halui.machine.off bit in
pin for setting machine Off

halui.machine.on bit in
pin for setting machine On

lube
halui.lube.is—on bit out
pin for lube is on

halui.lube.off bit in
pin for stopping lube

halui.lube.on bit in
pin for starting lube

joint (N = joint number (0 ... num_joints—1))
halui.joint.N.select bit in
pin for selecting joint N

halui.joint.N.is—selected bit out
status pin that joint N is selected

halui.joint.N.has—fault bit out
status pin telling that joint N has a fault

halui.joint.N.home bit in
pin for homing joint N

halui.joint.N.is—homed bit out
status pin telling that joint N is homed

halui.joint.N.on—hard—-max-limit bit out
status pin telling that joint N is on the positive hardware limit

halui.joint.N.on—hard—min-limit bit out
status pin telling that joint N is on the negative hardware limit

halui.joint.N.on—soft—max—limit bit out
status pin telling that joint N is on the positive software limit

halui.joint.N.on—soft—min-limit bit out
status pin telling that joint N is on the negative software limit

halui.joint.N.override—limits bit out
status pin telling that joint N’s limits are temporarily overridden

halui.joint.N.unhome bit in
pin for unhoming joint N

halui.joint.selected u32 out
selected joint number (0 ... num_joints—1)

halui.joint.selected.has—fault bit out
status pin selected joint is faulted

halui.joint.selected.home bit in
pin for homing the selected joint

58 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.joint.selected.is—homed bit out
status pin telling that the selected joint is homed

halui.joint.selected.on—hard—max-limit bit out
status pin telling that the selected joint is on the positive hardware limit

halui.joint.selected.on—hard—min-limit bit out
status pin telling that the selected joint is on the negative hardware limit

halui.joint.selected.on—soft—max-limit bit out
status pin telling that the selected joint is on the positive software limit

halui.joint.selected.on—soft—min-limit bit out
status pin telling that the selected joint is on the negative software limit

halui.joint.selected.override—limits bit out
status pin telling that the selected joint’s limits are temporarily overridden

halui.joint.selected.unhome bit in
pin for unhoming the selected joint

joint jogging (N = joint number (0 ... num_joints—1))
halui.joint.jog—deadband float in pin for setting jog analog deadband (jog analog inputs smaller/slower
than this (in absolute value) are ignored)

halui.joint.jog—speed float in
pin for setting jog speed for plus/minus jogging.
halui.joint.N.analog float in

pin for jogging the joint N using an float value (e.g. joystick). The value, typically set between 0.0
and 1.0, is used as a jog—speed multiplier.

halui.joint.N.increment float in
pin for setting the jog increment for joint N when using increment—plus/minus

halui.joint.N.increment—minus bit in
arising edge will will make joint N jog in the negative direction by the increment amount

halui.joint.N.increment—plus bit in
arising edge will will make joint N jog in the positive direction by the increment amount

halui.joint.N.minus bit in

pin for jogging joint N in negative direction at the halui.joint.jog—speed velocity
halui.joint.N.plus bit in

pin for jogging joint N in positive direction at the halui.joint.jog—speed velocity
halui.joint.selected.increment float in

pin for setting the jog increment for the selected joint when using increment—plus/minus

halui.joint.selected.increment—minus bit in
arising edge will will make the selected joint jog in the negative direction by the increment
amount

halui.joint.selected.increment—plus bit in
arising edge will will make the selected joint jog in the positive direction by the increment amount

halui.joint.selected.minus bit in
pin for jogging the selected joint in negative direction at the halui.joint.jog—speed velocity

halui.joint.selected.plus
pin for jogging the selected joint bit in in positive direction at the halui.joint.jog—speed velocity

LinuxCNC Documentation 2006-07-22 59

HALUI(1) HAL User Interface HALUI(1)

axis (L = axis index (0:x 1:y 2:z 3:a 4:b 5:c 6:u 7:v 8:w))

halui.axis.L.select bit in
pin for selecting axis by index

halui.axis.L.is—selected bit out
status pin that axis L is selected

halui.axis.L.pos—commanded float out float out
Commanded axis position in machine coordinates

halui.axis.L.pos—feedback float out float out
Feedback axis position in machine coordinates

halui.axis.L.pos—relative float out float out
Commanded axis position in relative coordinates

axis jogging (L = axis letter (xyzabcuvw)

flood

60

halui.axis.jog—deadband float in
pin for setting jog analog deadband (jog analog inputs smaller/slower than this (in absolute value)
are ignored)

halui.axis.jog—speed float in
pin for setting jog speed for plus/minus jogging.

halui.axis.L.analog float in
pin for jogging the axis L using an float value (e.g. joystick). The value, typically set between 0.0
and 1.0, is used as a jog—speed multiplier.

halui.axis.L.increment float in
pin for setting the jog increment for axis L when using increment—plus/minus

halui.axis.L.increment—minus bit in
arising edge will will make axis L jog in the negative direction by the increment amount

halui.axis.L.increment—plus bit in
arising edge will will make axis L jog in the positive direction by the increment amount

halui.axis.L.minus bit in
pin for jogging axis L in negative direction at the halui.axis.jog—speed velocity

halui.axis.L.plus bit in
pin for jogging axis L in positive direction at the halui.axis.jog—speed velocity

halui.axis.selected u32 out
selected axis (by index: 0:x 1:y 2:z 3:a 4:b 5:cr 6:u 7:v 8:w)

halui.axis.selected.increment float in
pin for setting the jog increment for the selected axis when using increment—plus/minus

halui.axis.selected.increment—-minus bit in
arising edge will will make the selected axis jog in the negative direction by the increment amount

halui.axis.selected.increment—plus bit in
a rising edge will will make the selected axis jog in the positive direction by the increment amount

halui.axis.selected.minus bit in
pin for jogging the selected axis in negative direction at the halui.axis.jog—speed velocity

halui.axis.selected.plus
pin for jogging the selected axis bit in in positive direction at the halui.axis.jog—speed velocity

2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface

halui.flood.is—on bit out
pin for flood is on

halui.flood.off bit in
pin for stopping flood

halui.flood.on bit in
pin for starting flood

feed override
halui.feed—override.count—enable bit in (default: TRUE)
When TRUE, modify feed override when counts changes.

halui.feed—override.counts s32 in
counts X scale = feed override percentage

halui.feed—override.decrease bit in
pin for decreasing the FO (—=scale)

halui.feed—override.direct—value bit in
pin to enable direct value feed override input

halui.feed—override.increase bit in
pin for increasing the FO (+=scale)

halui.feed—override.scale float in
pin for setting the scale on changing the FO

halui.feed—override.value float out
current Feed Override value

rapid override
halui.rapid—override.count—enable bit in (default: TRUE)

When TRUE, modify Rapid Override when counts changes.

halui.rapid—override.counts s32 in
counts X scale = Rapid Override percentage

halui.rapid—-override.decrease bit in
pin for decreasing the Rapid Override (—=scale)

halui.rapid—-override.direct—value bit in
pin to enable direct value Rapid Override input

halui.rapid—override.increase bit in
pin for increasing the Rapid Override (+=scale)

halui.rapid—override.scale float in
pin for setting the scale on changing the Rapid Override

halui.rapid-override.value float out
current Rapid Override value

estop
halui.estop.activate bit in
pin for setting Estop (LinuxCNC internal) On

halui.estop.is—activated bit out
pin for displaying Estop state (LinuxCNC internal) On/Off

halui.estop.reset bit in
pin for resetting Estop (LinuxCNC internal) Off

LinuxCNC Documentation 2006-07-22

HALUI(1)

61

HALUI(1) HAL User Interface HALUI(1)

home
halui.home-all bit in
pin for requesting home-all (only available when a valid homing sequence is specified)

SEE ALSO
HISTORY
BUGS

none known at this time.

AUTHOR
Written by Alex Joni, as part of the LinuxCNC project. Updated by John Thornton

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

62 2006-07-22 LinuxCNC Documentation

hbmgui(1l) The Enhanced Machine Controller hbmgui(1)

NAME
hbmgui — Vismach Virtual Machine GUI

DESCRIPTION

hbmgui is one of the sample Vismach GUIs for LinuxCNC, simulating a Horizontal Boring Machine.
See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 63

hexagui(1) The Enhanced Machine Controller hexagui(1)

NAME
hexagui — Vismach Virtual Machine GUI

DESCRIPTION

hexagui is one of the sample Vismach GUIs for LinuxCNC, simulating a Horizontal Boring Machine.
See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

64 2020-08-26 LinuxCNC Documentation

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

NAME

hy_gt_vfd — HAL userspace component for Huanyang GT—series VFDs
SYNOPSIS

hy_gt_vfd [OPTIONS]
DESCRIPTION

The hy_gt_vfd component interfaces a Huanyang GT—series VFD to the LinuxCNC HAL. The VFD is
connected via RS—485 serial to the LinuxCNC computer.

HARDWARE SETUP

At least some Huanyang GT VFDs must be physically modified to enable Modbus communication.

The circuit board location marked "SW1" is identified in the manual as "Switch of terminal resistor for
RS485 communication”. On the only VFD I have experience with, the circuit board contained no switch at
that location, instead holding a pair of crossed jumper wires (top—left pad connected to bottom-right pad,
top—right to bottom—left). In this configuration, no Modbus communication is possible. We had to desolder
the two crossed jumper wires and re—solder them parallel to each other (top—left to bottom—left, top—right
to bottom-right).

FIRMWARE SETUP
The Huanyang GT VFD must be configure via the faceplate to talk Modbus with LinuxCNC. Consult the
Operation section of the Huanyang GT—series Inverter Manual for details. Set the following parameters:

P0.01 =2
Set Run Command Source to Modbus serial port.

P0.03
Set Maximum Frequency to the maximum frequency you want the VFD to output, in Hz.

P0.04
Set Upper Frequence Limit to the maximum frequency you want the VFD to output, in Hz. This
should be the same as the value in P0.03.

P0.05
Set Lower Frequency Limit to the minimum frequency you want the VFD to output, in Hz.

P0.07 =7

Set Frequency A Command Source to Modbus serial port.
P2.01=1727?

Set Motor Rated Power to the motor’s power rating in kW.
P2.02 =777

Set Motor Rated Frequency to the motor’s max frequency in Hz.
P2.03 =177?

Set Motor Rated Speed to the motor’s speed in RPM at its rated maximum frequence.
P2.04 =777

Set Motor Rated Voltage to the motor’s maximum voltage, in Volts.
P2.05=177?

Set Motor Rated Current to the motor’s maximum current, in Amps.
PC.00=1

Set Local Address to 1. This matches the default in the hy_gt_vfd driver, change this if your setup has
special needs.

PC.01=5
Set Baud Rate Selection to 5 (38400 bps). This matches the default in the hy_gt_vfd driver, change
this if your setup has special needs.

0=1200

LinuxCNC 08/16/2020 65

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

1 =2400
2 =4800
3 =9600
4 =19200
5=138400
PC.02=0

Set Data Format (8n1 RTU). This matches the default in the hy_gt_vfd driver, change this if your setup
has special needs.

PC.03=1
Set Communication Delay Time to 1 ms. This is expected by the hy_gt_vfd driver.
OPTIONS
—b, —bits N
(default 8) For Modbus communication. Set number of data bits to N. N must be between 5 and 8
inclusive.

—p, ——parity [Even,0Odd,None]

(default None) For Modbus communication. Set serial parity to Even,
Odd, or None.

-r, —rate N
(default 38400) For Modbus communication. Set baud rate to N. It is an error if the rate is not one of
the following: 1200, 2400, 4800, 9600, 19200, 38400

—s, ——stopbits [1,2]
(default 1) For Modbus communication. Set serial stop bits to 1 or 2.

—t, ——target N
(default 1) For Modbus communication. Set Modbus target (slave) number. This must match the
device number you set on the Huanyang GT VFD.

—d, ——device PATH
(default /dev/ttyS0) For Modbus communication. Set the name of the serial device node to use.

—v, ——verbose
Turn on verbose mode.

—S, ——motor-max-speed RPM
The motor’s max speed in RPM. This must match the motor speed value configured in VFD register
P2.03.

-F, ——max—frequency HZ
This is the maximum output frequency of the VFD in Hz. It should correspond to the motor’s rated
max frequency, and to the maximum and upper limit output frequency configured in VFD register
P0.03 and P0.04.

—f, ——min-frequency HZ
This is the minimum output frequency of the VFD in Hz. It should correspond to the minimum output
frequency configured in VFD register P0.05.

PINS
hy_gt_vfd.period (float, in)
The period for the driver’s update cycle, in seconds. This is how frequently the driver will wake up,
check its HAL pins, and communicate with the VFD. Must be between 0.001 and 2.000 seconds.
Default: 0.1 seconds.

hy_gt_vfd.speed—cmd (float, in)
The requested motor speed, in RPM.

hy_gt_vfd.speed—fb (float, out)

66 08/16/2020 LinuxCNC

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

The motor’s current speed, in RPM, reported by the VFD.

hy_gt_vfd.at—speed (bit, out)
True when the drive is on and at the commanded speed (within 2%), False otherwise.

hy_gt_vfd.freq—cmd (float, out)
The requested output frequency, in Hz. This is set from the .speed—cmd value, and is just shown for
debugging purposes.

hy_gt_vfd.freq—fb (float, out)
The current output frequency of the VFD, in Hz. This is reported from the VFD to the driver.

hy_gt_vfd.spindle—on (bit, in)
Set this pin True to command the spindle on, at the speed requested on the .speed—cmd pin. Set this
pin False to command the spindle off.

hy_gt_vfd.output—voltage (float, out)
The voltage that the VFD is current providing to the motor, in Volts.

hy_gt_vfd.output—current (float, out)
The current that the motor is currently drawing from the VFD, in Amperes.

hy_gt_vfd.output—power (float, out)
The power that the motor is currently drawing from the VFD, in Watts.

hy_gt_vfd.dc—-bus—volts (float, out)
The current voltage of the VFD’s internal DC power supply, in Volts.

hy_gt_vfd.modbus—errors (u32, out)
A count of the number of modbus communication errors between the driver and the VFD. The driver
is resilient against communication errors, but a large or growing number here indicates a problem that
should be investigated.

hy_gt_vfd.input—terminal (float, out)
The VFD’s input terminal register.

hy_gt_vfd.output—terminal (float, out)
The VFD’s output terminal register.

hy_gt_vfd.AIl (float, out)
The VFD’s All register.

hy_gt_vfd.AI2 (float, out)
The VFD’s AI2 register.

hy_gt_vfd.HDI-frequency (float, out)
The VFD’s HDI—frequency register.

hy_gt_vfd.external-counter (float, out)
The VFD’s external counter register.

hy_gt_vfd.fault—info (float, out)
The VFD’s fault info register.

ISSUES
The VFD produces the output frequency that it sends to the motor by adding a manually specified offset to
the frequency command it gets over modbus.

The manual offset is controlled by pressing the Up/Down arrows on the faceplate while the VFD is turning
the motor.

If you command a speed on the .speed—cmd pin and get a different speed reported on the .speed—fb pin,
first verify that the VFD registers listed in the FIRMWARE SETUP section above and the driver’s
command-line arguments all agree with the info on the motor’s name plate. If you still aren’t getting the
speed you expect, zero the VFD’s frequency offset by starting the motor running, then pressing the

LinuxCNC 08/16/2020 67

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

Up/Down buttons to zero the offset.

68 08/16/2020 LinuxCNC

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

NAME
hy_vfd — HAL userspace component for Huanyang VFDs

SYNOPSIS
hy_vfd [OPTIONS]

DESCRIPTION
This component connects the Huanyang VFD to the LinuxCNC HAL via a serial (RS-485) connection.

The Huanyang VFD must be configured via the face plate user interface to accept serial communications:

PD001 =2
Set register PD001 (source of run commands) to 2 (communication port).

PD002 =2
Set register PD002 (source of operating frequency) to 2 (communication port).

PD004
Set register PD004 (Base Frequency) according to motor specs. This is the rated frequency of the
motor from the motor’s name plate, in Hz.

PD005
Set register PD005 (max frequency) according to motor specs. This is the maximum frequency of
the motor’s power supply, in Hz.

PDO011
Set register PDO11 (min frequency) according to motor specs. This is the minimum frequency of
the motor’s power supply, in Hz.

PD141
Set register PD141 (rated motor voltage) according to motor name plate. This is the motor’s
maximum voltage, in Volts.

PD142
Set register PD142 (rated motor current) according to motor name plate. This is the motor’s
maximum current, in Amps.

PD143
Set register PD143 (Number of Motor Poles) according to motor name plate.

PD144
Set register PD144 (rated motor revolutions) according to motor name plate. This is the motor’s
speed in RPM at 50 Hz. Note: This is not the motor’s max speed (unless the max motor frequency
happens to be 50 Hz)!

PD163 =1
Set register PD163 (communication address) to 1. This matches the default in the hy_vfd driver,
change this if your setup has special needs.

PD164 =2
Set register PD164 (baud rate) to 2 (19200 bps). This matches the default in the hy_vfd driver,
change this if your setup has special needs.

PD165 =3
Set register PD165 (communication data method) to 3 (8n1 RTU). This matches the default in the
hy_vfd driver, change this if your setup has special needs. Note that the hy_vfd driver only
supports RTU communication, not ASCII.

Consult the Huanyang instruction manual for details on using the face plate to program the VFDs registers,
and alternative values for the above registers.

Access to devices such as /dev/ttyUSBO is restricted to members of the "dialout" group. If you see error
messages such as

Huanyang VFD April 25, 2015 69

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

open: Permission denied

ERROR Can’t open the device /dev/ttyUSBO0 (errno 13)
Check your groups membership with the command

groups

Then add your user to the dialout group with

sudo addgroup your-username dialout

You will need to log out and back in again for this to take effect.

OPTIONS
—d, ——device <path>
(default /dev/ttyS0O) Set the name of the serial device node to use.

—g, ——debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug
mode will cause all serial communication messages to be printed in hex on the terminal.

—n, ——name <string>
(default hy_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

—-b, ——bits <n>
(default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive. This must
match the setting in register PD165 of the Huanyang VFD.

—p, ——parity [even,odd,none]
(default odd) Set serial parity to even, odd, or none. This must match the setting in register PD165
of the Huanyang VFD.

-1, ——Trate <n>
(default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. This must match the setting in
register PD164 of the Huanyang VFD.

-s, ——stopbits [1,2]
(default 1) Set serial stop bits to 1 or 2. This must match the setting in register PD165 of the
HuanyangVFD.

—-t, ——target <n>
(default 1) Set HYCOMM target (slave) number. This must match the device number you set on
the Hyanyang VFD in register PD163.

—-F, ——max—frequency <n>
(default: read from VFD) If specified, program register PD0O0S5 of the VFD with the specified max
frequency of <n> Hz (and use the same max frequency in the hy_vfd driver). If not specified, read
the max frequency to use from register PD005 of the VFD.

—f, ——min—frequency <n>
(default: read from VFD) If specified, program register PDO11 of the VFD with the specified
minimum frequency of <n> Hz (and use the same minimum frequency in the hy_vfd driver). If
not specified, read the minimum frequency to use from register PDO11 of the VFD.

-V, ——motor-voltage <n>
(default: read from VFD) If specified, program register PD141 of the VFD with the specified max
motor voltage of <n> Volts. If not specified, read the max motor voltage from register PD141 of
the VFD.

-1, ——motor—current <n>
(default: read from VFD) If specified, program register PD142 of the VFD with the specified max
motor current of <n> Amps. If not specified, read the max motor current from register PD142 of
the VFD.

70 April 25, 2015 Huanyang VFD

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

—S, ——motor-speed <n>
(default: compute from value read from VFD P144) This command-line argument is the motor’s
max speed. If specified, compute the motor’s speed at 50 Hz from this argument and from the
motor’s max frequency (from the ——max—frequency argument or from PO11 if ——max—frequency
is not specified) and program register PD144 of the VFD. If not specified, read the motor’s speed
at 50 Hz from register P144 of the VFD, and use that and the max frequency to compute the
motor’s max speed.

—P, ——motor—poles <n>
(default: read value from VFD P143) This command-line argument is the number of poles in the

motor. If specified, this value is sent to the VFD’s register PD143. If not specified, the value is
read from PD143 and reported on the corresponding HAL pin.

PINS
<name>.enable
(bit, in) Enable communication from the hy_vfd driver to the VFD.

<name>.SetF
(float, out)

<name>.OutF
(float, out)

<name>.OutA
(float, out)

<name>.Rott
(float, out)

<name>.DCV
(float, out)

<name>.ACV
(float, out)

<name>.Cont
(float, out)

<name>.Tmp
(float, out)

<name>.spindle—forward
(bit, in)

<name>.spindle-reverse
(bin, in)

<name>.spindle—on
(bin, in)

<name>.CNTR
(float, out)

<name>.CNST
(float, out)

<name>.CNST-run
(bit, out)

<name>.CNST-jog
(bit, out)

<name>.CNST-command-rf
(bit, out)

Huanyang VFD April 25, 2015 71

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

<name>.CNST-running
(bit, out)

<name>.CNST-jogging
(bit, out)

<name>.CNST-running—rf
(bit, out)

<name>.CNST-bracking
(bit, out)

<name>.CNST-track-start
(bit, out)

<name>.speed—command
(float, in)

<name>.spindle-speed—fb
(float, out) Current spindle speed as reported by Huanyang VFD.

<name>.spindle—at—speed—tolerance
(float, in) Spindle speed error tolerance. If the actual spindle speed is within
.spindle—at—speed—tolerance of the commanded speed, then the .spindle—at—speed pin will go
True. The default .spindle—at—speed—tolerance is 0.02, which means the actual speed must be
within 2% of the commanded spindle speed.

<name>.spindle—at—speed
(bit, out) True when the current spindle speed is within .spindle—at—speed—tolerance of the
commanded speed.

<name>.frequency—command
(float, out)

<name>.max—freq
(float, out)

<name>.base—freq
(float, out)

<name>.freq—lower-limit
(float, out)

<name>.rated—motor—voltage
(float, out)

<name>.rated—motor—current
(float, out)

<name>.rated—motor—rev
(float, out)

<name>.motor—poles
(u32, out)

<name>.hycomm-ok
(bit, out)

PARAMETERS
<name>.error—count
(s32, RW)

<name>.retval
(float, RW)

72 April 25, 2015 Huanyang VFD

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

AUTHOR

Sebastian Kuzminsky

LICENSE
GPL

Huanyang VFD April 25, 2015 73

IMAGE-TO-GCODE(1) The Enhanced Machine Controller IMAGE-TO-GCODE(1)

NAME

image-to-gcode — converts bitmap images to G-code

SYNOPSIS

image-to-gcode

DESCRIPTION

image-to-gcode converts a bitmap image to G-code inteerpreting the brightness of each pixel as a Z-height.

Detailed docs: http://linuxcnc.org/docs/2.4/html/gui_image-to-gcode.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

74 2020-08-26 LinuxCNC Documentation

INIVAR(1) The Enhanced Machine Controller INIVAR(1)

NAME
inivar — Query an INI file

SYNOPSIS

inivar -var <variable> {-sec <section>} {<-ini inifile>}

DESCRIPTION

inivar does stuff for LinuxCNC

Prints to stdout the INI file result of a variable-in-section search, useful for scripts that want to pick things
out of INI files.

syntax: inivar -var <variable> {-sec <section>} {<-ini inifile>}

Uses emc.ini as default. <variable> needs to be supplied. If <section> is omitted, first instance of
<variable> will be looked for in any section. Otherwise only a match of the variable in <section> will be
returned.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 75

IOCONTROL(1) HAL Component IOCONTROL(1)

NAME

iocontrol — accepts NML I/O commands, interacts with HAL in userspace

SYNOPSIS

loadusr io [—ini inifile]

DESCRIPTION

PINS

76

These pins are created by the userspace IO controller, usually found in SLINUXCNC_HOME/bin/io

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more
i/o, consider using the realtime synchronized i/o provided by motion(9) instead.

The inifile is searched for in the directory from which halcmd was run, unless an absolute path is specified.

iocontrol.(0.coolant—flood
(Bit, Out) TRUE when flood coolant is requested

iocontrol.0.coolant—mist
(Bit, Out) TRUE when mist coolant is requested

iocontrol.0.emc—enable—in
(Bit, In) Should be driven FALSE when an external estop condition exists.

iocontrol.0.lube
(Bit, Out) TRUE when lube is requested. This pin gets driven True when the controller comes out
of E-stop, and when the "Lube On" command gets sent to the controller. It gets driven False when
the controller goes into E-stop, and when the "Lube Off" command gets sent to the controller.

iocontrol.0.lube_level
(Bit, In) Should be driven FALSE when lubrication tank is empty.

iocontrol.0.tool-change
(Bit, Out) TRUE when a tool change is requested

iocontrol.0.tool-changed
(Bit, In) Should be driven TRUE when a tool change is completed.

iocontrol.0.tool-number
(s32, Out) Current tool number

iocontrol.0.tool-prep—number
(s32, Out) The number of the next tool, from the RS274NGC T-word

iocontrol.0.tool—prep—pocket
(s32, Out) This is the pocket number (location in the tool storage mechanism) of the tool requested
by the most recent T-word.

2007-08-25 LinuxCNC Documentation

IOCONTROL(1) HAL Component IOCONTROL(1)

iocontrol.0.tool—prepare
(Bit, Out) TRUE when a Tn tool prepare is requested

iocontrol.0.tool—prepared
(Bit, In) Should be driven TRUE when a tool prepare is completed.

iocontrol.0.user—enable—out
(Bit, Out) FALSE when an internal estop condition exists

iocontrol.0.user-request—enable
(Bit, Out) TRUE when the user has requested that estop be cleared

PARAMETERS
iocontrol.0.tool—prep—index
(s32, RO) IO’s internal array index of the prepped tool requested by the most recent T-word. 0 if
no tool is prepped. On Random toolchanger machines this is tool’s pocket number (ie, the same as
the tool—prep—pocket pin), on Non-random toolchanger machines this is a small integer
corresponding to the tool’s location in the internal representation of the tool table. This parameter
returns to O after a successful tool change (M6).

SEE ALSO

motion(9)

LinuxCNC Documentation 2007-08-25 77

10V2(1) The Enhanced Machine Controller I0V2(1)

NAME

iov2 — an alternative to iocontrol

SYNOPSIS
EMCIO =iov2

DESCRIPTION

iov2 is an alternative interface to io.
10 is documented here:
iov2 creates the same pins but does some things differently.

iov2 can be chosen in the INI file [EMCIO] section by using
[EMCIO]
EMCIO =iov2

SEE ALSO
io(1) LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

78 2020-08-26 LinuxCNC Documentation

LATENCY-HISTOGRAM(1) The Enhanced Machine Controller LATENCY-HISTOGRAM(1)

NAME

latency-histogram — plot a histogram of machine latency

SYNOPSIS

latency-histogram

DESCRIPTION
The latency test is important when configuring a LinuxCNC system. An adjunct to the standard latency-
test latency-histogram plots the distribution of latency. This can be useful to get a feel for how frequent the
high latency excursions are.

More details:

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 79

LATENCY-PLOT(1) The Enhanced Machine Controller LATENCY-PLOT(1)

NAME

latency-plot — another way to view latency numbers

SYNOPSIS
latency-plot

DESCRIPTION

latency-plot plots realtime system latency. Mainly superseded by latency-histogram

http://linuxcnc.org/docs/html/install/latency-test.html

SEE ALSO
latency-histogram(1) LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

80 2020-08-26 LinuxCNC Documentation

LATENCY-TEST(1) The Enhanced Machine Controller LATENCY-TEST(1)

NAME

latency-test — test the realtime system latency

SYNOPSIS

latency-test [-nobase]

DESCRIPTION

latency-test runs a simple latency test http://linuxcnc.org/docs/html/install/latency-test.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 81

lineardelta(1) The Enhanced Machine Controller lineardelta(1)

NAME
lineardelta — Vismach Virtual Machine GUI

DESCRIPTION
lineardelta is one of the sample Vismach GUIs for LinuxCNC, simulating a delta robot with linear
actuators

See the main LinuxCNC documentation for more details. http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

82 2020-08-26 LinuxCNC Documentation

LINUXCNC_INFO(1) The Enhanced Machine Controller LINUXCNC_INFO(1)

NAME

linuxcnc_info — short description

SYNOPSIS

linuxcnc_info

DESCRIPTION
linuxenc_info supplies information about the linuxcne version and system info. It creates a text file and
opens it in the default text editor.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

It appears to hang until the text editor is closed.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 83

LINUXCNC_MODULE_HELPER(1) The Enhanced Machine Controller LINUXCNC_MODULE_HELPER(1)

NAME

linuxcnc_module_helper — short description

SYNOPSIS

linuxcne_module_helper

DESCRIPTION
linuxenc_module_helper This module exists to give root access to system hardware for LinuxCNC It is
not directly useful to users.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

84 2020-08-26 LinuxCNC Documentation

LINUXCNC_VAR(1) The Enhanced Machine Controller LINUXCNC_VAR(1)

NAME

linuxcnc_var — short description

SYNOPSIS

linuxcnce_var

DESCRIPTION

linuxcnc_var Retrieve LinuxCNC variables

Usage:
linuxcnc_var [varname | all]

Varnames supported:
LINUXCNCVERSION
LINUXCNC_AUX_GLADEVCP
LINUXCNC_AUX_EXAMPLES
REALTIME
RTS
HALLIB_DIR

Option *all’ returns varname=value for all supported varnames

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 85

LINUXCNCLCD(1) The Enhanced Machine Controller LINUXCNCLCD(1)

NAME

linuxcncled — LinuxCNC Graphical User Interface for LCD character display
SYNOPSIS

linuxcncled —ini INIFILE
DESCRIPTION

linuxcncled is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript
usually. Linuxcncled is designed to run on a 4 x 20 LCD character display. It is not clear if it has ever
worked.

OPTIONS
INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is,
however, the most important one, because it is the file that holds the configuration together. It can
adjust a lot of parameters itself, but it also tells LinuxCNC which other files to load and use.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

86 2020-08-26 LinuxCNC Documentation

LINUXCNCMKDESKTOP(1) The Enhanced Machine Controller LINUXCNCMKDESKTOP(1)

NAME

linuxcncmkdesktop — short description

SYNOPSIS

linuxcnemkdesktop

DESCRIPTION

linuxenemkdesktop Script used by pickconfig to create a desktop icon

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 87

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

NAME

linuxcncrsh — text-mode interface for commanding LinuxCNC over the network
SYNOPSIS

linuxcnersh [OPTIONS] [-— LINUXCNC_OPTIONS]
DESCRIPTION

linuxcnersh is a user interface for LinuxCNC. Instead of popping up a GUI window like axis(1) and
touchy(1) do, it processes text-mode commands that it receives via the network. A human (or a program)
can interface with linuxcncrsh using telnet(1) or nc(1) or similar programs.

All features of LinuxCNC are available via the linuxcncrsh interface.

OPTIONS
—-p,—port PORT_NUMBER
Specify the port for linuxcncrsh to listen on. Defaults to 5007 if omitted.

-n,——name SERVER_NAME
Sets the server name that linuxcncrsh will use to identify itself during handshaking with a new
client. Defaults to EMCNETSVR if omitted.

—w,——connectpw PASSWORD
Specify the connection password to use during handshaking with a new client. Note that the
password is sent in the clear, so it can be read by anyone who can read packets on the network
between the server and the client. Defaults to EMC if omitted.

—e,——enablepw PASSWORD
Specify the password required to enable LinuxCNC via linuxcnersh. Note that the password is
sent in the clear, so it can be read by anyone who can read packets on the network between the
server and the client. Defaults to EMCTOO if omitted.

—s,——sessions MAX_SESSIONS
Specify the maximum number of simultaneous connections. Defaults to —1 (no limit) if not

specified.
In addition to the options listed above, linuxcncrsh accepts an optional special LINUXCNC_OPTION at
the end:
—ini LINUXCNC_INI_FILE

LinuxCNC .ini file to use. The —ini option must be preceded by two dashes: "——". Defaults to

emc.ini if omitted.

Starting linuxcnersh
To use linuxcncrsh instead of a normal LinuxCNC GUI like axis or touch, specify it in your .ini file like
this:

[DISPLAY]
DISPLAY=linuxcncrsh

To use linuxcncrsh in addition to a normal GUI, you can either start it at the end of your .hal file, or run it
by hand in a terminal window.

To start it from hal, add a line like this to the end of your .hal file:
loadusr linuxcncersh [OPTIONS] [-— LINUXCNC_OPTIONS]
To start it from the terminal, run linuxcncrsh manually like this:
linuxcnersh [OPTIONS] [-- LINUXCNC_OPTIONS]

Connecting
Once LinuxCNC is up and linuxcncrsh is running, you can connect to it using telnet or nc or similar:

telnet HOST PORT
HOST is the hostname or IP address of the computer running linuxcncrsh, and PORT is

88 May 31, 2011

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

the port it’s listening on (5007 if you did not give linuxcncrsh the ——port option).

Network protocol
linuxcncrsh accepts TCP connections on the port specified by the ——port option, or 5007 if not specified.

The client sends requests, and the linuxcncrsh server returns replies. Requests consist of a command word
followed by optional command-specific parameters. Requests and most request parameters are case
insensitive. The exceptions are passwords, file paths and text strings.

Requests to linuxcncrsh are terminated with line endings, any combination of one or more "\r’ and "\n’
characters. Replies from linuxcncrsh are terminated with the sequence \r\n”.

The supported commands are as follows:

hello <password> <client> <version>
<password> must match linuxcncrsh’s connect password, or "EMC" if no ——connectpw was
supplied. The three arguments may not contain whitespace. If a valid password was entered the
server will respond with:
HELLO ACK <ServerName> <ServerVersion>

If an invalid password or any other syntax error occurs then the server responds with:
HELLO NAK

get <subcommand> [<parameters>]
The get command takes one of the LinuxCNC sub-commands (described in the section
LinuxCNC Subcommands, below) and zero or more additional subcommand-specific
parameters.

set <subcommand> <parameters>
The set command takes one of the LinuxCNC sub-commands (described in the section
LinuxCNC Subcommands, below) and one or more additional parameters.

quit
The quit command disconnects the associated socket connection.

shutdown
The shutdown command tells LinuxCNC to shutdown and disconnect the session. This command
may only be issued if the Hello has been successfully negotiated and the connection has control of
the CNC (see enable subcommand in the LinuxCNC Subcommands section, below).

help

The help command will return help information in text format over the connection. If no
parameters are specified, it will itemize the available commands. If a command is specified, it will
provide usage information for the specified command. Help will respond regardless of whether a
"Hello" has been successsfully negotiated.

LinuxCNC Subcommands
Subcommands for get and set are:

echo {on|off}
With get, any on/off parameter is ignored and the current echo state is returned. With set, sets the
echo state as specified. Echo defaults to on when the connection is first established. When echo is
on, all commands will be echoed upon receipt. This state is local to each connection.

verbose {on|off}
With get, any on/off parameter is ignored and the current verbose state is returned. With set, sets
the verbose state as specified. When verbose mode is on, all set commands return positive
acknowledgement in the form SET <COMMAND> ACK, and text error messages will be issued
(FIXME: I don’t know what this means). The verbose state is local to each connection, and starts
out OFF on new connections.

enable {<passwd>|off}

May 31, 2011 89

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

90

The session’s enable state indicates whether the current connection is enabled to perform control
functions. With get, any parameter is ignored, and the current enable state is returned. With set
and a valid password matching linuxcncrsh’s ——enablepw (EMCTOO if not specified), the current
connection is enabled for control functions. "OFF" may not be used as a password and disables
control functions for this connection.

config [TBD]
Unused, ignore for now.

comm_mode {ascii|binary}
With get, any parameter is ignored and the current communications mode is returned. With set,
will set the communications mode to the specified mode. The ascii mode is the text request/reply
mode, the binary protocol is not currently designed or implemented.

comm_prot <version>
With get, any parameter is ignored and the current protocol version used by the server is returned.
With set, sets the server to use the specified protocol version, provided it is lower than or equal to
the highest version number supported by the server implementation.

inifile
Not currently implemented! With get, returns the string "emc.ini". Should return the full path and
file name of the current configuration inifile. Setting this does nothing.

plat
With get, returns the string "Linux".

ini <var> <section>
Not currently implemented, do not use! Should return the string value of <var> in section
<section> of the ini file.

debug <value>
With get, any parameter is ignored and the current integer value of EMC_DEBUG is returned.
Note that the value of EMC_DEBUG returned is the from the UT’s ini file, which may be different
than emc’s ini file. With set, sends a command to the EMC to set the new debug level, and sets the
EMC_DEBUG global here to the same value. This will make the two values the same, since they
really ought to be the same.

set_wait {received|done}
The set_wait setting controls the wait after receiving a command. It can be "received" (after the
command was sent and received) or "done" (after the command was done). With get, any
parameter is ignored and the current set_wait setting is returned. With set, set the set_wait setting
to the specified value.

wait {received|done}
With set, force a wait for the previous command to be received, or done.

set_timeout <timeout>
With set, set the timeout for commands to return to <timeout> seconds. Timeout is a real number.
If it’s <= 0.0, it means wait forever. Default is 0.0, wait forever.

update {none|auto}
The update mode controls whether to return fresh or stale values for "get" requests. When the
update mode is "none" it returns stale values, when it’s "auto" it returns fresh values. Defaults to
"auto" for new connections. Set this to "none" if you like to be confused.

error
With get, returns the current error string, or "ok" if no error.

operator_display
With get, returns the current operator display string, or "ok" if none.

operator_text
With get, returns the current operator text string, or "ok" if none.

May 31, 2011

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

time
With get, returns the time, in seconds, from the start of the epoch. This starting time depends on
the platform.

estop {on|off}
With get, ignores any parameters and returns the current estop setting as "on" or "off". With set,
sets the estop as specified. Estop "on" means the machine is in the estop state and won’t run.

machine {on|off}
With get, ignores any parameters and returns the current machine power setting as "on" or "off".
With set, sets the machine on or off as specified.

mode {manual|auto|mdi}
With get, ignores any parameters and returns the current machine mode. With set, sets the
machine mode as specified.

mist {on|off}
With get, ignores any parameters and returns the current mist coolant setting. With set, sets the
mist setting as specified.

flood {on|off}
With get, ignores any parameters and returns the current flood coolant setting. With set, sets the
flood setting as specified.

lube {on|off}
With get, ignores any parameters and returns the current lube pump setting. With set, sets the lube
pump setting as specified.

lube_level
With get, returns the lubricant level sensor reading as "ok" or "low". With set, mocks you for
wishful thinking.

spindle {forward|reverse|increase|decrease|constant|off}
With get, any parameter is ignored and the current spindle state is returned as "forward", "reverse",
"increase", "decrease", or "off". With set, sets the spindle as specified. Note that "increase" and
"decrease" will cause a speed change in the corresponding direction until a "constant” command is
sent.

brake {on|off}
With get, any parameter is ignored and the current brake setting is returned. With set, the brake is
set as specified.

tool
With get, returns the id of the currently loaded tool.

tool_offset
With get, returns the currently applied tool length offset.

load_tool_table <file>
With set, loads the tool table specified by <file>.

home {0[1]2]...} | -1
With set, homes the indicated joint or if -1, Home All joints

jog_stop joint_number|axis_letter
With set, stop any in-progress jog on the specified joint or axis. If TELEOP_ENABLE is NO, use
joint_number; If TELEOP_ENABLE is YES, use axis_letter.

jog joint_number|axis_letter <speed>
With set, jog the specified joint or axis at <speed>; sign of speed is direction. If
TELEOP_ENABLE is NO, use joint_number; If TELEOP_ENABLE is YES, use axis_letter.

jog_incr jog_number]axis_letter <speed> <incr>
With set, jog the indicated joint or axis by increment <incr> at the <speed>; sign of speed is

May 31, 2011 91

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

92

direction. If TELEOP_ENABLE is NO, use joint_number; If TELEOP_ENABLE is YES, use
axis_letter.

feed_override <percent>
With get, any parameter is ignored and the current feed override is returns (as a percentage of
commanded feed). With set, sets the feed override as specified.

spindle_override <percent>
With get, any parameter is ignored and the current spindle override is returned (as a percentage of
commanded speed). With set, sets the spindle override as specified.

abs_cmd_pos [{0[1]...}]
With get, returns the specified axis’ commanded position in absolute coordinates. If no axis is
specified, returns all axes’ commanded absolute position.

abs_act_pos [{0[1]...}]
With get, returns the specified axis’ actual position in absolute coordinates. If no axis is specified,
returns all axes’ actual absolute position.

rel_cmd_pos [{0[1]...}]
With get, returns the specified axis’ commanded position in relative coordinates, including tool
length offset. If no axis is specified, returns all axes’ commanded relative position.

rel_act_pos [{0[1]...}]
With get, returns the specified axis’ actual position in relative coordinates, including tool length
offset. If no axis is specified, returns all axes’ actual relative position.

joint_pos [{0[1]...}]
With get, returns the specified joint’s actual position in absolute coordinates, excluding tool length
offset. If no joint is specified, returns all joints’ actual absolute position.

pos_offset [{X|Y|Z|R|P|W}]
With get, returns the position offset associated with the world coordinate provided.

joint_limit [{0[1]...}]
With get, returns limit status of the specified joint as "ok", "minsoft", "minhard", "maxsoft", or
"maxhard". If no joint number is specified, returns the limit status of all joints.

joint_fault [{0[1]...}]
With get, returns the fault status of the specified joint as "ok" or "fault". If no joint number is
specified, returns the fault status of all joints.

joint_homed [{O0[1]...}]
With get, returns the homed status of the specified joint as "homed" or "not". If no joint number is
specified, returns the homed status of all joints.

mdi <string>
With set, sends <string> as an MDI command.

task_plan_init
With set, initializes the program interpreter.

open <filename>
With set, opens the named file. The <filename> is opened by linuxcnc, so it should either be an

absolute path or a relative path starting in the linuxcnc working directory (the directory of the
active .ini file).

run [<StartLine>]
With set, runs the opened program. If no StartLine is specified, runs from the beginning. If a
StartLine is specified, start line, runs from that line. A start line of —1 runs in verify mode.

pause
With set, pause program execution.

resume

May 31, 2011

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

With set, resume program execution.

abort

With set, abort program or MDI execution.
step

With set, step the program one line.
program

With get, returns the name of the currently opened program, or "none".

program_line
With get, returns the currently executing line of the program.

program_status
With get, returns "idle", "running", or "paused”.

program_codes
With get, returns the string for the currently active program codes.

joint_type [<joint>]
With get, returns "linear”, "angular”, or "custom" for the type of the specified joint (or for all joints
if none is specified).

joint_units [<joint>]
With get, returns "inch", "mm", "cm", or "deg", "rad", "grad", or "custom", for the corresponding
native units of the specified joint (or for all joints if none is specified). The type of the axis (linear
or angular) is used to resolve which type of units are returned. The units are obtained heuristically,
based on the EMC_AXIS_STAT::units numerical value of user units per mm or deg. For linear
joints, something close to 0.03937 is deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s
"custom". For angular joints, something close to 1.000 is deemed "deg", PI/180 is "rad", 100/90 is
"grad", otherwise it’s "custom".

program_units
Synonym for program_linear_units.

program_linear_units
With get, returns "inch", "mm", "cm", or "none", for the corresponding linear units that are active
in the program interpreter.

program_angular_units
With get, returns "deg", "rad", "grad", or "none" for the corresponding angular units that are active
in the program interpreter.

user_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the corresponding native user linear units
of the LinuxCNC trajectory level. This is obtained heuristically, based on the
EMC_TRAJ_STAT::linearUnits numerical value of user units per mm. Something close to
0.03937 is deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s "custom".

user_angular_units
Returns "deg", "rad", "grad", or "custom" for the corresponding native user angular units of the
LinuxCNC trajectory level. Like with linear units, this is obtained heuristically.

display_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the linear units that are active in the
display. This is effectively the value of linearUnitConversion.

display_angular_units
With get, returns "deg", "rad", "grad", or "custom", for the angular units that are active in the
display. This is effectively the value of angularUnitConversion.

linear_unit_conversion {inchjmm|cm|auto}
With get, any parameter is ignored and the active unit conversion is returned. With set, sets the

May 31, 2011 93

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

LN

unit to be displayed. If it’s "auto", the units to be displayed match the program units.

angular_unit_conversion {deg|rad|grad|auto}
With get, any parameter is ignored and the active unit conversion is returned. With set, sets the
units to be displayed. If it’s "auto", the units to be displayed match the program units.

probe_clear
With set, clear the probe tripped flag.

probe_tripped
With get, return the probe state - has the probe tripped since the last clear?

probe_value
With get, return the current value of the probe signal.

probe
With set, move toward a certain location. If the probe is tripped on the way stop motion, record the
position and raise the probe tripped flag.

teleop_enable [on|off]
With get, any parameter is ignored and the current teleop mode is returned. With set, sets the
teleop mode as specified.

kinematics_type
With get, returns the type of kinematics functions used (identity=1, serial=2, parallel=3,
custom=4).

override_limits {on|off}
With get, any parameter is ignored and the override_limits setting is returned. With set, the
override_limits parameter is set as specified. If override_limits is on, disables end of travel
hardware limits to allow jogging off of a limit. If parameters is off, then hardware limits are
enabled.

optional_stop {01}

With get, any parameter is ignored and the current "optional stop on M1" setting is returned. With
set, the setting is set as specified.

Example Session

94

This section shows an example session to the local machine (localhost). Bold items are typed by you, non-
bold is machine output. Default values are shown for --port PORT_NUMBER (5007), --conectpw
PASSWORD (EMC), and --enablepw PASSWORD (EMCTOO).

The user connects to linuxcncrsh, handshakes with the server (hello), enables machine commanding from
this session (set enable), brings the machine out of estop (set estop off) and turns it on (set machine on),
homes all the axes, switches the machine to mdi mode, sends an MDI g-code command, then disconnects
and shuts down LinuxCNC.

> telnet localhost 5007

Trying 127.0.0.1...

Connected to 127.0.0.1

Escape character is °"]’.

hello EMC user—typing—at—telnet 1.0
HELLO ACK EMCNETSVR 1.1
set enable EMCTOO

set enable EMCTOO

set mode manual

set mode manual

set estop off

set estop off

set machine on

set machine on

set home 0

May 31, 2011

linuxcnersh(1) The Enhanced Machine Controller linuxcnersh(1)

set home 0

set home 1

set home 1

set home 2

set home 2

set mode mdi

set mode mdi

set mdi gOx1

set mdi gOx1

help

help

Available commands:
Hello <password> <client name> <protocol version>
Get <emc command>
Set <emc command>
Shutdown
Help <command>

help get

help get

Usage: Get <emc command>
Get commands require that a hello has been successfully negotiated.
Emc command may be one of:

Abs_act_pos
Abs_cmd_pos

shutdown

shutdown
Connection closed by foreign host.

May 31, 2011 95

LINUXCNCSVR(1) The Enhanced Machine Controller LINUXCNCSVR(1)

NAME

linuxcncsvr — short description

SYNOPSIS

linuxcnesvr

DESCRIPTION

linuxcnesvr Allows network access to LinuxCNC internals via NML

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

96 2020-08-26 LinuxCNC Documentation

LINUXCNCTOP(1) The Enhanced Machine Controller LINUXCNCTOP(1)

NAME

linuxcnctop — short description
SYNOPSIS

linuxenctop —ini INIFILE
DESCRIPTION

linuxcenctop displays much of the LinuxCNC state in a live format similar to the Linux "top" command.

It is more fully documented in the Axis gui documentation but can be run standalone or with other GUISs.
http://linuxcnc.org/docs/html/gui/axis.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 97

maho600gui(1) The Enhanced Machine Controller maho600gui(1)

NAME
hexagui — Vismach Virtual Machine GUI

DESCRIPTION
maho600gui is one of the sample Vismach GUIs for LinuxCNC, simulating a Maho 600 CNC Milling
Machine.

See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

98 2020-08-26 LinuxCNC Documentation

max5gui(l) The Enhanced Machine Controller max5gui(l)

NAME
hexagui — Vismach Virtual Machine GUI

DESCRIPTION
max5Sgui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5 axis CNC Milling Machine.

See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 99

mb2hal(1) LinuxCNC Documentation mb2hal(1)

NAME
mb2hal - HAL userspace component for Modbus

SYNOPSIS
mb2hal [OPTIONS]

DESCRIPTION

MB2HAL is a generic userspace HAL component to communicate with one or more Modbus devices.

See the Documents for more information on mb2hal

AUTHOR

John Thornton

LICENSE
GPL

100 January 1, 2016 Modbus to HAL

MDI(1) The Enhanced Machine Controller MDI(1)

NAME

mdi — Send G-code commands from the terminal to the running LinuxCNC instance

SYNOPSIS

mdi

DESCRIPTION
mdi sends G-code commands to LinuxCNC. The command starts an envirmonemt in which G-code
commands are sent to the interpreter and machine feedback is displayed.

USAGE
send a single command and exit
mdi m2 s1400

interactive session
$mdi

MDI> m3 s1000
MDI> GO X100
MDI> “Z
$stopped

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 101

milltask(1) The Enhanced Machine Controller milltask(1)

NAME

milltask — Userspace task controller for LinuxCNC

DESCRIPTION
milltask is an internal process of LinuxCNC. It is generally not invoked directly but by an inifile setting:
[TASK]TASK=milltask. The milltask process creates the ini.* hal pins listed below and owned by the
inihal user component. These pins may be modified while LinuxCnC is running to alter values that are
typically specified in an inifile.

The inihal pins are sampled in every task cycle, however, commands affected by their values typically use
the value present at the time when the command is processed. Such commands include all codes handled
by the interpreter (Gcode programs and MDI commands) and NML jogging commands issued by a GUI
(including halui). Wheel jogging is implemented in the realtime motion module so inihal pin changes
(e.g., ini.*.max_velocity, ini.*.max_acceleration) may be honored as soon as altered values are propagated
to the motion module.

PINS
Per-joint pins (N == joint number)
ini.N.backlash
Allows adjustment of [JOINT_N]BACKLASH

ini.NV.ferror
Allows adjustment of [JOINT_N]JFERROR

ini.N.min_ferror

Allows adjustment of [JOINT_NJMIN_FERROR
ini.NV.min_limit

Allows adjustment of [JOINT_N]MIN_LIMIT

ini.N.max_limit
Allows adjustment of [JOINT_N]MAX_LIMIT

ini.N.max_velocity
Allows adjustment of [JOINT_N]JMAX_VELOCITY

ini.N.max_acceleration
Allows adjustment of [JOINT_N]JMAX_ACCELERATION

ini.N.home
Allows adjustment of [JOINT_NJHOME

ini.N.home_offset
Allows adjustment of [JOINT_NJHOME_OFFSET

ini.N.home_offset
Allows adjustment of [JOINT_NJHOME_SEQUENCE

Per-axis pins (L == axis letter)
ini.L.min_limit
Allows adjustment of [AXIS_LJMIN_LIMIT
ini.L.max_limit
Allows adjustment of [AXIS_L]MAX_LIMIT

ini.L.max_velocity
Allows adjustment of [AXIS_L]MAX_VELOCITY

ini.L.max_acceleration
Allows adjustment of [AXIS_L]MAX_ACCELERATION

102 September 30, 2014

milltask(1) The Enhanced Machine Controller milltask(1)

Global pins
ini.traj_default_acceleration
Allows adjustment of [TRAJIDEFAULT_ACCELERATION

ini.traj_default_velocity
Allows adjustment of [TRAJIDEFAULT_VELOCITY

ini.traj_max_acceleration
Allows adjustment of [TRAJIMAX_ACCELERATION

ini.traj_max_velocity
Allows adjustment of [TRAJIMAX_VELOCITY

Global pins (arc_blend trajectory planner)
ini.traj_arc_blend_enable
Allows adjustment of [TRAJJARC_BLEND_ENABLE

ini.traj_arc_blend_fallback_enable
Allows adjustment of [TRAJJARC_BLEND_FALLBACK_ENABLE

ini.traj_arc_blend_gap_cycles
Allows adjustment of [TRAJJARC_OPTIMIZATION_DEPTH

ini.traj_arc_blend_optimization_depth
Allows adjustment of [TRAJJARC_BLEND_GAP_CYCLES

ini.traj_arc_blend_ramp_freq
Allows adjustment of [TRAJJARC_BLEND_RAMP_FREQ

NOTES
The inihal pins cannot be linked or set in a halfile that is specified by an inifile [HAL]JHALFILE item
because they are not created until milltask is started. The inihal pin values can be altered by independent
halemd programs specified by [APPLICATION]APP items or by GUISs that support a
[HALJPOSTGUI_HALFILE.

The inifile is not automatically updated with values altered by inihal pin settings but can be updated using
the calibration program (emccalib.tcl) when using a [HAL]JPOSTGUI_HALFILE.

September 30, 2014 103

mitsub_vfd(1) HAL Component mitsub_vfd(1)

NAME

mitsub_vfd — HAL userspace component for Mitsubishi AS00 F500 E500 A500 D700 E700 F700-series
VEDs (others may work)

SYNOPSIS

loadrt mitsub_vfd [--baud 4800] [--port /dev/ttyUSB0] namel=number1[,name2=numer2...]
namel is user selectable (usually a description of the controlled device).
number1 is the slave number that was set on the VFD. must be two digits (Parameter 117)
name=number can be repeated for multiple VFD’s connected together
--baud is optional as it defaults to 9600

all networked vfds must be set to the same baudrate
--port is optional as it defaults to ttySO

DESCRIPTION

The mitsub_vfd component interfaces a Mitsubishi VFD to LinuxCNC. The VFD is connected via RS-485
serial to the computer’s USB or serial port using a RS-232/RS-485 converter

HARDWARE SETUP

104

reference manual ’communication option reference manual’ and A500 technical manual for 500 series. Fr-
A700 F700 E700 D700 technical manual for the 700 series

The inverter must be set manually for communication

(you may have to set PR 77 to 1 to unlock PR modification)

You must power cycle the inverter for some of these. (eg 79)

VFD INTERNAL PARAMETERS:
PARAMETER 79 - 1 or 0

PARAMETER 117 station number - 1
(can be optionally set O - 31) if component is also set

PARAMETER 118 communication speed 96
(can be optionally set 48,96,192 if component is also set)

PARAMETER 119 stop bit/data length - 0
(8 bits, two stop - don’t change)

PARAMETER 120 parity - 0
(no parity - don’t change)

PARAMETER 121 COM tries - 10
(if maximuim 10 COM errors then inverter faults- can change)

PARAMETER 122 COM check time interval 9999
(never check - if communication is lost inverter will not know (can change)

PARAMETER 123 wait time - 9999
no wait time is added to the serial data frame (don’t change)

PARAMETER 124 CR selection - 0
don’t change

2018-10-25 LinuxCNC Documentation

mitsub_vfd(1) HAL Component

PINS

This driver assumes certain other VFD settings:
-That the motor frequency status is set to show herts.
-That the status bit 3 is up to speed

-That the status bit 7 is alarm

some models (eg E500) cannot monitor status.
You must set set the monitor pin to false.

In this case pins such as up-to-speed, amps, alarm and status bits are not useful.

[VED NAME].fwd (bit, in)::
forward/reverse pin
[VFD NAME].run (bit, in)::
run/stop pin
[VFD NAME].debug (bit, in)::
set debug mode pin
This will print many messages to the terminal
[VFD NAME].monitor (bit, in)::
set monitor mode pin
If false request-status command will not be sent to vfd.
Status, amps, power, motor-feedback, and alarm would then not
be useful.
[VFD NAME].estop (bit, in)::
set estop mode pin
This will stop the VFD.
Restarting requires the run pin to cycle.

[VED NAME].fwd (bit, out)::

up-to-speed status pin

Motor is at requested speed within VFD’s settings tolerance.
[VFD NAME].alarm (bit, out)::

alarm status pin

[VFD NAME].motor-cmd (float, in)::
The requested motor speed, is Hertz

[VFD NAME].motor-fb (float, out)::

The motor feedback speed (from vfd) in hertz
[VFD NAME].motor-amps (float, out)::

The motor current, in amps
[VFD NAME].motor-power (float, out)::

The motor power

[VFD NAME].scale-cmd (float, in)::

Motor command’s scale setting defaults to 1
[VFD NAME].scale-cmd (float, in)::

Motor command’s scale setting defaults to 1
[VFD NAME].scale-cmd (float, in)::

Motor command’s scale setting defaults to 1

[VFD NAME].stat-bit-0 (bit, out)::
raw status bit

LinuxCNC Documentation 2018-10-25

mitsub_vfd(1)

105

mitsub_vfd(1) HAL Component

[VFD NAME].stat-bit-1 (bit, out)::
raw status bit

[VFD NAME].stat-bit-2 (bit, out)::
raw status bit

[VFD NAME].stat-bit-3 (bit, out)::
raw status bit
set the VFD so this is motor-at-speed status

[VFD NAME].stat-bit-4 (bit, out)::
raw status bit

[VFD NAME].stat-bit-5 (bit, out)::
raw status bit

[VFD NAME].stat-bit-6 (bit, out)::
raw status bit

[VFD NAME].stat-bit-7 (bit, out)::
raw status bit
Set the VFD so this in the alarm bit

SAMPLE HAL

loadusr -Wn coolant mitsub_vfd --port /dev/ttyUSBO spindle=02 coolant=01
skoskeoskeoskeoskeoskokokokokoskokokokoskosk Splndle VFD setup SlaVe 2 st sk sk sk sk skoskoskokokoskokokokokok

net spindle-vel-cmd spindle.motor-cmd
net spindle-cw spindle.fwd

net spindle-on spindle.run

net spindle-at-speed spindle.up-to-speed
net estop-out spindle.estop

cmd scaled to RPM (belt/gearbox driven)
setp spindle.scale-cmd .135

feedback is in rpm (recipicale of command)
setp spindle.scale-fb 7.411

turn on monitoring so feedback works

setp spindle.monitor 1

net spindle-speed-indicator spindle.motor-fb

kdskerckskeleokskskelokskk Copolant vid setup glave 1 skskkoksdoskkoksksdkokokokoskokok

net coolant-flood coolant.run
net coolant-is-on coolant.up-to-speed
cmd and feedback scaled to hertz

setp coolant.scale-cmd 1

setp coolant.scale-fb 1

command full speed

setp coolant.motor-cmd 60

allows us to see status

setp coolant.monitor 1

net estop-out coolant.estop

ISSUES

some models (eg E500) cannot monitor status, so set the monitor pin to false In this case pins such as up-to-

106

speed, amps, alarm and status bits are not useful.

2018-10-25

mitsub_vfd(1)

LinuxCNC Documentation

MONITOR-XHC-HBO04(1) The Enhanced Machine Controller MONITOR-XHC-HBO04(1)

NAME

monitor-xhc-hb04 — monitors the XHC-HB04 pendant and warns of disconnection

SYNOPSIS
monitor-xhc-hb04

DESCRIPTION
monitor-xhc-hb04 is included to monitor disconnects and reconnects of the pendant. This script runs in
the background and will pop up a message when the pendant is disconnected or reconnected.

Usage is optional; if used it is specified with ini file entry:
[APPLICATIONS]APP = monitor-xhc-hb04

SEE ALSO
xhc-hb04(1) LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 107

MOTION-LOGGER(1) The Enhanced Machine Controller MOTION-LOGGER(1)

NAME

motion-logger — short description

SYNOPSIS

motion-logger

DESCRIPTION
motion-logger is a test program to log motion commands sent from LinuxCNC’s Task module to the
Motion module

It is largely used by the regression tests and is poorly documented.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

108 2020-08-26 LinuxCNC Documentation

moveoff_gui(1) LinuxCNC moveoff_gui(1)

NAME

moveoff_gui — a gui for the moveoff component

SYNOPSIS
moveoff_gui [--help | —— -h | -?]

moveoff_gui [options]

DESCRIPTION
Moveoff_gui is a sample graphical user interface (GUI) for controlling a Hal moveoff component to
implement Hal-only offsets. See the manpage (man moveoff) for IMPORTANT limitations and
warnings.

Supported configurations must use a known kinematics module with KINEMATICS_TYPE =
KINEMATICS_IDENTITY. The modules currently supported are:
trivkins

OPTIONS
—help | -? | -—-h
Show options and exit

—mode onpause | always
onpause: popup gui to control offsets when program paused
always: show gui to control offsets always
Default: onpause

—axes axisnames
Letters from setof {xyzabcuvw}
Examples: —axes X, —axes Xyz, —axes Xz (no spaces)
Default: xyz

—inc incrementvalue
Specify one increment value per —inc (up to 4)
Defaults: 0.001 0.01 0.10 1.0

—size integer
Overall gui size is based on font size, typically 8 - 20
Default: 14

—loc center | +x+y
Initial location on screen
Examples: —loc center, —loc +20+100
Default: center

—autoresume
Resume program when move-enable deasserted
Default: notused

—delay delay secs
Delay for autoresume (allow time to restore spindle speed etc) Default: §

LinuxCNC Documentation 2014-12-18 109

moveoff_gui(1) LinuxCNC moveoff_gui(1)

OTHER OPTIONS

These options are available for special cases:

—noentry
Disables creation of entry widgets
Default: notused

—no_resume_inhibit
Disable use of resume—inhibit to controlling gui
Default: notused

—no_pause_requirement
Disable check for halui.program.is—paused
Default: notused

—no_cancel_autoresume
Useful for retracting offsets with simple external controls
Default: notused

—no_display
Use when both external controls and and external displays are in use
Default: notused

NOTES

LinuxCNC must be running.

Halui must be loaded, typical ini file setting:
[HALJHALUI = halui.

The moveoff component must be loaded with the name 'mv’ as:
loadrt moveoff names=myv personality=number_of_axes

If the pin mv.motion—enable is not connected when moveoff_gui is started, controls will be provided to
enable offsets and set offset values. If the pin is connected, only a display of offsets is shown and control
must be made by external Hal connections.

If a pin named *.resume—inhibit exists and is not connected, it will be set while offsets are applied. This
pin may be provided by the controlling linuxcnc gui in use. Use of the pin may be disabled with the option
—no_resume_inhibit.

The —autoresume option uses halui.program.resume to automatically resume program execution when the
move—enable pin is deactivated and all offsets are removed. The resume pin is not activated until an
additional interval (—delay delay_secs) elapses. This delay interval may be useful for restarting related
equipment (a spindle motor for example) While timing the delay, a popup is offered to cancel the
automatic program resumption.

USAGE

110

The ini file in the configuration directory must provide HALFILEs to loadrt the moveoff component,
connect its pins, and addf its read and write functions in the proper order. These steps can be done at
runtime using an existing configuration ini file and specifying a system library HALFILE
hookup_moveoff.tcl as illustrated below:

[HAL]
HALUI = halui
HALFILE = user_halfile 1

2014-12-18 LinuxCNC Documentation

moveoff_gui(1) LinuxCNC moveoff_gui(1)

etc ...
HALFILE = user_halfile_n
HALFILE = LIB:hookup_moveoff.tcl

The hookup_moveoff.tcl halfile will use ini file settings for the moveoff component control pins:

[OFFSET]

EPSILON =
WAYPOINT_SAMPLE_SECS =
WAYPOINT_THRESHOLD =
BACKTRACK_ENABLE =

The hookup_moveoff.tcl will use ini file settings for the moveoff per-axis limits:

[AXIS_m]
OFFSET_MAX_VELOCITY =
OFFSET_MAX_ACCELERATION =
OFFSET_MAX_LIMIT =
OFFSET_MIN_LIMIT =

The moveoff_gui program should be specified in the APPLICATIONS stanza of the ini file, for example:

[APPLICATIONS]
DELAY = delay_in_secs_to_allow_hal_connections
APP = moveoff_gui —optionl —option2 ...

SEE ALSO

Simulation configurations that demonstrate the moveoff_gui and the moveoff component are located in:

configs/sim/axis/moveoff (axis-ui)
configs/sim/touchy/ngcgui (touchy-ui)

man page for the moveoff component:moveoff(9)

LinuxCNC Documentation 2014-12-18 111

NGCGUI(1) The Enhanced Machine Controller NGCGUI(1)

NAME

ngcgui — a framework for conversational G-code generation on the controller

SYNOPSIS

ngcgui

DESCRIPTION
ngcgui details: http://linuxcnc.org/docs/html/gui/ngcgui.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

112 2020-08-26 LinuxCNC Documentation

PANELUI(1) The Enhanced Machine Controller PANELUI(1)

NAME

panelui — short description

SYNOPSIS

panelui

DESCRIPTION
panelui is a userspace component to interface buttons to linuxcnc or HAL. It decodes MESA 7173 style
key-scan codes and calls the appropriate routine. It gets input from a realtime component - sampler.
Sampler gets it’s input from either the MESA 7i73 or sim_matrix_kb component. Panelui is configurable
using an INI style text file to define button types, HAL pin types, and/or commands.

Full documentation can be found in the HTML or PDF docs: http://linuxcnc.org/docs/html/gui/panelui.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 113

pmx485(1) LinuxCNC Documentation pmx485(1)

NAME

pmx485 — Modbus communications with a Powermax Plasma Cutter

SYNOPSIS
loadusr -Wn pmx485 pmx485 /dev/ttyUSB0

DESCRIPTION
pmx485 is a userspace HAL component to communicate with a Hypertherm Powermax plasma cutter using
the Modbus ASCII protocol over RS485.

See the Drivers section of the LinuxCNC Documentation for more information on pmx485

AUTHOR
Phillip Carter

LICENSE
GPL

114 Feb 1 2020 Powermax Modbus Communications

PNCCONEF(1) The Enhanced Machine Controller PNCCONEF(1)

NAME

pncconf — configuration wizard for Mesa cards

SYNOPSIS

pncconf

DESCRIPTION

pncconf is used to configure systems that use Mesa cards.

Details:

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 115

puma560gui(1) The Enhanced Machine Controller puma560gui(l)

NAME
puma560agui — Vismach Virtual Machine GUI

DESCRIPTION

pumaS60gui is one of the sample Vismach GUIs for LinuxCNC, simulating a Puma 560 robot arm.
See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

116 2020-08-26 LinuxCNC Documentation

pumagui(l) The Enhanced Machine Controller pumagui(l)

NAME
pumagui — Vismach Virtual Machine GUI

DESCRIPTION

pumagui is one of the sample Vismach GUIs for LinuxCNC, simulating a generic Puma style robot arm.
See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 117

PYNGCGUI(1) The Enhanced Machine Controller PYNGCGUI(1)

NAME

pyngcgui — python implementation of ngcgui
SYNOPSIS

pyngcgui

DESCRIPTION

pyngcgui is an alternative implenentation of ngcgui:

SEE ALSO
ngcgui LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

118 2020-08-26 LinuxCNC Documentation

PYUI(1) The Enhanced Machine Controller PYUI(1)

NAME

pyui — utility for panelui

SYNOPSIS

loadusr pyui

DESCRIPTION

pyui Validates panelui.ini files

This will read, try to correct, then save the panelui.ini file. It will print errors to the terminal if found.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 119

PYVCP(1) The Enhanced Machine Controller PYVCP(1)

NAME
pyvep — Virtual Control Panel for LinuxCNC
SYNOPSIS
pyvep [-g WxH+X+Y] [-c component—name] myfile.xml
OPTIONS
—-g WxH+X+Y
This sets the initial geometry of the root window. Use "WxH’ for just size, *+X+Y" for just
position, or "WxH+X+Y’ for both. Size / position use pixel units. Position is referenced from top
left.
—c component-name
Use component-name as the HAL component name. If the component name is not specified, the
basename of the xml file is used.
SEE ALSO

Python Virtual Control Panel in the LinuxCNC documentation for a description of the xml syntax, along
with examples

120 2007-04-01 LinuxCNC Documentation

PYVCP_DEMO(1) The Enhanced Machine Controller

NAME

pyvep_demo — Python Virtual Control Panel demonstration component

SYNOPSIS
pyvep_demo

DESCRIPTION

pyvep_demo is mainly used by sample configurations.

USAGE

pyvep_demo filenamel.xml filename2.hal [compname]

If not provided, use compname == pyvcp

SEE ALSO
LinuxCNC(1)

PYVCP_DEMO(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,

found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.

This is free software; see the source for copying conditions. There is NO warranty; not even for

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26

121

QTVCP(1) The Enhanced Machine Controller QTVCP(1)

NAME

qtvep — QT based virtual control panels
SYNOPSIS

qtvep

DESCRIPTION

qtvep is a system for creating user interfaces for LinuxCNC.

Full documentation at http://linuxcnc.org/docs/html/gui/qtvep.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

122 2020-08-26 LinuxCNC Documentation

rotarydelta(1) The Enhanced Machine Controller rotarydelta(1)

NAME
rotarydelta — Vismach Virtual Machine GUI

DESCRIPTION
rotarydelta is one of the sample Vismach GUIs for LinuxCNC, simulating a delta robot with rotary
actuators

See the main LinuxCNC documentation for more details. http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 123

RS274(1)

NAME

The Enhanced Machine Controller

rs274 — standalone G-code interpreter

SYNOPSIS
rs274 [-p interp.so] [-t tool.tbl] [-v var-file.var] [-n O|1|2]

[-b] [-s] [-g] [input file [output file]]

DESCRIPTION

rs274 Standalone G-code intepreter interface

Usage: rs274 [-p interp.so] [-t tool.tbl] [-v var-file.var] [-n O[1|2]

Example

[-b] [-s] [-g] [input file [output file]]

-p: Specify the pluggable interpreter to use
-t: Specify the .tbl (tool table) file to use
-v: Specify the .var (parameter) file to use
-n: Specify the continue mode:
0: continue
1: enter MDI mode
2: stop (default)
-b: Toggle the *block delete’ flag (default: OFF)
-s: Toggle the ’print stack’ flag (default: OFF)
-g: Toggle the "go (batch mode)’ flag (default: OFF)
-i: specify the .ini file (default: no ini file)
-T: call task_init()
-1: specify the log_level (default: -1)

RS274(1)

To see the output of a loop for example we can run rs274 on the following file and see that the loop never
ends. To break out of the loop use Ctrl Z. The following two files are needed to run the example.

test.ngc

#<test> = 123.352
0101 while [[#<test> MOD 60 | NE 0]
(debug #<test>)

#<test> = [#<test> + 1]

101 endwhile
M2

test.tbl

T1P1Z70.511D0.125 ;1/8 end mill
T2 P2 70.1 D0.0625 ;1/16 end mill
T3 P3 Z1.273 D0.201 ;#7 tap drill

command

1s274 -g test.ngc -t test.tbl

124

2020-08-26

LinuxCNC Documentation

RS274(1) The Enhanced Machine Controller RS274(1)

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 125

RTAPI_APP(1) The Enhanced Machine Controller RTAPI_APP(1)

NAME

rtapi_app — short description
SYNOPSIS

rtapi_app

DESCRIPTION

rtapi_app Creates a simulated real time environment

Used for loading real time modules on systems without real time (for simulation)

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

126 2020-08-26 LinuxCNC Documentation

scaragui(1) The Enhanced Machine Controller scaragui(1)

NAME
scaragui — Vismach Virtual Machine GUI

DESCRIPTION
scaragui is one of the sample Vismach GUIs for LinuxCNC, simulating a SCARA style robot arm.

See the main LinuxCNC documentation for more details.

http://linuxcnc.org/docs/html/gui/vismach.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 127

SCHEDRMT(1) The Enhanced Machine Controller SCHEDRMT(1)

NAME
schedrmt — telnet based scheduler for LinuxCNC

SYNOPSIS

schedrmt

DESCRIPTION
schedrmt {-- --port <port number> --name <server name> --connectpw <password>
--enablepw <password> --sessions <max sessions> --path <path>
-ini<inifile> }

With -- --port Waits for socket connections (Telnet) on specified socket, without port
uses default port 5007.
With -- --name <server name> Sets the server name to specified name for Hello.
With -- --connectpw <password> Sets the connection password to *password’. Default EMC
With -- --enablepw <password> Sets the enable password to "password’. Default EMCTOO
With -- --sessions <max sessions> Sets the maximum number of simultaneous connextions
to max sessions. Default is no limit (-1).
With -- --path Sets the base path to program (G-Code) files, default is "../../nc_files/".
Make sure to include the final slash (/).
With -- -ini <inifile>, uses inifile instead of emc.ini.

There are six commands supported, Where the commands set and get contain EMC
specific sub-commands based on the commands supported by emcsh, but where the "emc_
is omitted. Commands and most parameters are not case sensitive. The exceptions are
passwords, file paths and text strings.

The supported commands are as follows:
==> HELLO <==

Hello <password> <client> <version>
If a valid password was entered the server will respond with

HELLO ACK <Server Name> <Server Version>

Where server name and server version are looked up from the implementation.
if an invalid password or any other syntax error occurs then the server
responds with:

HELLO NAK

==> Get <==

The get command includes one of the emc sub-commands, described below and
zero or more additional parameters.

==> Set <==

The set command inclides one of the emc sub-commands, described below and
one or more additional parameters.

==> Qult <==

The quit command disconnects the associated socket connection.

128 2020-08-26 LinuxCNC Documentation

SCHEDRMT(1) The Enhanced Machine Controller SCHEDRMT(1)

==> Shutdown <==

The shutdown command tells EMC to shutdown before quitting the connection. This
command may only be issued if the Hello has been successfully negotiated and the
connection has control of the CNC (see enable sub-command below). This command
has no parameters.

==> Help <==

The help command will return help information in text format over the telnet
connection. If no parameters are specified, it will itemize the available commands.
If a command is specified, it will provide usage information for the specified
command. Help will respond regardless of whether a "Hello" has been
successsfully negotiated.

EMC sub-commands:

echo on | off

With get will return the current echo state, with set, sets the echo

state. When echo is on, all commands will be echoed upon receipt. This
state is local to each connection.

verbose on | off

With get will return the current verbose state, with set, sets the

verbose state. When in verbose mode is on, all set commands return

positive acknowledgement in the form SET <COMMAND> ACK. In addition,
text error messages will be issued when in verbose mode. This state

is local to each connection.

enable <pwd> | off

With get will return On or Off to indicate whether the current connection
is enabled to perform control functions. With set and a valid password,
the current connection is enabled for control functions. "OFF" may not
be used as a password and disables control functions for this connection.

config [TBD]

comm_mode ascii | binary

With get, will return the current communications mode. With set, will
set the communications mode to the specified mode. The binary protocol
is TBD.

comm_prot <version no>

With get, returns the current protocol version used by the server,
with set, sets the server to use the specified protocol version,
provided it is lower than or equal to the highest version number
supported by the server implementation.

INIFILE
Returns the path and file name of the current configuration inifile.

plat
Returns the platform for which this was compiled, e.g., linux_2_0_36

LinuxCNC Documentation 2020-08-26 129

SCHEDRMT(1) The Enhanced Machine Controller SCHEDRMT(1)

ini <var> <section>
Returns the string value of <var> in section <section>, in EMC_INIFILE

debug {<new value>}

With get, returns the integer value of EMC_DEBUG, in the EMC. Note that

it may not be true that the local EMC_DEBUG variable here (in emcsh and
the GUIs that use it) is the same as the EMC_DEBUG value in the EMC. This
can happen if the EMC is started from one .ini file, and the GUI is started
with another that has a different value for DEBUG.

With set, sends a command to the EMC to set the new debug level,

and sets the EMC_DEBUG global here to the same value. This will make

the two values the same, since they really ought to be the same.

QMode <mode>
stop | run | pause | resume (Set only) | error (Get only)

non non

With no arg, returns the program queue status as "stop", "run", "pause” or "error". Otherwise,

non

sends a command to set the current mode to "stop", "run" or "pause".

QStatus <Queue Size> <First Tag Id> <Last Tag Id> <Queue CRC>

Get only, returns then number of programs in queue (Queue Size), the Tag id of the first
program in the queue, the Tag id of the last program in the queue, and the CRC of all
of the Tag Ids in the queue. The actual calculation of the CRC is not important, the
purpose is to be able to compare the current CRC with the previous CRC. If they

differ, then there has been a change to the size or order of the programs in queue.

AutoTagld <Start 1d>
With get, returns the next autoincremented unique tag id to associate with a queue record.
With set, resets auto tag generation to begin at the specified value.

PgmAdd <priority> <tag id> <x> <y> <z> <zone> <file name> <feed override> <spindle override>
<tool>

With set, adds a program to the queue with priority of the program, a unique tag identifying the

program, the X, y and z offsets or zone for the origin of the program, the path + file name, the

feed and spindle overrides to apply, and the default tool to use. If tag id is zero, the tag id

will be generated automatically. If zone is zero, then the x, y, and z offsets will be used,

otherwise zones 1 to 9 correspond to G54 to G59.3 respectively.

PgmByld <tag id>

[priority] [tag id] [x] [y] [z] [zone] [file name] [feed override] [spindle override] [tool]

With get, returns the queue entry matching the specified tag id, including the priority,

tag id, X, y, and z coordinates, the zone, file name, feed and spindle overrides and the default
tool.

PgmBylndex <index>

[priority] [tag id] [x] [y] [z] [zone] [file name] [feed override] [spindle override] [tool]

With get, returns the queue entry matching the specified index into the queue, including the priority,
tag id, X, y, and z coordinates, the zone, file name, feed and spindle overrides and the default

tool.

PgmAll
With get, performs effectively a PgmByIndex for every entry in the queue. Each result will be
returned in the form: "PGMBYINDEX ..." with cr If at the end of each record.

PriorityByld <tag id> <priority>

130 2020-08-26 LinuxCNC Documentation

SCHEDRMT(1) The Enhanced Machine Controller SCHEDRMT(1)

With get, returns the priority of the queue entry matching the specified tag. With set, changes the
priority of the queue entry to the specified priority.

PriorityByIndex <tag id> <priority>
With get, returns the priority of the queue entry matching the specified index into the queue. With
set, changes the priority of the queue entry to the specified priority.

DeleteByld <tag id>
With set, deletes the queue entry matching the specified tag id.

DeleteByIndex <index>
With set, deletes the queue entry matching the specified index into the queue.

PollRate <rate>
With set, sets the rate at which the scheduler polls for information. The default is 1.0 or one
second. With get, returns the current poll rate.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 131

scorbot-er-3(1) The Enhanced Machine Controller scorbot-er-3(1)

NAME
scorbot-er-3 — to link the Intellitek Scorbot educational robot to LinuxCNC

DESCRIPTION
scorbot-er-3 is a userspace, non-realtime component that interfaces the control box of a Scorbot ER-3
robot arm to the LinuxCNC HAL.

Joint 0O: rotation around the base

Joint 1: shoulder

Joint 2: elbow

Joint 3: wrist (+ is wrist up & rotate hand)
Joint 4: wrist (+ is wrist down & rotate hand)
Joint 5: unused

Joint 6: unused

Joint 7: hand open/close (+ is close)

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

132 2020-08-26 LinuxCNC Documentation

SHUTTLE(1) HAL User’s Manual SHUTTLE(1)

NAME

shuttle — control HAL pins with the ShuttleXpress or ShuttlePRO device made by Contour Design

SYNOPSIS

loadusr shuttle [DEVICE ...]

DESCRIPTION

UDEV

shuttle is a non-realtime HAL component that interfaces Contour Design’s ShuttleXpress and ShuttlePRO
devices with LinuxCNC’s HAL.

If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
Shuttle devices, and use all devices found. If it is started with command-line arguments, it will only probe
the devices specified.

The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

The ShuttlePRO has 13 momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

The shuttle driver needs read permission to the Shuttle devices’ /dev/hidraw* device files. This can be
accomplished by adding a file /etc/udev/rules.d/99-shuttle.rules, with the following contents:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0020", MODE="0444"
SUBSYSTEM=="hidraw", ATTRS{idVendor}=="05f3", ATTRS {idProduct}=="0240", MODE="0444"

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging, you’ll need to install this file by hand.

A warning about the Jog Wheel

Pins

The Shuttle devices have an internal 8-bit counter for the current jog-wheel position. The shuttle driver can
not know this value until the Shuttle device sends its first event. When the first event comes into the driver,
the driver uses the device’s reported jog-wheel position to initialize counts to 0.

This means that if the first event is generated by a jog-wheel move, that first move will be lost.

Any user interaction with the Shuttle device will generate an event, informing the driver of the jog-wheel
position. So if you (for example) push one of the buttons at startup, the jog-wheel will work fine and notice
the first click.

All HAL pin names are prefixed with the type of device followed by the index of the device (the order in
which the driver found them), for example "shuttlexpress.0" or "shuttlepro.2".

(bit out) (prefix).button-(number)
(bit out) (prefix).button-(number)-not
The momentary buttons. "(number)" identifies which button corresponds

to the HAL pin. The "button-(number)" pins are True when the button
is pushed, the "button-(number)-not" pins are True when the button

LinuxCNC Documentation 2011-01-13 133

SHUTTLE(1) HAL User’s Manual SHUTTLE(1)

is not pushed.

(s32 out) (prefix).counts

Accumulated counts from the jog wheel (the inner wheel).

(s32 out) (prefix).spring-wheel-s32

The current deflection of the spring-wheel (the outer wheel).
It’s O at rest, and ranges from -7 at the counter-clockwise
extreme to +7 at the clockwise extreme.

(float out) (prefix).spring-wheel-f

The current deflection of the spring-wheel (the outer wheel).

It’s 0.0 at rest, -1.0 at the counter-clockwise extreme, and +1.0 at
the clockwise extreme. (The Shuttle devices report the spring-wheel
position as an integer from -7 to +7, so this pin reports only 15
discrete values in its range.)

134 2011-01-13 LinuxCNC Documentation

sim_pin(1) LinuxCNC sim_pin(1)

NAME

sim_pin — gui for displaying and setting one or more Hal inputs

SYNOPSIS

sim_pin /[Options] namel [name2 [name3 ...]]

Options:
——help (shows help text)
——title title_string

For bit items, the name may include a /mode= specifier:
namei/mode=[pulse | toggle | hold]
(default is toggle)

DESCRIPTION

Hal boolean items (bit) and numerical items (u32, s32, float) are supported.

If the named input is a numerical type, the gui displays:

Entry Entry widget for value or a valid Tcl expression.
Set Pushbutton to set new value from Entry (or use <RETURN>)
Reset Pushbutton to reset to the value present on initiation

If the input is a bit type, the gui shows a single pushbutton that is controlled by radio—button selectors:

mode=pulse Pulse input to 1 for each pushbutton press
mode=toggle Toggle input for each pushbutton press
mode=hold Set input to 1 while pushbutton pressed

If the bit item mode begins with an uppercase letter, the radio buttons for selecting other modes are not
shown

NOTE

LinuxCNC or a standalone Hal application must be running
A named item can specify a pin, param, or signal. The named item must be writable:

pin IN or I/O (and not connected to a signal with a writer)
param RW
signal connected to a writable pin

USAGE
sim_pin can be used interactively from a shell command line or started automatically from a configuration
ini file.

EXAMPLE

Example for ini file usage:

[APPLICATIONS]

DELAY =5

APP = sim_pin \
halui.machine.off/mode=pulse \
ini.traj_arc_blend_enable \
motion—command—handler—tmax

LinuxCNC Documentation 2014-12-18 135

sim_pin(1) LinuxCNC sim_pin(1)

136 2014-12-18 LinuxCNC Documentation

SIMULATE_PROBE(1) The Enhanced Machine Controller SIMULATE_PROBE(1)

NAME

simulate_probe — simulate a probe input

SYNOPSIS

simulate_probe

DESCRIPTION
simulate_probe Creates an on-screen GUI button to simulate touch probe input. Typically used in sim
configs or debugging.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 137

STEPCONEF(1) The Enhanced Machine Controller STEPCONEF(1)

NAME

stepconf — A configuration wizard for parallel-port based machines.

SYNOPSIS

stepconf

DESCRIPTION

stepconf aids in the configuration of machines using the parallel port interface.

Detailed docs: http://linuxcnc.org/docs/html/config/stepconf.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

138 2020-08-26 LinuxCNC Documentation

TEACH-IN(1) The Enhanced Machine Controller TEACH-IN(1)

NAME

teach-in — jog the machine to a position, and record the state

SYNOPSIS
teach-in [> outfile]

DESCRIPTION

teach-in is a script to learn set positions for later use by a script.

A dialog box is shown with options to choose the coordinate system. each press of the "Learn" button
outputs a line of text to stdout or the file chosen at load time. line format: line-no X Y Z flood mist lube
spindle

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 139

THERMISTOR(1) HAL Component THERMISTOR(1)

NAME

thermistor — compute temperature indicated by a thermistor

SYNOPSIS

thermistor

DESCRIPTION
This component computes the temperature indicated by a thermistor in a voltage-divider ladder. It uses the
Beta-parameter variant of the Steinhart-Hart equation, described here:

http://en.wikipedia.org/wiki/Thermistor
PINS

thermistor.N.t0-c float in
Reference temperature of the thermistor, in degrees Celsius (typically 25 C). This must be set
before the component can compute the thermistor temperature. The reference temperature
information is supplied by the thermistor manufacturer.

thermistor.N.r0 float in
Resistance of the thermistor at the reference temperature. This must be set before the component
can compute the thermistor temperature. The reference resistance information is supplied by the
thermistor manufacturer.

thermistor.N.beta float in
Beta parameter of the thermistor (sometimes just called B). This must be set before the
component can compute the thermistor temperature. The Beta parameter is supplied by the
thermistor manufacturer.

thermistor.N.r-other float in
Resistance of the other resistor in the voltage-divider ladder. This must be set before the
component can compute the thermistor temperature.

thermistor.N.v-total float in
Supply voltage of the voltage-divider ladder.

thermistor.N.v-thermistor float in
Voltage drop across the termistor.

thermistor.N.temperature-c float out
Temperature sensed by the thermistor, in degrees Celsius.

thermistor.N.temperature-k float out
Temperature sensed by the thermistor, in Kelvins.

thermistor.N.temperature-f float out
Temperature sensed by the thermistor, in degrees Fahrenheit.

thermistor.N.resistance float out
Computed resistance of the thermistor.

LICENSE
GPL

140 2020-09-04 LinuxCNC Documentation

TOOLEDIT(1) The Enhanced Machine Controller TOOLEDIT(1)

NAME

tooledit — tool table editor

SYNOPSIS
tooledit

DESCRIPTION
tooledit a graphical tool table editor

details: http://linuxcnc.org/docs/html/gui/tooledit.html

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 141

TOUCHY(1) The Enhanced Machine Controller TOUCHY((1)

NAME
axis — TOUCHY LinuxCNC Graphical User Interface
SYNOPSIS
touchy —ini INIFILE
DESCRIPTION
touchy is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript usually.
OPTIONS
INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is,
however, the most important one, because it is the file that holds the configuration together. It can
adjust a lot of parameters itself, but it also tells LinuxCNC which other files to load and use.
SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

142 2020-08-26 LinuxCNC Documentation

UPDATE_INI(1) The Enhanced Machine Controller UPDATE_INI(1)

NAME

update_ini — A script to convert 2.7 format .ini files to 2.8 format

SYNOPSIS
update_ini [-f] [-d] inifile

DESCRIPTION
update_ini is run automatically by the "linuxcnc" script when an INI file in the pre-joints-axes format is
opened.

-d causes a dialog box to be shown asking if the script should be run

-f is designed for auto-conversion and will not create the backup files

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 143

vidb_vfd(1) LinuxCNC Documentation vidb_vfd(1)

NAME
vfdb_vfd — HAL userspace component for Delta VFD-B Variable Frequency Drives

SYNOPSIS
vidb_vfd [OPTIONS]

DESCRIPTION
This manual page explains the vfdb_vfd component. This component reads and writes to the VFD-B
device via a Modbus connection.

vidb_vfd is for use with Linux CNC.

QUICK START
The VFD-B ships in a configuration that can not talk to this driver. The VFD-B must be reconfigured via
the face plate by the integrator before it will work. This section gives a brief description of what changes
need to be made, consult your Delta VFD-B manual for more details.
Switch the VFD-B to Modbus RTU frame format:
Switch parameter 09-04 from the factory default of O (Ascii framing) to 3, 4, or 5 (RTU

framing). The setting you choose will determine several serial parameters in addition to
the Modbus framing protocol.

Set the frequency control source to be Modbus, not the keypad:

Switch parameter 02-00 from factory default of 00 (keypad control) to 5 (control from
RS-485).

Set the run/stop control source to be Modbus, not the keypad:

Switch parameter 02-01 from the factory default of O (control from keypad) to 3 (control
from Modbus, with Stop enabled on the keypad).

OPTIONS
—n ——name <halname>
set the HAL component name

—d ——debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfdb_vfd process.
—m ——modbus—debug

Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex
on the terminal. Also toggled by sending a USR2 signal to the vfdb_vfd process.

—I —ini <inifilename>

take configuration from this ini file. Defaults to environment variable INI_FILE_NAME. Most
vfdb_vfd configuration comes from the ini file, not from command-line arguments.

—S ——section <section name>

take configuration from this section in the ini file. Defaults to *VFD-B’.
—-r ——report—device

report device propertiers on console at startup

INI CONFIG VARIABLES
DEBUG

Set to a non-zero value to enable general debug output from the VFD-B driver. Optional.
MODBUS_DEBUG
Set to a non-zero value to enable modbus debug output from the VFD-B driver. Optional.

144 September 19, 2009 VFD-B VFD

vidb_vfd(1) LinuxCNC Documentation vidb_vfd(1)

PINS

DEVICE
Serial port device file to use for Modbus communication with the VFD-B. Defaults to
’/dev/ttySO’.

BAUD Modbus baud rate. Defaults to 19200.
BITS Modbus data bits. Defaults to 8.

PARITY
Modbus parity. Defaults to Even. Accepts ’Even’, ’Odd’, or ’None’.

STOPBITS
Modbus stop bits. Defaults to 1.

TARGET
Modbus target number of the VFD-B to speak to. Defaults to 1.

POLLCYCLES
Only read the less important variables from the VFD-B once in this many poll cycles. Defaults to
10.

RECONNECT_DELAY
If the connection to the VFD-B is broken, wait this many seconds before reconnecting. Defaults
to 1.

MOTOR_HZ, MOTOR_RPM
The frequency of the motor (in Hz) and the corresponding speed of the motor (in RPM). This
information is provided by the motor manufacturer, and is generally printed on the motor’s name
plate.

<name>.at-speed (bit, out)
True when drive is at commanded speed (see speed—tolerance below)

<name>.enable (bit, in)
Enable the VFD. If False, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.frequency—command (float, out)
Current target frequency in HZ as set through speed—command (which is in RPM), from the VFD.

<name>.frequency—out (float, out)
Current output frequency of the VFD.

<name>.inverter—load—percentage (float, out)
Current load report from VFD.

<name>.is—e—stopped (bit, out)
The VFD is in emergency stop status (blinking "E" on panel).

<name>.is—stopped (bit, out)
True when the VFD reports 0 Hz output.

<name>.jog—mode (bit, in)
1 for ON and 0 for OFF, enables the VFD-B ’jog mode’. Speed control is disabled. This might be
useful for spindle orientation.

<name>.max-rpm (float, out)
Actual RPM limit based on maximum frequency the VFD may generate, and the motors
nameplate values. For instance, if nameplate—HZ is 50, and nameplate—RPM is 1410, but the
VFED may generate up to 80Hz, then max—rpm would read as 2256 (80%1410/50). The frequency
limit is read from the VFD at startup. To increase the upper frequency limit, the UL and FH
parameters must be changed on the panel. See the VFD-B manual for instructions how to set the
maximum frequency.

VFD-B VFD September 19, 2009 145

vidb_vfd(1) LinuxCNC Documentation vidb_vfd(1)

<name>.modbus-ok (bit, out)
True when the Modbus session is successfully established and the last 10 transactions returned
without error.

<name>.motor—RPM (float, out)
Estimated current RPM value, from the VFD.

<name>.motor—RPS (float, out)
Estimated current RPS value, from the VFD.

<name>.output—voltage (float, out)
From the VFD.

<name>.output—current (float, out)
From the VFD.

<name>.speed—command (float, in)
Speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in
the VFD.

<name>.spindle—on (bit, in)
1 for ON and 0 for OFF sent to VFD, only on when running.

<name>.max-speed (bit, in)
Ignore the loop-time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

<name>.status (s32, out)
Drive Status of the VFD (see the VFD manual). A bitmap.

<name>.error—count (s32, out)
Total number of transactions returning a Modbus error.

<name>.error—code (s32, out)
Most recent Error Code from VFD.

<name>.frequency-limit (float, out)
Upper limit read from VFD setup.

PARAMETERS
<name>.loop-time (float, RW)
How often the Modbus is polled (default interval 0.1 seconds).

<name>.nameplate—HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate—RPM) for a target RPM value as given by speed—command.

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm-limit (float, RW)
Do-not-exceed soft limit for motor RPM (defaults to nameplate—RPM).

<name>.tolerance (float, RW)
Speed tolerance (default 0.01) for determining whether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency).

USAGE
The vfdb_vfd driver takes precedence over panel control while it is enabled (see .enable pin), effectively
disabling the panel. Clearing the .enable pin re-enables the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

146 September 19, 2009 VFD-B VFD

vidb_vfd(1) LinuxCNC Documentation vidb_vfd(1)

Exiting the vfdb_vfd driver in a controlled way will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the Delta
VED-B, see the VFD manual.

AUTHOR
Yishin Li; based on vfd11_vfd by Michael Haberler.

LICENSE
GPL

VFD-B VFD September 19, 2009 147

vis11_vfd(1) LinuxCNC Documentation vis11_vfd(1)

NAME
vfs11_vfd — HAL userspace component for Toshiba-Schneider VF-S11 Variable Frequency Drives

SYNOPSIS
vis11_vfd [OPTIONS]

DESCRIPTION
This manual page explains the vfs11_vfd component. This component reads and writes to the vfs11 via a
Modbus connection.

vfs11_vfd is for use with LinuxCNC.

OPTIONS
—n ——name <halname>
set the HAL component name

—d ——debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfs11_vfd process.

—m ——modbus—debug
Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex
on the terminal. Also toggled by sending a USR2 signal to the vfs11_vfd process.

—I —ini <inifilename>
take configuration from this ini file. Defaults to environment variable INI_FILE_NAME.

—S ——section <section name>
take configuration from this section in the ini file. Defaults to "VFS11°.

—-r ——report—device
report device propertiers on console at startup

PINS
<name>.acceleration—pattern (bit, in)
when true, set acceleration and deceleration times as defined in registers F500 and F501
respecitvely. Used in PID loops to choose shorter ramp times to avoid oscillation.

<name>.alarm-code (s32, out)
non-zero if drive is in alarmed state. Bitmap describing alarm information (see register FC91
description). Use err—reset (see below) to clear the alarm.

<name>.at-speed (bit, out)
when drive is at commanded speed (see speed—tolerance below)

<name>.current—-load—percentage (float, out)
reported from the VFD

<name>.dc-brake (bit, in)
engage the DC brake. Also turns off spindle—on.

<name>.enable (bit, in)
enable the VFD. If false, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.err-reset (bit, in)
reset errors (alarms a.k.a Trip and e-stop status). Resetting the VFD may cause a 2-second delay
until it’s rebooted and Modbus is up again.

<name>.estop (bit, in)
put the VFD into emergency-stopped status. No operation possible until cleared with err—reset or
powercycling.

148 September 19, 2009 vfs11 VFD

vis11_vfd(1) LinuxCNC Documentation vis11_vfd(1)

<name>.frequency—command (float, out)
current target frequency in HZ as set through speed—command (which is in RPM), from the VFD

<name>.frequency—out (float, out)
current output frequency of the VFD

<name>.inverter—load—percentage (float, out)
current load report from VFD

<name>.is—e—stopped (bit, out)
the VFD is in emergency stop status (blinking "E" on panel). Use err—reset to reboot the VFD and
clear the e—stop status.

<name>.is—stopped (bit, out)
true when the VFD reports 0 Hz output

<name>.jog—mode (bit, in)
1 for ON and O for OFF, enables the VF-S11 ’jog mode’. Speed control is disabled, and the output
frequency is determined by register F262 (preset to SHz). This might be useful for spindle
orientation.

<name>.max-rpm (float, R)
actual RPM limit based on maximum frequency the VFD may generate, and the motors nameplate
values. For instance, if nameplate—HZ is 50, and nameplate—RPM__ is 1410, but the VFD may
generate up to 80Hz, then max—rpm would read as 2256 (80*%1410/50). The frequency limit is
read from the VFD at startup. To increase the upper frequency limit, the UL and FH parameters
must be changed on the panel. See the VF-S11 manual for instructions how to set the maximum
frequency.

<name>.modbus-ok (bit, out)
true when the Modbus session is successfully established and the last 10 transactions returned
without error.

<name>.motor—RPM (float, out)
estimated current RPM value, from the VFD

<name>.output—current—percentage (float, out)
from the VFD

<name>.output—voltage—percentage (float, out)
from the VFD

<name>.output—voltage (float, out)
from the VFD

<name>.speed—command (float, in)
speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in
the VFD

<name>.spindle—fwd (bit, in)

1 for FWD and O for REYV, sent to VFD
<name>.spindle—on (bit, in)

1 for ON and 0 for OFF sent to VFD, only on when running
<name>.spindle-rev (bit, in)

1 for ON and O for OFF, only on when running

<name>.max-speed (bit, in)
ignore the loop—time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

vfs11 VFD September 19, 2009 149

vis11_vfd(1) LinuxCNC Documentation vis11_vfd(1)

<name>.status (s32, out)
Drive Status of the VFD (see the TOSVERT VFE-S11 Communications Function Instruction
Manual, register FDO1). A bitmap.

<name>.trip—code (s32, out)
trip code if VF-S11 is in tripped state.

<name>.error—count (s32, RW)
total number of transactions returning a Modbus error

PARAMETERS
<name>.frequency-limit (float, RO)
upper limit read from VFD setup.

<name>.loop-time (float, RW)
how often the Modbus is polled (default interval 0.1 seconds)

<name>.nameplate—HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate—RPM) for a target RPM value as given by speed—command.

<name>.nameplate—RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm-limit (float, RW)
do-not-exceed soft limit for motor RPM (defaults to nameplate—RPM).

<name>.tolerance (float, RW)
speed tolerance (default 0.01) for determining whether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency)

USAGE
The vfs11_vfd driver takes precedence over panel control while it is enabled (see .enable pin), effectively
disabling the panel. Clearing the .enable pin re-enableds the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

Exiting the vfs11_vfd driver in a controlled will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFD’s, see the "TOSVERT VF-S11 Communications Function Instruction Manual" (Toshiba
document number E6581222) and the "TOSVERT VF-S11 Instruction manual" (Toshiba document number
E6581158).

AUTHOR
Michael Haberler; based on gs2_vfd by Steve Padnos and John Thornton.

LICENSE
GPL

150 September 19, 2009 vfs11 VFD

WI200_VFD(1) HAL Component WI200_VFD(1)

NAME
wj200_vfd — Hitachi wj200 modbus driver

SYNOPSIS
wj200_vfd

PINS
wj200-vfd.N.commanded-frequency float in
Frequency of vfd

wj200-vfd.N.reverse bit in
1 when reverse 0 when forward

wj200-vfd.N.run bit in
run the vfd

wj200-vfd.N.enable bit in
1 to enable the vfd. 0 will remote trip the vfd, thereby disabling it.

wj200-vfd.N.is-running bit out
1 when running

wj200-vfd.N.is-at-speed bit out
1 when running at assigned frequency

wj200-vfd.N.is-ready bit out
1 when vfd is ready to run

wj200-vfd.N.is-alarm bit out
1 when vfd alarm is set

wj200-vfd.N.motor-current float out
Output current in amps

wj200-vfd.N.heatsink-temp float out
Temperature of drive heatsink

wj200-vfd.N.watchdog-out bit out
Alternates between 1 and 0 after every update cycle. Feed into a watchdog component to ensure
vfd driver is communicating with the vfd properly.

PARAMETERS
wj200-vfd.N.mbslaveaddr u32 rw
Modbus slave address

LICENSE
GPLV?2 or greater

LinuxCNC Documentation 2020-09-04 151

XHC-HB04-ACCELS(1) The Enhanced Machine Controller XHC-HB04-ACCELS(1)

NAME
xhc-hb04-accels

SYNOPSIS
xhc-hb04-accels

DESCRIPTION

xhc-hb04-accels Obsolete script, xhc-hb04.tcl now controls reduced wheel jogging accels

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

152 2020-08-26 LinuxCNC Documentation

XHC-HBO04(1) HAL User’s Manual XHC-HBO04(1)

NAME
xhc-hb04 — User-space HAL component for the xhc-hb04 pendant.

DESCRIPTION
The xhc-hb04 component supports a common USB pendant that provides a number of pushbuttons, a
manual pulse generator (mpg or jog wheel), and a selector switch for the wheel.

There are at least two hardware versions -- one with 16 buttons and a more common one with 18 buttons.
The information herein is based on the 18 button device with a USB Vendor:Product code of 10CE:EB70.

In addition to buttons, the pendant provides an LCD display for the current stepsize multiplier (from a set
of available integer values), position (absolute and relative, labeled MC and WC respectively), feedrate
(override percent and value in units per minute), and spindle speed (override percent and value in
revolutions per minute (RPM)). The display is managed by a rotary switch that selects one of four axes for
wheel positioning, feed override, spindle override, or OFF.

The pendant display, its rotary selector switch, and the component pin names use designators x,y,z,a. While
this arrangement presumes a machine configured as XYZA, the pins can be assigned independently as
required in a HAL configuration.

UDEV
The xhc—hb04 executable needs permission for reading the pendant’s USB device. Debian package installs
(debs) handle this automatically but Run-In-Place (RIP) builds may need a udev rules file. This file should
be created (using sudo and a text editor) as:

/etc/udev/rules.d/99—xhc—hb04.rules with the single line:

ATTR{idProduct}=="eb70", ATTR{idVendor}=="10ce", MODE="0666", OWNER="root", GROUP="plugdev"

Standalone Usage
The xhc-hb04 program can be run from the command line without LinuxCNC to test a pendant in a
simulation mode. This standalone mode is used to identify the button codes produced for each button press
and to verify proper counting of the jog wheel. The identified button codes can be used to create a
button—cfg—file. When a button—cfg—file exists, pendant operation can be verified using the —I option to
specify the file.

Usage:

$ xhc—hb04 [options]

Options
—h list command line options and exit
—I button—cfg—file (see below for file format)
—H run in real-time HAL mode (simulation mode is default)
—x wait for pendant detection before creating HAL pins.
—s n n is one of the following stepsize sequences

1: 1,10,100,1000 (default)

2:1,5,10,20

3:1,10,100

4:1,5,10,20,50,100

5:1,10,50,100,1000

The stepsize selected is always multiplied by 0.001

LinuxCNC Documentation 2015-03-06 153

XHC-HBO04(1) HAL User’s Manual XHC-HBO04(1)

button—cfg—file format
Standard configuration files are provided in the distribution for known button configurations:
/usr/share/linuxcnc/hallib/xhc—hb04—-layoutl.cfg
/usr/share/linuxcnc/hallib/xhc—hb04—-layout2.cfg
or for a RIP build:
rip_base_dir/lib/hallib/xhc—hb04—layout1.cfg
rip_base_dir/lib/hallib/xhc—hb04—layout2.cfg

layout] describes the 16 button pendant, layout2 describes the more common 18 button pendant.
The button configuration file follows the same format as ini files but should use a file suffix of .cfg.

File format:
[XHC-HBO04]
BUTTON=X1:button—thename1
BUTTON=X2:button—thename?2
BUTTON=X3:button—thename3
etc.

XN is the code reported for a button press and button—thenameN is the name to be assigned to the pin
created for the button.

Hal Usage
Use the —H option to specify HAL mode and other options as required:

loadusr —W xhc—hb04 —H [Options]

Example: loadusr —W xhce—hb04 —H -1 path_to_cfg_file —s 2

Input Pins (Control)
(bit in) xhc—hb04.stepsize—up A 1 pulse on this pin changes the
stepsize to the next higher stepsize in the stepsize sequence specified in the xhc—hb04 (loadusr)
command.

(bit in) xhc—hb04.stepsize—down A 1 pulse on this pin changes the
stepsize to the next lower stepsize in the stepsize sequence specified in the xhc—hb04 (loadusr)
command.

Input Pins (to the pendant LCD display)
(float in) xhc—hb04.[xyza].pos—absolute Absolule position display.
(typically connect to: halui.axis.N.pos—feedback). The LCD display for pos—absolute is fixed
format with a sign, 4 number digits and 3 fraction digits (+XXXX.XXX), require: =9999.999 <=
value <=9999.999.

(float in) xhc—hb04.[xyza].pos—relative Relative position display.
(typically connect to: halui.axis.N.pos—relative). The LCD display for pos—relative is fixed format
with a sign, 4 number digits and 3 fraction digits (+XXXX.XXX), require: —9999.999 <= value <=
9999.999.

(float in) xhc—hb04.feed—override Feed—override value.
The float value is converted to a 16 bit integer and multiplied by 100 in order to display as percent,
require: 0 <= pinvalue <= 655 (typically connect to: halui.feed—override.value)

154 2015-03-06 LinuxCNC Documentation

XHC-HBO04(1) HAL User’s Manual XHC-HBO04(1)

(float in) xhc—hb04.feed—value Current Feed-value (units/sec).
The float value is converted to a 16 bit integer and multiplied by 60 in order to display as units-
per-minute, require: 0 <= pinvalue <= 1092 (65520 units-per-minute) (typically connect to:
motion.current—vel)

(float in) xhc—hb04.spindle—override Spindle—override value.
The float value is converted to a 16 bit integer and multiplied by 100 in order to display as percent,
require: 0 <= pinvalue <= 655) (typically connect to: halui.spindle—override.value)

(float in) xhc—hb04.spindle—rps Spindle speed in rps.
(revolutions per second). The float value is converted to a 16 bit integer and multiplied by 60 in
order to display as RPMs, require: 0 <= pinvalue <= 1092 (65520 RPM) (typically connect to:
spindle.N.speed—out—rps—abs)

(bit in) xhc—hb04.inch—icon Use inch icon (default is mm)

Output Pins (Status)
(bit out) xhc—hb04.sleeping True when the driver receives a pendant
inactive (sleeping) message.

(bit out) xhc—hb04.jog.enable—off True when the pendant rotary
selector switch is in the OFF position or when the pendant is sleeping.

(bit out) xhc—hb04.enable—[xyza] True when the pendant rotary
selector switch is in the [xyza] position and not sleeping.

(bit out) xhc—hb04.enable—spindle—override True when the pendant
rotary selector switch is in the Spindle position and not sleeping. (typically connect to:
halui.spindle—override—count—enable)

(bit out) xhc—hb04.enable—feed—override True when the pendant rotary
selector switch is in the Feed position and not sleeping. (typically connect to:
halui.feed—override—count—enable)

(bit out) xhc—hb04.connected True when connection to the pendant
is established over the USB interface.

(bit out) xhc—hb04.require_pendant True if driver started with
the —x option.

(s32 out) xhc—hb04.stepsize Current stepsize in the stepsize sequence
as controlled by the stepsize—up and/or stepsize—down pins.

Output Pins (for jogging using axis.N.jog—counts)
(s32 out) xhc—hb04.jog.counts Number of counts of the wheel since
start—up (50 counts per wheel revolution). (typically connect to axis.N.jog—counts (lowpass
filtering may be helpful))

(s32 out) xhc—hb04.jog.counts—neg The value of the
xhc—hb04.jog.counts multiplied by —1.

(float out) xhc—hb04.jog.scale Value is the current stepsize
multiplied by 0.001. (typically connect to axis.N.jog—scale)

Experimental: Pins for halui plus/minus jogging

These pins provide some support for non—trivkins, world mode jogging.

(float in) xhc—hb04.jog.max—velocity Connect to halui.max—velocity.value

LinuxCNC Documentation 2015-03-06 155

XHC-HBO04(1) HAL User’s Manual XHC-HBO04(1)

(float out) xhc—hb04.jog.velocity Connect to halui.jog—speed

(bit out) xhc—hb04.jog.plus—[xyza] Connect to halui.jog.N.plus
(bit out) xhc—hb04.jog.minus—[xyza] Connect to halui.jog.N.minus
(float out) xhc—hb04.jog.increment Debug pin -- abs(delta_pos)

Button output pins (for the 18 button, layout2 pendant)
The output bit type pins are TRUE when the button is pressed.

ROW 1
(bit out) xhc—hb04.button—reset
(bit out) xhc—hb04.button—stop

ROW 2
(bit out) xhc—hb04.button—goto—zero
(bit out) xhc—hb04.button—rewind
(bit out) xhc—hb04.button—start—pause
(bit out) xhc—hb04.button—probe—z

ROW 3
(bit out) xhc—hb04.button—spindle
(bit out) xhc—hb04.button—half
(bit out) xhc—hb04.button—zero
(bit out) xhc—hb04.button—safe—z

ROW 4
(bit out) xhc—hb04.button—home
(bit out) xhc—hb04.button—-macro—1
(bit out) xhc—hb04.button—-macro—2
(bit out) xhc—hb04.button—macro—3

ROW 5
(bit out) xhc—hb04.button—step
(bit out) xhc—hb04.button—-mode
(bit out) xhc—hb04.button—-macro—6
(bit out) xhc—hb04.button—macro—7

Synthesized button pins
Additional buttons are synthesized for buttons named zero, goto—zero, and half. These synthesized
buttons are active when the button is pressed AND the selector—switch is set to the corresponding axis
[xyza].

(bit out) xhc—hb04.button—zero—[xyza]
(bit out) xhc—hb04.button—goto—zero—[xyza]
(bit out) xhc—hb04.button—half-[xyza]

DEBUGGING
For debugging USB activity, use environmental variable LIBUSB_DEBUG:

export LIBUSB_DEBUG=[2 | 3 | 4]; xhc—hb04 [options]
2:warning, 3:info, 4:debug

156 2015-03-06 LinuxCNC Documentation

XHC-HBO04(1) HAL User’s Manual XHC-HBO04(1)

Sim Configs

Author

The distribution includes several simulation configurations in the directory:
/usr/share/doc/linuxcnc/examples/sample—configs/sim/axis/xhc—hb04/

or for a RIP build:
rip_base_dir/configs/sim/axis/xhc—hb04/

These configurations use a distribution-provided script (xhc—hb04.tcl) to configure the pendant and make
necessary HAL connections according to a number of ini file settings. The script uses an additional HAL
component (xhc_hb04_util) to provide common functionality and includes support for a standard method
for the start-pause button.

The settings available include:
1) specify button—cfg—file for standard layoutl or layout2
2) select axes (up to 4 axes fromsetof xyzabcuv w)
3) implement per-axis filtering coeficients
4) implement per-axis acceleration for mpg jogging
5) implement per-axis scale settings
6) select normal or velocity based jog modes
7) select stepsize sequence
8) option to initialize pin for inch or mm display icon
9) option to require pendant on startup

The sim configs illustrate button connections that:
1) connect pendant stepsize—up button to the step input pin.
2) connect buttons to halui.* pins
3) connect buttons to motion.* pins

Another script is included to monitor the pendant and report loss of USB connectivity. See the README
and .txt files in the above directory for usage.

Note: The sim configs use the axis gui but the scripts are available with any HAL configuration or gui. The
same scripts can be used to adapt the xhc—hb04 to existing configurations provided that the halui, motion,
and axis.N pins needed are not otherwise claimed. Instructions are included in README file in the
directory named above.

Use halemd to display the pins and signals used by the xhc—hb04.tcl script:
halemd show pin xhc-hb04 (show all xhc—hb04 pins)
halemd show pin pendant_util (show all pendant_util pins)
halemd show sig pendant: (show all pendant signals)

Frederick Rible (frible @teaser.fr)

LinuxCNC Documentation 2015-03-06 157

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

NAME

xhc-whb04b-6 — Userspace jog dial HAL component for the wireless XHC WHB04B—-6 USB device.

SYNOPSIS

xhc—whb04b—6 [-h] | [-H] [OPTIONS]

DESCRIPTION

The xhc—whb04b—6 HAL component supports the XHC WHBO04B—-6, a 6—axis wireless USB pendant. It
provides a number of push—buttons, a jogwheel, two rotary buttons for axis and speed / step selection and
an ordinary LCD display.

The LCD display, having a very simple firmware interface, indicates the following listed information only.
No other information, such as custom data, can be printed.

Activated axis (X, Y, Z, A, B or C). Current axis position of X, Y, Z and separately of A, B, C. Whether
machine (X, Y, Z, A, B or C) or relative (X1, Y1, Z1, Al, B1 or C1) coordinates are displayed. Step size or
velocity depending on the operating mode (MPG or Step or Continuous). Feedrate override Spindle
Feedrate override Machine state such as reset. Battery level Wireless signal strength

The pendant display, its rotary selector switch, and the component pin names use designators X,y,z,a,b and
c. While this arrangement presumes a machine configured as X, Y, Z, A, B an C, the pins can be assigned
independently as required in a HAL configuration.

OPTIONS

158

—h, —help Prints the synopsis and the most commonly used commands.
—H Run xhc—whb04b—-6 in HAL—mode instead of interactive mode. When in HAL mode commands from
device will be exposed to HAL’s shred memory. Interactive mode is useful for testing device connectivity

and debugging.

—s Lead + jogwheel changes the spindle override speed. Each tick will increase/decrease the spindle
override.

—f MPG + jogwheel changes the feed override. Each tick will increment/decrement the feed override.
-B Add 5Smm and 10mm to Step feedrate output

—t Wait with timeout for USB device then proceed, exit otherwise. Without —t the timeout is implicitly
infinite.

—u, —U Show received data from device. With —U received and transmitted data will be printed. Output is
prefixed with "usb".

—p Show HAL pins and HAL related messages. Output is prefixed with "hal".

—e Show captured events such as button pressed/released, jog dial, axis rotary button, and feed rotary button
event. Output is prefixed with "event".

—a Enable all logging facilities without explicitly specifying each.

—c Enable checksum output which is necessary for debugging the checksum generator function. Do not rely
on this feature since it will be removed once the generator is implemented.

—n Force being silent and not printing any output except of errors. This will also inhibit messages prefixed
with "init".

08/16/2020 LinuxCNC

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

UDEV
The xhc—whb04b—6 executable needs permission for reading the pendant’s USB device. There may be the
need for additional udev rules. If so, this file /etc/udev/rules.d/99—xhc—whb04b—6.rules should be created
with the single line ATTR{idProduct}=="eb93", ATTR {idVendor}=="10ce", MODE="0666",
OWNER="root", GROUP="plugdev".

STANDALONE USAGE
The xhc—whb04b—6 program can be run from the command line without LinuxCNC to test a pendant. This
standalone mode is used to identify the button codes produced for each button press and debug transmitted
USB data.

EXAMPLES
xhc-whb04b-6 —ue
Start in userspace mode (simulation) and prints incoming USB data transfer and generated key
pressed/released events.

xhc-whb04b-6 —p
Start in userspace mode (simulation) and prints HAL pin names and events distributed to HAL
memory.

xhc-whb04b-6 -H
Start in HAL mode (Normal mode for real machine use).

xhc-whb04b-6 —HsfB
Start in HAL mode + Spindle Override + Feedrate Override + Big step 5/10mm).

HAL USAGE
Use the —H option to specify HAL mode and other options as required: loadusr —W xhc—whb04b-6
-HsfB

Input/Output Signals
Note: For each button an output pin is provided even if no functionality is realized with that signal. For
example, to stop a running program the Stop button pin may be directly connected to halui.program.stop.
However, to start/pause/resume a program, the corresponding button toggles besides
whb.button.start—pause also the whb.halui.program.{run,pause,resume} signals accordingly. Note: The
Spindle+/Spindle— buttons do manipulate the spindle override. The spindle speed is set with the respective
combos Fn + Spindle— and FN + Spindle+.

The following tables list all in—/output pins and state which signals they are meant to be connected to.

Axis and Stepgen
Signals utilized for moving axis.

<N> ... denotes the axis number, which is of {x, y, z, a, b, c}

whb.halui.home-all (bit,out)
connect to halui.home-all, driven by M—Home Pin for requesting all axis to home. See also
whb.button.m-home.

whb.halui.axis.<N>.select (bit,out)
connect to halui.axis.<N>.select Pin to select axis.

whb.axis.<N>.jog—counts (s32,out)
connect to axis.<N>.jog—counts The count pin of the jogwheel.

whb.axis.<N>.jog—enable (bit,out)
connect to axis.<N>.jog—enable If true (and in manual mode), any change to "jog—counts" will
result in motion. If false, "jog—counts" is ignored.

whb.axis.<N>.jog—scale (float,out)
connect to axis.<N>.jog—scale The distance to move for each count on "jog—counts", in machine
units.

LinuxCNC 08/16/2020 159

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

whb.axis.<N>.jog—vel-mode (bit,out)
connect to axis.<N>.jog—jog—vel-mode If false the jogwheel operates in position mode. The
axis will move exactly jog—scale units for each count, regardless of how long that might take. If
true, the jogwheel operates in velocity mode — motion stops when the wheel stops, even if that
means the commanded motion is not completed.

whb.halui.max—velocity.value (float,in)
connect to halui.max—velocity.value The maximum allowable velocity, in units per second (<N>
is two digit O—padded).

whb.halui.feed—override.scale (float,in)
connect to halui.feed—override.scale The scaling for feed override value.

whb.halui.axis.<N>.pos—feedback (float,in)
connect to halui.axis.<N>.pos—feedback Feedback axis position in machine coordinates to be
displayed.

whb.halui.axis.<N>.pos-relative (float,in)
connect to halui.axis.<N>.pos—relative Commanded axis position in relative coordinates to be
displayed.

Machine
Signals utilized for toggling machine status.

whb.halui.machine.on (bit,out)
connect to halui.machine.on Pin for requesting machine on.

whb.halui.machine.is—on (bit,in)
connect to halui.machine.is—on Pin that indicates machine is on.

whb.halui.machine.off (bit,out)
connect to halui.machine.off Pin for requesting machine off.

Spindle
Signals utilized for operating a spindle.
whb.halui.spindle.start (bit,out)
connect to halui.spindle.0.start Pin to start the spindle.
whb.halui.spindle.is—on (bit,in)
connect to halui.spindle.0.on Pin to indicate spindle is on (either direction).

whb.halui.spindle.stop (bit,out)
connect to halui.spindle.0.stop Pin to stop the spindle.

whb.halui.spindle.forward (bit,out)
connect to halui.spindle.0.forward Pin to make the spindle go forward.

whb.halui.spindle.reverse (bit,out)
connect to halui.spindle.0.reverse Pin to make the spindle go reverse.

whb.halui.spindle.decrease (bit,out)
connect to halui.spindle.0.decrease Pin to decrease the spindle speed.

whb.halui.spindle.increase (bit,out)
connect to halui.spindle.0.increase Pin to increase the spindle speed.

whb.halui.spindle—override.increase (bit,out)
connect to halui.spindle.0.override.increase Pin for increasing the spindle override by the
amount of scale.

whb.halui.spindle-override.decrease (bit,out)
connect to halui.spindle.0.override.decrease Pin for decreasing the spindle override by the
amount of scale.

160 08/16/2020 LinuxCNC

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

whb.halui.spindle—override.value (float,in)
connect to halui.spindle.0.override.value The current spindle override value.

whb.halui.spindle—override.scale (float,in)
connect to halui.spindle.0.override.scale The current spindle scaling override value.

Feed
Signals utilized for operating spindle and feed override. The feed rotary button can serve in
Continuous move x% from max velocity Step move x mm Mpg override feed/spindle the special
position Lead. Continuous: In this mode jogging is performed at the selected feed rate. As long the
jogwheel turns, the selected axis moves. Step: In this mode the machine moves steps * wheel_counts
at the currently selected step size and the current set feed rate in machine units. If the commanded
position is not reached the machine keeps moving even the jogwheel is not turning. Lead:
Manipulates the spindle override.+ Mpg: Manipulates the feedrate override.+

Note: As a consequence of 3 modes from manufacturer, switching the feed rotary button back from
Lead revert to Mpg mode, Mpg mode is default mode at startup. Depending on the mode before
turning the rotary button, the feed override results in different values. In MPG/CON the feed rate will
change to 100%, 60%, ... and so forth. In Step mode the feed rate is mm.

whb.halui.feed—override.value (float,in)
connect to halui.feed—override.value The current feed override value.

whb.halui.feed—override.decrease (bit,out)
connect to halui.feed—override.decrease Pin for decreasing the feed override by amount of
scale.

whb.halui.feed—override.increase (bit,out)
connect to halui.feed—override.increase Pin for increasing the feed override by amount of scale.

whb.halui.feed—override.scale (float,out)
connect to halui.feed—override.scale Pin for setting the scale on changing the feed override.

whb.halui.max-velocity.value (float,out)
connect to halui.max—velocity.value

Program
Signals for operating program and MDI mode.

whb.halui.program.run (bit,out)
connect to halui.program.run in for running a program.

whb.halui.program.is—running (bit,in)
connect to halui.program.is—running in indicating a program is running.

whb.halui.program.pause (bit,out)
connect to halui.program.pause Pin for pausing a program.

whb.halui.program.is—paused (bit,in)
connect to halui.program.is—paused Pin indicating a program is pausing.

whb.halui.program.resume (bit,out)
connect to halui.program.resume Pin for resuming a program.

whb.halui.program.stop (bit,out)
connect to program.stop Pin for stopping a program.

whb.halui.program.is—idle (bit,in)
connect to halui.program.is—idle Pin indicating no program is running.

whb.halui.mode.auto (bit,out)
connect to halui.mode.auto Pin for requesting auto mode.

LinuxCNC 08/16/2020 161

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

162

whb.halui.mode.is—auto (bit,in)
connect to halui.mode.is—auto Pin for indicating auto mode is on.

whb.halui.mode.joint (bit,out)

connect to halui.mode.joint Pin for requesting joint by joint mode.
whb.halui.mode.is—joint (bit,in)

connect to halui.mode.is—joint Pin indicating joint by joint mode is on.

whb.halui.mode.manual (bit,out)
connect to halui.mode.manual Pin for requesting manual mode.

whb.halui.mode.is—manual (bit,in)
connect to halui.mode.is—manual Pin indicating manual mode is on.

whb.halui.mode.mdi (bit,out)
connect to halui.mode.mdi Pin for requesting MDI mode.

whb.halui.mode.is—mdi (bit,in)
connect to halui.mode.is—mdi Pin indicating MDI mode is on.

whb.halui.mode.teleop (bit,out)
connect to halui.mode.teleop + Pin for requesting axis by axis mode.

whb.halui.mode.is—teleop (bit,in)
connect to halui.mode.is—teleop Pin indicating axis by axis mode is on.

Buttons

For flexibility reasons each button provides an output pin even if no functionality is realized directly
with that signal. The Fn button can be combined with each other push—button. This includes also
RESET, Stop, Start/Pause, Macro—10, and Step|Continuous. By default the more frequent used orange
buttons are executed, whereas blue ones (whb.button.macro—<M>) by combining them with Fn (press
Fn first then button).

Button macro needs to be added to your ini and needs to be edited for your own use :

[HALUI]
MDI_COMMAND=(debug,macro0) # this one is for numbering but not used by pendant (need 1 to 16)
MDI_COMMAND=(debug,macrol)
MDI_COMMAND=(debug,macro2)
MDI_COMMAND=(debug,macro3)
MDI_COMMAND=(debug,macro4)
MDI_COMMAND=(debug,macro5)
MDI_COMMAND=(debug,macro6)
MDI_COMMAND=(debug,macro7)
MDI_COMMAND=(debug,macro8)
MDI_COMMAND=(debug,macro9)
MDI_COMMAND=(debug,macro10)
MDI_COMMAND=(debug,macrol1)
MDI_COMMAND=(debug,macrol2)
MDI_COMMAND=(debug,macro13)
MDI_COMMAND=(debug,macro14)
MDI_COMMAND=(debug,macrol5)
MDI_COMMAND=(debug,macro16)

<M> ... denotes an arbitrary macro number which is of {1, 2, ..., 16}

whb.button.reset (bit,out)
see whb.halui.estop.{activate, reset} True one Reset button down, false otherwise. For toggling
E—stop use whb.halui.estop .active and .reset.

08/16/2020 LinuxCNC

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

LinuxCNC

whb.button.stop (bit,out)
see whb.halui.program.stop True on Stop button down, false otherwise. For stopping a program
use whb.halui.program.stop.

whb.button.start—pause (bit,out)
see whb.halui.program.{run, pause, resume} True on Start—Pause button down, false
otherwise.For toggling start—pause use whb.halui.program .run, .pause, and .resume.

whb.button.feed—plus (bit,out)
True on Feed+ button down, false otherwise.

whb.button.feed—minus (bit,out)
True on Feed— button down, false otherwise.

whb.button.spindle—plus (bit,out)
see halui.spindle.0.override.increase True on Spindle+ button down, false otherwise. This
button is meant to manipulate the spindle override. For increasing the spindle override use
halui.spindle.0.override.increase

whb.button.spindle—minus (bit,out)
see halui.spindle.0.override.decrease True on Spindle— button down, false otherwise. This
button is meant to manipulate the spindle override.For decreasing the spindle override use
halui.spindle.0.override.decrease

whb.button.m-home (bit,out)
connect to halui.home-all True on M—Home button down, false otherwise. Requests MDI mode
before button pin is set. See also whb.halui.mode.mdi.

whb.button.safe—z (bit,out)
connect to halui.mdi—-command—-<M> True on Safe—Z button down, false otherwise. Requests
MDI mode before button pin is set. See also whb.halui.mode.mdi.

whb.button.w—home (bit,out)
connect to halui.mdi-command—-<M> True on W—Home button down, false otherwise.
Requests MDI mode before button pin is set. See also whb.halui.mode.mdi.

whb.button.s—on—off (bit,out)
see whb.halui.spindle.{start, stop} True on S—ON/OFF button down, false otherwise.For
toggling spindle on—off use halui.spindle.O.start. For toggling spindle on—off use
halui.spindle.0.stop.

whb.button.fn (bit,out)
True on Fn button down, false otherwise.

whb.button.probe-z (bit,out)
connect to halui.mdi—-command—<M> True on Probe—Z button down, false otherwise.Requests
MDI mode before button pin is set. See also whb.halui.mode.mdi.

whb.button.macro-1 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—1 button (Fn + Feed+) down, false
otherwise.

whb.button.macro-2 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—2 button (Fn + Feed—) down, false
otherwise.

whb.button.macro-3 (bit,out)
see whb.halui.spindle.increase True on Macro-3 button (Fn + Spindle+) down, false otherwise.
This button is meant to manipulate the spindle speed. For decreasing the spindle speed use
whb.halui.spindle.increase.

whb.button.macro—4 (bit,out)
see whb.halui.spindle.decrease True on Macro—4 button down (Fn + Spindle-), false otherwise

08/16/2020 163

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

164

This button is meant to manipulate the spindle speed. For decreasing the spindle speed use
whb.halui.spindle.decrease

whb.button.macro-5 (bit,out)
connect to halui.mdi—command—-<M> True on Macro-5 button down (Fn + M—HOME), false
otherwise.

whb.button.macro—6 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—6 button down (Fn + Safe—Z), false
otherwise.

whb.button.macro-7 (bit,out)
connect to halui.mdi-command—-<M> True on Macro—7 button down (Fn + W—HOME), false
otherwise.

whb.button.macro-8 (bit,out)
reserved for Spindle Direction True on Macro—8 button down (Fn + S—-ON/OFF), false otherwise.

whb.button.macro-9 (bit,out)
connect to halui.mdi—command—-<M> True on Macro-9 button down (Fn + Probe—Z7), false
otherwise.

whb.button.macro—-10 (bit,out)
reserved for toggle DRO Abs/rel. True on Macro—10 button down, false otherwise. Switches the
display coordinates to relative coordinates.On display the axis are denoted then as X1, Y1, Z1,
Al, Bl and C1. See also whb.halui.axis.<N>.pos—relative.

whb.button.macro—-11 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—11 button down (Fn + RESET), false
otherwise.

whb.button.macro—12 (bit,out)
connect to halui.mdi—-command—<M> True on Macro—12 button (Fn + Stop) down, false
otherwise.

whb.button.macro—-13 (bit,out)
connect to halui.mdi—command—<M> rue on Macro—13 button (Fn

Start/Pause) down, false otherwise.

whb.button.macro—-14 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—14 button (Fn + Macro—10) down, false
otherwise.

whb.button.macro—-15 (bit,out)
connect to halui.mdi—command—-<M> True on Macro—15 button down (Fn + MPG), false
otherwise.

whb.button.macro—-16 (bit,out)
connect to halui.mdi—-command—-<M> True on Macro—16 button (Fn + Step) down, false
otherwise.

whb.button.mode—-continuous (bit,out)
True on Continuous mode button down, false otherwise.

whb.button.mode-step (bit,out)
True on Step mode button down, false otherwise.

Pendant

whb.pendant.is—sleeping (bit,out)
True as long pendant is in sleep mode (usually a few seconds after turned off), false otherwise.

whb.pendant.is—connected (bit,out)

08/16/2020 LinuxCNC

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

True as long pendant is not in sleep mode (turned on), false otherwise.

HAL CONFIGURATION EXAMPLE
#
Hal File xhc_whb04b_6.hal Example
#
HHEHHHHE R AR R R AR
load pendant components
HEHHHHE AR R AR R AR R

loadusr —W xhc—whb04b—6 —HsfB
H# HEHHAH A

pendant signal configuration
HHEHHHHEHEHE AR R R AR R

On/Off signals

net machine.is—on halui.machine.is—on whb.halui.machine.is—on
net pdnt.machine.on whb.halui.machine.on halui.machine.on

net pdnt.machine.off whb.halui.machine.off halui.machine.off

program related signals

net pdnt.program.is—idle whb.halui.program.is—idle halui.program.is—idle

net pdnt.program.is—paused whb.halui.program.is—paused halui.program.is—paused
net pdnt.program—is—running whb.halui.program.is—running halui.program.is—running
net pdnt.program.resume whb.halui.program.resume halui.program.resume

net pdnt.program.pause whb.halui.program.pause halui.program.pause

net pdnt.program.run whb.halui.program.run halui.program.run

net pdnt.program.stop whb.halui.program.stop halui.program.stop

machine mode related signals

net pdnt.mode.auto whb.halui.mode.auto halui.mode.auto

net pdnt.mode.manual whb.halui.mode.manual halui.mode.manual

net pdnt.mode.mdi whb.halui.mode.mdi halui.mode.mdi

net pdnt.mode.joint whb.halui.mode.joint halui.mode.joint

net pdnt.mode.teleop whb.halui.mode.teleop halui.mode.teleop

net pdnt.mode.is—auto halui.mode.is—auto whb.halui.mode.is—auto

net pdnt.mode.is—manual halui.mode.is—manual whb.halui.mode.is—manual
net pdnt.mode.is—mdi halui.mode.is—mdi whb.halui.mode.is—mdi

net pdnt.mode.is—joint halui.mode.is—joint whb.halui.mode.is—joint

net pdnt.mode.is—teleop halui.mode.is—teleop whb.halui.mode.is—teleop

"selected axis" signals

net pdnt.axis.X.select whb.halui.axis.x.select halui.axis.x.select
net pdnt.axis.y.select whb.halui.axis.y.select halui.axis.y.select
net pdnt.axis.Z.select whb.halui.axis.z.select halui.axis.z.select
net pdnt.axis.x.jog—scale whb.axis.x.jog—scale axis.x.jog—scale
net pdnt.axis.y.jog—scale whb.axis.y.jog—scale axis.y.jog—scale
net pdnt.axis.z.jog—scale whb.axis.z.jog—scale axis.z.jog—scale
net pdnt.axis.x.jog—counts whb.axis.x.jog—counts axis.x.jog—counts
net pdnt.axis.y.jog—counts whb.axis.y.jog—counts axis.y.jog—counts
net pdnt.axis.z.jog—counts whb.axis.z.jog—counts axis.z.jog—counts

LinuxCNC 08/16/2020 165

XHC-WHB04B-6(1)

net pdnt.axis.x.jog—enable
net pdnt.axis.y.jog—enable
net pdnt.axis.z.jog—enable

net pdnt.axis.x.jog—vel-mode
net pdnt.axis.y.jog—vel-mode
net pdnt.axis.z.jog—vel-mode

LinuxCNC Documentation

whb.axis.x.jog—enable
whb.axis.y.jog—enable
whb.axis.z.jog—enable

whb.axis.x.jog—vel-mode
whb.axis.y.jog—vel-mode
whb.axis.z.jog—vel-mode

macro buttons to MDI commands

net pdnt.macro—1

net pdnt.macro—2

net pdnt.reserved.for.spindle+
net pdnt.reserved.for.spindle—
net pdnt.macro—5

net pdnt.macro—6

net pdnt.macro—7

net pdnt.reserved.for.spindle.dir
net pdnt.macro—9

net pdnt.reserved.for. ABS-REL
net pdnt.macro—14

net pdnt.reserved.for.flood

net pdnt.reserved.for.mist

net pdnt.macro.11

net pdnt.macro.12
net pdnt.macro.13

flood and mist toggle signals

whb.button.macro—1
whb.button.macro—2
whb.button.macro—3
whb.button.macro—4
whb.button.macro—5
whb.button.macro—6
whb.button.macro—7
whb.button.macro—8
whb.button.macro—9
whb.button.macro—10
whb.button.macro—14
whb.button.macro—15
whb.button.macro—16

whb.button.macro—11
whb.button.macro—12
whb.button.macro—13

XHC-WHB04B-6(1)

axis.x.jog—enable
axis.y.jog—enable
axis.z.jog—enable

axis.x.jog—vel-mode
axis.y.jog—vel-mode
axis.z.jog—vel-mode

halui.mdi—command—01 # use MDI command
halui.mdi—command—02 # use MDI command
Hardcoded for spindle+ wht

Hardcoded for spindle— wht
halui.mdi—command—05 # use MDI command
halui.mdi—command—06 # use MDI command
halui.mdi—command—07 # use MDI command
Hardcoded for spindle direct
halui.mdi—command—09 # use MDI command
Hardcoded for swap Dro

halui.mdi—command—14 # use MDI commanc
Hardcoded for halui.flood on/

Hardcoded for halui.mist on/c

use MDI command
use MDI command
use MDI command

halui.mdi—command—11
halui.mdi—command—12
halui.mdi—command—13

166

whb.halui.flood.is—on
whb.halui.flood.off
whb.halui.flood.on

net pdnt.flood.is—on
net pdnt.flood.off
net pdnt.flood.on

whb.halui.mist.is—on
whb.halui.mist.off
whb.halui.mist.on

net pdnt.mist.is—on
net pdnt.mist.off
net pdnt.mist.on

whb.halui.lube.is—on
whb.halui.lube.off
whb.halui.lube.on

#net pdnt.lube.is—on
#net pdnt.lube.off
#net pdnt.lube.on

default function button signals
net pdnt.button.m—home

net pdnt.button.safe—z

net pdnt.button.w—home

net pdnt.button.probe-z

whb.button.m—home
whb.button.safe—z
whb.button.w—home
whb.button.probe—z

halui.flood.is—on
halui.flood.off
halui.flood.on

#return signal is on or off
#reserved whb.button.macro—15
#reserved whb.button.macro—135

halui.mist.is—on
halui.mist.off
halui.mist.on

#return signal is on or off
#reserved whb.button.macro—16
#reserved whb.button.macro—16

halui.lube.is—on
halui.lube.off
halui.lube.on

#return signal is on or off
#reserved whb.button.macro—2
#reserved whb.button.macro—2

halui.home-all
halui.mdi—command—03
halui.mdi—command—04
halui.mdi—command—08

Homeing use built—in
Safe—z use MDI cor
Unpark use ML

Probe—Z use MDI

unused, just exposes pendant internal status or as basic button

#net pdnt.mode—lead
#net pdnt.mode—mpg—feed
#net pdnt.mode—continuous

08/16/2020

whb.halui.feed.selected—lead
whb.halui.feed.selected—mpg—feed
whb.halui.feed.selected—continuous

LinuxCNC

XHC-WHB04B-6(1)

#net pdnt.mode—step

#net pdnt.button.mode—mpg
#net pdnt.button.mode—step
#net pdnt.button.fn

#net pdnt.button.reset

#net pdnt.button.stop

#net pdnt.button.start—pause
#net pdnt.button.s—on—off
#net pdnt.button.spindle—plus
#net pdnt.button.spindle—minus
#net pdnt.button.feed—plus
#net pdnt.button.feed—minus

spindle related signals
net pdnt.spindle.is—on

net pdnt.spindle.start

net pdnt.spindle.stop

net pdnt.spindle.forward
net pdnt.spindle.reverse

net pdnt.spindle.increase
net pdnt.spindle.decrease
net pdnt.spindle—speed—abs

spindle speed override signals
net pdnt.spindle—override.scale
net pdnt.spindle.override.value
net pdnt.spindle.override.increase
net pdnt.spindle.override.decrease

whb.halui.spindle.reverse
whb.halui.spindle.increase

LinuxCNC Documentation XHC-WHB04B-6(1)

whb.halui.feed.selected—step

whb.button.mode—continuous
whb.button.mode—step

whb.button.fn
whb.button.reset
whb.button.stop

whb.button.start—pause
whb.button.s—on—off
whb.button.spindle—plus
whb.button.spindle-minus
whb.button.feed—plus
whb.button.feed—minus

whb.halui.spindle.is—on spindle.0.on
whb.halui.spindle.start halui.spindle.O.start
whb.halui.spindle.stop halui.spindle.0.stop
whb.halui.spindle.forward halui.spindle.0.forward

halui.spindle.0.reverse
halui.spindle.0.increase # reserved whb.button.
halui.spindle.0.decrease # reserved whb.buttor
spindle.0.speed—out—abs # speed cmd frc

whb.halui.spindle.decrease
whb.halui.spindle—speed—cmd

whb.halui.spindle—override.scale halui.spindle.0.override.scale # needed for bo

halui.spindle.0.override.value whb.halui.spindle—override.value # GUI feed rate
whb.halui.spindle—override.increase halui.spindle.0.override.increase
whb.halui.spindle—override.decrease halui.spindle.0.override.decrease

GUI feed rate related signals can be used when program is running moving GUI slider
net pdnt.feed—override.scale whb.halui.feed—override.scale halui.feed—override.scale
net pdnt.max—velocity.value whb.halui.max—velocity.value halui.max—velocity.value

needed for both |
needed for Mp

take feed override min/max values from/to the GUI

net pdnt.feed—override.value halui.feed—override.value whb.halui.feed—override.value # GUI feed rate r
net pdnt.feed—override.increase whb.halui.feed—override.increase halui.feed—override.increase

net pdnt.feed—override.decrease whb.halui.feed—override.decrease halui.feed—override.decrease

axis position related signals feedback

net pdnt.axis.x.pos—feedback halui.axis.x.pos—feedback
net pdnt.axis.y.pos—feedback halui.axis.y.pos—feedback
net pdnt.axis.z.pos—feedback halui.axis.z.pos—feedback

whb.halui.axis.x.pos—feedback
whb.halui.axis.y.pos—feedback
whb.halui.axis.z.pos—feedback

axis position related signals relative

net pdnt.axis.x.pos—relative halui.axis.x.pos—relative
net pdnt.axis.y.pos—relative halui.axis.y.pos—relative
net pdnt.axis.z.pos—relative halui.axis.z.pos—relative

whb.halui.axis.x.pos—relative
whb.halui.axis.y.pos—relative
whb.halui.axis.z.pos—relative

LinuxCNC 08/16/2020 167

XHC-WHB04B-6(1) LinuxCNC Documentation XHC-WHB04B-6(1)

SEE ALSO
xhc—whb04b—6 developer documentation on GitHub

NOTES
The CRC code function is not disclosed by the manufacturer. Thus the CRC value transmitted with each
package is not checked yet. Feel free to help us enhance the component.

AUTHORS
This component was started by Raoul Rubien based on predecessor device component xhc—hb04.cc.
https://github.com/machinekit/machinekit/graphs/contributors gives you a more complete list of
contributors.

HISTORY
The component was developed accidentally as leisure project. The development started with the
xhc—whb04 (4—axis wireless pendant) implementation as reference. 73 & many thanks to the developers
who delivered provided an excellent preparatory work!

COPYRIGHT
Copyright © 2018 Raoul Rubien (github.com/rubienr) Updated for Linuxcnc 2020 by alkabal_free.fr. This
is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

168 08/16/2020 LinuxCNC

xyzac-trt-gui(1l) The Enhanced Machine Controller xyzac-trt-gui(1)

NAME
xyzac-trt-gui — Vismach Virtual Machine GUI

DESCRIPTION
xyzac-trt-gui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5-axis milling machine with
tool-point kinematics

See the main LinuxCNC documentation for more details.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2020-08-26 169

xyzbe-trt-gui(1) The Enhanced Machine Controller xyzbe-trt-gui(1)

NAME
xyzbe-trt-gui — Vismach Virtual Machine GUI

DESCRIPTION
xyzbc-trt-gui is one of the sample Vismach GUIs for LinuxCNC, simulating a 5-axis milling machine with
tool-point kinematics

See the main LinuxCNC documentation for more details.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by andypugh, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs at https://github.com/LinuxCNC/linuxcnc/issues

COPYRIGHT
Copyright © 2020 andypugh.
This is free software; see the source for copying conditions. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

170 2020-08-26 LinuxCNC Documentation

intro(3hal) HAL intro(3hal)

NAME
hal — Introduction to the HAL API

DESCRIPTION
HAL stands for Hardware Abstraction Layer, and is used by LinuxCNC to transfer realtime data to and
from I/O devices and other low-level modules.

hal.h defines the API and data structures used by the HAL. This file is included in both realtime and non-
realtime HAL components. HAL uses the RTPAI real time interface, and the #define symbols RTAPI and
ULAPI are used to distinguish between realtime and non-realtime code. The API defined in this file is
implemented in hal_lib.c and can be compiled for linking to either realtime or user space HAL components.

The HAL is a very modular approach to the low level parts of a motion control system. The goal of the
HAL is to allow a systems integrator to connect a group of software components together to meet whatever
I/O requirements he (or she) needs. This includes realtime and non-realtime 1/O, as well as basic motor
control up to and including a PID position loop. What these functions have in common is that they all
process signals. In general, a signal is a data item that is updated at regular intervals. For example, a PID
loop gets position command and feedback signals, and produces a velocity command signal.

HAL is based on the approach used to design electronic circuits. In electronics, off-the-shelf components
like integrated circuits are placed on a circuit board and their pins are interconnected to build whatever
overall function is needed. The individual components may be as simple as an op-amp, or as complex as a
digital signal processor. Each component can be individually tested, to make sure it works as designed.
After the components are placed in a larger circuit, the signals connecting them can still be monitored for
testing and troubleshooting.

Like electronic components, HAL components have pins, and the pins can be interconnected by signals.

In the HAL, a signal contains the actual data value that passes from one pin to another. When a signal is
created, space is allocated for the data value. A pin on the other hand, is a pointer, not a data value. When
a pin is connected to a signal, the pin’s pointer is set to point at the signal’s data value. This allows the
component to access the signal with very little run-time overhead. (If a pin is not linked to any signal, the
pointer points to a dummy location, so the realtime code doesn’t have to deal with null pointers or treat
unlinked variables as a special case in any way.)

There are three approaches to writing a HAL component. Those that do not require hard realtime
performance can be written as a single user mode process. Components that need hard realtime
performance but have simple configuration and init requirements can be done as a single kernel module,
using either pre-defined init info, or insmod-time parameters. Finally, complex components may use both a
kernel module for the realtime part, and a user space process to handle ini file access, user interface
(possibly including GUI features), and other details.

HAL uses the RTAPI/ULAPI interface. If RTAPI is #defined hal_lib.c would generate a kernel module
hal_lib.o that is insmoded and provides the functions for all kernel module based components. The same
source file compiled with the ULAPI #define would make a user space hal_lib.o that is staticlly linked to
user space code to make user space executables. The variable lists and link information are stored in a
block of shared memory and protected with mutexes, so that kernel modules and any of several user mode
programs can access the data.

REALTIME CONSIDERATIONS

For an explanation of realtime considerations, see intro(3rtapi).

LinuxCNC Documentation 2006-10-12 171

intro(3hal) HAL intro(3hal)

HAL STATUS CODES
Except as noted in specific manual pages, HAL returns negative errno values for errors, and nonnegative
values for success.

SEE ALSO
intro(3rtapi)

172 2006-10-12 LinuxCNC Documentation

hal_add_funct_to_thread(3hal) HAL hal_add_funct_to_thread(3hal)

NAME

hal_add_funct_to_thread — cause a function to be executed at regular intervals

SYNTAX
int hal_add_funct_to_thread(const char *funct_name, const char *thread_name,
int position)

int hal_del_funct_from_thread(const char *funct_name, const char *thread_name)

ARGUMENTS
funct_name
The name of the function

thread_name
The name of the thread

position
The desired location within the thread. This determines when the function will run, in relation to
other functions in the thread. A positive number indicates the desired location as measured from
the beginning of the thread, and a negative is measured from the end. So +1 means this function
will become the first one to run, +5 means it will be the fifth one to run, —2 means it will be next to
last, and —1 means it will be last. Zero is illegal.

DESCRIPTION
hal_add_funct_to_thread adds a function exported by a realtime HAL component to a realtime thread.
This determines how often and in what order functions are executed.

hal_del_funct_from_thread removes a function from a thread.

RETURN VALUE
Returns a HAL status code.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from user space or realtime code.

SEE ALSO
hal_thread_new(3hal), hal_export_funct(3hal)

LinuxCNC Documentation 2006-10-12 173

hal_create_thread(3hal) HAL

NAME
hal_create_thread — Create a HAL thread

SYNTAX

int hal_create_thread(const char *name, unsigned long period, int uses_fp)

int hal_thread_delete(const char *name)

ARGUMENTS

name The name of the thread

period The interval, in nanoseconds, between iterations of the thread

hal_create_thread(3hal)

uses_fp Must be nonzero if a function which uses floating-point will be attached to this thread.

DESCRIPTION

hal_create_thread establishes a realtime thread that will execute one or more HAL functions periodically.

All thread periods are rounded to integer multiples of the hardware timer period, and the timer period is
based on the first thread created. Threads must be created in order, from the fastest to the slowest. HAL
assigns decreasing priorities to threads that are created later, so creating them from fastest to slowest results

in rate monotonic priority scheduling.

hal_delete_thread deletes a previously created thread.

REALTIME CONSIDERATIONS

Call only from realtime init code, not from user space or realtime code.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal)

174 2006-10-12

LinuxCNC Documentation

hal_exit(3hal) HAL hal_exit(3hal)

NAME
hal_exit — Shut down HAL

SYNTAX

int hal_exit(int comp_id)

ARGUMENTS
comp_id
A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION
hal_exit shuts down and cleans up HAL and RTAPI. It must be called prior to exit by any module that
called hal_init.

REALTIME CONSIDERATIONS

Call only from within user or init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns a HAL status code.

LinuxCNC Documentation 2006-10-12 175

hal_export_funct(3hal) HAL hal_export_funct(3hal)

NAME

hal_export_funct — create a realtime function callable from a thread

SYNTAX
typedef void(*hal_funct_t)(void * arg, long period)

int hal_export_funct(const char *name, hal_funct_t funct, void *arg, int uses_fp, int reentrant, int comp_id)

ARGUMENTS

name The name of the function.
funct The pointer to the function
arg The argument to be passed as the first parameter of funct

uses_fp Nonzero if the function uses floating-point operations, including assignment of floating point
values with "=".

reentrant
If reentrant is non-zero, the function may be preempted and called again before the first call
completes. Otherwise, it may only be added to one thread.

comp_id
A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION
hal_export_funct makes a realtime function provided by a component available to the system. A
subsequent call to hal_add_funct_to_thread can be used to schedule the execution of the function as
needed by the system.

When this function is placed on a HAL thread, and HAL threads are started, funct is called repeatedly with
two arguments: void *arg is the same value that was given to hal_export_funct, and long period is the

interval between calls in nanoseconds.

Each call to the function should do a small amount of work and return.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

176 2006-10-12 LinuxCNC Documentation

hal_init(3hal) HAL hal_init(3hal)

NAME
hal_init — Sets up HAL and RTAPI

SYNTAX

int hal_init(const char *modname)

ARGUMENTS
modname
The name of this hal module

DESCRIPTION
hal_init sets up HAL and RTAPI. It must be called by any module that intends to use the API, before any
other RTAPI calls.

modname must point to a string that identifies the module. The string may be no longer than
HAL_NAME_LEN characters.

REALTIME CONSIDERATIONS

Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to hal and rtapi APIs.
On failure, returns a HAL error code.

LinuxCNC Documentation 2006-10-12 177

hal_malloc(3hal) HAL hal_malloc(3hal)

NAME

hal_malloc — Allocate space in the HAL shared memory area

SYNTAX

void *hal_malloc(long int size)

ARGUMENTS

size Gives the size, in bytes, of the block

DESCRIPTION
hal_malloc allocates a block of memory from the main HAL shared memory area. It should be used by all
components to allocate memory for HAL pins and parameters. It allocates ‘size’ bytes, and returns a
pointer to the allocated space, or NULL (0) on error. The returned pointer will be properly aligned for any
type HAL supports. A component should allocate during initialization all the memory it needs.

The allocator is very simple, and there is no ‘free’. The entire HAL shared memory area is freed when the
last component calls hal_exit. This means that if you continuously install and remove one component
while other components are present, you eventually will fill up the shared memory and an install will fail.
Removing all components completely clears memory and you start fresh.

RETURN VALUE
A pointer to the allocated space, which is properly aligned for any variable HAL supports. Returns NULL
on error.

178 2006-10-12 LinuxCNC Documentation

hal_param_alias(3hal) HAL hal_param_alias(3hal)

NAME

hal_param_alias — create an alternate name for a param

SYNTAX

int hal_param_alias(const char *original_name, const char *alias);

ARGUMENTS

original_name
The original name of the param

alias The alternate name that may be used to refer to the param, or NULL to remove any alternate
name.

DESCRIPTION
A param may have two names: the original name (the one that was passed to a hal_param_new function)
and an alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,

in some cases it is sensible to create aliases directly in a component. These cases include the case where a
param is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_pin_alias(3)

LinuxCNC Documentation 2006-10-12 179

hal_param_new(3hal) HAL hal_param_new(3hal)

NAME

hal_param_new — Create a HAL parameter

SYNTAX
int hal_param_bit_new(const char *name, hal_param_dir_t dir, hal_bit_t * data_addr, int
comp_id)
int hal_param_float_new(const char *name, hal_param_dir_t dir, hal_float_t * data_addr, int
comp_id)
int hal_param_u32_new(const char *name, hal_param_dir_t dir, hal_u32_t * data_addr, int
comp_id)
int hal_param_s32_new(const char *name, hal_param_dir_t dir, hal_s32_t * data_addr, int
comp_id)
int hal_param_bit_newf(hal_param_dir_t dir, hal_bit_t * data_addr, int comp_id, const char *fmt,
)
int hal_param_float_newf(hal_param_dir_t dir, hal_float_t * data_addr, int comp_id, const char
*fmt, ...)
int hal_param_u32_newf(hal_param_dir_t dir, hal_u32_t * data_addr, int comp_id, const char
*fmt, ...)
int hal_param_s32_newf(hal_param_dir_t dir, hal_s32_t * data_addr, int comp_id, const char
*fmt, ...)
int hal_param_new(const char *name, hal_type_t type, hal_param_dir_t dir, void *data_addr, int
comp_id)
ARGUMENTS

name The name to give to the created parameter

dir The direction of the parameter, from the viewpoint of the component. It may be one of HAL_RO,
or HAL_RW A component may assign a value to any parameter, but other programs (such as
halemd) may only assign a value to a parameter that is HAL_RW.

data_addr

180

The address of the data, which must lie within memory allocated by hal_malloc.

2006-10-12 LinuxCNC Documentation

hal_param_new(3hal) HAL hal_param_new(3hal)

comp_id
A HAL component identifier returned by an earlier call to hal_init.

fmt, ... A printf-style format string and arguments

type The type of the parameter, as specified in hal_type_t(3hal).

DESCRIPTION

The hal_param_new family of functions create a new param object.

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

LinuxCNC Documentation 2006-10-12 181

parport(3hal) HAL parport(3hal)

NAME
hal_parport — portable access to PC-style parallel ports

SYNTAX
#include "hal_parport.h"

int hal_parport_get(int comp_id, hal_parport_t *port, unsigned short base, unsigned short base_hi,
unsigned int modes)

void hal_parport_release(hal_parport_t *porr)
ARGUMENTS

comp_id
A HAL component identifier returned by an earlier call to hal_init.

port A pointer to a hal_parport_t structure
base The base address of the port (if port >= 16) or the linux port number of the port (if port < 16)

base_hi
The "high" address of the port (location of the ECP registers), O to use a probed high address, or
—1 to disable the high address

modes Advise the driver of the desired port modes, from <linux/parport.h>. If a linux-detected port does
not provide the requested modes, a warning is printed with rtapi_print_msg. This does not make
the port request fail, because unfortunately, many systems that have working EPP parports are not
detected as such by Linux.

DESCRIPTION
hal_parport_get allocates a parallel port for exclusive use of the named hal component. The port must be
released with hal_parport_release before the component exits with hal_exit.

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used.
Otherwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no
high address is detected, port—>base_hi is 0.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;

unsigned short base_hi;

.... I/ and further unspecified fields
} hal_parport_t;

RETURN VALUE
hal_parport_get returns a HAL status code. On success, port is filled out with information about the
allocated port. On failure, the contents of port are undefined except that it is safe (but not required) to pass
this port to hal_parport_release.

hal_parport_release does not return a value. It always succeeds.

NOTES

In new code, prefer use of rtapi_parport to hal_parport.

182 2006-10-12 LinuxCNC Documentation

hal_pin_alias(3hal) HAL hal_pin_alias(3hal)

NAME

hal_pin_alias — create an alternate name for a pin

SYNTAX

int hal_pin_alias(const char *original_name, const char *alias);

ARGUMENTS
original_name
The original name of the pin

alias The alternate name that may be used to refer to the pin, or NULL to remove any alternate name.

DESCRIPTION
A pin may have two names: the original name (the one that was passed to a hal_pin_new function) and an
alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,

in some cases it is sensible to create aliases directly in a component. These cases include the case where a
pin is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO

hal_param_alias(3)

LinuxCNC Documentation 2006-10-12 183

hal_pin_new(3hal) HAL hal_pin_new(3hal)

NAME
hal_pin_new — Create a HAL pin

SYNTAX
int hal_pin_bit_new(const char *name, hal_pin_dir_t dir, hal_bit_t ** data_ptr_addr, int
comp_id)
int hal_pin_float_new(const char *name, hal_pin_dir_t dir, hal_float_t ** data_ptr_addr, int
comp_id)
int hal_pin_u32_new(const char *name, hal_pin_dir_t dir, hal_u32_t ** data_ptr_addr, int
comp_id)
int hal_pin_s32_new(const char *name, hal_pin_dir_t dir, hal_s32_t ** data_ptr_addr, int
comp_id)
int hal_pin_bit_newf(hal_pin_dir_t dir, hal_bit_t ** data_ptr_addr, int comp_id, const char *fmt,
)
int hal_pin_float_newf(hal_pin_dir_t dir, hal_float_t ** data_ptr_addr, int comp_id, const char
*fmt, ...)
int hal_pin_u32_newf(hal_pin_dir_t dir, hal_u32_t ** data_ptr_addr, int comp_id, const char
*fmt, ...)
int hal_pin_s32_newf(hal_pin_dir_t dir, hal_s32_t ** data_ptr_addr, int comp_id, const char
*fmt, ...)
int hal_pin_new(const char *name, hal_type_t type, hal_pin_dir_t dir, void **data_ptr_addr, int
comp_id)

ARGUMENTS

name The name of the pin
dir

The direction of the pin, from the viewpoint of the component. It may be one of HAL_IN,
HAL_OUT, or HAL_IO. Any number of HAL_IN or HAL_IO pins may be connected to the
same signal, but at most one HAL_OUT pin is permitted. A component may assign a value to a
pin that is HAL_OUT or HAL_IO, but may not assign a value to a pin that is HAL_IN.

184 2006-10-12 LinuxCNC Documentation

hal_pin_new(3hal) HAL hal_pin_new(3hal)

data_ptr_addr
The address of the pointer-to-data, which must lie within memory allocated by hal_malloc.

comp_id
A HAL component identifier returned by an earlier call to hal_init.

fmt,

A printf-style format string and arguments

type
The type of the param, as specified in hal_type_t(3hal).

DESCRIPTION
The hal_pin_new family of functions create a new pin object. Once a pin has been created, it can be linked
to a signal object using hal_link. A pin contains a pointer, and the component that owns the pin can
dereference the pointer to access whatever signal is linked to the pin. (If no signal is linked, it points to a
dummy signal.)

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

RETURN VALUE

Returns 0 on success, or a negative errno value on failure.

SEE ALSO
hal_type_t(3hal), hal_link(3hal)

LinuxCNC Documentation 2006-10-12 185

funct(3hal) HAL funct(3hal)

NAME

hal_ready — indicates that this component is ready

SYNTAX

hal_ready(int comp_id)

ARGUMENTS
comp_id
A HAL component identifier returned by an earlier call to hal_init.

DESCRIPTION
hal_ready indicates that this component is ready (has created all its pins, parameters, and functions). This
must be called in any realtime HAL component before its rtapi_app_init exits, and in any userspace
component before it enters its main loop.

RETURN VALUE
Returns a HAL status code.

186 2006-10-12 LinuxCNC Documentation

hal_set_constructor(3hal) HAL hal_set_constructor(3hal)

NAME

hal_set_constructor — Set the constructor function for this component

SYNTAX
typedef int (*hal_constructor_t)(const char *prefix, const char *arg); int hal_set_constructor(int comp_id,
hal_constructor_t constructor)

ARGUMENTS

comp_id A HAL component identifier returned by an earlier call to hal_init.

prefix The prefix to be given to the pins, parameters, and functions in the new instance

arg An argument that may be used by the component to customize this istance.

DESCRIPTION
As an experimental feature in HAL 2.1, components may be constructable. Such a component may create
pins and parameters not only at the time the module is loaded, but it may create additional pins and
parameters, and functions on demand.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
halemd(1)

LinuxCNC Documentation 2006-10-12 187

hal_set_lock(3hal) HAL hal_set_lock(3hal)

NAME
hal_set_lock, hal_get_lock — Set or get the HAL lock level

SYNTAX
int hal_set_lock(unsigned char lock_type)

int hal_get_lock()

ARGUMENTS
lock_type
The desired lock type, which may be a bitwise combination of: HAL_LOCK_LOAD,
HAL_LOCK_CONFIG, HAL_LOCK_PARAMS, or HAL_LOCK_PARAMS.
HAL_LOCK_NONE or 0 locks nothing, and HAL_LOCK_ALL locks everything.

DESCRIPTION

RETURN VALUE
hal_set_lock Returns a HAL status code. hal_get_lock returns the current HAL lock level or a HAL status
code.

188 2006-10-12 LinuxCNC Documentation

hal_signal_new(3hal) HAL

NAME
hal_signal_new, hal_signal_delete, hal_link, hal_unlink — Manipulate HAL signals

SYNTAX

int hal_signal_new(const char *signal_name, hal_type_t type)
int hal_signal_delete(const char *signal_name)
int hal_link(const char *pin_name, const char *signal_name)
int hal_unlink(const char *pin_name)

ARGUMENTS

signal_name
The name of the signal

pin_name
The name of the pin

type The type of the signal, as specified in hal_type_t(3hal).

DESCRIPTION

hal_signal_new(3hal)

hal_signal_new creates a new signal object. Once a signal has been created, pins can be linked to it with
hal_link. The signal object contains the actual storage for the signal data. Pin objects linked to the signal
have pointers that point to the data. 'name’ is the name of the new signal. It may be no longer than
HAL_NAME_LEN characters. If there is already a signal with the same name the call will fail.

hal_link links a pin to a signal. If the pin is already linked to the desired signal, the command succeeds. If
the pin is already linked to some other signal, it is an error. In either case, the existing connection is not
modified. (Use "hal_unlink’ to break an existing connection.) If the signal already has other pins linked to
it, they are unaffected - one signal can be linked to many pins, but a pin can be linked to only one signal.

hal_unlink unlinks any signal from the specified pin.

hal_signal_delete deletes a signal object. Any pins linked to the object are unlinked.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

LinuxCNC Documentation 2006-10-12

189

hal_start_threads(3hal) HAL hal_start_threads(3hal)

NAME
hal_start_threads — Allow HAL threads to begin executing

SYNTAX
int hal_start_threads()

int hal_stop_threads()

ARGUMENTS

DESCRIPTION
hal_start_threads starts all threads that have been created. This is the point at which realtime functions
start being called.

hal_stop_threads stops all threads that were previously started by hal_start_threads. It should be called
before any component that is part of a system exits.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal), hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

190 2006-10-12 LinuxCNC Documentation

hal_stream(3hal) HAL

NAME

hal_stream — non-blocking realtime streams

SYNOPSIS
#include <hal.h>

int hal_stream_create(hal_stream_t *stream, int comp_id, int key, int depth, const char *typestring);
void hal_stream_destroy(hal_stream_t *stream);

int hal_stream_attach(hal_stream_t *stream, int comp_id, int key, const char *typestring);

int hal_stream_detach(hal_stream_t *stream);

int hal_stream_element_count(hal_stream_t *stream);

hal_type_t hal_stream_element_type(hal_stream_t *stream, int idx);
int hal_stream_depth(hal_stream_t *stream);

int hal_stream_maxdepth(hal_stream_t *stream);

int hal_stream_num_underruns(hal_stream_t *stream);

int hal_stream_num_overruns(hal_stream_t *stream);

int hal_stream_read(hal_stream_t *stream, union hal_stream_data *buf, unsigned *sampleno);
bool hal_stream_readable(hal_stream_t *stream);

int hal_stream_write(hal_stream_t *stream, union hal_stream_data *buf);
bool hal_stream_writable(hal_stream_t *stream);

#ifdef ULAPI

void hal_stream_wait_writable(hal_stream_t *stream, sig_atomic_t *stop);
void hal_stream_wait_readable(hal_stream_t *stream, sig_atomic_t *stop);
#endif

DESCRIPTION

hal_stream(3hal)

A HAL stream provides a limited ability for two components to communicate data which does not fit
within the model of HAL pins. A reader and a writer must agree on a key (32-bit integer identifier) and a
data structure specified by typestring. They must also agree which component (the first one loaded) will
hal_stream_create the stream, and which component (the second one loaded) will hal_stream_attach to

the already-created stream.

The userspace part can be halstreamer or halsampler. In the case of halstreamer the key is 0x48535430
plus the channel number. In the case of halsampler the key is 0x48534130 plus the channel number.

hal_stream_create

Create the given stream, initializing the stream which is passed by reference. It is an undiagnosed error if a

stream has already been created with the same key.

hal_stream_destroy

Destroy the given stream. It is an undiagnosed error if the stream is still attached by another component. It
is an undiagnosed error if the stream was attached with hal_stream_attach rather than created with
hal_stream_create. It is an undiagnosed error if the call to hal_stream_destroy is omitted.

LinuxCNC Documentation 2006-10-12

191

hal_stream(3hal) HAL hal_stream(3hal)

hal_stream_attach
Attach the given stream, which was already created by hal_stream_create. If the typestring is specified,
this call fails if it does not match the typestring the stream was created with. If the typestring argument is
NULL, then any typestring is accepted.

hal_stream_detach
Detach the given stream. It is an undiagnosed error if the stream was created with hal_stream_create
rather than attached with hal_stream_attach. It is an undiagnosed error if the call to hal_stream_detach
is omitted.

hal_stream_element_count
Returns the number of pins.

hal_stream_element_type
Returns the type of the given pin number.

hal_stream_readable
Returns true if the stream has at least one sample to read

hal_stream_read
If the stream has one sample to read, stores it in buf.

hal_stream_writable
Returns true if the stream has room for at least one sample to be written.

hal_stream_depth
Returns the number of samples waiting to be read.

hal_stream_maxdepth
Returns the depth argument that the stream was created with.

hal_stream_num_overruns
Returns a number which is incremented each time hal_stream_write is called without space available.

hal_stream_num_underruns
Returns a number which is incremented each time hal_stream_read is called without a sample available.

hal_stream_wait_readable
Waits until the stream is readable or the stop flag is set.

hal_stream_wait_writable
Waits until the stream is writable or the stop flag is set.

hal_stream_read
Reads a record from stream. If successful, it is stored in the given buffer. Optionally, the sample number
can be retrieved. If no sample is available, num_underruns is incremented. It is an undetected error if
more than one component or real-time function calls hal_stream_read concurrently.

hal_stream_write
Writes a record to the stream. If successful, it copied from the given buffer. If no room is available,
num_overruns is incremented. In either case, the internal sampleno value is incremented.
It is an undetected error if more than one component or real-time function calls hal_stream_write
concurrently.

192 2006-10-12 LinuxCNC Documentation

hal_stream(3hal) HAL hal_stream(3hal)

ARGUMENTS
stream A pointer to a stream object. In the case of hal_stream_create and hal_stream_attach this is an
uninitialized stream; in other cases, it must be a stream created or attached by an earlier call and
not yet detached or destroyed.

hal_id An HAL component identifier returned by an earlier call to hal_init.

key The key for the shared memory segment.

depth The number of samples that can be unread before any samples are lost (overrun)

typestring
A typestring is a case-insensitive string which consists of one or more of the following type

characters:
for bool / hal_bit_t
for int32_t/hal s32 t
for uint32_t/hal u32 t

F for real_t/hal float_t
A typestring is limited to 16 characters.

c v w

buf A buffer big enough to hold all the data in one sample.

sampleno
If non-NULL, the last sample number is stored here. Gaps in this sequence indicate that an
overrun occurred between the previous read and this one. May be NULL, in which case the
sample number is not retrieved.

stop A pointer to a value which is monitored while waiting. If it is nonzero, the wait operation returns
early. This allows a wait call to be safely terminated in the case of a signal.

SAMPLE CODE
In the source tree under src/hal/components, sampler.c and streamer.c are realtime components that read
and write hal streams.

REALTIME CONSIDERATIONS
hal_stream_read, hal_stream_readable, hal_stream_write, hal_stream_writable,
hal_stream_element_count, hal_tream_pin_type, hal_stream_depth, hal_stream_maxdepth,
hal_stream_num_underruns, hal_stream_number_overruns may be called from realtime code.

hal_stream_wait_writable, hal_stream_wait_writable may be called from ULAPI code.

Other functions may be called in any context, including realtime contexts.

RETURN VALUE
hal_stream_create , hal_stream_attach , hal_stream_read , hal_stream_write , hal_stream_detach
and hal_stream_destroy return an RTAPI status code. Other functions’ return values are explained above.

BUGS
The memory overhead of a stream can be large. Each element in a record uses 8 bytes, and the implicit
sample number also uses 8 bytes. As a result, a stream which is used to transport 8-bit values uses 94% of

LinuxCNC Documentation 2006-10-12 193

hal_stream(3hal) HAL hal_stream(3hal)

its memory as overhead. However, for modest stream sizes this overhead is not important. (this memory is
part of its own shared memory region and does not count against the HAL shared memory region used for
pins, parameters and signals)

SEE ALSO

sampler(9), streamer(9), halsampler(1), halstreamer(1)

194 2006-10-12 LinuxCNC Documentation

hal_type_t(3hal) HAL hal_type_t(3hal)

NAME
hal_type_t — typedefs for HAL datatypes

DESRCIPTION
typedef ... hal_bool;
A type which may have a value of 0 or nonzero.

typedef ... hal_bit_t;
A volatile type which may have a value of 0 or nonzero.

typedef ... hal_s32_t;
A volatile type which may have a value from —2147483648 to 2147483647.

typedef ... hal_u32_t;
A volatile type which may have a value from 0 to 4294967295.

typedef ... hal_float_t;
A volatile floating-point type, which typically has the same precision and range as the C type
double.

typedef ... real _t;
A nonvolatile floating-point type with at least as much precision as hal_float_t.

typedef ... ireal _t;
A nonvolatile unsigned integral type the same size as hal_float_t.

typedef enum hal_type_t;

HAL_BIT
Corresponds to the type hal_bit_t.

HAL_FLOAT
Corresponds to the type hal_float_t.

HAL_S32
Corresponds to the type hal_s32_t.

HAL_U32
Corresponds to the type hal_u32_t.

NOTES
hal_bit_t is typically a typedef to an integer type whose range is larger than just 0 and 1. When testing the
value of a hal_bit_t, never compare it to 1. Prefer one of the following:

. if(b)
e if(b!=0)

It is often useful to refer to a type that can represent all the values as a hal type, but without the volatile
qualifier. The following types correspond with the hal types:

hal_bit_t int

hal s32 t 832
hal_u32_t _u32
hal_float_t hal_real t

Take care not to use the types s32 and u32. These will compile in kernel modules but not in userspace, and
not for "realtime components" when using simulated (userspace) realtime.

LinuxCNC Documentation 2006-10-12 195

hal_type_t(3hal) HAL hal_type_t(3hal)

SEE ALSO
hal_pin_new(3hal), hal_param_new(3hal)

196 2006-10-12 LinuxCNC Documentation

undocumented(3hal) HAL undocumented(3hal)

NAME

undocumented — undocumented functions in HAL

SEE ALSO

The header file hal.h. Most hal functions have documentation in that file.

LinuxCNC Documentation 2006-10-12 197

intro(3rtapi) RTAPI intro(3rtapi)

NAME
rtapi — Introduction to the RTAPI API

DESCRIPTION
RTAPI is a library providing a uniform API for several real time operating systems. As of LinuxCNC 2.7,
POSIX threads and RTAI are supported.

HEADER FILES
rtapi.h
The file rtapi.h defines the RTAPI for both realtime and non-realtime code. This is a change from Rev 2,
where the non-realtime (user space) API was defined in ulapi.h and used different function names. The
symbols RTAPI and ULAPI are used to determine which mode is being compiled, RTAPI for realtime and
ULAPI for non-realtime.

rtapi_math.h
The file rtapi_math.h defines floating-point functions and constants. It should be used instead of <math.h>
in rtapi real-time components.

rtapi_string.h
The file rtapi_string.h defines string-related functions. It should be used instead of <string.h> in rtapi real-
time components.

rtapi_byteorder.h
This file defines the preprocessor macros RTAPI_BIG_ENDIAN, RTAPI_LITTLE_ENDIAN, and
RTAPI_FLOAT_BIG_ENDIAN as true or false depending on the characteristics of the target system. It
should be used instead of <endian.h> (userspace) or <linux/byteorder.h> (kernel space).

rtapi_limits.h
This file defines the minimum and maximum value of some fundamental integral types, such as INT_MIN
and INT _MAX. This should be used instead of <limits.h> because that header file is not available to
kernel modules.

REALTIME CONSIDERATIONS
Userspace code
Certain functions are not available in userspace code. This includes functions that perform direct device
access such as rtapi_inb(3).

Init/cleanup code
Certain functions may only be called from realtime init/cleanup code. This includes functions that perform
memory allocation, such as rtapi_shmem_new(3).

Realtime code
Only a few functions may be called from realtime code. This includes functions that perform direct device
access such as rtapi_inb(3). It excludes most Linux kernel APIs such as do_gettimeofday(3) and many
rtapi APIs such as rtapi_shmem_new(3).

Simulator
For an RTAPI module to be buildable in the "sim" environment (fake realtime system without special
privileges), it must not use any linux kernel APIs, and must not use the RTAPI APIs for direct device

198 2006-10-02 LinuxCNC Documentation

intro(3rtapi) RTAPI intro(3rtapi)

access such as rtapi_inb(3). This automatically includes any hardware device drivers, and also devices
which use Linux kernel APIs to do things like create special devices or entries in the /proc filesystem.

RTAPI STATUS CODES
Except as noted in specific manual pages, RTAPI returns negative errno values for errors, and nonnegative
values for success.

LinuxCNC Documentation 2006-10-02 199

rtapi_app_exit(3rtapi) HAL rtapi_app_exit(3rtapi)

NAME

rtapi_app_exit — User-provided function to shut down a component

SYNTAX
#include <rtapi_app.h>

void rtapi_app_exit(void) {...}
ARGUMENTS

None

DESCRIPTION
The body of rtapi_app_exit, which is provided by the component author, generally consists of a call to
rtapi_exit or hal_exit, preceded by other component-specific shutdown code.

This code is called when unloading a component which successfully initialized (i.e., returned zero from its
rtapi_app_main). It is not called when the component did not successfully initialize.

RETURN CODE

None.

REALTIME CONSIDERATIONS

Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_main(3rtapi), rtapi_exit(3rtapi), hal_exit(3hal)

200 2008-05-26 LinuxCNC Documentation

rtapi_app_main(3rtapi) HAL rtapi_app_main(3rtapi)

NAME

rtapi_app_main — User-provided function to initialize a component

SYNTAX
#include <rtapi_app.h>
int rtapi_app_main(void) {...}

ARGUMENTS

None

DESCRIPTION
The body of rtapi_app_main, which is provided by the component author, generally consists of a call to
rtapi_init or hal_init, followed by other component-specific initialization code.

RETURN VALUE
Return O for success. Return a negative errno value (e.g., —EINVAL) on error. Existing code also returns
RTAPI or HAL error values, but using negative errno values gives better diagnostics from insmod.

REALTIME CONSIDERATIONS

Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_exit(3rtapi), rtapi_init(3rtapi), hal_init(3hal)

LinuxCNC Documentation 2008-05-26 201

funct(3rtapi) RTAPI funct(3rtapi)

NAME

rtapi_atomic — subset of C11 <stdatomic.h>

SYNTAX

#include <rtapi_atomic.h>

enum memory_order { ... };

#define atomic_store(obj, desired)...

#define atomic_store_explicit(obj, desired, order)...
#define atomic_load(obyj)...

#define atomic_load_explicit(obj, order)...

ARGUMENTS
volatile A* obj
A pointer to a volatile object that is the destination of the store or the source of the load. The
pointer must have an appropriate type and alignment such that the underlying store or load
operation itself is atomic; at a minimum, a properly aligned "int" may be assumed to be such a
type. Improper size or alignment are undiagnosed errors.

C desired
The value to be stored in the object. "*obj = desired" must be well-formed.

memory_order order
The required memory ordering semantic.

DESCRIPTION
This header provides at least the subset of C11’s <stdatomic.h> given above. When there is an ordering
requirement for multiple values read or written in RTAPI shared memory areas by other threads of
execution, including the values of HAL pins and parameters, these functions (or function-like macros) are
the only way to ensure the ordering requirement is obeyed. Otherwise, according to architecture-specific
rules, loads and stores may be reordered from their normal source code order.

For example, to leave a message in a shared memory area from one thread and retrieve it from another, the
writer must use an atomic store for the "message is complete" variable, and the reader must use an atomic
load when checking that variable:

// producer
*message = 42;
atomic_store_explicit (message_ready, 1, memory_order_release);

// consumer
while (atomic_load_explicit (message_ready, memory_order_acquire) == 0) sched
printf ("message was %d\n", *message); // must print 42

REALTIME CONSIDERATIONS
May be called from any code.

RETURN VALUE

atomic_load and atomic_load_explicit return the value pointed to by the obj argument.

atomic_store and atomic_store_explicit have no return value.

202 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

SEE ALSO
<stdatomic.h> (C11), <rtapi_bitops.h> (for other atomic memory operations supported by rtapi)

LinuxCNC Documentation 2006-10-12 203

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_bool.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_bool.h>

DESCRIPTION
Includes either <stdbool.h> or <linux/types.h> as appropriate, to obtain suitable declarations of "bool",
"true" and "false".

REALTIME CONSIDERATIONS

None.

NOTES

Also permitted in C++ programs, where including it has no effect.

204 2014-06-28 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_byteorder.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_byteorder.h>

RTAPI_BIG_ENDIAN
Defined to 1 if the platform is big-endian, O otherwise

RTAPI_LITTLE_ENDIAN
Defined to 1 if the platform is little-endian, O otherwise

RTAPI_FLOAT BIG_ENDIAN
Defined to 1 if the platform double-precision value is big-endian, O otherwise.

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another

implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_byteorder_register always succeeds)

REALTIME CONSIDERATIONS

May be used at any time.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 205

rtapi_clock_set_period(3rtapi) RTAPI rtapi_clock_set_period(3rtapi)

NAME

rtapi_clock_set_period — set the basic time interval for realtime tasks

SYNTAX

rtapi_clock_set_period(long int nsec)

ARGUMENTS

nsec The desired basic time interval for realtime tasks.

DESCRIPTION
rtapi_clock_set_period sets the basic time interval for realtime tasks. All periodic tasks will run at an in-
teger multiple of this period. The first call to rtapi_clock_set_period with nsec greater than zero will start
the clock, using nsec as the clock period in nano-seconds. Due to hardware and RTOS limitations, the ac-
tual period may not be exactly what was requested. On success, the function will return the actual clock
period if it is available, otherwise it returns the requested period. If the requested period is outside the lim-
its imposed by the hardware or RTOS, it returns —EINVAL and does not start the clock. Once the clock is
started, subsequent calls with non-zero nsec return —EINVAL and have no effect. Calling
rtapi_clock_set_period with nsec set to zero queries the clock, returning the current clock period, or zero
if the clock has not yet been started.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE
The actual period provided by the RTOS, which may be different than the requested period, or a RTAPI sta-
tus code.

206 2006-10-12 LinuxCNC Documentation

rtapi_delay(3rtapi) RTAPI rtapi_delay(3rtapi)

NAME
rtapi_delay — Busy-loop for short delays

SYNTAX
void rtapi_delay(long int nsec)

void rtapi_delay_max()

ARGUMENTS

nsec The desired delay length in nanoseconds

DESCRIPTION
rtapi_delay is a simple delay. It is intended only for short delays, since it simply loops, wasting CPU cy-
cles.

rtapi_delay_max returns the max delay permitted (usually approximately 1/4 of the clock period). Any
call to rtapi_delay requesting a delay longer than the max will delay for the max time only.

rtapi_delay_max should be called before using rtapi_delay to make sure the required delays can be

achieved. The actual resolution of the delay may be as good as one nano-second, or as bad as a several mi-
croseconds.

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE

rtapi_delay_max returns the maximum delay permitted.

SEE ALSO
rtapi_clock_set_period(3rtapi)

LinuxCNC Documentation 2006-10-12 207

funct(3rtapi) RTAPI funct(3rtapi)

NAME

rtapi_device.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_device.h>

struct rtapi_device;
int rtapi_dev_set_name(struct rtapi_device *dev, const char *name, ...);
int rtapi_device_register(struct rtapi_device *dev);

int rtapi_device_unregister(struct rtapi_device *dev);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

SEE ALSO

208 2014-06-28 LinuxCNC Documentation

rtapi_div_u64(3rtapi) RTAPI rtapi_div_u64(3rtapi)

NAME
rtapi_div_u64 — unsigned division of a 64-bit number by a 32-bit number

SYNTAX
__u64 rtapi_div_u64_rem(__u64 dividend, __u32 divisor, __u32 *remainder)

__u64 rtapi_div_u64(__u64 dividend, __u32 divisor)
__s64 rtapi_div_s64(__s64 dividend, __s32 divisor)
__s64 rtapi_div_s64_rem(__s64 dividend, __s32 divisor, __s32 *remainder)

ARGUMENTS
dividend
The value to be divided

divisor The value to divide by

remainder
Pointer to the location to store the remainder. This may not be a NULL pointer. If the remainder
is not desired, call rtapi_div_u64 or rtapi_div_s64.

DESCRIPTION

Perform integer division (and optionally compute the remainder) with a 64-bit dividend and 32-bit divisor.

RETURN VALUE
The result of integer division of dividend / divisor. In versions with the remainder argument, the remainder
is stored in the pointed-to location.

NOTES

If the result of the division does not fit in the return type, the result is undefined.

This function exists because in kernel space the use of the division operator on a 64-bit type can lead to an
undefined symbol such as __umoddi3 when the module is loaded.

REALTIME CONSIDERATIONS

May be called from init/cleanup code and from within realtime tasks. Available in userspace components.

LinuxCNC Documentation 2006-10-12 209

rtapi_exit(3rtapi) RTAPI rtapi_exit(3rtapi)

NAME
rtapi_exit — Shut down RTAPI

SYNTAX
int rtapi_exit(int module_id)

ARGUMENTS
module_id
An rtapi module identifier returned by an earlier call to rtapi_init.

DESCRIPTION
rtapi_exit shuts down and cleans up the RTAPI. It must be called prior to exit by any module that called
rtapi_init.

REALTIME CONSIDERATIONS

Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
Returns a RTAPI status code.

210 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME

rtapi_firmware.h — RTAPI wrappers for linux kernel functionality

SYNTAX

#include <rtapi_firmware.h>
struct rtapi_firmware;

int rtapi_request_firmware(const struct rtapi_firmware **fw,
const char *name, struct rtapi_device *device);

void rtapi_release_firmware(const struct rtapi_firmware *fw);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 211

rtapi_get_time(3rtapi) HAL rtapi_get_time(3rtapi)

NAME

rtapi_get_time — get the current time

SYNTAX
long long rtapi_get_time()

long long rtapi_get_clocks()

DESCRIPTION
rtapi_get_time returns the current time in nanoseconds. Depending on the RTOS, this may be time since
boot, or time since the clock period was set, or some other time. Its absolute value means nothing, but it is
monotonically increasing and can be used to schedule future events, or to time the duration of some activ-
ity. Returns a 64 bit value. The resolution of the returned value may be as good as one nano-second, or as
poor as several microseconds. May be called from init/cleanup code, and from within realtime tasks.

rtapi_get_clocks returns the current time in CPU clocks. It is fast, since it just reads the TSC in the CPU
instead of calling a kernel or RTOS function. Of course, times measured in CPU clocks are not as conve-
nient, but for relative measurements this works fine. Its absolute value means nothing, but it is monotoni-
cally increasing and can be used to schedule future events, or to time the duration of some activity. (on
SMP machines, the two TSC’s may get out of sync, so if a task reads the TSC, gets swapped to the other
CPU, and reads again, the value may decrease. RTAPI tries to force all RT tasks to run on one CPU.) Re-
turns a 64 bit value. The resolution of the returned value is one CPU clock, which is usually a few nanosec-
onds to a fraction of a nanosecond.

Note that long long math may be poorly supported on some platforms, especially in kernel space. Also note
that rtapi_print() will NOT print long longs. Most time measurements are relative, and should be done like
this:

deltat = (long int)(end_time — start_time);
where end_time and start_time are longlong values returned from rtapi_get_time, and deltat is an ordinary
long int (32 bits). This will work for times up to a second or so, depending on the CPU clock frequency. It
is best used for millisecond and microsecond scale measurements though.

RETURN VALUE

Returns the current time in nanoseconds or CPU clocks.

NOTES
Certain versions of the Linux kernel provide a global variable cpu_khz. Computing
deltat = (end_clocks — start_clocks) / cpu_khz:
gives the duration measured in milliseconds. Computing
deltat = (end_clocks — start_clocks) * 1000000 / cpu_khz:
gives the duration measured in nanoseconds for deltas less than about 9 trillion clocks (e.g., 3000 seconds
at 3GHz).

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in userspace compo-
nents.

212 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_gfp.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_gfp.h>
enum rtapi_gfp_e;
RTAPI_GFP_xxx
typedef ... rtapi_gfp_t;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 213

rtapi_init(3rtapi) RTAPI rtapi_init(3rtapi)

NAME
rtapi_init — Sets up RTAPI

SYNTAX
int rtapi_init(const char *modname)
ARGUMENTS
modname
The name of this rtapi module
DESCRIPTION
rtapi_init sets up the RTAPI. It must be called by any module that intends to use the API, before any other
RTAPI calls.

modname can optionally point to a string that identifies the module. The string will be truncated at
RTAPI_NAME_LEN characters. If modname is NULL, the system will assign a name.

REALTIME CONSIDERATIONS

Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to rtapi_xxx_new,
rtapi_xxx_delete, and rtapi_exit. On failure, returns an RTAPI error code.

214 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME

rtapi_io.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_io.h>

unsigned char rtapi_inb(unsigned short int port);

unsigned short rtapi_inw(unsigned short int port);

unsigned int rtapi_inl(unsigned short int port);

unsigned void rtapi_inb(unsigned char value, unsigned short int port);
unsigned void rtapi_inw(unsigned short value, unsigned short int port);

unsigned void rtapi_inl(unsigned int value, unsigned short int port);

DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction excep-
tions in userspace components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 215

rtapi_is(3rtapi) RTAPI rtapi_is(3rtapi)

NAME

rtapi_is — details of rtapi configuration

SYNTAX

int rtapi_is_kernelspace()

int rtapi_is_realtime()

DESCRIPTION
rtapi_is_kernelspace() returns nonzero when rtapi modules run in kernel space (e.g., under rtai) and zero
when they run in userpace (e.g., under uspace).

rtapi_is_realtime() returns nonzero when capable of running with realtime guarantees. For rtai, this al-
ways returns nonzero (but actually loading realtime modules will fail if not running under the appropriate
kernel). For uspace, this returns nonzero when the running kernel indicates it is capable of realtime perfor-
mance. If rtapi_app is not setuid root, this returns nonzero even though rtapi_app will not be able to ob-
tain realtime scheduling or hardware access, so e.g., attempting to loadrt a hardware driver will fail.

REALTIME CONSIDERATIONS
May be called from userspace or from realtime setup code. rtapi_is_realtime() may perform filesystem
/0.

RETURN VALUE

Zero for false, nonzero for true.

216 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_list.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_list.h>

struct rtapi_list_head;

void rtapi_list_add(struct rtapi_list_head *new_, struct rtapi_list_head *head);
void rtapi_list_add_tail(struct rtapi_list_head *new_, struct rtapi_list_head *head);
void rtapi_list_del(struct rtapi_list_head *entry);

void RTAPI_INIT_LIST_HEAD(struct rtapi_list_head *entry);
rtapi_list_for_each(pos, head) { ... }

rtapi_list_entry(ptr, type, member)

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction excep-
tions in userspace components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 217

rtapi_module_param(3rtapi) RTAPI rtapi_module_param(3rtapi)

NAME

rtapi_module_param — Specifying module parameters

SYNTAX
RTAPI_MP_INT(var, description)

RTAPI_MP_LONG(var, description)
RTAPI_MP_STRING(var, description)
RTAPI_MP_ARRAY_INT(var, num, description)
RTAPI_MP_ARRAY_LONG(var, num, description)
RTAPI_MP_ARRAY_STRING(var, num, description)
MODULE_LICENSE(license)

MODULE_AUTHOR (author)
MODULE_DESCRIPTION(description)
EXPORT_FUNCTION(function)

ARGUMENTS

var The variable where the parameter should be stored

description
A short description of the parameter or module

num The maximum number of values for an array parameter
license The license of the module, for instance "GPL"
author The author of the module

function
The pointer to the function to be exported

DESCRIPTION
These macros are portable ways to declare kernel module parameters. They must be used in the global
scope, and are not followed by a terminating semicolon. They must be used after the associated variable or
function has been defined.

NOTES
EXPORT_FUNCTION makes a symbol available for use by a subsequently loaded component. It is unre-
lated to hal functions, which are described in hal_export_funct(3hal)

Interpretation of license strings
MODULE_LICENSE follows the kernel’s definition of license strings. Notably, "GPL" indicates "GNU
General Public License v2 or later". (emphasis ours).

218 2006-10-12 LinuxCNC Documentation

rtapi_module_param(3rtapi) RTAPI rtapi_module_param(3rtapi)

"GPL"
GNU General Public License v2 or later

"GPL v2"
GNU General Public License v2

"GPL and additional rights"
GNU General Public License v2 rights and more

"Dual BSD/GPL"
GNU General Public License v2 or BSD license choice

"Dual MIT/GPL"
GNU General Public License v2 or MIT license choice

"Dual MPL/GPL"
GNU General Public License v2 or Mozilla license choice

"Proprietary"
Non-free products

It is still good practice to include a license block which indicates the author, copyright date, and disclaimer
of warranty as recommended by the GNU GPL.

REALTIME CONSIDERATIONS

Not available in userspace code.

LinuxCNC Documentation 2006-10-12 219

rtapi_mutex(3rtapi) RTAPI rtapi_mutex(3rtapi)

NAME

rtapi_mutex — Mutex-related functions

SYNTAX

#include <rtapi_mutex.h>
int rtapi_mutex_try(unsigned long *mutex);

int rtapi_mutex_get(unsigned long *mutex);
int rtapi_mutex_give(unsigned long *mutex);

ARGUMENTS

mutex A pointer to the mutex.

DESCRIPTION
rtapi_mutex_try makes a non-blocking attempt to get the mutex. If the mutex is available, it returns 0,
and the mutex is no longer available. Otherwise, it returns a nonzero value.

rtapi_mutex_get blocks until the mutex is available.

rtapi_mutex_give releases a mutex acquired by rtapi_mutex_try or rtapi_mutex_get.

REALTIME CONSIDERATIONS

rtapi_mutex_give and rtapi_mutex_try may be used from user, init/cleanup, and realtime code.

rtapi_mutex_get may not be used from realtime code.

RETURN VALUE

rtapi_mutex_try returns O for if the mutex was claimed, and nonzero otherwise.

rtapi_mutex_get and rtapi_mutex_gif have no return value.

220 2006-10-12 LinuxCNC Documentation

rtapi_open_as_root(3rtapi) RTAPI rtapi_open_as_root(3rtapi)

NAME

rtapi_open_as_root — Open a file with "root" privilege

SYNTAX
#include <rtapi.h>
int rtapi_open_as_root(const char *filename, int flags)

ARGUMENTS
filename
The filename to open, as in open(2). Note that rtapi has no well-defined "current directory", so
this should be an absolute path, but this is not enforced.

flags The open flags, as in open(2). Should never include bits that open or create files (e.g., O_CREAT,
O_APPEND, etc) as this API is not intended for creating or writing files, but this is not enforced.

DESCRIPTION
In "uspace" realtime, root privileges are dropped whenever possible. This API temporarily switches on root
privileges to open a file, and switches them off before returning. This can be useful for example when ac-
cessing device nodes or memory-mapped I/O.

In the case of PCI devices on x86 and x86-64 systems, prefer the linux-style PCI interfaces provided in
<rtapi_pci.h>.

RETURN VALUE
In case of success, the nonnegative file descriptor opened. If the caller does not close it, it remains open un-
til rtapi_app exits.

In case of failure, a negative errno value.

REALTIME CONSIDERATIONS

Call only from realtime initcode in "uspace" realtime.

SEE ALSO
open(2), rtapi_pci(3)

LinuxCNC Documentation 221

rtapi_outb(3rtapi) RTAPI rtapi_outb(3rtapi)

NAME
rtapi_outb, rtapi_inb — Perform hardware 1I/O

SYNTAX

void rtapi_outb(unsigned char byte, unsigned int port)

unsigned char rtapi_inb(unsigned int port)

ARGUMENTS
port The address of the I/O port

byte The byte to be written to the port

DESCRIPTION

rtapi_outb writes a byte to a hardware I/O port. rtapi_inb reads a byte from a hardware 1/O port.

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in userspace compo-
nents.

RETURN VALUE
rtapi_inb returns the byte read from the given I/O port

NOTES
The I/O address should be within a region previously allocated by rtapi_request_region. Otherwise, an-
other real-time module or the Linux kernel might attempt to access the I/O region at the same time.

SEE ALSO
rtapi_region(3rtapi)

222 2006-10-12 LinuxCNC Documentation

parport(3rtapi) RTAPI parport(3rtapi)

NAME
rtapi_parport — portable access to PC-style parallel ports

SYNTAX
#include "rtapi_parport.h"

int rtapi_parport_get(const char *module_name, rtapi_parport_t *port, unsigned short base, unsigned
short base_hi, unsigned int modes)

void rtapi_parport_release(rtapi_parport_t *port)
ARGUMENTS

module_name
By convention, the name of the RTAPI module or HAL component using the parport.

port A pointer to a rtapi_parport_t structure
base The base address of the port (if port >= 16) or the linux port number of the port (if port < 16)

base_hi
The "high" address of the port (location of the ECP registers), O to use a probed high address, or
—1 to disable the high address

modes Advise the driver of the desired port modes, from <linux/parport.h>. If a linux-detected port does
not provide the requested modes, a warning is printed with rtapi_print_msg. This does not make
the port request fail, because unfortunately, many systems that have working EPP parports are not
detected as such by Linux.

DESCRIPTION
rtapi_parport_get allocates a parallel port for exclusive use of the named hal component. If successful,
access the port with I/O calls such as rtapi_inb at address based at the base or base_hi addresses. The port
must be released with rtapi_parport_release before the component exits with rtapi_exit.

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used. Oth-
erwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no high
address is detected, port—>base_hi is O.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;

unsigned short base_hi;

.... I/ and further unspecified fields

} rtapi_parport_t;
RETURN VALUE

rtapi_parport_get returns a HAL status code. On success, port is filled out with information about the al-
located port. On failure, the contents of port are undefined except that it is safe (but not required) to pass
this port to rtapi_parport_release.

rtapi_parport_release does not return a value. It always succeeds.

NOTES

In new code, prefer use of rtapi_parport to rtapi_parport.

LinuxCNC Documentation 2006-10-12 223

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_pci.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_pci.h>

struct rtapi_pci_device_id { ... };

struct rtapi_pci_resource { ... };

struct rtapi_pci_dev { ... };

struct rtapi_pci_driver { ... };

const char *rtapi_pci_name(const struct rtapi_pci_dev *pdev);

int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

void rtapi__iomem *rtapi_pci_ioremap_bar(struct rtapi_pci_dev *pdeyv, int bar);
int rtapi_pci_register_driver(struct rtapi_pci_driver *driver);

void rtapi_pci_unregister_driver(struct rtapi_pci_driver *driver);
int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

int rtapi_pci_disable_device(struct rtapi_pci_dev *dev);

#define rtapi_pci_resource_start(dev, bar) ...

#define rtapi_pci_resource_end(dev, bar) ...

#define rtapi_pci_resource_flags(dev, bar) ...

#define rtapi_pci_resource_len(dev,bar)

void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)
void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)
void rtapi_iounmap(volatile void *addr);

struct rtapi_pci;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_pci_register always succeeds)

REALTIME CONSIDERATIONS

Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE

As in Linux.

SEE ALSO

224 2014-06-28 LinuxCNC Documentation

rtapi_print(3rtapi) RTAPI rtapi_print(3rtapi)

NAME

rtapi_print, rtapi_print_msg — print diagnostic messages

SYNTAX
void rtapi_print(const char *fmnt, ...)

void rtapi_print_msg(int level, const char *fmt, ...)

typedef void(*rtapi_msg_handler_t)(msg_level_t /level, const char *msg);
void rtapi_set_msg_handler(rtapi_msg_handler_t handler);
rtapi_msg_handler_t rtapi_get_msg_handler(void);

ARGUMENTS
level A message level: One of RTAPI_MSG_ERR, RTAPI_MSG_WARN, RTAPI_MSG_INFO, or
RTAPI_MSG_DBG.

handler
A function to call from rtapi_print or rtapi_print_msg to actually output the message.

fmt, ... Other arguments are as for rtapi_vsnprintf{3rtapi).

DESCRIPTION
rtapi_print and rtapi_print_msg work like the standard C printf functions, except that a reduced set of
formatting operations are supported. Notably, formatting long-long values is not supported, and formatting
floating-point values has different behavior than standard printf.

Depending on the RTOS, the default may be to print the message to stdout, stderr, a kernel log, etc. In
RTAPI code, the action may be changed by a call to rtapi_set_msg_handler. A NULL argument to
rtapi_set_msg_handler restores the default handler. rtapi_msg_get_handler returns the current handler.
When the message came from rtapi_print, level is RTAPI_MSG_ALL.

rtapi_print_msg works like rtapi_print but only prints if level is less than or equal to the current message
level.

REALTIME CONSIDERATIONS
rtapi_print and rtapi_print_msg May be called from user, init/cleanup, and realtime code.
rtapi_get_msg_handler and rtapi_set_msg_handler may be called from realtime init/cleanup code. A
message handler passed to rtapi_set_msg_handler may only call functions that can be called from real-
time code.

RETURN VALUE

None.

SEE ALSO
rtapi_set_msg_level(3rtapi), rtapi_get_msg_level(3rtapi), rtapi_vsnprintf(3rtapi)

LinuxCNC Documentation 2006-10-12 225

rtapi_prio(3rtapi) RTAPI rtapi_prio(3rtapi)

NAME

rtapi_prio — thread priority functions

SYNTAX
int rtapi_prio_highest()

int rtapi_prio_lowest()
int rtapi_prio_next_higher(int prio)

int rtapi_prio_next_lower(int prio)

ARGUMENTS

prio A value returned by a prior rtapi_prio_xxx call

DESCRIPTION
The rtapi_prio_xxxx functions provide a portable way to set task priority. The mapping of actual priority
to priority number depends on the RTOS. Priorities range from rtapi_prio_lowest to rtapi_prio_highest,
inclusive. To use this API, use one of two methods:

1) Set your lowest priority task to rtapi_prio_lowest, and for each task of the next lowest priority, set
their priorities to rtapi_prio_next_higher(previous).

2) Set your highest priority task to rtapi_prio_highest, and for each task of the next highest priority,
set their priorities to rtapi_prio_next_lower(previous).

N.B. A high priority task will pre-empt or interrupt a lower priority task. Linux is always the lowest prior-
ity!

REALTIME CONSIDERATIONS

Call these functions only from within init/cleanup code, not from realtime tasks.

RETURN VALUE

Returns an opaque real-time priority number.

SEE ALSO
rtapi_task_new(3rtapi)

226 2006-10-12 LinuxCNC Documentation

rtapi_region(3rtapi) RTAPI rtapi_region(3rtapi)

NAME

rtapi_region — functions to manage I/O memory regions

SYNTAX

void *rtapi_request_region(unsigned long base, unsigned long int size, const char *name)

void rtapi_release_region(unsigned long base, unsigned long int size)

ARGUMENTS
base The base address of the I/O region

size The size of the I/0 region

name The name to be shown in /proc/ioports

DESCRIPTION

rtapi_request_region reserves I/O memory starting at base and going for size bytes.

REALTIME CONSIDERATIONS

May be called from realtime init/cleanup code only.

RETURN VALUE

rtapi_request_region returns NULL if the allocation fails, and a non-NULL value otherwise.

rtapi_release_region has no return value.

LinuxCNC Documentation 2006-10-12 227

rtapi_set_msg_level(3rtapi) RTAPI rtapi_set_msg_level(3rtapi)

NAME

rtapi_get_msg_level, rtapi_set_msg_level — Get or set the logging level

SYNTAX

int rtapi_set_msg_level(int level)

int rtapi_get_msg_level()

ARGUMENTS
level ~ The desired logging level

DESCRIPTION
Get or set the RTAPI message level used by rtapi_print_msg. Depending on the RTOS, this level may ap-
ply to a single RTAPI module, or it may apply to a group of modules.

REALTIME CONSIDERATIONS

May be called from user, init/cleanup, and realtime code.

RETURN VALUE
rtapi_set_msg_level returns a status code, and rtapi_get_msg_level returns the current level.
RTAPI_MSG_NONE = 0, RTAPI_MSG_ERR = 1, RTAPI_MSG_WARN = 2, RTAPI_MSG_INFO = 3,
RTAPI_MSG_DBG =4 RTAPI_MSG_ALL =5

SEE ALSO
rtapi_print_msg(3rtapi)

228 2006-10-12 LinuxCNC Documentation

rtapi_shmem(3rtapi) RTAPI rtapi_shmem(3rtapi)

NAME

rtapi_shmem — Functions for managing shared memory blocks

SYNTAX
int rtapi_shmem_new(int key, int module_id, unsigned long int size)
int rtapi_shmem_delete(int shmem_id, int module_id)
int rtapi_shmem_getptr(int shmem_id, void ** ptr)
ARGUMENTS
key Identifies the memory block. Key must be nonzero. All modules wishing to use the same memory
must use the same key.
module_id
Module identifier returned by a prior call to rtapi_init.
size The desired size of the shared memory block, in bytes
ptr The pointer to the shared memory block. Note that the block may be mapped at a different ad-
dress for different modules.
DESCRIPTION

rtapi_shmem_new allocates a block of shared memory. key identifies the memory block, and must be non-
zero. All modules wishing to access the same memory must use the same key. module_id is the ID of the
module that is making the call (see rtapi_init). The block will be at least size bytes, and may be rounded
up. Allocating many small blocks may be very wasteful. When a particular block is allocated for the first
time, the first 4 bytes are zeroed. Subsequent allocations of the same block by other modules or processes
will not touch the contents of the block. Applications can use those bytes to see if they need to initialize
the block, or if another module already did so. On success, it returns a positive integer ID, which is used
for all subsequent calls dealing with the block. On failure it returns a negative error code.

rtapi_shmem_delete frees the shared memory block associated with shmem_id. module_id is the ID of the
calling module. Returns a status code.

rtapi_shmem_getptr sets *ptr to point to shared memory block associated with shmem_id.

REALTIME CONSIDERATIONS

rtapi_shmem_getptr may be called from user code, init/cleanup code, or realtime tasks.

rtapi_shmem_new and rtapi_shmem_dete may not be called from realtime tasks.

RETURN VALUE

LinuxCNC Documentation 2006-10-12 229

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_slab.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_slab.h>
void *rtapi_kmalloc(size_t size, gfp_t g);
void *rtapi_kzalloc(size_t size, gfp_t g);
void *rtapi_krealloc(size_t size, gfp_t g);
void rtapi_kfree(void *);
DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE

As in Linux.

SEE ALSO

230 2014-06-28 LinuxCNC Documentation

rtapi_snprintf(3rtapi) RTAPI rtapi_snprintf(3rtapi)

NAME

rtapi_snprintf, rtapi_vsnprintf — Perform snprintf-like string formatting

SYNTAX

int rtapi_snprintf(char *buf, unsigned long int size, const char *fmt, ...)

int rtapi_vsnprintf(char *buf, unsigned long int size, const char *fint, va_list apfB)

ARGUMENTS
As for snprintf(3) or vsnprintf(3).

DESCRIPTION
These functions work like the standard C printf functions, except that a reduced set of formatting operations
are supported.

In particular: formatting of long long values is not supported. Formatting of floating-point values is done as
though with %A even when other formats like %f are specified.

REALTIME CONSIDERATIONS

May be called from user, init/cleanup, and realtime code.

RETURN VALUE

The number of characters written to buyf.

SEE ALSO
printf(3)

LinuxCNC Documentation 2006-10-12 231

funct(3rtapi)

NAME

RTAPI

rtapi_stdint.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_stdint.h>

typedef

typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...
typedef ...

typedef

... rtapi_s8;
rtapi_s16;
rtapi_s32;
rtapi_s64;
rtapi_intptr_t;
rtapi_u8;
rtapi_ul6;
rtapi_u32;
rtapi_u64;

... rtapi_uintptr_t;

#define RTAPI_INTxx_MIN ...
#define RTAPI_INTxx_MAX ...
#define RTAPI_UINTxx_MAX ...

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

funct(3rtapi)

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS

None.

RETURN VALUE

As in Linux.

SEE ALSO

232

2014-06-28

LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME

rtapi_string.h — RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_string.h>
char **rtapi_argv_split(rtapi_gfp_t g, const char *argstr, int *argc);
void rtapi_argv_free(char **argv);
char *rtapi_kstrdup(const char *s, rtapi_gfp_t t);
DESCRIPTION

In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE

As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 233

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_strlcpy — RTAPI string manipulation functions

SYNTAX
#include <rtapi_string.h>

size_t rtapi_strlcpy(char *dst, const char *src, size_t sz); #define rtapi_strxcpy(dst, src) ... size_t rtapi_strl-
cat(char *dst, const char *src, size_t sz); #define rtapi_strxcat(dst, src) ...

DESCRIPTION
rtapi_strlcpy will copy at most sz’ chars from ’src’ to ’dst’. Always leaves 'dst” NUL-terminated except if
sz is 0.

rtapi_strxcpy(dst, src) checks that dst is an array with known size, and calls rtapi_strlcpy(dst, src,
sizeof(dst)). If it is not an array with a known size, it is a (possibly cryptic!) syntax error.

rtapi_strlcat will append characters from ’src’ to ’dst’, stopping when the end of ’src’ is reached, or *dst’
uses sz’ bytes of storage including the trialing nul.

rtapi_strxcat(dst, src) checks that dst is an array with known size, and calls rtapi_strlcat(dst, src,
sizeof(dst)). If it is not an array with a known size, it is a (possibly cryptic!) syntax error.

RETURN VALUE
The total length of the string strlcpy or strlcat tried to create. For strlcpy() that means the length of src. If
the return value is greater than or equal to sz, the result was truncated.

SEE ALSO
strlcpy(3bsd), strlcat(3bsd)

234 LinuxCNC Documentation

rtapi_task_new(3rtapi) RTAPI rtapi_task_new(3rtapi)

NAME

rtapi_task_new — create a realtime task

SYNTAX
int rtapi_task_new(void (*taskcode)(void*), void *arg, int prio, unsigned long stacksize, int

uses_fp)
int rtapi_task_delete(int task_id)

ARGUMENTS
taskcode
A pointer to the function to be called when the task is started

arg An argument to be passed to the faskcode function when the task is started
prio A task priority value returned by rtapi_prio_xxxx

uses_fp A flag that tells the OS whether the task uses floating point or not.

task_id A task ID returned by a previous call to rtapi_task_new

DESCRIPTION
rtapi_task_new creates but does not start a realtime task. The task is created in the "paused" state. To
start it, call either rtapi_task_start for periodic tasks, or rtapi_task_resume for free-running tasks.

REALTIME CONSIDERATIONS

Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE

On success, returns a positive integer task ID. This ID is used for all subsequent calls that need to act on
the task. On failure, returns an RTAPI status code.

SEE ALSO
rtapi_prio(3rtapi), rtapi_task_start(3rtapi), rtapi_task_wait(3rtapi), rtapi_task_resume(3rtapi)

LinuxCNC Documentation 2006-10-12 235

rtapi_task_pause(3rtapi) RTAPI rtapi_task_pause(3rtapi)

NAME

rtapi_task_pause, rtapi_task_resume — pause and resume real-time tasks

SYNTAX
void rtapi_task_pause(int rask_id)

void rtapi_task_resume(int task_id)

ARGUMENTS
task_id An RTAPI task identifier returned by an earlier call to rtapi_task_new.

DESCRIPTION

rtapi_task_resume starts a task in free-running mode. The task must be in the "paused"” state.

A free running task runs continuously until either:

1) It is prempted by a higher priority task. It will resume as soon as the higher priority task releases
the CPU.

2) It calls a blocking function, like rtapi_sem_take. It will resume when the function unblocks.

3) It is returned to the "paused" state by rtapi_task_pause. May be called from init/cleanup code,

and from within realtime tasks.

rtapi_task_pause causes a task to stop execution and change to the "paused" state. The task can
be free-running or periodic. Note that rtapi_task_pause may called from any task, or from init or
cleanup code, not just from the task that is to be paused. The task will resume execution when ei-
ther rtapi_task_resume or rtapi_task_start (depending on whether this is a free-running or peri-
odic task) is called.

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
An RTAPI status code.

SEE ALSO
rtapi_task_new(3rtapi), rtapi_task_start(3rtapi)

236 2006-10-12 LinuxCNC Documentation

rtapi_task_self(3rtapi) RTAPI rtapi_task_self(3rtapi)

NAME

rtapi_task_self — Retrieve ID of current task

SYNTAX
void rtapi_task_self()

DESCRIPTION
rtapi_task_self retrieves the current task, or —EINVAL if not in a realtime task (e.g., in startup or shutdown
code).

REALTIME CONSIDERATIONS

May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
The task number previously returned by rtapi_task_new or —EINVAL.

SEE ALSO
rtapi_task_new(3rtapi)

LinuxCNC Documentation 2015-04-18 237

rtapi_task_start(3rtapi) RTAPI rtapi_task_start(3rtapi)

NAME

rtapi_task_start — start a realtime task in periodic mode

SYNTAX

int rtapi_task_start(int task_id, unsigned long period_nsec)

ARGUMENTS

task_id A task ID returned by a previous call to rtapi_task_new

period_nsec
The clock period in nanoseconds between iterations of a periodic task

DESCRIPTION

rtapi_task_start starts a task in periodic mode. The task must be in the paused state.

REALTIME CONSIDERATIONS

Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an RTAPI status code.

SEE ALSO

rtapi_task_new(3rtapi), rtapi_task_pause(3rtapi), rtapi_task_resume(3rtapi)

238 2006-10-12 LinuxCNC Documentation

rtapi_task_wait(3rtapi) RTAPI rtapi_task_wait(3rtapi)

NAME

rtapi_task_wait — suspend execution of this periodic task

SYNTAX
void rtapi_task_wait()

DESCRIPTION
rtapi_task_wait suspends execution of the current task until the next period. The task must be periodic. If
not, the result is undefined.

REALTIME CONSIDERATIONS

Call only from within a periodic realtime task

RETURN VALUE
None

SEE ALSO
rtapi_task_start(3rtapi), rtapi_task_pause(3rtapi)

LinuxCNC Documentation 2006-10-12 239

undocumented(3rtapi) RTAPI undocumented(3rtapi)

NAME

undocumented — undocumented functions in RTAPI

SEE ALSO

The header file rtapi.h. Most rtapi functions have documentation in that file.

240 2006-10-12 LinuxCNC Documentation

ABS(9) HAL Component

NAME

abs — Compute the absolute value and sign of the input signal

SYNOPSIS

loadrt abs [count=N|names=name[,name2...1]

FUNCTIONS
abs.N (requires a floating-point thread)

PINS
abs.N.in float in
Analog input value

abs.N.out float out
Analog output value, always positive

abs.N.sign bit out
Sign of input, false for positive, true for negative

abs.N.is-positive bit out
TRUE if input is positive, FALSE if input is O or negative

abs.N.is-negative bit out
TRUE if input is negative, FALSE if input is O or positive

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

ABS(9)

241

ABS_S32(9) HAL Component

NAME

abs_s32 — Compute the absolute value and sign of the input signal

SYNOPSIS

loadrt abs_s32 [count=N|names=name[,name2...]]

FUNCTIONS
abs-s32.N

PINS
abs-s32.N.in s32 in
input value

abs-s32.N.out s32 out
output value, always non-negative

abs-s32.N.sign bit out
Sign of input, false for positive, true for negative

abs-s32.N.is-positive bit out
TRUE if input is positive, FALSE if input is O or negative

abs-s32.N.is-negative bit out
TRUE if input is negative, FALSE if input is O or positive

LICENSE
GPL

242 2020-09-04

ABS_S32(9)

LinuxCNC Documentation

AND2(9) HAL Component AND2(9)

NAME
and2 — Two-input AND gate

SYNOPSIS

loadrt and2 [count=N|names=name[,name?...]]

FUNCTIONS
and2.N

PINS
and2.N.in0 bit in
and2.N.inl bit in
and2.N.out bit out
out is computed from the value of in0 and inl according to the following rule:

in0=TRUE in1=TRUE
out=TRUE

Otherwise,
out=FALSE

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 243

AT _PID(9) HAL Component AT_PID(9)

NAME

at_pid — proportional/integral/derivative controller with auto tuning

SYNOPSIS

loadrt at_pid [num_chan=num | names=nameI[,name?2...]]

DESCRIPTION
at_pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback
loops for servo motors and other closed-loop applications.

at_pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is three.

If debug is set to 1 (the default is 0), some additional HAL parameters will be exported, which might be
useful for tuning, but are otherwise unnecessary.

at_pid has a built in auto tune mode. It works by setting up a limit cycle to characterize the process. From
this, Pgain/Igain/Dgain or Pgain/Igain/FF1 can be determined using Ziegler-Nichols. When using FF1,
scaling must be set so that output is in user units per second.

During auto tuning, the command input should not change. The limit cycle is setup around the commanded
position. No initial tuning values are required to start auto tuning. Only tune—cycles, tune—effort and
tune—mode need be set before starting auto tuning. When auto tuning completes, the tuning parameters
will be set. If running from LinuxCNC, the FERROR setting for the axis being tuned may need to be loos-
ened up as it must be larger than the limit cycle amplitude in order to avoid a following error.

To perform auto tuning, take the following steps. Move the axis to be tuned, to somewhere near the center
of it’s travel. Set tune—cycles (the default value should be fine in most cases) and tune—mode. Set
tune—effort to a small value. Set enable to true. Set tune—mode to true. Set tune—start to true. If no oscil-
lation occurs, or the oscillation is too small, slowly increase tune—effort. Auto tuning can be aborted at
any time by setting enable or tune—mode to false.

NAMING
The names for pins, parameters, and functions are prefixed as:
pid.N. for N=0,1,...,num—1 when using num_chan=num
nameN. for nameN=namel,name2,... when using names=namel,name2,...

The pid.N. format is shown in the following descriptions.

FUNCTIONS
pid.N.do—pid—calcs (uses floating-point)
Does the PID calculations for control loop N.

PINS
pid.N.command float in
The desired (commanded) value for the control loop.

pid.N.feedback float in
The actual (feedback) value, from some sensor such as an encoder.

244 2007-05-12 LinuxCNC Documentation

AT _PID(9) HAL Component AT_PID(9)

pid.N.error float out
The difference between command and feedback.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.enable bit in
When true, enables the PID calculations. When false, output is zero, and all internal integrators,
etc, are reset.

pid.N.tune—mode bit in
When true, enables auto tune mode. When false, normal PID calculations are performed.

pid.N.tune—start bit io
When set to true, starts auto tuning. Cleared when the auto tuning completes.

PARAMETERS
pid.N.Pgain float rw
Proportional gain. Results in a contribution to the output that is the error multiplied by Pgain.

pid.N.Igain float rw
Integral gain. Results in a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error (er-
rorl) of 0.2, and if Igain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float rw
Derivative gain. Results in a contribution to the output that is the rate of change (derivative) of the
error multiplied by Dgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and if Dgain is 5, the derivative term would
add 0.25 to the output.

pid.N.bias float rw
bias is a constant amount that is added to the output. In most cases it should be left at zero. How-
ever, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum?2 block.

pid.N.FF0 float rw
Zero order feed-forward term. Produces a contribution to the output that is FF0 multiplied by the
commanded value. For position loops, it should usually be left at zero. For velocity loops, FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float rw
First order feed-forward term. Produces a contribution to the output that FF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float rw
Second order feed-forward term. Produces a contribution to the output that is FF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia. For velocity loops, it should usually be
left at zero.

pid.N.deadband float rw
Defines a range of "acceptable" error. If the absolute value of error is less than deadband, it will
be treated as if the error is zero. When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When

LinuxCNC Documentation 2007-05-12 245

AT _PID(9) HAL Component AT_PID(9)

the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the
edge of the deadband. (See BUGS.)

pid.N.maxoutput float rw
Output limit. The absolute value of the output will not be permitted to exceed maxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

pid.N.maxerror float rw
Limit on the internal error variable used for P, I, and D. Can be used to prevent high Pgain values
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change). Not normally needed, but can be useful when tuning non-linear
systems.

pid.N.maxerrorD float rw
Limit on the error derivative. The rate of change of error used by the Dgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect of Dgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorlI float rw
Limit on error integrator. The error integrator used by the Igain term will be limited to this value,
unless it is zero. Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdD float rw
Limit on command derivative. The command derivative used by FF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

pid.N.maxcmdDD float rw
Limit on command second derivative. The command second derivative used by FF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.tune—type u32 rw
When set to 0, Pgain/Igain/Dgain are caclulated. When set to 1, Pgain/Igain/FF1 are calculated.

pid.N.tune—cycles u32 rw
Determines the number of cycles to run to characterize the process. tune—cycles actually sets the
number of half cycles. More cycles results in a more accurate characterization as the average of all
cycles is used.

pid.N.tune—effort float rw
Determines the effor used in setting up the limit cycle in the process. tune—effort should be set to
a positive value less than maxoutput. Start with something small and work up to a value that re-
sults in a good portion of the maximum motor current being used. The smaller the value, the
smaller the amplitude of the limit cycle.

pid.N.errorl float ro (only if debug=1)
Integral of error. This is the value that is multiplied by Igain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied by Dgain to produce the Derivative term of
the output.

pid.N.commandD float ro (only if debug=1)
Derivative of command. This is the value that is multiplied by FF1 to produce the first order feed-
forward term of the output.

246 2007-05-12 LinuxCNC Documentation

AT _PID(9) HAL Component AT_PID(9)

pid.N.commandDD float ro (only if debug=1)
Second derivative of command. This is the value that is multiplied by FF2 to produce the second
order feed-forward term of the output.

pid.N.ultimate—gain float ro (only if debug=1)
Determined from process characterization. ultimate—gain is the ratio of tune—effort to the limit
cycle amplitude multiplied by 4.0 divided by Pi. pid.N.ultimate—period float ro (only if de-
bug=1) Determined from process characterization. ultimate—period is the period of the limit cy-
cle.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband. This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version of at_pid. How-
ever, the default behavior should not be changed.

LinuxCNC Documentation 2007-05-12 247

AXISTEST(9) HAL Component AXISTEST(9)

NAME

axistest — Used to allow testing of an axis. Used IN PNCconf
SYNOPSIS

loadrt axistest [count=N|names=nameI[,name?2...]]
FUNCTIONS

axistest.N.update (requires a floating-point thread)

PINS
axistest./N.jog-minus bit in
Drive TRUE to jog the axis in its minus direction

axistest./NV.jog-plus bit in
Drive TRUE to jog the axis in its positive direction

axistest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

axistest.N.maxvel float in
Maximum velocity

axistest.N.amplitude float in
Approximate amplitude of positions to command during ’run’

axistest.N.dir s32 in
Direction from central point to test: O = both, 1 = positive, 2 = negative

axistest./N.position-cmd float out
axistest.N.position-fb float in
axistest.N.running bit out
axistest.N.run-target float out
axistest.N.run-start float out
axistest.N.run-low float out
axistest.N.run-high float out
axistest.N.pause s32 in (default: 0)
pause time for each end of run in seconds

PARAMETERS
axistest.N.epsilon float rw (default: .001)
axistest.N.elapsed float r
Current value of the internal timer

LICENSE
GPL

248 2020-09-04 LinuxCNC Documentation

BIN2GRAY(9) HAL Component

NAME

bin2gray — convert a number to the gray-code representation

SYNOPSIS

loadrt bin2gray [count=N|names=name[,name?...]]

DESCRIPTION

Converts a number into gray-code

FUNCTIONS
bin2gray.N

PINS
bin2gray.N.in u32 in
binary code in

bin2gray.N.out u32 out
gray code out

AUTHOR
andy pugh

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

BIN2GRAY(9)

249

BIQUAD(9) HAL Component BIQUAD(9)

NAME
biquad — Biquad IIR filter
SYNOPSIS
loadrt biquad [count=N|names=name[,name?...]]
DESCRIPTION
Biquad IIR filter. Implements the following transfer function: H(z) = (n0 + nlz-1 + n2z-2) / (1+ d1z-1 +
d2z-2)
FUNCTIONS

biquad.N (requires a floating-point thread)

PINS
biquad.N.in float in
Filter input.

biquad.N.out float out
Filter output.

biquad.N.enable bit in (default: 0)
Filter enable. When false, the in pin is passed to the out pin without any filtering. A transition
from false to true causes filter coefficients to be calculated according to the current type and the
describing pin and parameter settings

biquad.N.valid bit out (default: 0)
When false, indicates an error occurred when calculating filter coefficients (require 2>Q>0.5 and
f0>sampleRate/2)

biquad.N.type u32 in (default: 0)
Filter type determines the type of filter coefficients calculated. When 0, coefficients must be
loaded directly from the n0,n1,n2,d1 params. When 1, a low pass filter is created specified by the
f0,Q pins. When 2, a notch filter is created specified by the f0,Q pins.

biquad.N.f0 float in (default: 250.0)
The corner frequency of the filter.

biquad.N.Q float in (default: 0.7071)
The Q of the filter.

biquad.N.s1 float out (default: 0.0)
1st-delayed internal state (for debug only)

biquad.N.s2 float out (default: 0.0)
2nd-delayed internal state (for debug only)

PARAMETERS
biquad.N.d1 float rw (default: 0.0)
1st-delayed denominator coef

biquad.N.d2 float rw (default: 0.0)
2nd-delayed denominator coef

biquad.N.n0 float rw (default: 1.0)
non-delayed numerator coef

biquad.N.n1 float rw (default: 0.0)
1st-delayed numerator coef

biquad.N.n2 float rw (default: 0.0)
2nd-delayed numerator coef

250 2020-09-04 LinuxCNC Documentation

BIQUAD(9) HAL Component BIQUAD(9)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 251

BITSLICE(9) HAL Component BITSLICE(9)

NAME

bitslice — Converts an unsigned-32 input into individual bits

SYNOPSIS

loadrt bitslice [count=N|names=nameI[,name2...]] [personality=P,F....]

DESCRIPTION
This component creates individual bit-outputs for each bit of an unsigned-32 input. The number of bits can
be limited by the "personality" modparam. The inverse process can be performed by the weighted_sum
HAL component.

FUNCTIONS
bitslice.N

PINS
bitslice.V.in u32 in
The input value

bitslice.N.out-MM bit out (MM=00..personality)

AUTHOR
Andy Pugh

LICENSE
GPL2+

252 2020-09-04 LinuxCNC Documentation

BITWISE(9) HAL Component

NAME

bitwise — Computes various bitwise operations on the two input values

SYNOPSIS

loadrt bitwise [count=N|names=name[,name2...]]

FUNCTIONS
bitwise.N

PINS
bitwise.N.in0 u32 in
First input value

bitwise.N.in1 u32 in
Second input value

bitwise.N.out-and u32 out
The bitwise AND of the two inputs

bitwise.N.out-or u32 out
The bitwise OR of the two inputs

bitwise.N.out-xor u32 out
The bitwise XOR of the two inputs

bitwise.N.out-nand u32 out
The inverse of the bitwise AND

bitwise.N.out-nor u32 out
The inverse of the bitwise OR

bitwise.N.out-xnor u32 out
The inverse of the bitwise XOR

AUTHOR
Andy Pugh

LICENSE
GPL 2+

LinuxCNC Documentation 2020-09-04

BITWISE(9)

253

BLDC(9) HAL Component BLDC(9)

NAME
bldc — BLDC and AC-servo control component

SYNOPSIS
loadrt bldc personality=P

DESCRIPTION
This component is designed as an interface between the most common forms of three-phase motor feed-
back devices and the corresponding types of drive. However there is no requirement that the motor and
drive should necessarily be of inherently compatible types.

SYNOPSIS
(ignore the auto-generated SYNOPSIS above)

loadrt bldc cfg=qi6,aH
Each instance of the component is defined by a group of letters describing the input and output
types. A comma separates individual instances of the component.

Tags
Input type definitions are all lower-case.

n No motor feedback. This mode could be used to drive AC induction motors, but is also potentially useful
for creating free-running motor simulators for drive testing.

h Hall sensor input. Brushless DC motors (electronically commutated permanent magnet 3-phase motors)
typically use a set of three Hall sensors to measure the angular position of the rotor. A lower-case h in the
cfg string indicates that these should be used.

a Absolute encoder input. (Also possibly used by some forms of Resolver conversion hardware). The pres-
ence of this tag over-rides all other inputs. Note that the component still requires to be be connected to the

rawcounts encoder pin to prevent loss of commutation on index-reset.

q Incremental (quadrature) encoder input. If this input is used then the rotor will need to be homed before
the motor can be run.

i Use the index of an incremental encoder as a home reference.

f Use a 4-bit Gray-scale patttern to determine rotor alignment. This scheme is only used on the Fanuc "Red
Cap" motors. This mode could be used to control one of these motors using a non-Fanuc drive.

Output type descriptions are all upper-case.
Defaults The component will always calculate rotor angle, phase angle and the absolute value of the input
value for interfacing with drives such as the Mesa 8i20. It will also default to three individual, bipolar

phase output values if no other output type modifiers are used.

B Bit level outputs. Either 3 or 6 logic-level outputs indicating which high or low gate drivers on an exter-
nal drive should be used.

6 Create 6 rather than the default 3 outputs. In the case of numeric value outputs these are separate positive
and negative drive amplitudes. Both have positive magnitude.

H Emulated Hall sensor output. This mode can be used to control a drive which expects 3x Hall signals, or
to convert between a motor with one hall pattern and a drive which expects a different one.

F Emulated Fanuc Red Cap Gray-code encoder output. This mode might be used to drive a non-Fanuc

254 2020-09-04 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

motor using a Fanuc drive intended for the "Red-Cap" motors.

T Force Trapezoidal mode.

OPERATING MODES

The component can control a drive in either Trapezoidal or Sinusoidal mode, but will always default to si-
nusoidal if the input and output modes allow it. This can be over-ridden by the T tag. Sinusoidal commuta-
tion is significantly smoother (trapezoidal commutation induces 13% torque ripple).

ROTOR HOMING.

To use an encoder for commutation a reference 0-degrees point must be found. The component uses the
convention that motor zero is the point that an unloaded motor aligns to with a positive voltage on the A (or
U) terminal and the B & C (or V and W) terminals connected together and to —ve voltage. There will be
two such positions on a 4-pole motor, 3 on a 6-pole and so on. They are all functionally equivalent as far as
driving the motor is concerned. If the motor has Hall sensors then the motor can be started in trapezoidal
commutation mode, and will switch to sinusoidal commutation when an alignment is found. If the mode is
gh then the first Hall state-transition will be used. If the mode is ghi then the encoder index will be used.
This gives a more accurate homing position if the distance in encoder counts between motor zero and en-
coder index is known. To force homing to the Hall edges instead simply omit the i.

Motors without Hall sensors may be homed in synchronous/direct mode. The better of these options is to
home to the encoder zero using the iq config parameter. When the init pin goes high the motor will rotate
(in a direction determined by the rev pin) until the encoder indicates an index-latch (the servo thread runs
too slowly to rely on detecting an encoder index directly). If there is no encoder index or its location rela-
tive to motor zero can not be found, then an alternative is to use magnetic homing using the q config. In this
mode the motor will go through an alignment sequence ending at motor zero when the init pin goes high It
will then set the final position as motor zero. Unfortunately the motor is rather springy in this mode and so
alignment is likely to be fairly sensitive to load.

FUNCTIONS

PINS

bldc.N (requires a floating-point thread)

bldc.N.halll bit in [if personality & 0x01]
Hall sensor signal 1

bldc.N.hall2 bit in [if personality & 0x01]
Hall sensor signal 2

bldc.N.hall3 bit in [if personality & 0x01]
Hall sensor signal 3

bldc.N.hall-error bit out [if personality & 0x01]
Indicates that the selected hall pattern gives inconsistent rotor position data. This can be due to the
pattern being wrong for the motor, or one or more sensors being unconnected or broken. A consis-
tent pattern is not neceesarily valid, but an inconsistent one can never be valid.

bldc.N.C1 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 0 input

bldc.N.C2 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 1 input

bldc.N.C4 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 2 input

LinuxCNC Documentation 2020-09-04 255

BLDC(9) HAL Component BLDC(9)

256

bldc.N.C8 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 3 input

bldc.N.value float in
PWM master amplitude input

bldc.N.lead-angle float in [if personality & 0x06] (default: 90)
The phase lead between the electrical vector and the rotor position in degrees

bldc.N.rev bit in
Set this pin true to reverse the motor. Negative PWM amplitudes will also reverse the motor and
there will generally be a Hall pattern that runs the motor in each direction too.

bldc.N.frequency float in [if (personality & 0xOF) == 0]
Frequency input for motors with no feedback at all, or those with only an index (which is ignored)

bldc.N.initvalue float in [if personality & 0x04] (default: 0.2)
The current to be used for the homing sequence in applications where an incremental encoder is
used with no hall-sensor feedback

bldc.N.rawcounts s32 in [if personality & 0x06] (default: 0)
Encoder counts input. This must be linked to the encoder rawcounts pin or encoder index resets
will cause the motor commutation to fail

bldc.N.index-enable bit io [if personality & 0x08]
This pin should be connected to the associated encoder index-enable pin to zero the encoder when
it passes index This is only used indicate to the bldc control component that an index has been
seen

bldc.N.init bit in [if (personality & 0x05) == 4]
A rising edge on this pin starts the motor alignment sequence. This pin should be connected in
such a way that the motors re-align any time that encoder monitoring has been interrupted. Typi-
cally this will only be at machine power-off. The alignment process involves powering the motor
phases in such a way as to put the motor in a known position. The encoder counts are then stored
in the offset parameter. The alignment process will tend to cause a following error if it is triggered
while the axis is enabled, so should be set before the matching axis.N.enable pin. The complemen-
tary init-done pin can be used to handle the required sequencing.

Both pins can be ignored if the encoder offset is known explicitly, such as is the case with an abso-
lute encoder. In that case the offset parameter can be set directly in the HAL file

bldc.N.init-done bit out [if (personality & 0x05) == 4] (default: 0)
Indicates homing sequence complete

bldc.N.A-value float out [if (personality & 0xF00) == 0]
Output amplitude for phase A

bldc.N.B-value float out [if (personality & 0xF00) == 0]
Output amplitude for phase B

bldc.N.C-value float out [if (personality & 0xF00) == 0]
Output amplitude for phase C

bldc.N.A-on bit out [if (personality & 0xF00) == 0x100]

Output bit for phase A

bldc.N.B-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase B

bldc.N.C-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase C

2020-09-04 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

bldc.N.A-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase A

bldc.N.B-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase B

bldc.N.C-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase C

bldc.N.A-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase A

bldc.N.B-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase B

bldc.N.C-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase C

bldc.N.A-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase A

bldc.N.B-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase B

bldc.N.C-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase C

bldc.N.A-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase A

bldc.N.B-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase B

bldc.N.C-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase C

bldc.N.halll-out bit out [if (personality & 0x400)]
Hall 1 output

bldc.N.hall2-out bit out [if (personality & 0x400)]
Hall 2 output

bldc.N.hall3-out bit out [if (personality & 0x400)]
Hall 3 output

bldc.N.C1-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 0 output

bldc.N.C2-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 1 output

bldc.N.C4-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 2 output

bldc.N.C8-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 3 output

bldc.N.phase-angle float out (default: 0)
Phase angle including lead/lag angle after encoder zeroing etc. Useful for angle/current drives.
This value has a range of 0 to 1 and measures electrical revolutions. It will have two zeros for a 4
pole motor, three for a 6-pole etc

bldc.N.rotor-angle float out (default: 0)
Rotor angle after encoder zeroing etc. Useful for angle/current drives which add their own phase
offset such as the 8i20. This value has a range of 0 to 1 and measures electrical revolutions. It will
have two zeros for a 4 pole motor, three for a 6-pole etc

LinuxCNC Documentation 2020-09-04 257

BLDC(9) HAL Component BLDC(9)

bldc.N.out float out
Current output, including the effect of the dir pin and the alignment sequence

bldc.N.out-dir bit out
Direction output, high if /fBvalue/fR is negative XOR /fBrev/fR is true.

bldc.N.out-abs float out
Absolute value of the input value

PARAMETERS
bldc.N.in-type s32 r (default: -7)
state machine output, will probably hide after debug

bldc.N.out-type s32 r (default: -7)
state machine output, will probably hide after debug

bldc.N.scale s32 rw [if personality & 0x06] (default: 572)
The number of encoder counts per rotor revolution.

bldc.N.poles s32 rw [if personality & 0x06] (default: 4)
The number of motor poles. The encoder scale will be divided by this value to determine the num-
ber of encoder counts per electrical revolution

bldc.N.encoder-offset s32 rw [if personality & 0x0A] (default: 0)
The offset, in encoder counts, between the motor electrical zero and the encoder zero modulo the
number of counts per electrical revolution

bldc.N.offset-measured s32 r [if personality & 0x04] (default: 0)
The encoder offset measured by the homing sequence (in certain modes)

bldc.N.drive-offset float rw (default: 0)
The angle, in degrees, applied to the commanded angle by the drive in degrees. This value is only
used during the homing sequence of drives with incremental encoder feedback. It is used to back-
calculate from commanded angle to actual phase angle. It is only relevant to drives which expect
rotor-angle input rather than phase-angle demand. Should be O for most drives.

bldc.N.output-pattern u32 rw [if personality & 0x400] (default: 25)
Commutation pattern to be output in Hall Signal translation mode. See the description of /fBpat-
tern/fR for details

bldc.N.pattern u32 rw [if personality & 0x01] (default: 25)
Commutation pattern to use, from O to 47. Default is type 25. Every plausible combination is in-
cluded. The table shows the excitation pattern along the top, and the pattern code on the left hand
side. The table entries are the hall patterns in H1, H2, H3 order. Common patterns are: 0 (30 de-
gree commutation) and 26, its reverse. 17 (120 degree). 18 (alternate 60 degree). 21 (300 degree,
Bodine). 22 (240 degree). 25 (60 degree commutation).

Note that a number of incorrect commutations will have non-zero net torque which might look as
if they work, but don’t really.

If your motor lacks documentation it might be worth trying every pattern.

258 2020-09-04 LinuxCNC Documentation

BLDC(9) HAL Component
Phases, Source - Sink
pat | B-A C-A C-B A-B A-C B-C
0 000 001 011 111 110 100
1 001 000 010 110 111 101
2 000 010 011 111 101 100
3 001 011 010 110 100 101
4 010 011 001 101 100 110
5 011 010 000 100 101 111
6 010 000 001 101 111 110
7 011 001 000 100 110 111
8 000 001 101 111 110 010
9 001 000 100 110 111 011
10 000 010 110 111 101 001
11 001 011 111 110 100 000
12 010 011 111 101 100 000
13 011 010 110 100 101 001
14 010 000 100 101 111 011
15 011 001 101 100 110 010
16 000 100 101 111 011 010
17 001 101 100 110 010 011
18 000 100 110 111 011 001
19 001 101 111 110 010 000
20 010 110 111 101 001 000
21 011 111 110 100 000 001
22 010 110 100 101 001 011
23 011 111 101 100 000 010
24 100 101 111 011 010 000
25 101 100 110 010 011 001
26 100 110 111 011 001 000
27 101 111 110 010 000 001
28 110 111 101 001 000 010
29 111 110 100 000 001 011
30 110 100 101 001 011 010
31 111 101 100 000 010 011
32 100 101 001 011 010 110
33 101 100 000 010 011 111
34 100 110 010 011 001 101
35 101 111 011 010 000 100
36 110 111 011 001 000 100
37 111 110 010 000 001 101
38 110 100 000 001 011 111
39 111 101 001 000 010 110
40 100 000 001 011 111 110
41 101 001 000 010 110 111
42 100 000 010 011 111 101
43 101 001 011 010 110 100
44 110 010 011 001 101 100
45 111 011 010 000 100 101
46 110 010 000 001 101 111
47 111 011 001 000 100 110

LinuxCNC Documentation

2020-09-04

BLDC(9)

259

BLDC(9)

AUTHOR
Andy Pugh

LICENSE
GPL

260

HAL Component

2020-09-04

BLDC(9)

LinuxCNC Documentation

BLEND(9) HAL Component BLEND(9)

NAME

blend — Perform linear interpolation between two values

SYNOPSIS

loadrt blend [count=N|names=nameI[,name?2...]]

FUNCTIONS
blend.N (requires a floating-point thread)

PINS
blend.N.in1 float in
First input. If select is equal to 1.0, the output is equal to inl

blend.N.in2 float in
Second input. If select is equal to 0.0, the output is equal to in2

blend.N.select float in
Select input. For values between 0.0 and 1.0, the output changes linearly from in2 to inl

blend.N.out float out
Output value.

PARAMETERS
blend.N.open bit rw
If true, select values outside the range 0.0 to 1.0 give values outside the range in2 to inl. If false,
outputs are clamped to the the range in2 to inl

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 261

CAROUSEL(9) HAL Component CAROUSEL/(9)

NAME

carousel — Orient a toolchanger carousel using various encoding schemes

SYNOPSIS

loadrt carousel pockets=N[,N] encoding=ssss[,sss] num_sense=N[,N] dir=N[,N]

pockets The number of pockets in each toolchanger.
Use up to 8 numbers separated by commas to create multiple carousel components.

encoding The position encoding.
gray, binary, bed, index, edge or single. Default = *gray’

num_sense The number of position sense pins.
Default = 4.

dir Set to 1 for unidirectional or 2 for bidirectional operation.
Default = bidirectional

parity Set to 1 for odd parity, O for even parity checking.
Default = 0 (even)

DESCRIPTION

262

This component is intended to help operate various types of carousel-type toolchangers. The component
can be configured to operate with binary, binary-coded decimal (BCD) or gray-coded position feedback,
with an individual sensor for each tool position or with a sensor at each tool position and a separate index.

Both unidirectional and bidirectional systems are supported and those that reverse against a stop when in
position.

The number of carousel component instances created depends on the number of entries in the *pockets’
modparam. For example

loadrt carousel pockets=10,10,8

Would create 3 carousel instances with 10, 10 and 8 pockets. The other parameters are optional. If absent
then defaults will be used. Any missing entry will assume the previous value.

When the enable pin is set to true the component will immediately set the "active" pin to true and then (for
a bidirectional instance) calculate the shortest path to the requested pocket number. The appropriate motor
direction output pins will then be set. Bit outputs for forward and reverse are provided as well as a three-
state velocity output for driving a DC motor PWM or a velocity-mode stepgen.

The component will monitor the carousel position and, when the correct position is reached, set the motor-
control pins to 0, set "active" to 0 and set "ready" to 1.

In index mode the behaviour is slightly different. The first time that the "enable" pin is set; the carousel will
rotate forwards until both the index and pulse inputs are true. If there is no pulse line at the index position
then a HAL "or2" function can be used to allow the index sensor to toggle both inputs. Setting "enable" low
does not halt the homing move, so if homing on first tool change is not needed then the enable pin can be
toggled by an axis homing pin or a script. edge is a special case of index mode for tool changers with pock-
ets on both the rising and falling edges of the position sensor. (Seen on at least one Denford Orac.)

For tool changers which lock the carousel against a stop the rev-pulse pin can be set to a non-zero value.

The motor-rev pin will then be set for this many seconds at the completion of the tool search and at the
same time the reverse duty/cycle velocity value will be sent to the motor-vel pin.

2020-09-04 LinuxCNC Documentation

CAROUSEL(9) HAL Component CAROUSEL/(9)

FUNCTIONS

PINS

carousel.N (requires a floating-point thread)

carousel.N.pocket-number s32 in
The pocket to move to when the .enable pin goes high. If the value passed is gigher than the num-
ber of pockests specified in the "pockets" modparam then modulo arithmetic is used. This is in-
tended to allow the use of multiple tools in the same holder, as is sometimes useful with lathes.

carousel.N.enable bit in
Set this pin high to start movement. Setting it low will stop movement

carousel.NV.active bit out
indicates that the component is active

carousel.N.ready bit out
This pin goes high when the carousel is in-position

carousel.NV.strobe bit in (default: 7)
Use this pin to indicate that the position feedback is valid. Often provided by binary encoders

carousel.NV.parity bit in
Some encoders supply a parity bit, if this is connected then the parity-error output bit will indicate
parity errors

carousel.NV.sense-M bit in (M=0..personality)
Carousel position feedback pins. In ’index’ mode there will be only 2 pins. sense-0 is the index
and sense-1 is the pocket sensor.

carousel.N.rev-pulse float in
The duration in seconds for which a ratchet changer (Boxford, Emco) should pulse the reverse pin
to lock the holder

carousel.NV.fwd-dc float in
Velocity or duty cycle when forwards rotation is desired

carousel.NV.rev-dc float in
Velocity or duty cycle when reverse rotation is desired

carousel.N.hold-dc float in
Duty cycle when carousel is in-position (to hold against stop)

carousel.N.jog-fwd bit in
Jog the carousel forwards one tool position

carousel.NV.jog-rev bit in
Jog the carousel in reverse (only if dir = 2). It is very important that these pins should be de-
bounced and should probably also be interlocked to only operate when the machine is idle.

carousel.N.motor-fwd bit out
Indicates the motor should run forwards (bigger numbers)

carousel.N.motor-rev bit out
Indicates the motor should run reverse.

carousel.N.parity-error bit out
Indicates a parity error

carousel.N.current-position s32 out
This pin indicates the current position feedback

carousel.N.motor-vel float out
The duty-cycle or velocity to drive a DC motor or stepgen

LinuxCNC Documentation 2020-09-04 263

CAROUSEL(9) HAL Component

PARAMETERS
carousel.V.state s32 r (default: 0)
Current component state

carousel.N.homing bit r (default: 0)
Shows that homing is in progress. Only used for index mode

carousel.N.homed bit r (default: 0)
Shows that homing is complete. Only used in index and edge modes

carousel.N.timer float r
Shows the value of the internal timer

AUTHOR
andy pugh

LICENSE
GPL

264 2020-09-04

CAROUSEL(9)

LinuxCNC Documentation

CHARGE_PUMP(9) HAL Component CHARGE_PUMP(9)

NAME

charge_pump — Create a square-wave for the ’charge pump’ input of some controller boards
SYNOPSIS

loadrt charge_pump
DESCRIPTION

The *Charge Pump’ should be added to the base thread function. When enabled the output is on for one pe-
riod and off for one period. To calculate the frequency of the output 1/(period time in seconds x 2) = hz. For
example if you have a base period of 100,000ns that is 0.0001 seconds and the formula would be 1/(0.0001
x 2) = 5,000 hz or 5 Khz. Two additional outputs are provided that run a factor of 2 and 4 slower for hard-
ware that requires a lower frequency.

FUNCTIONS
charge-pump
Toggle the output bit (if enabled)
PINS

charge-pump.out bit out
Square wave if ’enable’ is TRUE or unconnected, low if "enable’ is FALSE

charge-pump.out-2 bit out
Square wave at half the frequency of “out’

charge-pump.out-4 bit out
Square wave at a quarter of the frequency of ’out’

charge-pump.enable bit in (default: TRUE)
If FALSE, forces all *out’ pins to be low

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 265

CLARKE2(9) HAL Component CLARKE2(9)

NAME

clarke2 — Two input version of Clarke transform

SYNOPSIS

loadrt clarke2 [count=N|names=nameI[,name?2...1]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system.

clarke2 implements a special case of the Clarke transform, which only needs two of the three input phases.
In a three wire three phase system, the sum of the three phase currents or voltages must always be zero. As
a result only two of the three are needed to completely define the current or voltage. clarke2 assumes that
the sum is zero, so it only uses phases A and B of the input. Since the H (homopolar) output will always be
zero in this case, it is not generated.

FUNCTIONS
clarke2.N (requires a floating-point thread)

PINS
clarke2.V.a float in
clarke2.N.b float in
first two phases of three phase input

clarke2.N.x float out
clarke2.N.y float out
cartesian components of output

SEE ALSO

clarke3 for the general case, clarkeinv for the inverse transform.

LICENSE
GPL

266 2020-09-04 LinuxCNC Documentation

CLARKE3(9) HAL Component CLARKE3(9)

NAME

clarke3 — Clarke (3 phase to cartesian) transform

SYNOPSIS

loadrt clarke3 [count=N|names=nameI[,name?2...1]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system (plus a homopolar component if the three phases
don’t sum to zero).

clarke3 implements the general case of the transform, using all three phases. If the three phases are known
to sum to zero, see clarke2 for a simpler version.

FUNCTIONS
clarke3.N (requires a floating-point thread)

PINS
clarke3.N.a float in
clarke3.N.b float in
clarke3.N.c float in
three phase input vector

clarke3.N.x float out
clarke3.N.y float out
cartesian components of output

clarke3.N.h float out
homopolar component of output

SEE ALSO

clarke2 for the *a+b+c=0’ case, clarkeinv for the inverse transform.

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 267

CLARKEINV(9) HAL Component CLARKEINV(9)

NAME

clarkeinv — Inverse Clarke transform

SYNOPSIS

loadrt clarkeinv [count=N|names=nameI[,name?2...1]

DESCRIPTION
The inverse Clarke transform can be used rotate a vector quantity and then translate it from Cartesian coor-
dinate system to a three phase system (three components 120 degrees apart).

FUNCTIONS

clarkeinv.N (requires a floating-point thread)

PINS
clarkeinv.NV.x float in
clarkeinv.V.y float in
cartesian components of input

clarkeinv.N.h float in
homopolar component of input (usually zero)

clarkeinv.V.theta float in
rotation angle: 0.00 to 1.00 = 0 to 360 degrees

clarkeinv.N.a float out
clarkeinv.N.b float out
clarkeinv.NV.c float out

three phase output vector

SEE ALSO

clarke2 and clarke3 for the forward transform.

LICENSE
GPL

268 2020-09-04 LinuxCNC Documentation

CLASSICLADDER(9) HAL Component CLASSICLADDER(9)

NAME
classicladder — realtime software plc based on ladder logic
SYNOPSIS
loadrt classicladder_rt [numRungs=N] [numBits=N] [numWords=N] [numTimers=N] [numMonosta-

bles=N] [numCounters=N] [numPhysInputs=N] [numPhysOutputs=N] [numArithmExpr=N] [num-
Sections=N] [numSymbols=N] [numS32in=N] [numS32out=N] [numFloatIn=N] [numFloatOut=N]

DESCRIPTION

These pins and parameters are created by the realtime classicladder_rt module. Each period (minimum
1000000 ns), classicladder reads the inputs, evaluates the ladder logic defined in the GUI, and then writes
the outputs.

PINS
classicladder.0.in—NN IN bit
These bit signal pins map to %INN variables in classicladder

classicladder.0.out-~NN OUT bit
These bit signal pins map to % QNN variables in classicladder Output from classicladder

classicladder.0.s32in—NN IN s32
Integer input from classicladder These s32 signal pins map to %IWNN variables in classicladder

classicladder.0.s32out—NN OUT s32
Integer output from classicladder These s32 signal pins map to % QWANN variables in classiclad-
der

classicladder.0.floatin—-NN IN float
Integer input from classicladder These float signal pins map to %IFNN variables in classicladder
These are truncated to S32 values internally. eg 7.5 will be 7

classicladder.0.floatout—~NN OUT float
Float output from classicladder These float signal pins map to % QFNN variables in classicladder

classicladder.0.hide_gui IN bit
This bit pin hides the classicladder window, while still having the userspace code run. This is usu-
ally desirable when modbus is used, as modbus requires the userspace code to run.

PARAMETERS
classicladder.0.refresh.time RO s32
Tells you how long the last refresh took

classicladder.0.refresh.tmax RW s32
Tells you how long the longest refresh took

classicladder.0.ladder—state RO s32

Tells you if the program is running or not

FUNCTIONS

LinuxCNC Documentation 2008-11-23 269

CLASSICLADDER(9) HAL Component CLASSICLADDER(9)

classicladder.0.refresh FP
The rung update rate. Add this to the servo thread. You can added it to a faster thread but it Will
update no faster than once every 1 millisecond (1000000 ns).

BUGS
See http://wiki.linuxcnc.org/cgi—bin/wiki.pl?ClassicLadder_Ver_7.124 for the latest.

SEE ALSO
Classicladder chapters in the LinuxCNC documentation for a full description of the Classicladder syntax
and examples

http://wiki.linuxcnc.org/cgi—bin/wiki.pl?ClassicLadder_Ver_7.124

270 2008-11-23 LinuxCNC Documentation

COMP(9) HAL Component COMP(9)

NAME

comp — Two input comparator with hysteresis

SYNOPSIS

loadrt comp [count=N|names=name[,name?...1]

FUNCTIONS
comp.N (requires a floating-point thread)
Update the comparator

PINS
comp.N.in0 float in
Inverting input to the comparator

comp.N.inl float in
Non-inverting input to the comparator

comp.N.out bit out
Normal output. True when inl > inQ (see parameter hyst for details)

comp.N.equal bit out
Match output. True when difference between inl and in0 is less than hyst/2

PARAMETERS
comp.N.hyst float rw (default: 0.0)
Hysteresis of the comparator (default 0.0)

With zero hysteresis, the output is true when inl > inQ. With nonzero hysteresis, the output
switches on and off at two different values, separated by distance hyst around the point where inl
=in0. Keep in mind that floating point calculations are never absolute and it is wise to always set
hyst if you intend to use equal

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 271

CONSTANT(9) HAL Component

NAME

constant — Use a parameter to set the value of a pin

SYNOPSIS

loadrt constant [count=N|names=name[,name2...]]

FUNCTIONS

constant.N (requires a floating-point thread)

PINS

constant.N.out float out

PARAMETERS

constant.N.value float rw

LICENSE
GPL

272 2020-09-04

CONSTANT(9)

LinuxCNC Documentation

CONV_BIT_FLOAT(9) HAL Component

NAME

conv_bit_float — Convert a value from bit to float
SYNOPSIS

loadrt conv_bit_float [count=N|names=name[,name2...]]
FUNCTIONS

conv-bit-float.N (requires a floating-point thread)
Update ’out’ based on ’in’

PINS
conv-bit-float.N.in bit in
conv-bit-float.N.out float out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

CONV_BIT_FLOAT(9)

273

CONV_BIT_S32(9) HAL Component

NAME

conv_bit_s32 — Convert a value from bit to s32
SYNOPSIS

loadrt conv_bit_s32 [count=N|names=name[,name2...]]
FUNCTIONS

conv-bit-s32.N
Update ’out’ based on ’in’

PINS
conv-bit-s32.N.in bit in
conv-bit-s32.N.out s32 out

LICENSE
GPL

274 2020-09-04

CONV_BIT_S32(9)

LinuxCNC Documentation

CONV_BIT_U32(9) HAL Component

NAME

conv_bit_u32 — Convert a value from bit to u32
SYNOPSIS

loadrt conv_bit_u32 [count=N|names=nameI[,name?2...]]
FUNCTIONS

conv-bit-u32.N
Update ’out’ based on ’in’

PINS
conv-bit-u32.N.in bit in
conv-bit-u32.N.out u32 out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

CONV_BIT_U32(9)

275

CONV_FLOAT_S32(9) HAL Component

NAME

conv_float_s32 — Convert a value from float to s32

SYNOPSIS

loadrt conv_float_s32 [count=N|names=name![,name?...]]

FUNCTIONS
conv-float-s32.N (requires a floating-point thread)
Update ’out’ based on ’in’
PINS
conv-float-s32.N.in float in
conv-float-s32.N.out s32 out
conv-float-s32.N.out-of-range bit out
TRUE when ’in’ is not in the range of s32

PARAMETERS

conv-float-s32.N.clamp bit rw

CONV_FLOAT_S32(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

276 2020-09-04

LinuxCNC Documentation

CONV_FLOAT _U32(9) HAL Component

NAME

conv_float_u32 — Convert a value from float to u32
SYNOPSIS

loadrt conv_float_u32 [count=N|names=name[,name2...]]
FUNCTIONS

conv-float-u32.N (requires a floating-point thread)
Update ’out’ based on ’in’
PINS
conv-float-u32.N.in float in
conv-float-u32.N.out u32 out
conv-float-u32.N.out-of-range bit out
TRUE when ’in’ is not in the range of u32

PARAMETERS

conv-float-u32.N.clamp bit rw

CONV_FLOAT_U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

277

CONV_S32_BIT(9) HAL Component

NAME

conv_s32 bit — Convert a value from s32 to bit
SYNOPSIS

loadrt conv_s32_bit [count=N|names=name[,name2...]]
FUNCTIONS

conv-s32-bit.N
Update ’out’ based on ’in’
PINS
conv-s32-bit.N.in s32 in
conv-s32-bit.N.out bit out
conv-s32-bit.N.out-of-range bit out
TRUE when ’in’ is not in the range of bit

PARAMETERS

conv-s32-bit.N.clamp bit rw

CONV_S32_BIT(9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

278 2020-09-04

LinuxCNC Documentation

CONV_S32_FLOAT(9) HAL Component

NAME

conv_s32 float — Convert a value from s32 to float

SYNOPSIS

loadrt conv_s32_float [count=N|names=name![,name?...]]

FUNCTIONS
conv-s32-float.N (requires a floating-point thread)
Update ’out’ based on ’in’

PINS
conv-s32-float.N.in s32 in
conv-s32-float.N.out float out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

CONV_S32_FLOAT(9)

279

CONV_S32_U32(9) HAL Component

NAME

conv_s32 u32 — Convert a value from s32 to u32
SYNOPSIS

loadrt conv_s32_u32 [count=N|names=name[,name?...]]
FUNCTIONS

conv-s32-u32.N
Update ’out’ based on ’in’
PINS
conv-s32-u32.N.in s32 in
conv-s32-u32.N.out u32 out
conv-s32-u32.N.out-of-range bit out
TRUE when ’in’ is not in the range of u32

PARAMETERS
conv-s32-u32.N.clamp bit rw

CONV_S32_U32(9)

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

280 2020-09-04

LinuxCNC Documentation

CONV_U32_BIT(9) HAL Component

NAME

conv_u32_bit — Convert a value from u32 to bit

SYNOPSIS

loadrt conv_u32_bit [count=N|names=nameI[,name?2...]]

FUNCTIONS
conv-u32-bit.N
Update ’out’ based on ’in’

PINS
conv-u32-bit.N.in u32 in
conv-u32-bit.N.out bit out
conv-u32-bit.N.out-of-range bit out
TRUE when ’in’ is not in the range of bit

PARAMETERS

conv-u32-bit.N.clamp bit rw

CONV_U32_BIT(9)

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

281

CONV_U32_FLOAT(9) HAL Component

NAME

conv_u32_float — Convert a value from u32 to float
SYNOPSIS

loadrt conv_u32_float [count=N|names=name[,name2...]]
FUNCTIONS

conv-u32-float.N (requires a floating-point thread)
Update ’out’ based on ’in’

PINS
conv-u32-float.N.in u32 in
conv-u32-float.N.out float out

LICENSE
GPL

282 2020-09-04

CONV_U32_FLOAT(9)

LinuxCNC Documentation

CONV_U32_S32(9) HAL Component

NAME

conv_u32_s32 — Convert a value from u32 to s32
SYNOPSIS

loadrt conv_u32_s32 [count=N|names=name[,name?...]]
FUNCTIONS

conv-u32-s32.N
Update ’out’ based on ’in’
PINS
conv-u32-s32.N.in u32 in
conv-u32-s32.N.out s32 out
conv-u32-s32.N.out-of-range bit out
TRUE when ’in’ is not in the range of s32

PARAMETERS

conv-u32-s32.N.clamp bit rw

CONV_U32_S32(9)

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

283

COREXY_BY_HAL(9) HAL Component COREXY_BY_HAL(9)

NAME

corexy_by_hal — CoreXY kinematics

SYNOPSIS

loadrt corexy_by_hal [count=N|names=nameI[,name?2...]]

DESCRIPTION

Implement CoreXY forward and inverse transformations in HAL. This component provides an alternative
method for implementing CoreXY kinematics.

In the INI file, use:

[KINS]IKINEMATICS=trivkins coordinates=xyz kinstype=both

This component accepts two joint (j0,j1) motor position commands for a trivkins coordinates=xyz configu-
ration and computes equivalent CoreXY motor commands for two motors identified as alpha,beta. Simi-
larly, the component accepts feedback values for the alpha,beta motor controllers and converts to equiva-
lent joint (j0,j1) motor position feedback values.

Notes:

1) Using trivkins with this module allows home switches to trigger according to the Cartesian X,y posi-
tions

2) Joint pin names are based on coordinates=xyz and the corresponding joint number assignments used by
trivkins so j0==x, jl==y (man trivkins for more information)

3) CoreXY kinematics can also be implemented using the kinematics module named corexykins with
home switches triggered by the j0,j1 motor positions. (man kins for more information)

FUNCTIONS

PINS

284

corexy-by-hal.N (requires a floating-point thread)

corexy-by-hal.N.alpha-fb float in
typ: feedback from alpha motor controller

corexy-by-hal.N.beta-fb float in
typ: feedback from beta motor controller

corexy-by-hal.N.j0-motor-pos-cmd float in
typ: from joint.0.motor-pos-cmd

corexy-by-hal.N.j1-motor-pos-cmd float in
typ: from joint.1.motor-pos-cmd

corexy-by-hal.N.j0-motor-pos-fb float out
typ: to joint.0.motor-pos-tb

corexy-by-hal.N.j1-motor-pos-fb float out
typ: to joint.1.motor-pos-tb

corexy-by-hal.N.alpha-cmd float out
typ: command to alpha motor

corexy-by-hal.N.beta-cmd float out
typ: command to beta ts motor

2020-09-04 LinuxCNC Documentation

COREXY_BY_HAL(9) HAL Component COREXY_BY_HAL(9)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 285

COUNTER(9) HAL Component COUNTER(9)

NAME
counter — counts input pulses (DEPRECATED)

SYNOPSIS
loadrt counter [num_chan=N]

DESCRIPTION
counter is a deprecated HAL component and will be removed in a future release. Use the encoder compo-
nent with encoder.X.counter—-mode set to TRUE.
counter is a HAL component that provides software- based counting that is useful for spindle position
sensing and maybe other things. Instead of using a real encoder that outputs quadrature, some lathes have a
sensor that generates a simple pulse stream as the spindle turns and an index pulse once per revolution.
This component simply counts up when a "count" pulse (phase—A) is received, and if reset is enabled, re-
sets when the "index" (phase—Z) pulse is received.
This is of course only useful for a unidirectional spindle, as it is not possible to sense the direction of rota-
tion.
counter conforms to the "canonical encoder" interface described in the HAL manual.

FUNCTIONS
counter.capture—position (uses floating-point)

Updates the counts, position and velocity outputs based on internal counters.
counter.update—counters
Samples the phase—A and phase—Z inputs and updates internal counters.
PINS

counter.N.phase—A bit in
The primary input signal. The internal counter is incremented on each rising edge.

counter.N.phase-Z bit in
The index input signal. When the index—enable pin is TRUE and a rising edge on phase-Z is
seen, index—enable is set to FALSE and the internal counter is reset to zero.

counter.N.index—enable bit io
counter.N.reset bit io
counter.N.counts signed out
counter.N.position float out
counter.N.velocity float out
These pins function according to the canonical digital encoder interface.

counter.N.position—scale float rw
This parameter functions according to the canonical digital encoder interface.

counter.N.rawcounts signed ro
The internal counts value, updated from update—counters and reflected in the output pins at the
next call to capture—position.

SEE ALSO

286

encoder(9). in the LinuxCNC documentation.

2007-01-19 LinuxCNC Documentation

DDT(9) HAL Component

NAME

ddt — Compute the derivative of the input function

SYNOPSIS

loadrt ddt [count=N|names=name[,name2...1]

FUNCTIONS
ddt.N (requires a floating-point thread)

PINS
ddt.N.in float in
ddt.N.out float out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

DDT(9)

287

DEADZONE(9) HAL Component

NAME

deadzone — Return the center if within the threshold

SYNOPSIS

loadrt deadzone [count=N|names=nameI[,name2...]]

FUNCTIONS
deadzone.N (requires a floating-point thread)
Update out based on in and the parameters.

PINS
deadzone.N.in float in
deadzone.N.out float out

PARAMETERS
deadzone.N.center float rw (default: 0.0)
The center of the dead zone

deadzone.N.threshhold float rw (default: /.0)
The dead zone is center * (threshhold/2)

LICENSE
GPL

288 2020-09-04

DEADZONE(9)

LinuxCNC Documentation

DEBOUNCE(9) HAL Component DEBOUNCE(@9)

NAME

debounce — filter noisy digital inputs

SYNOPSIS

loadrt debounce cfg=size/,size,...]

Creates debounce groups with the number of filters specified by (size). Every filter in the same group has
the same sample rate and delay. For example cfg=2,3 creates two filter groups with 2 filters in the first
group and 3 filters in the second group.

DESCRIPTION
The debounce filter works by incrementing a counter whenever the input is true, and decrementing the
counter when it is false. If the counter decrements to zero, the output is set false and the counter ignores
further decrements. If the counter increments up to a threshold, the output is set true and the counter ig-
nores further increments. If the counter is between zero and the threshold, the output retains its previous
state. The threshold determines the amount of filtering: a threshold of 1 does no filtering at all, and a
threshold of N requires a signal to be present for N samples before the output changes state.

FUNCTIONS
debounce.G
Sample all the input pins in group G and update the output pins.

PINS
debounce.G.F.in bit in
The F’th input pin in group G.

debounce.G.F.out bit out
The F’th output pin in group G. Reflects the last "stable" input seen on the corresponding input
pin.

debounce.G.delay signed rw
Sets the amount of filtering for all pins in group G.

LinuxCNC Documentation 2007-01-16 289

DEMUX(9) HAL Component DEMUX(9)

NAME

demux — Select one of several output pins selected either by

SYNOPSIS

an integer input or individual bits. Or even both

DESCRIPTION
This component creates a number of output bits defined by the "personality" command-line parameter. One
of these bits will be set based on interpreting the bit-inputs as a binary number and then adding on the inte-
ger input. Most uses will use only one or the other, but it is possible to use the bits as a ""shift"" if required.
An optional operating mode is enabled by setting the "bargraph" parameter to true, in this case all bits up to
the selected bit will be set, as might be required for an LED bargraph display

FUNCTIONS

demux.N (requires a floating-point thread)

PINS
demux.N.sel-bit-MM bit in (MM=00..04)
Binary-number bit selectors

demux.N.sel-u32 u32 in
Integer selection input

demux.N.out-MM bit out (MM=00..personality)
The set of output bits

PARAMETERS
demux.N.bargraph bit rw (default: 0)

AUTHOR
andypugh

LICENSE
GPL 2+

290 2020-09-04 LinuxCNC Documentation

DIFFERENTIAL(9) HAL Component

NAME

differential — kinematics for a differential transmission

SYNOPSIS

loadrt differential [count=N|names=name[,name?2...1]

FUNCTIONS

PINS

differential.N (requires a floating-point thread)

differential.NV.roll-cmd float in
position command for roll (in degrees)

differential.N.pitch-cmd float in
position command for pitch (in degrees)

differential.V.roll-fb float out
position feedback for roll (in degrees)

differential. N.pitch-fb float out
position feedback for pitch (in degrees)

differential. N.motor0-cmd float out
position command to motorQ (based on roll & pitch inputs)

differential. N.motor1-cmd float out
position command to motorl (based on roll & pitch inputs)

differential.N.motor0-fb float in
position feedback from motorQ

differential.N.motor1-fb float in
position feedback from motorl

LICENSE

GPL

LinuxCNC Documentation 2020-09-04

DIFFERENTIAL(9)

291

EDGE(9) HAL Component

NAME

edge — Edge detector
SYNOPSIS

loadrt edge [count=N|names=namel[,name?...]]
FUNCTIONS

edge.N Produce output pulses from input edges
PINS

edge.N.in bit in

edge.N.out bit out

Goes high when the desired edge is seen on ’in’

edge.N.out-invert bit out
Goes low when the desired edge is seen on ’in’

PARAMETERS
edge.N.both bit rw (default: FALSE)

EDGE(9)

If TRUE, selects both edges. Otherwise, selects one edge according to in-edge

edge.N.in-edge bit rw (default: TRUE)

If both is FALSE, selects the one desired edge: TRUE means falling, FALSE means rising

edge.N.out-width-ns s32 rw (default: 0)
Time in nanoseconds of the output pulse

edge.N.time-left-ns s32 r
Time left in this output pulse

edge.N.last-in bit r
Previous input value

LICENSE
GPL

292 2020-09-04

LinuxCNC Documentation

ENCODER(9) HAL Component ENCODER(9)

NAME

encoder — software counting of quadrature encoder signals

SYNOPSIS

loadrt encoder [num_chan=num | names=namel[,name?...1]

DESCRIPTION
encoder is used to measure position by counting the pulses generated by a quadrature encoder. As a soft-
ware-based implementation it is much less expensive than hardware, but has a limited maximum count rate.
The limit is in the range of 10KHz to 5S0KHz, depending on the computer speed and other factors. If better
performance is needed, a hardware encoder counter is a better choice. Some hardware-based systems can
count at MHz rates.

encoder supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, or if num_chan=0 is specified, the default value is three.

encoder has a one-phase, unidirectional mode called counter. In this mode, the phase—B input is ignored;
the counts increase on each rising edge of phase—A. This mode may be useful for counting a unidirec-
tional spindle with a single input line, though the noise-resistant characteristics of quadrature are lost.

FUNCTIONS
encoder.update—counters (no floating-point)
Does the actual counting, by sampling the encoder signals and decoding the quadrature wave-
forms. Must be called as frequently as possible, preferably twice as fast as the maximum desired
count rate. Operates on all channels at once.

encoder.capture—position (uses floating point)
Captures the raw counts from update—counters and performs scaling and other necessary conver-
sion, handles counter rollover, etc. Can (and should) be called less frequently than update—coun-
ters. Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as:
encoder.N. for N=0,1,...,num—1 when using num_chan=num
nameN. for nameN=namel,name2,... when using names=namel,name2,...

The encoder.N. format is shown in the following descriptions.

PINS
encoder.N.counter—-mode bit i/0
Enables counter mode. When true, the counter counts each rising edge of the phase—A input, ig-
noring the value on phase—B. This is useful for counting the output of a single channel (non-quad-
rature) sensor. When false (the default), it counts in quadrature mode.

encoder.N.counts s32 out
Position in encoder counts.

encoder.N.index—enable bit i/o
When true, counts and position are reset to zero on the next rising edge of Phase—Z. At the same
time, index—enable is reset to zero to indicate that the rising edge has occurred.

LinuxCNC Documentation 2009-04-15 293

ENCODER(9) HAL Component ENCODER(9)

294

encoder.N.min—speed—estimate float in (default: 1.0)
Determine the minimum speed at which velocity will be estimated as nonzero and postition—in-
terpolated will be interpolated. The units of min—speed—estimate are the same as the units of ve-
locity. Setting this parameter too low will cause it to take a long time for velocity to go to O after
encoder pulses have stopped arriving.

encoder.N.phase—A bit in
Quadrature input for encoder channel N.

encoder.N.phase-B bit in
Quadrature input.

encoder.N.phase-Z bit in
Index pulse input.

encoder.N.position float out
Position in scaled units (see position—scale)

encoder.N.position—interpolated float out
Position in scaled units, interpolated between encoder counts. Only valid when velocity is approx-
imately constant and above min—speed—estimate. Do not use for position control.

encoder.N.position—scale float i/o
Scale factor, in counts per length unit. For example, if position—scale is 500, then 1000 counts of
the encoder will be reported as a position of 2.0 units.

encoder.N.rawcounts s32 out
The raw count, as determined by update—counters. This value is updated more frequently than
counts and position. It is also unaffected by reset or the index pulse.

encoder.N.reset bit in
When true, counts and position are reset to zero immediately.

encoder.N.velocity float out
Velocity in scaled units per second. encoder uses an algorithm that greatly reduces quantization
noise as compared to simply differentiating the position output. When the magnitude of the true
velocity is below min—speed—estimate, the velocity output is 0.

encoder.N.velocity-rpm float out
Velocity in scaled units per minute. Simply encoder.N.velocity scaled by a factor of 60 for conve-
nience.

encoder.N.x4-mode bit i/o
Enables times—4 mode. When true (the default), the counter counts each edge of the quadrature
waveform (four counts per full cycle). When false, it only counts once per full cycle. In
counter—mode, this parameter is ignored.

encoder.N.latch—input bit in

encoder.N.latch—falling bit in (default: TRUE)

encoder.N.latch-rising bit in (default: TRUE)

encoder.N.counts—latched s32 out

encoder.N.position—latched float out
Update counts—latched and position—latched on the rising and/or falling edges of latch—input as
indicated by latch-rising and latch—falling.

encoder.N.counter—-mode bit rw
Enables counter mode. When true, the counter counts each rising edge of the phase—A input, ig-
noring the value on phase—B. This is useful for counting the output of a single channel (non-quad-
rature) sensor. When false (the default), it counts in quadrature mode. encoder.N.capture—posi-
tion.tmax s32 rw Maximum number of CPU cycles it took to execute this function.

2009-04-15 LinuxCNC Documentation

ENCODER(9) HAL Component ENCODER(9)

PARAMETERS

The encoder component has no HAL Parameters.

LinuxCNC Documentation 2009-04-15 295

ENCODER_RATIO(9) HAL Component ENCODER_RATIO(9)

NAME

encoder_ratio — an electronic gear to synchronize two axes

SYNOPSIS

loadrt encoder_ratio [num_chan=num | names=nameI[,name?...]]

DESCRIPTION
encoder_ratio can be used to synchronize two axes (like an "electronic gear"). It counts encoder pulses
from both axes in software, and produces an error value that can be used with a PID loop to make the slave
encoder track the master encoder with a specific ratio.

This module supports up to eight axis pairs. The number of pairs is set by the module parameter
num_chan. Alternatively, specify names= and unique names separated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

FUNCTIONS
encoder—ratio.sample
Read all input pins. Must be called at twice the maximum desired count rate.

encoder—ratio.update (uses floating-point)
Updates all output pins. May be called from a slower thread.

NAMING
The names for pins and parameters are prefixed as:
encoder—ratio.N. for N=0,1,...,num-1 when using num_chan=num
nameN. for nameN=namel,name2,... when using names=namel,name2,...

The encoder—ratio.N. format is shown in the following descriptions.

PINS
encoder—ratio.N.master—A bit in
encoder—ratio.N.master—B bit in
encoder—ratio.N.slave—A bit in
encoder-ratio.N.slave—B bit in
The encoder channels of the master and slave axes

encoder-ratio.N.enable bit in

When the enable pin is FALSE, the error pin simply reports the slave axis position, in revolutions.
As such, it would normally be connected to the feedback pin of a PID block for closed loop con-
trol of the slave axis. Normally the command input of the PID block is left unconnected (zero), so
the slave axis simply sits still. However when the enable input goes TRUE, the error pin becomes
the slave position minus the scaled master position. The scale factor is the ratio of master teeth to
slave teeth. As the master moves, error becomes non-zero, and the PID loop will drive the slave
axis to track the master.

encoder—ratio.N.error float out
The error in the position of the slave (in revolutions)

PARAMETERS
encoder—ratio.N.master—ppr unsigned rw
encoder—ratio.N.slave—ppr unsigned rw
The number of pulses per revolution of the master and slave axes

296 2007-01-16 LinuxCNC Documentation

ENCODER_RATIO(9) HAL Component ENCODER_RATIO(9)

encoder—ratio.N.master—teeth unsigned rw
encoder—ratio.N.slave—teeth unsigned rw
The number of "teeth" on the master and slave gears.

SEE ALSO

encoder(9)

LinuxCNC Documentation 2007-01-16 297

EOFFSET_PER_ANGLE(9) HAL Component EOFFSET_PER_ANGLE(9)

NAME

eoffset_per_angle — Compute External Offset Per Angle
SYNOPSIS

loadrt eoffset_per_angle [count=N|names=nameI[,name?2...]]
DESCRIPTION

An offset is computed (from one of several functions) based on an input angle in degrees. The angle could
be a rotary coordinate value or a spindle angle.

The computed offset is represented as an s32 kcounts output pin that is a compatible input to external off-
set pins like axis.L.eoffset-counts where L is the coordinate letter. Scaling of the s32 kcounts is con-
trolled by the input (k) -- its reciprocal value is presented on an output pin (kreciprocal) for connection to
axis.L.eoffset-scale. The default value for k should be suitable for most uses.

The built-in functions use pins fmult and rfraction to control the output frequency (or number of polygon
sides) and amplitude respectively. The rfraction pin controls the offset amplitude as a fraction of the ra-
dius-ref pin.

One of the four built-in functions is specified by the fnum pin:
0: fO inside polygon (requires fmult == nsides >= 3)
1: f1 outside polygon (requires fmult == nsides >= 3)
2: {2 sinusoid
3: f3 square wave

Unsupported fnum values default to use function f0.
NOTES:

radius-ref: The computed offsets are based on the radius-ref pin value. This pin may be set to a constant
radius value or controlled by a user interface or by g code program (using M68 and a motion.analog-out-
NN pin for instance).

Stopping: When the enable-in pin is deasserted, the offset is returned to zero respecting the allocated ac-
celeration and velocity limits. The allocations for coordinate L are typically controlled by an ini file set-
ting: [AXIS_L]JOFFSET_AV_RATIO.

NOTES: If unsupported parameters are supplied to a function (for instance a polygon with fewer than three
sides), the current offset will be returned to zero (respecting velocity and acceleration constraints). After
correcting the offending parameter, the enable-in pin must be toggled to resume offset computations.

EXAMPLE: An example simulation configuration is provided at: configs/sim/axis/external_off-
sets/opa.ini. A simulated XZC machine uses the C coordinate angle to offset the transverse X coordinate
according to the selected fnum function.

FUNCTIONS

eoffset-per-angle.N (requires a floating-point thread)

PINS
eoffset-per-angle.N.active bit in (default: 0)
From: motion.eoffset-active

eoffset-per-angle.N.is-on bit in (default: 0)
From: halui.machine.is-on

298 2020-09-04 LinuxCNC Documentation

EOFFSET_PER_ANGLE(9) HAL Component EOFFSET_PER_ANGLE(9)

eoffset-per-angle.N.enable-in bit in (default: 0)
Enable Input

eoffset-per-angle.N.radius-ref float in (default: /)
Radius reference (see notes)

eoffset-per-angle.N.angle float in (default: 0)
Input angle (in degrees)

eoffset-per-angle.N.start-angle float in (default: 0)
Start angle (in degrees)

eoffset-per-angle.N.fnum s32 in (default: 0)
Function selector (default 0)

eoffset-per-angle.N.rfraction float in (default: 0.7)
Offset amplitude (+/- fraction of radius_ref)

eoffset-per-angle.N.fmult float in (default: 6)
Offset frequency multiplier

eoffset-per-angle.N.k u32 in (default: /0000)
Scaling Factor (if 0, use 10000)

eoffset-per-angle.N.is-off bit out
invert is_on (for convenience)

eoffset-per-angle.N.enable-out bit out
To: axis.L.eoffset-enable

eoffset-per-angle.N.clear bit out
To: axis.L.eoffset-clear

eoffset-per-angle.N.kcounts s32 out
To: axis.L.eoffset-counts

eoffset-per-angle.N.kreciprocal float out
To: axis.L.coffset-scale (1/k)

eoffset-per-angle.N.eoffset-dbg float out
offset (debug pin--use kcounts & kreciprocal)

eoffset-per-angle.N.state-dbg u32 out
state (debug pin)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 299

ESTOP_LATCH(9) HAL Component ESTOP_LATCH(9)

NAME

estop_latch — Software ESTOP latch

SYNOPSIS

loadrt estop_latch [count=N|names=name[,name?...]]

DESCRIPTION

This component can be used as a part of a simple software ESTOP chain.
It has two states: "OK" and "Faulted".

The initial state is "Faulted". When faulted, the out-ok output is false, the fault-out output is true, and the
watchdog output is unchanging.

The state changes from "Faulted" to "OK" when all these conditions are true:

. fault-in is false
. ok-in is true
. reset changes from false to true

When "OK", the out-ok output is true, the fault-out output is false, and the watchdog output is toggling.

The state changes from "OK" to "Faulted" when any of the following are true:
. fault-in is true
. ok-in is false
To facilitate using only a single fault source, ok-in and fault-en are both set to the non-fault-causing value

when no signal is connected. For estop-latch to ever be able to signal a fault, at least one of these inputs
must be connected.

Typically, an external fault or estop input is connected to fault-in, iocontrol.0.user-request-enable is con-
nected to reset, and ok-out is connected to iocontrol.0.emc-enable-in.

In more complex systems, it may be more appropriate to use classicladder to manage the software
portion of the estop chain.

FUNCTIONS

PINS

estop-latch.N

estop-latch.N.ok-in bit in (default: frue)
estop-latch.N.fault-in bit in (default: false)
estop-latch.N.reset bit in
estop-latch.N.ok-out bit out (default: false)
estop-latch.N.fault-out bit out (default: true)
estop-latch.N.watchdog bit out

LICENSE

300

GPL

2020-09-04 LinuxCNC Documentation

FEEDCOMP(9) HAL Component FEEDCOMP(9)

NAME

feedcomp — Multiply the input by the ratio of current velocity to the feed rate
SYNOPSIS

loadrt feedcomp [count=N|names=name[,name?...]]
FUNCTIONS

feedcomp.N (requires a floating-point thread)

PINS
feedcomp.N.out float out
Proportionate output value

feedcomp.N.in float in
Reference value

feedcomp.N.enable bit in
Turn compensation on or off

feedcomp.N.vel float in
Current velocity

PARAMETERS
feedcomp.N.feed float rw
Feed rate reference value

NOTES

Note that if enable is false, out = in

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 301

FILTER_KALMAN(9) HAL Component FILTER_KALMAN(9)

NAME

filter_kalman — Unidimensional Kalman filter, also known as linear quadratic estimation (LQE)

SYNOPSIS

loadrt filter_kalman [count=N|names=nameI[,name?2...]]

DESCRIPTION

Useful for reducing input signal noise (e.g. from the voltage or temperature sensor).
More information can be found at https://en.wikipedia.org/wiki/Kalman_filter.
Adjusting Qr and QK covariances:

Default values of Rk and QK are given for informational purpose only. The nature of the filter requires the
parameters to be individually computed.

One of the possible and quite practical method (probably far from being the best) of estimating the Rk co-
variance is to collect the raw data from the sensor by either asserting the debug pin or using halscope and
then compute the covariance using cov() function from Octave package. Ready to use script can be found
at https://github.com/dwrobel/TrivialKalmanFilter/blob/master/examples/DS 18B20Test/covariance.m.

Adjusting Qk covariance mostly depends on the required response time of the filter. There is a relationship
between Qk and response time of the filter that the lower the Qk covariance is the slower the response of
the filter is.

Common practice is also to conservatively set Rk and QKk slightly larger then computed ones to get robust-
ness.

FUNCTIONS

PINS

filter-kalman.N (requires a floating-point thread)
Update xk-out based on zk input.

filter-kalman.N.debug bit in (default: FALSE)
When asserted, prints out measured and estimated values.

filter-kalman.N.passthrough bit in (default: FALSE)
When asserted, copies measured value into estimated value.

filter-kalman.N.reset bit in (default: FALSE)
When asserted, resets filter to its initial state and returns O as an estimated value (reset pin has
higher priority than passthrough pin).

filter-kalman.N.zKk float in
Measured value.

filter-kalman.N.xk-out float out
Estimated value.

PARAMETERS

filter-kalman.N.RKk float rw (default: 1.17549¢-38)
Estimation of the noise covariances (process).

filter-kalman.N.QKk float rw (default: 1.17549¢-38)
Estimation of the noise covariances (observation).

AUTHOR

302

Dmian Wrobel <dwrobel @ertelnet.rybnik.pl>

2020-09-04 LinuxCNC Documentation

FILTER_KALMAN(9) HAL Component FILTER_KALMAN(9)

LICENSE
GPL-2.0-or-later

LinuxCNC Documentation 2020-09-04 303

FLIPFLOP(9) HAL Component

NAME
flipflop — D type flip-flop
SYNOPSIS

loadrt flipflop [count=N|names=name[,name?...]]

FUNCTIONS
flipflop.N

PINS
flipflop.N.data bit in
data input

flipflop.N.clk bit in
clock, rising edge writes data to out

flipflop.N.set bit in
when true, force out true

flipflop.N.reset bit in
when true, force out false; overrides set

flipflop.N.out bit io
output

LICENSE
GPL

304 2020-09-04

FLIPFLOP(9)

LinuxCNC Documentation

GANTRY(9) HAL Component GANTRY(9)

NAME

gantry — LinuxCNC HAL component for driving multiple joints from a single axis

SYNOPSIS

loadrt gantry [count=N|names=name[,name?2...]] [personality=P,F....]

DESCRIPTION

Drives multiple physical motors (joints) from a single axis input

The ‘personality’ value is the number of joints to control. Two is typical, but up to seven is supported (a
three joint setup has been tested with hardware).

All controlled joints track the commanded position (with a per-joint offset) unless in the process of homing.
Homing is when the commanded position is moving towards the homing switches (as determined by the
sign of search-vel) and the joint home switches are not all in the same state. When the system is homing
and a joint home switch activates, the command value sent to that joint is "frozen" and the joint offset value
is updated instead. Once all home switches are active, there are no more adjustments made to the offset
values and all joints run in lock-step once more.

For best results, set HOME_SEARCH_VEL and HOME_LATCH_VEL to the same direction and as slow
as practical. When a joint home switch trips, the commanded velocity will drop immediately from
HOME_SEARCH_VEL to zero, with no limit on acceleration.

FUNCTIONS

PINS

gantry.N.read (requires a floating-point thread)
Update position-fb and home/limit outputs based on joint values

gantry.N.write (requires a floating-point thread)
Update joint pos-cmd outputs based on position-cmd in

gantry.N.joint.MM.pos-cmd float out (MM=00..personality)
Per-joint commanded position

gantry.N.joint.MM.pos-fb float in (MM=00..personality)
Per-joint position feedback

gantry.N.joint.MM.home bit in (MM=00..personality)
Per-joint home switch

gantry.N.joint.MM.offset float out (MM=00..personality)
(debugging) Per-joint offset value, updated when homing

gantry.N.position-cmd float in
Commanded position from motion

gantry.N.position-fb float out
Position feedback to motion

gantry.N.home bit out
Combined home signal, true if all joint home inputs are true

gantry.N.limit bit out
Combined limit signal, true if any joint home input is true

gantry.N.search-vel float in
HOME_SEARCH_VEL from ini file

LICENSE

GPL

LinuxCNC Documentation 2020-09-04 305

GANTRYKINS(9) Kinematics Module GANTRYKINS(9)
NAME
gantrykins — Superseded by the general purpose trivkins kinematics module.

To specify a gantry with non-identity kinematics: use trivkins with the kinstype parameter set for KINE-
MATICS_BOTH. Example:

loadrt trivkins coordinates=xyyz kinstypes=BOTH
For more information:

$ man —s 9 trivkins

306 LinuxCNC Documentation

GEARCHANGE(Q9) HAL Component GEARCHANGE(®9)

NAME

gearchange — Select from one two speed ranges

SYNOPSIS
The output will be a value scaled for the selected gear, and clamped to the min/max values for that gear.
The scale of gear 1 is assumed to be 1, so the output device scale should be chosen accordingly. The scale
of gear 2 is relative to gear 1, so if gear 2 runs the spindle 2.5 times as fast as gear 1, scale2 should be set to
2.5.

FUNCTIONS

gearchange.N (requires a floating-point thread)

PINS
gearchange.N.sel bit in
Gear selection input

gearchange.N.speed-in float in
Speed command input

gearchange.N.speed-out float out
Speed command to DAC/PWM

gearchange.N.dir-in bit in
Direction command input

gearchange.N.dir-out bit out
Direction output - possibly inverted for second gear

PARAMETERS
gearchange.N.min1 float rw (default: 0)
Minimum allowed speed in gear range 1

gearchange.N.max1 float rw (default: 700000)
Maximum allowed speed in gear range 1

gearchange.N.min2 float rw (default: 0)
Minimum allowed speed in gear range 2

gearchange.N.max2 float rw (default: 700000)
Maximum allowed speed in gear range 2

gearchange.N.scale2 float rw (default: 1.0)
Relative scale of gear 2 vs. gear 1 Since it is assumed that gear 2 is "high gear", scale2 must be
greater than 1, and will be reset to 1 if set lower.

gearchange.N.reverse bit rw (default: 0)
Set to 1 to reverse the spindle in second gear

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 307

GENTRIVKINS(9) Kernel Developer’s Manual GENTRIVKINS(9)

NAME
gentrivkins — Superseded by the general purpose trivkins kinematics module.

For more information:

$ man -s 9 trivkins

308 LinuxCNC Documentation Kinematics Module

gladevcp(9) HAL Component gladevcp(9)

NAME
gladevcp — displays Virtual control Panels built with GTK / GLADE

SYNOPSIS
loadusr gladevep [-c componentname0Ox/N] [-g WxH+Xoffset+YoffsetOxN] [-H halcmdfile] [-x win-
dowid] gladefile.glade

DESCRIPTION
gladevcp parses a glade file and displays the widgets in a window. Then calls gladevcp_makepins which
again parses the gladefile looking for specific HAL widgets then makes HAL pins and sets up updating for
them. The HAL component name defaults to the basename of the glade file. The —x option directs glade-
vep to reparent itself under this X window id instead of creating its own toplevel window. The —H option
passes an input file for halcmd to be run after the gladevcp component is initialized. This is used in Axis
when running gladevcp under a tab with the EMBED_TAB_NAME/EMBED_TAB_COMMAND ini file
feature.

gladevcp supports gtkbuilder or libglade files though some widgets are not fully supported in gtkbuilder
yet.

ISSUES
For now system links need to be added in the glade library folders to point to our new widgets and catalog
files. look in lib/python/gladevep/READ_ME for details

LinuxCNC Documentation 2010-08-24 309

GRAY2BIN(9) HAL Component

NAME

gray2bin — convert a gray-code input to binary

SYNOPSIS

loadrt gray2bin [count=N|names=name[,name2...]]

DESCRIPTION

Converts a gray-coded number into the corresponding binary value

FUNCTIONS
gray2bin.N

PINS
gray2bin.N.in u32 in
gray code in

gray2bin.N.out u32 out
binary code out

AUTHOR
andy pugh

LICENSE
GPL

310 2020-09-04

GRAY2BIN(9)

LinuxCNC Documentation

hal_bb_gpio(9) HAL Component hal_bb_gpio(9)

NAME
hal_bb_gpio — Driver for beaglebone GPIO pins

SYNOPSIS
loadrt hal_bb_gpio user_leds=#,... input_pins=#,... output_pins=#,...

USER LEDS
The user_leds loadrt parameter controls which LEDs are available to HAL. Valid range: 0..3. These LEDs
are next to the ethernet jack and the linuxcnc numbers match the silkscreen on beaglbone black. Empiri-
cally, these seem to be OR’d with whatever function is assigned to the LED in Linux.

PINS
bb_gpio.userledN bit in
bb_gpio.userledN-invert bit in
The associated LED is lit if userledN xor userledN-invert is TRUE.

INPUT PINS
The input_pins loadrt parameter controls which physical I/O pins are available to HAL as input pins. The
numbering is "800+N" for pin N on connector P8, and "900+N" for pin N on connector P9. For example,
"803" means connector P8 pin 3, which is also described in BeagleBone documentation as "gpmc_ad6".

Specifying pins that are otherwise in use by the system may have undesirable side effects, such as crashing
rtapi_app or the whole system.

PINS
bb_gpio.pN.in-NN bit out
bb_gpio.pN.in-NN-invert bit in
in-NN is a snapshot of the value of the corresponding physical pin XOR the value of the corre-
sponding in-NN-invert pin.

OUTPUT PINS
The input_pins loadrt parameter controls which physical I/O pins are available to HAL as input pins. The
numbering is "800+N" for pin N on connector P8, and "900+N" for pin N on connector P9.

Specifying pins that are otherwise in use by the system may have undesirable side effects, such as crashing
rtapi_app or the whole system.

PINS
bb_gpio.pN.out-NN bit out
bb_gpio.pN.out-NN-invert bit in
The corresponding physical pin is driven with the result of in-NN xor in-NN-invert.

PARAMETERS

None

FUNCTIONS
bb_gpio.read
Update HAL pins from physical pins

LinuxCNC Documentation 311

hal_bb_gpio(9) HAL Component hal_bb_gpio(9)

bb_gpio.write
Update physical pins from HAL pins

LICENSE
GPL

312 LinuxCNC Documentation

HISTOBINS(9) HAL Component

NAME

histobins — histogram bins utility for scripts/hal-histogram

SYNOPSIS
Usage:
Read availablebins pin for the number of bins available.
Set the minvalue, binsize, and nbins pins.
Ensure nbins <= availablebins
For nbins = N, the bins are numbered: O ... N-1
Iterate:
Set index pin to a bin number: 0 <= index < nbins.
Read check pin and verify that check pin == index pin.
Read outputs: binvalue, pextra, nextra pins.
(binvalue is count for the indexed bin)
(pextra is count for all inputs > maxvalue)
(nextra 1is count for all bins < minvalue)

If index is out of range (index < 0 or index > maxbinnumber)

then binvalue == —-1.
The input-error pin is set when input rules are violated
and updates cease.
The reset pin may be used to restart.
The input used is selected based on pintype:
pintype inputpin
0 input
1 input-s32
2 input-u32
3 input-bit
Additional output statistics pins:
input-min
input-max
nsamples
variance
mean

The method input pin selects an alternate variance calculation.

Maintainers note: hardcoded for MAXBINNUMBER==200

FUNCTIONS

histobins.N (requires a floating-point thread)

PINS
histobins.N.pintype u32 in
histobins.N.input float in
histobins.N.input-s32 s32 in
histobins.N.input-u32 u32 in
histobins.N.input-bit bit in
histobins.N.nbins u32 in (default: 20)
histobins.N.binsize float in (default: /)
histobins.N.minvalue float in (default: 0)
histobins.N.index s32 in

LinuxCNC Documentation 2020-09-04

HISTOBINS(9)

313

HISTOBINS(9) HAL Component

histobins.N.check s32 out
histobins.V.reset bit in
histobins.N.method bit in
histobins.N.input-error bit out
histobins.N.binvalue float out
histobins.N.pextra float out
histobins.N.nextra float out
histobins.N.input-min float out
histobins.N.input-max float out
histobins.N.nsamples u32 out
histobins.N.variance float out
histobins.N.mean float out
histobins.N.availablebins s32 out (default: 200)

LICENSE

314

GPL

2020-09-04

HISTOBINS(9)

LinuxCNC Documentation

HM2_7143(9) HAL Component HM2_7143(9)

NAME
hm2_7i43 — LinuxCNC HAL driver for the Mesa Electronics 7i43 EPP Anything 10 board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i43 [ioaddr=NI[,N...]] [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [config="str[,str...]"] [de-
bug_epp=N[,N...1]
ioaddr [default: O (parport0)]
The base address of the parallel port.

The number of ioaddr indexes/addresses given is used by the driver to determine how many
boards to search for.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode. 0 means to use ioaddr +
0x400.

epp_wide [default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions. However, this may not
work on all EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp [default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm?2_7i43 is a device driver that interfaces the Mesa 7i43 board with the HostMot2 firmware to the Linux-
CNC HAL. Both the 200K and the 400K FPGAs are supported.

The driver talks with the 7i43 over the parallel port, not over USB. USB can be used to power the 7i43, but
not to talk to it. USB communication with the 7i43 will not be supported any time soon, since USB has
poor real-time qualities.

The driver programs the board’s FPGA with firmware when it registers the board with the hostmot2 driver.
The firmware to load is specified in the config modparam, as described in the hostmot2(9) manpage, in the
config modparam section.

Jumper settings
To send the FPGA configuration from the PC, the board must be configured to get its firmware from the
EPP port. To do this, jumpers W4 and W5 must both be down, ie toward the USB connector.

The board must be configured to power on whether or not the USB interface is active. This is done by set-
ting jumper W7 up, ie away from the edge of the board.

Communicating with the board
The 7i43 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is preferred, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cards do not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i43. You have to find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may

LinuxCNC Documentation 2008-05-13 315

HM2_7143(9) HAL Component HM2_7143(9)

cause communication timeouts. The driver exports a parameter named hm2_7i43.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i43 board. Setting io_error back to False makes the driver start trying to commu-
nicate with the 7i43 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LICENSE
GPL

316 2008-05-13 LinuxCNC Documentation

HM2_7190(9) HAL Component HM2_7190(9)

NAME
hm2_7i90 — LinuxCNC HAL driver for the Mesa Electronics 7190 EPP Anything 10 board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i90 [ioaddr=NI[,N...]] [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [debug_epp=N[,N...]]

ioaddr [default: O (parport0)]
The base address of the parallel port.

The number of ioaddr indexes/addresses given is used by the driver to determine how many
boards to search for. Previously the number of config strings was used, but a blank config
string is perfectly acceptable for 7i90.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode. 0 means to use ioaddr +
0x400.

epp_wide [default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions. However, this may not
work on all EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp [default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm?2_7i90 is a device driver that interfaces the Mesa 7190 board with the HostMot2 firmware to the Linux-
CNC HAL.

The 7190 firmware is stored on the 7i90 itself, it is not programmed by the driver at load time. The 7190
firmware can be changed using the mesaflash program.

The driver talks with the 7i90 over the parallel port, via EPP.

Communicating with the board
The 7190 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is preferred, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cards do not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i190. You have to find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may
cause communication timeouts. The driver exports a parameter named hm2_7i90.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i90 board. Setting io_error back to False makes the driver start trying to commu-
nicate with the 7190 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LinuxCNC Documentation 2013-10-27 317

HM2_7190(9) HAL Component HM2_7190(9)

LICENSE
GPL

318 2013-10-27 LinuxCNC Documentation

HM2_ETH(9) HAL Component HM2_ETH(9)

NAME
hm2_eth — LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_eth [config="str[,str..]"] [board_ip=ip/,ip...]1 [board_mac=mac[,mac...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

board_ip [default: ""]
The IP address of the board(s), separated by commas. As shipped, the board address is
192.168.1.121.

DESCRIPTION
hm2_eth is a device driver that interfaces Mesa’s ethernet based Anything I/O boards (with the HostMot2
firmware) to the LinuxCNC HAL.

The supported boards are: 7i76E, 7I80DB, 7I80HD, 7192, 7193, 7i96.
The board must have its hardware loaded on the board by the mesaflash(1) program.

hm?2_eth is only available when linuxcnc is configured with "uspace" realtime.

INTERFACE CONFIGURATION
hm2_eth should be used on a dedicated network interface, with only a cable between the PC and the board.
Wireless and USB network interfaces are not suitable.

These instructions assume your dedicated network interface is "eth1", 192.168.1/24 is an unused private
network, that the hostmot2 board is using the default address of 192.168.1.121, that you are using Debian 7
or similar, and that you do not otherwise use iptables. If any of these are false, you will need to modify the
instructions accordingly. After following all the instructions, reboot so that the changes take effect.

It is particularly important to check that the network 192.168.1/24 is not already the private network used
by your internet router, because this is a commonly-used value. If you use another network, you will also
need to reconfigure the hostmot2 card to use an IP address on that network by using the mesaflash(1) utility
and change jumper settings. Typically, you will choose one of the networks in the Private IPv4 address
space. [Mttp://en.wikipedia.org/wiki/IPv4#Private_networks[lJOne common alternative is PC address
10.10.10.1, hostmot2 address 10.10.10.10.

Use of the dedicated ethernet interface while linuxcnc is running can cause violation of realtime guarantees.
hm2_eth will automatically mitigate most accidental causes of interference.

Configure network with static address
Add these lines to the file /etc/network/interfaces to configure eth1 with a static address:

auto ethl

iface ethl inet static
address 192.168.1.1
hardware-irg-coalesce-rx-usecs 0

PACKET LOSS
While ethernet is fairly resistant to electrical noise, many systems will not have 100% perfect packet recep-
tion. The hm2_eth driver has a limited ability to deal with lost packets. Packet loss is detected by transmit-
ting an expected read or write packet count with each request, and checking the value with each read re-
sponse. When a lost packet is detected, the packet—error pin is asserted in that cycle, the

LinuxCNC Documentation 2008-05-13 319

HM2_ETH(9) HAL Component HM2_ETH(9)

packet—error-level pin is increased, and if it reaches a threshold then a permanent low-level I/O error is
signaled.

However, not all hm?2 special functions know how to properly recover from lost packets. For instance, the
encoder special function does not properly manage the index feature when packets are lost. The author be-
lieves that this can lead to rare failures in home-to-index, which can have severe consequences.

On the other hand, pid-stepper systems will run properly for extended periods of time with packet loss on
the order of .01%, as long as following error is increased enough that having stale position feedback does
not trigger a following error. Altering the HAL configuration so that during transient packet loss the pid
and motion feedback value is equal to the command value, instead of the stale feedback value, appears to
improve tuning. This can be accomplished with a mux2(9) component for each feedback signal, using
packet—error as the mux2 sel input.

PINS

In addition to the pins documented in hostmot2(9), hm2_eth(9) creates additional pins:

(bit, out) hm2_<BoardType>.< BoardNum > .packet—error
This pin is TRUE when the most recent cycle detected a read or write error, and FALSE at other
times.

(s32, out) hm2_<BoardType >.< BoardNum>.packet—error—level
This pin shows the current error level, with higher numbers indicating a greater number of recent
detected errors. The error level is always in the range from 0 to packet—error—limit, inclusive.

(bit, out) hm2_<BoardType>.< BoardNum > .packet—error—exceeded
This pin is TRUE when the current error level is equal to the maximum, and FALSE at other
times.

PARAMETERS

In addition to the parameters documented in hostmot2(9), hm2_eth(9) creates additional parameters:

(s32, rw) hm2_<BoardType >.< BoardNum> .packet—error—decrement
The amount deducted from packet—error—level in a cycle without detected read or write errors,
without going below zero.

(s32, rw) hm2_<BoardType>.< BoardNum> .packet—error—increment
The amount added to packet—error—level in a cycle without detected read or write errors, without
going above packet—error—limit.

(s32, rw) hm2_<BoardType>.< BoardNum > .packet—error—limit
The level at which a detected read or write error is treated as a permament error. When this error
level is reached, the board’s io—error pin becomes TRUE and the condition must be manually re-
set.

(s32, rw) hm2_<BoardType>.<BoardNum> .packet—read—timeout
The length of time that must pass before a read request times out. If the value is less than or equal
to 0, it is interpreted as 80% of the thread period. If the value is less than 100, it is interpreted as a
percentage of the thread period. Otherwise, it is interpreted as a time in nanoseconds. In any case,
the timeout is never less than 100 microseconds.

Setting this value too low can cause spurious read errors. Setting it too high can cause realtime de-
lay errors.

320 2008-05-13 LinuxCNC Documentation

HM2_ETH(9) HAL Component HM2_ETH(9)

NOTES

BUGS

hm2_eth uses an iptables chain called "hm2—eth—rules—output” to control access to the network interface
while hal is running. The chain is created if it does not exist, and a jump to it is inserted at the beginning of
the OUTPUT chain if it is not there already. If you have an existing iptables setup, you can insert a direct
jump from OUTPUT to hm2-eth—rules—output in an order appropriate to your local network.

At (normal) exit, hm2_eth will remove the rules. After a crash, you can manually clear the rules with sudo
iptables —F hm2-eth—rules—output; the rules are also removed by a reboot.

"hardware—irq—coalesce—rx—usecs" decreases time waiting to receive a packet on most systems, but on at
least some Marvel-chipset NICs it is harmful. If the line does not improve system performance, then re-
move it. A reboot is required for the value to be set back to its power-on default. This requires the ethtool
package to be installed.

Some hostmot2 functions such uart are coded in a way that causes additional latency when used with
hm?2_eth.

On the 7192, the HAL pins for the LEDs are called CRO1..CR04, but the silkscreens are CR3..CR6. De-
pending on the FPGA firmware, the LEDs may initially be under control of the ethernet engine. This can
be changed until power cycle with

elbpcom 01D914000000
Depending on firmware version, this driver may cause the hardware error LED to light even though the

driver and hardware are functioning normally. This will reportedly be fixed in future bitfile updates from
Mesa.

SEE ALSO

hostmot2(9), elbpcom(1)

LICENSE

GPL

LinuxCNC Documentation 2008-05-13 321

HM2_PCI(9) HAL Component HM2_PCI(9)

NAME
hm2_pci — LinuxCNC HAL driver for the Mesa Electronics PCI-based Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_pci [config="str[,str...]"]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

DESCRIPTION
hm2_pci is a device driver that interfaces Mesa’s PCI and PC-104/Plus based Anything I/O boards (with the
HostMot2 firmware) to the LinuxCNC HAL.

The supported boards are: the 5i20, 5i21, 5122, 5i23, 5i24, and 5i25 (all on PCI); the 4i65, 4168, and 4169
(on PC-104/Plus), and the 3x20 (using a 6i68 or 7i68 carrier card) and 6i25 (on PCI Express).

The driver optionally programs the board’s FPGA with firmware when it registers the board with the host-
mot2 driver. The firmware to load is specified in the config modparam, as described in the hostmot2(9)
manpage, in the config modparam section.

SEE ALSO
hostmot2(9)

LICENSE
GPL

322 2008-05-13 LinuxCNC Documentation

HM2_RPSPI(9) HAL Component HM2_RPSPI(9)

NAME
hm2_rpspi — LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_rpspi

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spiclk_rate [default: 31250]
Specify the SPI clock rate in kHz. See SPI CLOCK RATES below.

spiclk_rate_rd [default: -1 (same as spiclk_rate)]
Specify the SPI read clock rate in kHz. Usually you read and write at the same speed. How-
ever, you may want to reduce the reading speed if the round-trip is too long (see
SPI CLOCK RATES below).

spiclk_base [default: 400000000]
This is the SPI clock divider calculation fallback value. Usually, the base rate is read from
/sys/kernel/debug/clk/vpu/clk_rate and used in the divider calculation (for the Rpi3 it should
be 250 MHz). The spiclk_base is only used as a fallback if the system’s cannot be read. It is
normally safe (and recommended) that you leave this parameter as is.
You should set this manually to 250000000 if your system does not provide access to the ker-
nel clock settings. Otherwise, your SPI clock frequency will be only 62.5% of the requested
value.

spi_pull_miso [default: 1 (pull-down)]
spi_pull_mosi [default: 1 (pull-down)]

spi_pull_sclk [default: 1 (pull-down)]
Enable or disable pull-up/pull-down on the SPI lines. A value of 0 disables any
pull-up/down on the pin. A value of 1 means pull-down and 2 means pull-up. The chip en-
able line(s) are always pull—up enabled.

spi_probe [default: 1]
Probe SPI port and CE lines for a card. This is a bit—field indicating which combinations of
SPI and CE should be probed:

— 1 =SPI0O/CEO,
- 2 =SPI0/CE1,
— 4 = SPI1/CEQ,
- 8 =SPI1/CE1,

— 16 = SPI1/CE2.

The probe is performed exactly in above order. Any boards found will be numbered 0...4 in
the order found. See also INTERFACE CONFGURATION below.

It is an error if a probe fails and the driver will abort. The SPIO/SPI1 peripherals are located
at gpio pins (with 40-pin I/O header pin—number in parentheses):

— SPIO: MOSI=10(19), MISO=9(21), SCLK=11(23), CE0=8(24), CE1=7(26)

— SPI1: MOSI=20(38), MISO=19(35), SCLK=21(40), CE0=18(12), CE1=17(11),
CE2=16(36)

spi_debug [default: —1]
Set the message level of the running process. The message level is set if spi_debug is set to a
positive value between 0 and 5, where 0 means no messages at all and 5 means everything. A
value of —1 does not touch the current message level.

LinuxCNC Documentation 2017-06-05 323

HM2_RPSPI(9) HAL Component HM2_RPSPI(9)

Caveat Emptor: changing the message level is process-wide and all modules within the
process will spit out messages at the requested level. This may cause quite some clutter in
your terminal.

DESCRIPTION

hm2_rpspi is a device driver for the Raspberry Pi 2/3 that interfaces Mesa’s SPI based Anything I/O boards
(with the HostMot2 firmware) to the LinuxCNC HAL. This driver is not based on the linux spidev driver,
but on a dedicated BCM2835—SPI driver.

It is strongly recommended that you unload/disable the kernel’s spidev driver by disabling it using raspi-
config. Please note that having both kernel and user—space SPI drivers installed can result in unexpected
interactions and system instabilities.

The supported boards are: 7190HD.

The board must have a compatible firmware (ie.: 7190_spi_svst4_8.bit) loaded on the board by the
mesaflash(1) program.

hm2_rpspi is only available when linuxcnc is configured with "uspace" realtime. It works with Raspian and
PREEMPT _RT kernel.

INTERFACE CONFIGURATION

Up to five devices (7190 boards) are supported. Two on SPIO and three on SPI1. It is recommended that
you, at most, use two devices and each device connected to a separate SPI port. You can choose which CE
lines you prefer or fit the design and setup the spi_probe parameter to instruct the driver where to search
for the board(s).

REALTIME PERFORMANCE OF THE BCM2835-SPI DRIVER

TBD.

SPI CLOCK RATES

324

The maximum SPI clock of the BCM2835-SPI driver and the 7i90 is documented over 32MHz. The SPI
driver can provide frequencies well beyond what is acceptable for the 7i90. A safe value to start with would
be 12.5 MHz (spiclk_rate=12500) and then work your way up from there.

The SPI driver generates (very) discrete clock frequency values, especially in the MHz range because of a
simple clock divider structure. The base frequency is 250 MHz and the divider for SPI0/SPI1 scales using
discrete factors. The following list specifies the spiclk_rate setting and the discrete SPI clock frequency
(250 MHz / (2n) forn > 1):

- 62500 — 62.500 MHz,

— 41667 — 41.667 MHz,

—31250 - 31.250 MHz,

— 25000 - 25.000 MHz,

—20834 —20.833 MHz,

— 17858 — 17.857 MHz,

— 15625 - 15.625 MHz,

— 13889 — 13.889 MHz,

- 12500 - 12.500 MHz,

— 11364 - 11.364 MHz,

—10417 - 10.417 MHz,

- 9616 — 9.615 MHz,

2017-06-05 LinuxCNC Documentation

HM2_RPSPI(9) HAL Component HM2_RPSPI(9)

The lowest selectable SPI clock frequency is 30 kHz (spiclk_rate=30) for SPIO and SPI1. Theoretically, the
SPIO port could go slower, but there is no point in doing so. You should not expect any real—-time perfor-
mance with such slow setting, unless your machine is located next to a black hole.

The highest SPI clock frequency is, theoretically, 125 MHz. However, you will not be able to build any reli-
able hardware interface at that frequency. The driver limits the clock to 62.5 MHz (cpiclk_rate=62500). The
chances are rather slim that you get the interface to work reliably at this frequency. The 7190 interface only
supports frequencies up to 50 MHz and that is with perfect cabling and impedance matching (in write direc-
tion only).

Writing to the 7190 may be done faster than reading. This is especially important if you have "long" wires
or any buffers on the SPI-bus path. You can set the read clock frequency to a lower value (using spi-
clk_rate_rd) to counter the effects of the SPI-bus round-trip needed for read actions. For example, you can
write at 41.67 MHz and read at 25.00 MHz.

It should be noted that the Rpi3 must have an adequate 5V power supply and the power should be properly
decoupled right on the 40—pin I/O header. At high speeds and noise on the supply, there is the possibility of
noise throwing off the SoC’s PLL(s), resulting in strange behaviour.

For optimal performance on the Rpi3, you must disable the "ondemand" CPU frequency governor. You may
add the following to your /etc/rc.local file:
echo -n 1200000 > /sys/devices/system/cpu/cpufreq/policy0/scaling_min_freq

echo -n performance > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor

Be sure to have a proper heatsink mounted on the SoC or it will get too warm and crash.

SEE ALSO
hostmot2(9)

LICENSE
GPL

LinuxCNC Documentation 2017-06-05 325

HM2_SPI(9) HAL Component HM2_SPI(9)

NAME
hm2_spi — LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_spi [config="str/,str..]"] [spidev_path=path[,path...]] [spidev_rate=rate/[,rate...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spidev_path [default: "/dev/spidev1.0"]
The path to the spi device node, a character special device in /dev

spidev_rate [default: 24000]
The desired rate of the SPI clock in kHz. If the exact specified clock is not available, a lower
clock is used. Due to shortcomings in the spidev API, it is not possible for hal to report the
actual clock used.

DESCRIPTION
hm2_spi is a device driver that interfaces Mesa’s SPI based Anything I/O boards (with the HostMot2
firmware) to the LinuxCNC HAL.

The supported boards are: 7190HD.
The board must have a compatible firmware loaded on the board by the mesaflash(1) program.

hm2_spi is only available when linuxcnc is configured with "uspace" realtime.

INTERFACE CONFIGURATION
It is possible for one SPI bus to connect several devices; in this configuration, a master device has several
chip select lines. In order to meet realtime deadlines, hm2_spi should be used on a dedicated SPI interface
not shared with any other slaves.

REALTIME PERFORMANCE OF LINUX SPIDEV DRIVERS
As of kernel 3.8, most or all kernel SPI drivers do not achieve the high realtime response rate required for a
typical linuxcnc configuration. The driver was tested with a modified version of the spi—s3c64xx SPI driver
on the Odroid U3 platform. The patched kernel resides on github
(https://github.com/jepler/odroid—linux/tree/odroid—3.8.13—rtL]

SPI CLOCK RATES
The maximum SPI clock of the 7190 is documented as SOMHz. Other elements of the data path between
HAL and the 7i90 may impose other limitations.

SEE ALSO
hostmot2(9)

LICENSE
GPL

326 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

NAME
hostmot2 — LinuxCNC HAL driver for the Mesa Electronics HostMot2 firmware.

SYNOPSIS
See the config modparam section below for Mesa card configuration. Typically hostmot2 is loaded with no
parameters unless debugging is required.

loadrt hostmot2 [debug_idrom=N] [debug_module_descriptors=N] [debug_pin_descriptors=N] [de-
bug_modules=N]

debug_idrom [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 IDROM header.

debug_module_descriptors [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Module Descriptors.

debug_pin_descriptors [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Pin Descriptors.

debug_modules [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Modules used.

use_serial_numbers [default: 0]
When creating HAL pins for smart-serial devices name the pins by the board serial number rather
than which board and port they are connected to. With this option set to 1 pins will have names
like hm2_8i20.1234.current rather than hm2_5i23.0.8i20.0.1.current. The identifier consists of
the last 4 digits of the board serial number, which is normally on a sticker on the board. This will
make configs less portable, but does mean that boards can be re-connected less carefully.

DESCRIPTION
hostmot2 is a device driver that interfaces the Mesa HostMot2 firmware to the LinuxCNC HAL. This
driver by itself does nothing, the boards that actually run the firmware require their own drivers before any-
thing can happen. Currently drivers are available for the 5120, 5i22, 5i23, 5i25, 3x20, 4i65, and 4i68 (all
using the hm2_pci module) and the 7i43 (using the hm2_7i43 module).

The HostMot2 firmware provides modules such as encoders, PWM generators, step/dir generators, and gen-
eral purpose I/O pins (GPIOs). These things are called "Modules". The firmware is configured, at
firmware compile time, to provide zero or more instances of each of these Modules.

Board 1/0 Pins
The HostMot2 firmware runs on an FPGA board. The board interfaces with the computer via PCI,
PC-104/Plus, or EPP, and interfaces with motion control hardware such as servos and stepper motors via
I/O pins on the board.

Each I/O pin can be configured, at board-driver load time, to serve one of two purposes: either as a particu-
lar I/O pin of a particular Module instance (encoder, pwmgen, stepgen etc), or as a general purpose digital
I/O pin. By default all Module instances are enabled, and all the board’s pins are used by the Module in-
stances.

The user can disable Module instances at board-driver load time, by specifying a hostmot2 config string
modparam. Any pins which belong to Module instances that have been disabled automatically become
GPIOs.

All IO pins have some HAL presence, whether they belong to an active module instance or are full GPIOs.
GPIOs can be changed (at run-time) between inputs, normal outputs, and open drains, and have a flexible
HAL interface. 1O pins that belong to active Module instances are constrained by the requirements of the
owning Module, and have a more limited interface in HAL. This is described in the General Purpose 1/0
section below.

LinuxCNC Documentation 2008-05-13 327

HOSTMOT2(9) HAL Component HOSTMOT2(9)

config modparam

328

All the board-driver modules (hm2_pci and hm2_7i43) accept a load-time modparam of type string array,
named "config". This array has one config string for each board the driver should use. Each board’s config
string is passed to and parsed by the hostmot2 driver when the board-driver registers the board.

The config string can contain spaces, so it is usually a good idea to wrap the whole thing in double-quotes
(the " character).

The comma character (,) separates members of the config array from each other.

For example, if your control computer has one 5120 and one 5i23 you might load the hm2_pci driver with a
HAL command (in halcmd) something like this:

loadrt hm2_pci config=""firmware=hm2/5i20/SVST8_4.BIT num_encoders=3 num_pwmgens=3 num_stepgens=3,fi

Note: this assumes that the hm2_pci driver detects the 5120 first and the 5i23 second. If the detection order
does not match the order of the config strings, the hostmot2 driver will refuse to load the firmware and the
board-driver (hm2_pci or hm2_7i43) will fail to load. To the best of my knowledge, there is no way to pre-
dict the order in which PCI boards will be detected by the driver, but the detection order will be consistent
as long as PCI boards are not moved around. Best to try loading it and see what the detection order is.

The valid entries in the format string are:

[firmware=F]
[num_encoders=N]
[ssi_chan_N=abc%nq]
[biss_chan_N=abc%nq]
[fanuc_chan_N=abc%nq]
[num_resolvers=N]
[num_pwmgens=N]
[num_3pwmgens=N]
[num_stepgens=N]
[stepgen_width=N]
[num_sserials=N]
[sserial_port_0=00000000]
[num_leds=N]
[num_ssrs=N]
[enable_raw]

firmware [optional]
Load the firmware specified by F into the FPGA on this board. If no "firmware=F" string is spec-
ified, the FPGA will not be re-programmed but may continue to run a previously downloaded
firmware.

The requested firmware F is fetched by udev. udev searches for the firmware in the system’s
firmware search path, usually /lib/firmware. F typically has the form "hm2/<BoardType>/file.bit";
a typical value for F might be "hm2/5i20/SVST8_4.BIT". The hostmot2 firmware files are sup-
plied by the hostmot2—firmware packages, available from linuxcnc.org and can normally be in-
stalled by entering the command "sudo apt—get install hostmot2—firmware—5i23" to install the
support files for the 5i23 for example.

The 5i25 / 6125 come pre-programmed with firmware and no "firmware=" string should be used

with these cards. To change the firmware on a 5i25 or 6i25 the "mesaflash” utility should be used
(available from Mesa). It is perfectly valid and reasonable to load these cards with no config string

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

at all.

num_dplls [optional, default: —1]
The hm2dpll is a phase-locked loop timer module which may be used to trigger certain types of
encoder. This parameter can be used to disable the hm2dpll by setting the number to 0. There is
only ever one module of this type, with 4 timer channels, so the other valid numbers are —1 (en-
able all) and 1, both of which end up meaning the same thing.

num_encoders [optional, default: —1]
Only enable the first N encoders. If N is —1, all encoders are enabled. If N is 0, no encoders are
enabled. If N is greater than the number of encoders available in the firmware, the board will fail
to register.

ssi_chan_N [optional, default: ""]
Specifies how the bit stream from a Synchronous Serial Interface device will be interpreted. There
should be an entry for each device connected. Only channels with a format specifier will be en-
abled. (as the software can not guess data rates and bit lengths)

biss_chan_N [optional, default: ""]
As for ssi_chan_N, but for BiSS devices

fanuc_chan_N [optional, default: ""]
Specifies how the bit stream from a Fanuc absolute encoder will be interpreted. There should be an
entry for each device connected. Only channels with a format specifier will be enabled. (as the
software can not guess data rates and bit lengths)

num_resolvers [optional, default: —1]
Only enable the first N resolvers. If N = —1 then all resolvers are enabled. This module does not
work with generic resolvers (unlike the encoder module which works with any encoder). At the
time of writing the Hostmot2 Resolver function only works with the Mesa 7149 card.

num_pwmgens [optional, default: —1]
Only enable the first N pwmgens. If N is —1, all pwmgens are enabled. If N is O, no pwmgens are
enabled. If N is greater than the number of pwmgens available in the firmware, the board will fail
to register.

num_3pwmgens [optional, default: —1]
Only enable the first N Three-phase pwmgens. If N is —1, all 3pwmgens are enabled. If N is 0, no
pwmgens are enabled. If N is greater than the number of pwmgens available in the firmware, the
board will fail to register.

num_stepgens [optional, default: —1]
Only enable the first N stepgens. If N is —1, all stepgens are enabled. If N is 0, no stepgens are
enabled. If N is greater than the number of stepgens available in the firmware, the board will fail
to register.

stepgen_width [optional, default: 2]
Used to mask extra, unwanted, stepgen pins. Stepper drives typically require only two pins (step
and dir) but the Hostmot?2 stepgen can drive up to 8 output pins for specialised applications (de-
pending on firmware). This parameter applies to all stepgen instances. Unused, masked pins will
be available as GPIO.

num_sserials [optional, default: -1]
Only enable the first N of the Smart Serial modules on the FPGA board. If N is —1, then all Smart
Serial modules will be enabled. If N=0 then no Smart Serial modules will be enabled.

sserial_port_N (N =0 .. 3) [optional, default: 00000000 for all ports]
Up to 32 Smart Serial devices can be connected to a Mesa Anything 10 board depending on the
firmware used and the number of physical connections on the board. These are arranged in 1-4
ports of 1 to 8 channels.
Some Smart Serial (SSLBP) cards offer more than one load-time configuration, for example all

LinuxCNC Documentation 2008-05-13 329

HOSTMOT2(9) HAL Component HOSTMOT2(9)

dpll

330

inputs, or all outputs, or offering additional analogue input on some digital pins.

To set the modes for port O use, for example sserial_port_0=0120xxxx

A ’0’in the string sets the corresponding port to mode 0, 1 to mode 1, and so on up to mode 9. An
"x" in any position disables that channel and makes the corresponding FPGA pins available as
GPIO.

The string can be up to 8 characters long, and if it defines more modes than there are channels on
the port then the extras are ignored. Channel numbering is left to right so the example above would
set sserial device 0.0 to mode 0, 0.2 to mode2 and disable channels 0.4 onwards.

The sserial driver will auto-detect connected devices, no further configuration should be needed.
Unconnected channels will default to GPIO, but the pin values will vary semi-randomly during
boot when card-detection runs, to it is best to actively disable any channel that is to be used for
GPIO.

num_bspis [optional, default: —1]
Only enable the first N Buffered SPI drivers. If N is —1 then all the drivers are enabled. Each BSPI
driver can address 16 devices.

num_leds [optional, default: —1]
Only enable the first N of the LEDs on the FPGA board. If N is —1, then HAL pins for all the
LEDs will be created. If N=0 then no pins will be added.

num_ssrs [optional, default: -1]
Only enable the first N of the SSR modules on the FPGA board. If N is —1, then HAL pins for all
the SSR outputs will be created. If N=0 then no pins will be added.

enable_raw [optional]
If specified, this turns on a raw access mode, whereby a user can peek and poke the firmware from
HAL. See Raw Mode below.

The hm2dpll module has pins like "hm2_<BoardType>.< BoardNum>.dpll" It is likely that the pin-count
will decrease in the future and that some pins will become parameters. This module is a phase-locked loop
that will synchronise itself with the thread in which the hostmot2 "read" function is installed and will trig-
ger other functions that are allocated to it at a specified time before or after the "read" function runs. This
can be applied to the three absolute encoder types, quadrature encoders and stepgen. In the case of the ab-
solute encoders this allows the system to trigger a data transmission just prior to the time when the HAL
driver reads the data. In the case of stepgens and quadrature encoders the timers can be used to reduce posi-
tion sampling jitter. This is especially valuable with the ethernet-interfaced cards.

Pins:

(float, in) hm2_<BoardType >.< BoardNum>.dpll.NN.timer—us
This pin sets the triggering offset of the associated timer. There are 4 timers numbered 01 to 04,
represented by the NN digits in the pin name. The units are micro-seconds. Generally the value
will be negative, so that some action is undertaken by the fpga prior to the execution of the main
hostmot2 read.

For stepgen and quadrature encoders, the value needs to be more than the maximum variation be-
tween read times. —100 will suffice for most systems, and —50 will work on systems with good
performance and latency.

For serial encoders, the value also needs to include the time it takes to transfer the absolute en-

coder position. For instance, if 50 bits must be read at 500kHz then subtract an additional
50/500kHz = 100usS to get a starting value of —200.

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(float, in) hm2_<BoardType >.< BoardNum> .dpll.base—freq—khz
This pin sets the base frequency of the phase-locked loop. by default it will be set to the nominal
frequency of the thread in which the PLL is running and wil not normally need to be changed.

(float, out) hm2_ <BoardType>.< BoardNum>.dpll.phase—error—us
Indicates the phase error of the DPLL. If the number cycles by a large amount it is likely that the
PLL has failed to achieve lock and adjustments will need to be made.

(u32, in) hm2_<BoardType>.< BoardNum> .dpll.time—const
The filter time-constant for the PLL. The default value is a compromise between insensitivity to
single-cycle variations and being resilient to changes to the Linux CLOCK_MONOTONIC
timescale, which can instantly change by up to A+500ppm from its nominal value, usually by
timekeeping software like ntpd and ntpdate. Default 2000 (0x7d0)

(u32, in) hm2_<BoardType>.< BoardNum> .dpll.plimit
Sets the phase adjustment limit of the PLL. If the value is zero then the PLL will free-run at the

base frequency independent of the servo thread rate. This is probably not what you want. Default
4194304 (0x400000) Units not known...

(u32, out) hm2_<BoardType>.< BoardNum>.dpll.ddsize
Used internally by the driver, likely to disappear.

(u32, in) hm2_<BoardType>.<BoardNum>.dpll.prescale
Prescale factor for the rate generator. Default 1.

encoder
Encoders have names like ""hm2_<BoardType>.<BoardNum> .encoder.<Instance>".". "Instance" is a
two-digit number that corresponds to the HostMot2 encoder instance number. There are "num_encoders"
instances, starting with 00.

So, for example, the HAL pin that has the current position of the second encoder of the first 5120 board is:
hm2_5i20.0.encoder.01.position (this assumes that the firmware in that board is configured so that this
HAL object is available)

Each encoder uses three or four input IO pins, depending on how the firmware was compiled. Three-pin
encoders use A, B, and Index (sometimes also known as Z). Four-pin encoders use A, B, Index, and Index-
mask.

The hm?2 encoder representation is similar to the one described by the Canonical Device Interface (in the
HAL General Reference document), and to the software encoder component. Each encoder instance has

the following pins and parameters:

Pins:

(s32 out) count
Number of encoder counts since the previous reset.

(float out) position
Encoder position in position units (count / scale).

(float out) velocity
Estimated encoder velocity in position units per second.

LinuxCNC Documentation 2008-05-13 331

HOSTMOT2(9) HAL Component HOSTMOT2(9)

332

(float out) velocity-rpm
Estimated encoder velocity in position units per minute.

(bit in) reset
When this pin is TRUE, the count and position pins are set to 0. (The value of the velocity pin is
not affected by this.) The driver does not reset this pin to FALSE after resetting the count to 0,
that is the user’s job.

(bit in/out) index—enable
When this pin is set to True, the count (and therefore also position) are reset to zero on the next In-
dex (Phase—Z) pulse. At the same time, index—enable is reset to zero to indicate that the pulse has
occurred.

(s32 out) rawcounts
Total number of encoder counts since the start, not adjusted for index or reset.

Parameters:

(float r/w) scale
Converts from ’count’ units to “position’ units.

(bit r/w) index—invert
If set to True, the rising edge of the Index input pin triggers the Index event (if index—enable is
True). If set to False, the falling edge triggers.

(bit r/w) index—mask
If set to True, the Index input pin only has an effect if the Index—Mask input pin is True (or False,
depending on the index—mask—invert pin below).

(bit r/w) index—mask—invert
If set to True, Index—Mask must be False for Index to have an effect. If set to False, the In-
dex—Mask pin must be True.

(bit r/w) counter—mode
Set to False (the default) for Quadrature. Set to True for Step/Dir (in which case Step is on the A
pin and Dir is on the B pin).

(bit r/w) filter
If set to True (the default), the quadrature counter needs 15 clocks to register a change on any of
the three input lines (any pulse shorter than this is rejected as noise). If set to False, the quadrature
counter needs only 3 clocks to register a change. The encoder sample clock runs at 33 MHz on the
PCI AnylO cards and 50 MHz on the 7i43.

(float r/w) vel-timeout
When the encoder is moving slower than one pulse for each time that the driver reads the count
from the FPGA (in the hm2_read() function), the velocity is harder to estimate. The driver can
wait several iterations for the next pulse to arrive, all the while reporting the upper bound of the
encoder velocity, which can be accurately guessed. This parameter specifies how long to wait for
the next pulse, before reporting the encoder stopped. This parameter is in seconds.

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(832 r/'w) hm2_XiXX.N.encoder.timer—number (default: —1)
Sets the hm2dpll timer instance to be used to latch encoder counts. A setting of —1 does not latch
encoder counts. A setting of 0 latches at the same time as the main hostmot2 write. A setting of
1..4 uses a time offset from the main hostmot2 write according to the dpll’s timer—us setting.

Typically, timer—us should be a negative number with a magnitude larger than the largest latency
(e.g., —100 for a system with mediocre latency, —50 for a system with good latency).

If no DPLL module is present in the FPGA firmware, or if the encoder module does not support
DPLL, then this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces following er-
TOrS.

Synchronous Serial Interface (SSI)
(Not to be confused with the Smart Serial Interface)

One pin is created for each SSI instance regardless of data format: (bit, in)
hm2_XiXX.NN.ssi.MM.data—incomplete This pin will be set "true" if the module was still transferring data
when the value was read. When this problem exists there will also be a limited number of error messages
printed to the UL This pin should be used to monitor whether the problem has been addressed by config
changes. Solutions to the problem dpend on whether the encoder read is being triggered by the hm2dpll
phase-locked-loop timer (described above) or by the trigger—encoders function (described below).

The names of the pins created by the SSI module will depend entirely on the format string for each channel
specified in the loadrt command line. A typical format string might be
ssi_chan_0O=error % 1bposition %24g

This would interpret the LSB of the bit-stream as a bit-type pin named "error" and the next 24 bits as a
Gray-coded encoder counter. The encoder-related HAL pins would all begin with "position".

There should be no spaces in the format string, as this is used as a delimiter by the low-level code.

The format consists of a string of alphanumeric characters that will form the HAL pin names, followed by a
% symbol, a bit-count and a data type. All bits in the packet must be defined, even if they are not used.
There is a limit of 64 bits in total.

The valid format characters and the pins they create are:
p: (Pad). Does not create any pins, used to ignore sections of the bit stream that are not required.

b: (Boolean).
(bit, out) hm2_XiXX.N.ssi.MM.<name>. If any bits in the designated field width are non-zero
then the HAL pin will be "true".
(bit, out) hm2_XiXX.N.ssi.MM.<name>-not. An inverted version of the above, the HAL pin will
be "true" if all bits in the field are zero.

u: (Unsigned)
(float, out) hm2_XiXX.N.ssi.MM.<name>. The value of the bits interpreted as an unsigned inte-
ger then scaled such that the pin value will equal the scalemax parameter value when all bits are
high. (for example if the field is 8 bits wide and the scalmax parameter was 20 then a value of 255
would return 20, and 0 would return 0.

s: (Signed)
(float, out) hm2_XiXX.N.ssi. MM.<name>. The value of the bits interpreted as a 2s complement
signed number then scaled similarly to the unsigned variant, except symmetrical around zero.

LinuxCNC Documentation 2008-05-13 333

HOSTMOT2(9) HAL Component HOSTMOT2(9)

334

f: (bitField)
(bit, out) hm2_XiXX.N.ssi.MM.<name>—NN. The value of each individual bit in the data field.
NN starts at 00 up to the number of bits in the field.
(bit, out) hm2_XiXX.N.ssi.MM.<name>—-NN-not. An inverted version of the individual bit val-
ues.

e: (Encoder)

(s32, out) hm2_XiXX.N.ssi.MM.<name>.count. The lower 32 bits of the total encoder counts.
This value is reset both by the ...reset and the ...index—enable pins.

(s32, out) hm2_XiXX.N.ssi.MM.<name>.rawcounts. The lower 32 bits of the total encoder
counts. The pin is not affected by reset and index.

(float, out) hm2_XiXX.N.ssi.MM.<name>.position. The encoder position in machine units. This
is calculated from the full 64-bit buffers so will show a true value even after the counts pins have
wrapped. It is zeroed by reset and index enable.

(bit, I0) hm2_XiXX.N.ssi. MM.<name>.index—enable. When this pin is set "true" the module will
wait until the raw encoder counts next passes through an integer multiple of the number of counts
specified by counts—per—rev parameter and then it will zero the counts and position pins, and set
the index—enable pin back to "false" as a signal to the system that "index" has been passed. this
pin is used for spindle-synchronised motion and index-homing.

(bit, in) (bit, out) hm2_XiXX.N.ssi. MM.<name>.reset. When this pin is set high the counts and
position pins are zeroed.

h: (Split encoder, high-order bits)
Some encoders (Including Fanuc) place the encoder part-turn counts and full-turn counts in sepa-
rate, non-contiguous fields. This tag defines the high-order bits of such an encoder module. There
can be only one h and one 1 tag per channel, the behaviour with multiple such channels will be un-
defined.

I: (Split encoder, low-order bits)
Low order bits (see "h")

g: (Gray-code). This is a modifier that indicates that the following
format string is gray-code encoded. This is only valid for encoders (e, h 1) and unsigned (u) data

types.

m: (Multi-turn). This is a modifier that indicates that the following
format string is a multi-turn encoder. This is only valid for encoders (e, h 1). A jump in encoder
position of more than half the full scale is interpreted as a full turn and the counts are wrapped.
With a multi-turn encoder this is only likely to be a data glitch and will lead to a permanent offset.
This flag endures that such encoders will never wrap.

Parameters:
Two parameters is universally created for all SSI instances

(float r/w) hm2_XiXX.N.ssi.MM.frequency—khz
This parameter sets the SSI clock frequency. The units are kHz, so 500 will give a clock frequency
of 500,000 Hz.

(832 r/w) hm2_XiXX.N.ssi.timer-number—num
This parameter allocates the SSI module to a specific hm2dpll timer instance. This pin is only of
use in firmwares which contain a hm2dpll function and will default to 1 in cases where there is
such a function, and O if there is not. The pin can be used to disable reads of the encoder, by set-
ting to a nonexistent timer number, or to 0.

Other parameters depend on the data types specified in the config string.

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

BiSS

p: (Pad) No Parameters.
b: (Boolean) No Parameters.

u: (Unsigned)
(float, r/w) hm2_XiXX.N.ssi. MM.<name>.scalemax. The scaling factor for the
channel.

s: (Signed)
(float, r/w) hm2_XiXX.N.ssi.MM.<name>.scalemax. The scaling factor for the channel.

f: (bitField): No parameters.

e: (Encoder):

(float, r/w) hm2_XiXX.N.ssi. MM.<name>.scale: (float, r.w) The encoder scale in counts per ma-
chine unit.

(u32, r/w) hm2_XiXX.N.ssi. MM.<name>.counts—per—rev (u32, r/w) Used to emulate the index
behaviour of an incemental+index encoder. This would normally be set to the actual counts per rev
of the encoder, but can be any whole number of revs. Integer divisors or multimpilers of the true
PPR might be useful for index-homing. Non-integer factors might be appropriate where there is a
synchronous drive ratio between the encoder and the spindle or ballscrew.

BiSS is a bidirectional variant of SSI. Currently only a single direction is supported by LinuxCNC (encoder
to PC).

One pin is created for each BiSS instance regardless of data format:

(bit, in) hm2_XiXX.NN.biss.MM.data—incomplete This pin will be set "true" if the module was still trans-
ferring data when the value was read. When this problem exists there will also be a limited number of error
messages printed to the UL This pin should be used to monitor whether the problem has been addressed by
config changes. Solutions to the problem dpend on whether the encoder read is being triggered by the
hm2dpll phase-locked-loop timer (described above) or by the trigger—encoders function (described below)

The names of the pins created by the BiSS module will depend entirely on the format string for each chan-
nel specified in the loadrt command line and follow closely the format defined above for SSI. Currently
data packets of up to 96 bits are supported by the LinuxCNC driver, although the Mesa Hostmot2 module
can handle 512 bit packets. It should be possible to extend the number of packets supported by the driver if
there is a requirement to do so.

Fanuc encoder.

The pins and format specifier for this module are identical to the SSI module described above, except that at
least one pre-configured format is provided. A modparam of fanuc_chan_N=AA64 (case sensitive) will
configure the channel for a Fanuc Aa64 encoder. The pins created are:

hm2_XiXX.N.fanuc.MM .batt indicates battery state

hm2_XiXX.N.fanuc.MM .batt—not inverted version of above
hm2_XiXX.N.fanuc.MM.comm The 0-1023 absolute output for motor commutation
hm2_XXiX.N.fanuc.MM.crc The CRC checksum. Currently HAL has no way to use this

hm2_XiXX.N.fanuc.MM.encoder.count Encoder counts
hm2_XiXX.N.fanuc.MM.encoder.index—enable Simulated index. Set by counts—per—rev parameter
hm2_XiXX.N.fanuc.MM.encoder.position Counts scaled by the ...scale parameter
hm2_XiXX.N.fanuc.MM.encoder.rawcounts Raw counts, unaffected by reset or index
hm2_XiXX.N.fanuc.MM.encoder.reset If high/true then counts and position = 0
hm2_XiXX.N.fanuc.MM.valid Indicates that the absolute position is valid
hm2_XiXX.N.fanuc.MM.valid—not Inverted version

LinuxCNC Documentation 2008-05-13 335

HOSTMOT2(9) HAL Component HOSTMOT2(9)

resolver
Resolvers have names like hm2_ <BoardType>.< BoardNum> .resolver.<Instance>. <Instance is a 2-digit
number, which for the 7149 board will be between 00 and 05. This function only works with the Mesa Re-
solver interface boards (of which the 7i49 is the only example at the time of writing). This board uses an
SPI interface to the FPGA card, and will only work with the correct firmware. The pins allocated will be
listed in the dmesg output, but are unlikely to be usefully probed with HAL tools.

Pins:

(float, out) angle
This pin indicates the angular position of the resolver. It is a number between 0 and 1 for each
electrical rotation.

(float, out) position
Calculated from the number of complete and partial revolutions since startup, reset, or index—re-
set multiplied by the scale parameter.

(float, out) velocity
Calculated from the rotational velocity and the velocity—scale parameter. The default scale is elec-
trical rotations per second.

(float, out) velocity-rpm
Simply velocity scaled by a factor of 60 for convenience.

(s32, out) count
This pins outputs a simulated encoder count at 2°24 counts per rev (16777216 counts).

(s32, out) rawcounts
This is identical to the counts pin, except it is not reset by the ’index’ or 'reset’ pins. This is the pin
which would be linked to the bldc HAL component if the resolver was being used to commutate a
motor.

(bit, in) reset
Resets the position and counts pins to zero immediately.

(bit, in) joint-pos-fb
The Mesa resolver driver has the capability of emulating an absolute encoder using a position file
(see the INI-config section of the manual) and the single-turn absolute operation of resolvers. At
startup, and only if the use-position-file parameter is set to "true" the resolver driver will wait for a
value to be written by the system to the axis.N.joint-pos-fb pin (which must be netted to this re-
solver pin) and will calculate the number of full turns that best matches the current reolver posi-
tion. It will then pre-load the driver output with this offset. This should only be used on systems
where axis movement in the unpowered state is unlikely. This feature will only work properly if
the machine is initially homed to "index" and if the axis home positions are exactly zero.

(bit, in/out) index—enable
When this pin is set high the position and counts pins will be reset the next time the resolver
passes through the zero position. At the same time the pin is driven low to indicate to connected
modules that the index has been seen, and that the counters have been reset.

336 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(bit, out) error
Indicates an error in the particular channel. If this value is "true" then the reported position and ve-
locity are invalid.

Parameters:

(float, read/write) scale
The position scale, in machine units per resolver electrical revolution.

(float, read/write) velocity—scale
The conversion factor between resolver rotation speed and machine velocity. A value of 1 will typ-
ically give motor speed in rps, a value of 0.01666667 will give (approximate) RPM.

(u32, read/write) index—divisor (default 1)
The resolver component emulates an index at a fixed point in the sin/cos cycle. Some resolvers
have multiple cycles per rev (often related to the number of pole-pairs on the attached motor). Lin-
uxCNC requires an index once per revolution for proper threading etc. This parameter should be
set to the number of cycles per rev of the resolver. CAUTION: Which pseudo-index is used will
not necessarily be consistent between LinuxCNC runs. Do not expect to re-start a thread after
restarting LinuxCNC. It is not appropriate to use this parameter for index-homing of axis drives.

(float, read/write) excitation—khz
This pin sets the excitation frequency for the resolver. This pin is module-level rather than in-
stance-level as all resolvers share the same excitation frequency.
Valid values are 10 ("10kHz), 5 ("5kHz) and 2.5 ("2.5kHz). The actual frequency depends on the
FPGA frequency, and they correspond to CLOCK_LOW/5000, CLOCK_LOW?/10000 and
CLOCK_LOW/20000 respectively. The parameter will be set to the closest available of the three
frequencies.
A value of —1 (the default) indicates that the current setting should be retained.

(bit, read/write) use-position-file
In conjunction with joint-pos-fb (qv) emulate absolute encoders.

pwmgen
pwmgens have names like "hm2_<BoardType >.< BoardNum>.pwmgen.<Instance>". "Instance" is a two-
digit number that corresponds to the HostMot2 pwmgen instance number. There are 'num_pwmgens’ in-
stances, starting with 00.
So, for example, the HAL pin that enables output from the fourth pwmgen of the first 7i43 board is:
hm2_7i43.0.pwmgen.03.enable (this assumes that the firmware in that board is configured so that this HAL
object is available)
In HM2, each pwmgen uses three output 10 pins: Not—Enable, Out0, and Outl1.
The function of the Out0O and Outl IO pins varies with output—type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen instance
has the following pins and parameters:

Pins:

LinuxCNC Documentation 2008-05-13 337

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(bit input) enable
If true, the pwmgen will set its Not—Enable pin false and output its pulses. If ’enable’ is false,
pwmgen will set its Not—Enable pin true and not output any signals.

(float input) value
The current pwmgen command value, in arbitrary units.

Parameters:

(float rw) scale
Scaling factor to convert ’value’ from arbitrary units to duty cycle: dc = value / scale. Duty cycle
has an effective range of —1.0 to +1.0 inclusive, anything outside that range gets clipped. The de-
fault scale is 1.0.

(s32 rw) output—type
This emulates the output_type load-time argument to the software pwmgen component. This pa-
rameter may be changed at runtime, but most of the time you probably want to set it at startup and
then leave it alone. Accepted values are 1 (PWM on Out0 and Direction on Outl), 2 (Up on Out0
and Down on Outl), 3 (PDM mode, PDM on Out0 and Dir on Outl), and 4 (Direction on OutQ
and PWM on Outl, "for locked antiphase").

In addition to the per-instance HAL Parameters listed above, there are a couple of HAL Parame-
ters that affect all the pwmgen instances:

(u32 rw) pwm_frequency
This specifies the PWM frequency, in Hz, of all the pwmgen instances running in the PWM modes
(modes 1 and 2). This is the frequency of the variable-duty-cycle wave. Its effective range is from
1 Hz up to 193 kHz. Note that the max frequency is determined by the ClockHigh frequency of
the Anything IO board; the 5120 and 7i43 both have a 100 MHz clock, resulting in a 193 kHz max
PWM frequency. Other boards may have different clocks, resulting in different max PWM fre-
quencies. If the user attempts to set the frequency too high, it will be clipped to the max supported
frequency of the board. Frequencies below about 5 Hz are not terribly accurate, but above 5 Hz
they’re pretty close. The default pwm_frequency is 20,000 Hz (20 kHz).

(u32 rw) pdm_frequency
This specifies the PDM frequency, in Hz, of all the pwmgen instances running in PDM mode
(mode 3). This is the "pulse slot frequency"; the frequency at which the pdm generator in the
AnylO board chooses whether to emit a pulse or a space. Each pulse (and space) in the PDM
pulse train has a duration of 1/pdm_frequency seconds. For example, setting the pdm_frequency
to 2e6 (2 MHz) and the duty cycle to 50% results in a 1 MHz square wave, identical to a 1 MHz
PWM signal with 50% duty cycle. The effective range of this parameter is from about 1525 Hz up
to just under 100 MHz. Note that the max frequency is determined by the ClockHigh frequency of
the Anything IO board; the 5120 and 7i43 both have a 100 MHz clock, resulting in a 100 Mhz max
PDM frequency. Other boards may have different clocks, resulting in different max PDM frequen-
cies. If the user attempts to set the frequency too high, it will be clipped to the max supported fre-
quency of the board. The default pdm_frequency is 20,000 Hz (20 kHz).

3ppwmgen

338

Three-Phase PWM generators (3pwmgens) are intended for controlling the high-side and low-side gates in
a 3-phase motor driver. The function is included to support the Mesa motor controller daughter-cards but
can be used to control an IGBT or similar driver directly. 3pwmgens have names like "hm2_<Board-
Type>.<BoardNum>.3pwmgen.<Instance>" where <Instance> is a 2-digit number. There will be

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

num_3pwmgens instances, starting at 00. Each instance allocates 7 output and one input pins on the Mesa
card connectors. Outputs are: PWM A, PWM B, PWM C, /PWM A, /PWM B, /PWM C, Enable. The first
three pins are the high side drivers, the second three are their complementary low-side drivers. The enable
bit is intended to control the servo amplifier. The input bit is a fault bit, typically wired to over-current de-
tection. When set the PWM generator is disabled. The three phase duty-cycles are individually controllable
from —Scale to +Scale. Note that O corresponds to a 50% duty cycle and this is the inialization value.

Pins:

(float input) A—value, B—value, C—value: The PWM command value for each phase, limited to +/— "scale".
Defaults to zero which is 50% duty cycle on high-side and low-sidepins (but see the "deadtime" parameter)

(bit input) enable
When high the PWM is enabled as long as the fault bit is not set by the external fault input pin.
When low the PWM is disabled, with both high- side and low-side drivers low. This is not the
same as 0 output (50% duty cycle on both sets of pins) or negative full scale (where the low side
drivers are "on" 100% of the time)

(bit output) fault
Indicates the status of the fault bit. This output latches high once set by the physical fault pin until
the "enable" pin is set to high.

Parameters:

(u32 rw) deadtime
Sets the dead-time between the high-side driver turning off and the low-side driver turning on and
vice-versa. Deadtime is subtracted from on time and added to off time symmetrically. For example
with 20 kHz PWM (50 uSec period), 50% duty cycle and zero dead time, the PWM and NPWM
outputs would be square waves (NPWM being inverted from PWM) with high times of 25 uS.
With the same settings but 1 uS of deadtime, the PWM and NPWM outputs would both have high
times of 23 uS (25 — (2X 1 uS), 1 uS per edge). The value is specified in nS and defaults to a
rather conservative 5000nS. Setting this parameter to too low a value could be both expensive and
dangerous as if both gates are open at the same time there is effectively a short circuit across the

supply.

(float rw) scale
Sets the half-scale of the specified 3-phase PWM generator. PWM values from —scale to +scale
are valid. Default is +/— 1.0

(bit rw) fault—invert
Sets the polarity of the fault input pin. A value of 1 means that a fault is triggered with the pin
high, and 0 means that a fault it triggered when the pin is pulled low. Default 0, fault = low so that
the PWM works with the fault pin unconnected.

(u32 rw) sample—time
Sets the time during the cycle when an ADC pulse is generated. 0 = start of PWM cycle and 1 =
end. Not currently useful to LinuxCNC. Default 0.5.

In addition the per-instance parameters above there is the following parameter that affects all in-
stances

LinuxCNC Documentation 2008-05-13 339

HOSTMOT2(9) HAL Component HOSTMOT2(9)

stepgen

340

(u32 rw) frequency
Sets the master PWM frequency. Maximum is approx 48kHz, minimum is 1kHz. Defaults to
20kHz.

stepgens have names like "hm2_ <BoardType>.< BoardNum> .stepgen.<Instance>". "Instance" is a two-
digit number that corresponds to the HostMot2 stepgen instance number. There are *num_stepgens’ in-
stances, starting with 00.

So, for example, the HAL pin that has the current position feedback from the first stepgen of the second
5122 board is: hm2_5i22.1.stepgen.00.position—fb (this assumes that the firmware in that board is config-
ured so that this HAL object is available)

Each stepgen uses between 2 and 6 IO pins. The signals on these pins depends on the step_type parameter
(described below).

The stepgen representation is modeled on the stepgen software component. Each stepgen instance has the
following pins and parameters:

Pins:

(float input) position—cmd
Target position of stepper motion, in arbitrary position units. This pin is only used when the step-
gen is in position control mode (control-type=0).

(float input) velocity—cmd
Target velocity of stepper motion, in arbitrary position units per second. This pin is only used
when the stepgen is in velocity control mode (control—-type=1).

(s32 output) counts
Feedback position in counts (number of steps).

(float output) position—fb
Feedback position in arbitrary position units. This is similar to "counts/position_scale", but has
finer than step resolution.

(float output) velocity—fb
Feedback velocity in arbitrary position units per second.

(bit input) enable
This pin enables the step generator instance. When True, the stepgen instance works as expected.
When False, no steps are generated and velocity—fb goes immediately to 0. If the stepgen is mov-
ing when enable goes false it stops immediately, without obeying the maxaccel limit.

(bit input) control-type
Switches between position control mode (0) and velocity control mode (1). Defaults to position
control (0).

Parameters:

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(float r/w) position—scale
Converts from counts to position units. position = counts / position_scale

(float r/w) maxvel
Maximum speed, in position units per second. If set to 0, the driver will always use the maximum
possible velocity based on the current step timings and position—scale. The max velocity will
change if the step timings or position—scale changes. Defaults to 0.

(float r/w) maxaccel
Maximum acceleration, in position units per second per second. Defaults to 1.0. If set to 0, the
driver will not limit its acceleration at all - this requires that the position—cmd or velocity—cmd pin
is driven in a way that does not exceed the machine’s capabilities. This is probably what you want
if you’re going to be using the LinuxCNC trajectory planner to jog or run G-code.

(u32 r/w) steplen
Duration of the step signal, in nanoseconds.

(u32 r/w) stepspace
Minimum interval between step signals, in nanoseconds.

(u32 r/w) dirsetup
Minimum duration of stable Direction signal before a step begins, in nanoseconds.

(u32 r/w) dirhold
Minimum duration of stable Direction signal after a step ends, in nanoseconds.

(u32 r/w) step_type
Output format, like the step_type modparam to the software stegen(9) component. 0 = Step/Dir, 1
= Up/Down, 2 = Quadrature, 3+ = table-lookup mode. In this mode the step_type parameter deter-
mines how long the step sequence is. Additionally the stepgen_width parameter in the loadrt con-
fig string must be set to suit the number of pins per stepgen required. Any stepgen pins above this
number will be available for GPIO. This mask defaults to 2. The maximum length is 16. Note
that Table mode is not enabled in all firmwares but if you see GPIO pins between the stepgen in-
stances in the dmesg/log hardware pin list then the option may be available.

In Quadrature mode (step_type=2), the stepgen outputs one complete Gray cycle (00 401 a 11 &
10 4 00) for each "step" it takes. In table mode up to 6 10 pins are individually controlled in an ar-
bitrary sequence up to 16 phases long.

(u32 r/w) table—data—N
There are 4 table—data—N parameters, table—data—0 to table—data—3. These each contain 4 bytes
corresponding to 4 stages in the step sequence. For example table—data—0 = 0x00000001 would
set stepgen pin O (always called "Step" in the dmesg output) on the first phase of the step se-
quence, and table—data—4 = 0x20000000 would set stepgen pin 6 ("Table5Pin" in the dmesg out-
put) on the 16th stage of the step sequence.

(s32 r/w) hm2_XiXX.N.stepgen.timer—number (default: —1)
Sets the hm2dpll timer instance to be used to latch stepgen counts. A setting of —1 does not latch
encoder counts. A setting of 0 latches at the same time as the main hostmot2 write. A setting of
1..4 uses a time offset from the main hostmot2 write according to the dpll’s timer—us setting.

LinuxCNC Documentation 2008-05-13 341

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Typically, timer—us should be a negative number with a magnitude larger than the largest latency
(e.g., —100 for a system with mediocre latency, —50 for a system with good latency).

If no DPLL module is present in the FPGA firmware, or if the stepgen module does not support
DPLL, then this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces following er-
TOTS.

Smart Serial Interface

BSPI

UART

The Smart Serial Interface allows up to 32 different devices such as the Mesa 8i20 2.2kW 3-phase drive or
7164 48-way 10 cards to be connected to a single FPGA card. The driver auto-detects the connected hard-
ware port, channel and device type. Devices can be connected in any order to any active channel of an ac-
tive port. (see the config modparam definition above).

For full details of the smart-serial devices see man sserial.

The BSPI (Buffered SPI) driver is unusual in that it does not create any HAL pins. Instead the driver ex-
ports a set of functions that can be used by a sub-driver for the attached hardware. Typically these would be
written in the "comp"

pre-processing language: see http://linuxcnc.org/docs/html/hal/comp.html or man halcompile for further de-
tails. See man mesa_7i65 and the source of mesa_7i65.comp for details of a typical sub-driver. See man
hm2_bspi_setup_chan, man hm2_bspi_write_chan, man hm2_tram_add_bspi_frame, man hm?2_allo-
cate_bspi_tram, man hm2_bspi_set_read_funtion and man hm2_bspi_set_write_function for the exported
functions.

The names of the available channels are printed to standard output during the driver loading process and
take the form hm2_<board name>.<board index>.bspi.<index> For example hm2_5i23.0.bspi.0

The UART driver also does not create any HAL pins, instead it declares two simple read/write functions
and a setup function to be utilised by user-written code. Typically this would be written in the "comp" pre-
processing language: see http://linuxcnc.org/docs/html/hal/comp.html or man halcompile for further details.
See man mesa_uart and the source of mesa_uart.comp for details of a typical sub-driver. See man
hm2_uart_setup_chan, man hm2_uart_send, man hm2_uart_read and man hm?2_uart_setup.

The names of the available uart channels are printed to standard output during the driver loading process
and take the form hm2_<board name>.<board index>uart.<index> For example hm2_5i23.0.uart.0

General Purpose I/0

342

I/O pins on the board which are not used by a module instance are exported to HAL as "full" GPIO pins.
Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains, and have a HAL inter-
face that exposes this flexibility. IO pins that are owned by an active module instance are constrained by
the requirements of the owning module, and have a restricted HAL interface.

GPIOs have names like "hm2_<BoardType>.<BoardNum>.gpio.<IONum>". IONum is a three-digit num-
ber. The mapping from IONum to connector and pin-on-that-connector is written to the syslog when the
driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.

So, for example, the HAL pin that has the current inverted input value read from GPIO 012 of the second

7143 board is: hm2_7i43.1.gpio.012.in—not (this assumes that the firmware in that board is configured so
that this HAL object is available)

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

The HAL parameter that controls whether the last GPIO of the first 5122 is an input or an output is:
hm2_5i22.0.gpio.095.is_output (this assumes that the firmware in that board is configured so that this HAL
object is available)

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document). Each GPIO can have the fol-
lowing HAL Pins:

(bit out) in & in_not
State (normal and inverted) of the hardware input pin. Both full GPIO pins and IO pins used as in-
puts by active module instances have these pins.

(bit in) out
Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins have this
pin.

Each GPIO can have the following Parameters:

(bit r/w) is_output
If set to 0, the GPIO is an input. The IO pin is put in a high-impedance state (weakly pulled high),
to be driven by other devices. The logic value on the IO pin is available in the "in" and "in_not"
HAL pins. Writes to the "out" HAL pin have no effect. If this parameter is set to 1, the GPIO is
an output; its behavior then depends on the "is_opendrain" parameter. Only full GPIO pins have
this parameter.

(bit r/w) is_opendrain
This parameter only has an effect if the "is_output" parameter is true. If this parameter is false, the
GPIO behaves as a normal output pin: the IO pin on the connector is driven to the value specified
by the "out" HAL pin (possibly inverted), and the value of the "in" and "in_not" HAL pins is unde-
fined. If this parameter is true, the GPIO behaves as an open-drain pin. Writing O to the "out"
HAL pin drives the IO pin low, writing 1 to the "out" HAL pin puts the IO pin in a high-imped-
ance state. In this high-impedance state the 1O pin floats (weakly pulled high), and other devices
can drive the value; the resulting value on the IO pin is available on the "in" and "in_not" pins.
Only full GPIO pins and IO pins used as outputs by active module instances have this parameter.

(bit r/w) invert_output
This parameter only has an effect if the "is_output" parameter is true. If this parameter is true, the
output value of the GPIO will be the inverse of the value on the "out" HAL pin. Only full GPIO
pins and IO pins used as outputs by active module instances have this parameter.

When a physical I/O pin is used by a special function, the related is_output, and is_opendrain HAL pa-
rameters are aliased to the special function. For instance, if gpio 1 is taken over by pwmgen 0’s first output,
then aliases like hm2_7i92.0.pwmgen.00.out(.invert_output (referring to hm2_7i92.0.gpio.001.in-
vert_output) will be automatically created. When more than one GPIO is connected to the same special
function, an extra .#. is inserted so that the settings for each related GPIO can be set separately. For exam-
ple, for the firmware SVI12IM_2X7148_72, the alias hm2_5i20.0.pwmgen.00.0.enable.invert_output (re-
ferring to hm2_5i20.0.gpio.000.invert_output) and hm2_5i20.0.pwmgen.00.1.enable.invert_output (re-
ferring to hm2_5i20.0.gpio.023.invert_output) are both created.

LinuxCNC Documentation 2008-05-13 343

HOSTMOT2(9) HAL Component HOSTMOT2(9)

led

Creates HAL pins for the LEDs on the FPGA board.

Pins:

(bit in) CR<NN>
The pins are numbered from CRO1 upwards with the name corresponding to the PCB silkscreen.
Setting the bit to "true" or 1 lights the led.

Solid State Relay

SSRs have names like "hm2_<BoardType >.<BoardNum> sst.< Instance>". "Instance" is a two-digit num-

ber that corresponds to the HostMot2 SSR instance number. There are 'num_ssrs’ instances, starting with
00.

Each instance has a rate control pin and between 1 and 32 output pins.

Pins:

(u32 in) rate
Set the internal frequency of the SSR instance, in Hz (approximate). The valid range is 25 kHz to
25 MHz. Values below the minimum will use the minimum, and values above the max will use
the max. 1 MHz is a typical value, and appropriate for all Mesa cards, and is the default. Set to 0
to disable this SSR instance.

(bit in) out-NN
The state of this SSR instance’s NNth output. Set to O to make the output pins act like an open
switch (no connection), set to 1 to make them act like a closed switch.

Watchdog

344

The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it. The
HAL representation of the watchdog is named "hm2_<BoardType>.<BoardNum>.watchdog".

The watchdog starts out asleep and inactive. Once you access the board the first time by running the hm?2
write() HAL function (see below), the watchdog wakes up. From them on it must be petted periodically or
it will bite. Pet the watchdog by running the hm?2 write() HAL function.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and be-
come high-impedance inputs (pulled high), and all communication with the board stops. The state of the
HostMot2 firwmare modules is not disturbed (except for the configuration of the 10 Pins). Encoder in-
stances keep counting quadrature pulses, and pwm- and step-generators keep generating signals (which are
not relayed to the motors, because the IO Pins have become inputs).

Resetting the watchdog (by clearing the has_bit pin, see below) resumes communication and resets the /O
pins to the configuration chosen at load-time.

If the firmware includes a watchdog, the following HAL objects will be exported:

Pins:

(bit in/out) has_bit
True if the watchdog has bit, False if the watchdog has not bit. If the watchdog has bit and the
has_bit bit is True, the user can reset it to False to resume operation.

2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Parameters:

(u32 read/write) timeout_ns
Watchdog timeout, in nanoseconds. This is initialized to 5,000,000 (5 milliseconds) at module
load time. If more than this amount of time passes between calls to the hm2 write() function, the
watchdog will bite.

Raw Mode
If the "enable_raw" config keyword is specified, some extra debugging pins are made available in HAL.
The raw mode HAL pin names begin with "hm2_<BoardType >.<BoardNum> raw".

With Raw mode enabled, a user may peek and poke the firmware from HAL, and may dump the internal
state of the hostmot?2 driver to the syslog.

Pins:

(u32 in) read_address
The bottom 16 bits of this is used as the address to read from.

(u32 out) read_data
Each time the hm?2_read() function is called, this pin is updated with the value at .read_address.

(u32 in) write_address
The bottom 16 bits of this is used as the address to write to.

(u32 in) write_data
This is the value to write to .write_address.

(bit in) write_strobe
Each time the hm2_write() function is called, this pin is examined. If it is True, then value in
.write_data is written to the address in .write_address, and .write_strobe is set back to False.

(bit in/out) dump_state
This pin is normally False. If it gets set to True the hostmot2 driver will write its representation of
the board’s internal state to the syslog, and set the pin back to False.

Setting up Smart Serial devices
See man setsserial for the current way to set smart-serial eeprom parameters.

FUNCTIONS
hm2_<BoardType>.<BoardNum>.read-request

On boards with long turn around time for reads (at the time of writing, this applies only to ethernet
boards), this function sends a read request. When multiple boards are used, this can reduce the
servo thread execution time. In this case, the appropriate thread order would be
addf hm2_7i80.0.read-request
addf hm2_7i80.1.read-request
addf hm2_7i80.0.read
addf hm2_7i80.1.read
which causes the read request to be sent to board 1 before waiting for the response to the read re-
quest to arrive from board 0.

LinuxCNC Documentation 2008-05-13 345

HOSTMOT2(9) HAL Component HOSTMOT2(9)

hm2_<BoardType>.<BoardNum>.read
This reads the encoder counters, stepgen feedbacks, and GPIO input pins from the FPGA.

hm2_<BoardType>.<BoardNum>.write
This updates the PWM duty cycles, stepgen rates, and GPIO outputs on the FPGA. Any changes
to configuration pins such as stepgen timing, GPIO inversions, etc, are also effected by this func-
tion.

hm2_<BoardType>.<BoardNum>.read_gpio
Read the GPIO input pins. Note that the effect of this function is a subset of the effect of the
.read() function described above. Normally only .read() is used. The only reason to call this func-
tion is if you want to do GPIO things in a faster-than-servo thread. (This function is not available
on the 7i43 due to limitations of the EPP bus.)

hm2_<BoardType>.<BoardNum>.write_gpio
Write the GPIO control registers and output pins. Note that the effect of this function is a subset
of the effect of the .write() function described above. Normally only .write() is used. The only
reason to call this function is if you want to do GPIO things in a faster-than-servo thread. (This
function is not available on the 7i43 due to limitations of the EPP bus.)

hm2_<BoardType>.<BoardNum> trigger—encoders
This function will only appear if the firmware contains a BiSS, Fanuc or SSI encoder module and
if the firmare does not contain a hm2dpll module (qv) or if the modparam contains num_dplls=0.
This function should be inserted first in the thread so that the encoder data is ready when the main
hm2_XiXX.NN.read function runs. An error message will be printed if the encoder read is not
finished in time. It may be possible to avoid this by increasing the data rate. If the problem persists
and if "stale" data is acceptable then the function may be placed later in the thread, allowing a full
servo cycle for the data to be transferred from the devices. If available it is better to use the syn-
chronous hm2dpll triggering function.

SEE ALSO

hm?2_7i43(9)
hm2_pci(9)
Mesa’s documentation for the Anything I/O boards, at <http://www.mesanet.com>

LICENSE

346

GPL

2008-05-13 LinuxCNC Documentation

HYPOT(9) HAL Component

NAME

hypot — Three-input hypotenuse (Euclidean distance) calculator

SYNOPSIS

loadrt hypot [count=N|names=name[,name2...]]

FUNCTIONS
hypot.N (requires a floating-point thread)

PINS
hypot.N.in0 float in
hypot.N.inl float in
hypot.N.in2 float in
hypot.N.out float out
out = sqrt(in0”2 + in1"2 + in2"2)

LICENSE
GPL

LinuxCNC Documentation

2020-09-04

HYPOT(9)

347

ILOWPASS(9) HAL Component ILOWPASS(9)

NAME

ilowpass — Low-pass filter with integer inputs and outputs

SYNOPSIS

loadrt ilowpass [count=N|names=name[,name?...]]

DESCRIPTION
While it may find other applications, this component was written to create smoother motion while jogging
with an MPG.

In a machine with high acceleration, a short jog can behave almost like a step function. By putting the
ilowpass component between the MPG encoder counts output and the axis jog-counts input, this can be
smoothed.

Choose scale conservatively so that during a single session there will never be more than about 2e9/scale
pulses seen on the MPG. Choose gain according to the smoothing level desired. Divide the axis.N.jog-
scale values by scale.

FUNCTIONS
ilowpass.N (requires a floating-point thread)
Update the output based on the input and parameters

PINS
ilowpass.N.in s32 in
ilowpass.N.out s32 out
out tracks in*scale through a low-pass filter of gain per period.

PARAMETERS
ilowpass.N.scale float rw (default: 71024)
A scale factor applied to the output value of the low-pass filter.

ilowpass.N.gain float rw (default: .5)
Together with the period, sets the rate at which the output changes. Useful range is between 0 and
1, with higher values causing the input value to be tracked more quickly. For instance, a setting of
0.9 causes the output value to go 90% of the way towards the input value in each period

AUTHOR
Jeff Epler <jepler @unpythonic.net>

LICENSE
GPL

348 2020-09-04 LinuxCNC Documentation

INTEG(9) HAL Component INTEG(9)

NAME
integ — Integrator with gain pin and windup limits
SYNOPSIS

loadrt integ [count=N|names=name[,name?...]]

FUNCTIONS
integ.N (requires a floating-point thread)

PINS
integ.N.in float in
integ.N.gain float in (default: 7.0)
integ.N.out float out
The discrete integral of *gain * in’ since 'reset’ was deasserted

integ.N.reset bit in
When asserted, set out to 0

integ.N.max float in (default: /¢20)
integ.N.min float in (default: -7/e20)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 349

INVERT(9) HAL Component INVERT(9)

NAME

invert — Compute the inverse of the input signal

SYNOPSIS
The output will be the mathematical inverse of the input, ie out = 1/in. The parameter deadband can be
used to control how close to 0 the denominator can be before the output is clamped to 0. deadband must
be at least 1e-8, and must be positive.

FUNCTIONS

invert.N (requires a floating-point thread)

PINS
invert.N.in float in
Analog input value

invert.N.out float out
Analog output value

PARAMETERS
invert.N.deadband float rw
The out will be zero if in is between -deadband and +deadband

LICENSE
GPL

350 2020-09-04 LinuxCNC Documentation

JOYHANDLE(9) HAL Component JOYHANDLE(9)

NAME

joyhandle — sets nonlinear joypad movements, deadbands and scales
SYNOPSIS

loadrt joyhandle [count=N|names=name[,name?...]]
DESCRIPTION

The component joyhandle uses the following formula for a non linear joypad movements:
y = (scale * (a*x"power + b*x)) + offset

The parameters a and b are adjusted in such a way, that the function starts at (deadband,offset) and ends at
(1,scale+offset).

Negative values will be treated point symetrically to origin. Values —deadband < x < +deadband will be set
to zero.

Values x > 1 and x < —1 will be skipped to *(scale+offset). Invert transforms the function to a progressive
movement.

With power one can adjust the nonlinearity (default = 2). Default for deadband is 0.

Valid values are: power >= 1.0 (reasonable values are 1.x .. 4-5, take higher power-values for higher dead-
bands (>0.5), if you want to start with a nearly horizontal slope), 0 <= deadband < 0.99 (reasonable 0.1).

An additional offset component can be set in special cases (default = 0).

All values can be adjusted for each instance separately.

FUNCTIONS
joyhandle.N (requires a floating-point thread)

PINS
joyhandle.N.in float in
joyhandle.N.out float out
PARAMETERS
joyhandle.N.power float rw (default: 2.0)
joyhandle.N.deadband float rw (default: 0.)
joyhandle.N.scale float rw (default: 1.)
joyhandle.N.offset float rw (default: 0.)
joyhandle.N.inverse bit rw (default: 0)
LICENSE

GPL

LinuxCNC Documentation 2020-09-04 351

KINS(9)

NAME

Kinematics Modules

kins — kinematics definitions for LinuxCNC

SYNOPSIS

loadrt trivkins (use for most cartesian machines)
loadrt corexykins

loadrt genhexkins

loadrt genserkins

loadrt lineardeltakins (see separate manpage)
loadrt maxkins

loadrt pentakins

loadrt pumakins

loadrt rosekins

loadrt rotarydeltakins

loadrt rotatekins

loadrt scarakins

loadrt tripodkins

loadrt xyzac—trt—Kins

loadrt xyzbc—trt—kins

loadrt Saxiskins

DESCRIPTION

Rather than exporting HAL pins and functions, these components provide the forward and inverse kinemat-

352

ics definitions for LinuxCNC.

trivkins — generalized trivial kinematics

KINS(9)

Joint numbers are assigned sequentialy according to the axis letters specified with the coordinates= param-

eter.

If the coordinates= parameter is omitted, joint numbers are assigned sequentially to every known axis letter

("xyzabcuvw").

Example: loadrt trivkins
Assigns all axis letters to joint numbers in sequence:

x==joint0, y==joint1, z==joint2
a==joint3, b==joint4, c==joint5
u==joint6, v==joint7, w==joint8

Example: loadrt trivkins coordinates=xyz
Assigns: x==joint0, y==joint1, z==joint2

Example: loadrt trivkins coordinates=xz
Assigns: x==joint0, z==jointl

Example: loadrt trivkins coordinates=xyzy
Assigns: x==joint0, yO==jointl, z==joint2, y1==joint3

2014-12-22

LinuxCNC Documentation

KINS(9) Kinematics Modules KINS(9)

The default kinematics type is KINEMATICS_IDENTITY. Guis may provide special features for config-
urations using this default kinematics type. For instance, the axis gui automatically handles joint and world
mode operations so that the distinctions between joints and axes are not visible to the operator. This is fea-
sible since there is an exact correspondence between a joint number and its matching axis letter.

The kinematics type can be set with the kinstype= parameter:

kinstype=1 for KINEMATICS_IDENTITY (default if kinstype= omitted)
kinstype=[b|B] for KINEMATICS_BOTH

kinstype=[f|[F] for KINEMATICS_FORWARD_ONLY

kinstype=[i[I] for KINEMATICS_INVERSE_ONLY

Example: loadrt trivkins coordinates=xyz kinstype=b

Use kinstype=B (KINEMATICS_BOTH) for configurations that need to move joints independently (joint
mode) or as coordinated (teleop) movements in world coordinates.

When using the axis gui with KINEMATICS_BOTH, the ’$’ key is used to toggle between joint and teleop
(world) modes.

An axis letter may be used more than once (duplicated) to assign multiple joints to a single axis coordinate
letter.

Example: coordinates=xyyzw kinstype=B
Assigns: x==joint0, y==jointl AND joint2, z==joint3, w==joint4

The above example illustrates a gantry configuration that uses duplicated coordinate letters to indicate that
two joints (jointl and joint2) move a single axis (y). Using kinstype=B allows the configuration to be tog-
gled between joint and world modes of operation. Homing configuration options are available to synchro-
nize the final homing move for selected joints -- see the documentation for Homing Configuration.

NOTES for duplicated coordinates:

When duplicated coordinate letters are used, specifying KINEMATICS_BOTH (kinstype=B) allows a gui
to support jogging of each individual joint in joint mode. Caution is required for machines where the
movement of a single joint (in a set specified by a duplicated coordinate letter) can lead to gantry racking
or other unwanted outcomes. When the kinstype= parameter is omitted, operation defaults to KINEMAT-
ICS_IDENTITY (kinstype=1) and a gui may allow jogging based upon a selected axis coordinate letter (or
by a keyboard key) before homing is completed and the machine is still in joint mode. The joint selected
will depend upon the gui implementation but typically only one of the multiple joints in the set will jog.
Consequently, specifying KINEMATICS_BOTH is recommended as it enables support for unambiguous,
independent jogging of each individual joint. Machines that implement homing for all joints (including the
provisions for synchronizing the final homing move for multiple joints) may be homed at machine startup
and automatically switch to world mode where per-coordinate jogging is available.

corexykins — CoreXY Kinematics
X =0.5*JOINT_O0 + JOINT_1)
Y =0.5%(JOINT_0 - JOINT_1)
Z =JOINT_2

[KINSJJOINTS= must specify 3 or more joints (maximum 9)

LinuxCNC Documentation 2014-12-22 353

KINS(9) Kinematics Modules KINS(9)

If enabled by the number of [KINS]JOINTS= specified, JOINT_3,4,5,6,7,8 correspond to coordinates
A,B,C,U,V,W respectively.

genhexkins — Hexapod Kinematics
Gives six degrees of freedom in position and orientation (XYZABC). The location of base and platform
joints is defined by hal parameters. The forward kinematics iteration is controlled by hal pins.

genhexkins.base.N.x
genhexkins.base.N.y
genhexkins.base.N.z
genhexKkins.platform.N.x
genhexKkins.platform.N.y
genhexKkins.platform.N.z
Parameters describing the Nth joint’s coordinates.
genhexKkins.spindle—offset
Added to all joints Z coordinates to change the machine origin. Facilitates adjusting spindle posi-
tion.
genhexkins.base—-n.N.x
genhexkins.base-n.N.y
genhexkins.base—-n.N.z
genhexKkins.platform—n.N.x
genhexKkins.platform—n.N.y
genhexKkins.platform-n.N.z
Parameters describing unit vectors of Nth joint’s axis. Used to calculate strut length correction for
cardanic joints and non-captive actuators.
genhexkins.screw—lead
Lead of strut actuator screw, positive for the right-handed thread. Default is O (strut length correc-
tion disabled).
genhexKkins.correction.NV
Current values of strut length correction for non-captive actuators with cardanic joints. gen-
hexkins.convergence—criterion Minimum error value that ends iterations with converged solu-
tion.
genhexKkins.limit—iterations
Limit of iterations, if exceeded iterations stop with no convergence.
genhexkins.max—error
Maximum error value, if exceeded iterations stop with no convergence.
genhexKkins.last—iterations
Number of iterations spent for the last forward kinematics solution.
genhexkins.max—iterations
Maximum number of iterations spent for a converged solution during current session.
genhexKkins.tool-offset
TCP offset from platform origin along Z to implement RTCP function. To avoid joints jump
change tool offset only when the platform is not tilted.

genserkins — generalized serial kinematics
Kinematics that can model a general serial-link manipulator with up to 6 angular joints.

The kinematics use Denavit-Hartenberg definition for the joint and links. The DH definitions are the ones
used by John J Craig in "Introduction to Robotics: Mechanics and Control" The parameters for the manipu-
lator are defined by hal pins. Note that this uses a convention sometimes known as "Modified DH Parame-
ters" and this must be borne in mind when setting up the system. https://w.wiki/NcY

354 2014-12-22 LinuxCNC Documentation

KINS(9)

Kinematics Modules KINS(9)

genserkins.A—N
genserkins. ALPHA-N
genserkins.D-N
Parameters describing the Nth joint’s geometry.

maxKins — 5-axis kinematics example

Kinematics for Chris Radek’s tabletop 5 axis mill named *'max’ with tilting head (B axis) and horizintal ro-
tary mounted to the table (C axis). Provides UVW motion in the rotated coordinate system. The source
file, maxkins.c, may be a useful starting point for other 5-axis systems.

pentakins — Pentapod Kinematics

Gives five degrees of freedom in position and orientation (XYZAB). The location of base and effector
joints is defined by hal parameters. The forward kinematics iteration is controlled by hal pins.

pentakins.base.N.x
pentakins.base.N.y
pentakins.base.N.z
pentakins.effector.N.r
pentakins.effector.N.z

Parameters describing the Nth effector joint’s radius and axial position.
pentakins.convergence—criterion

Minimum error value that ends iterations with converged solution.
pentakins.limit—iterations

Limit of iterations, if exceeded iterations stop with no convergence.
pentakins.max—error

Maximum error value, if exceeded iterations stop with no convergence.
pentakins.last—iterations

Number of iterations spent for the last forward kinematics solution.
pentakins.max—iterations

Maximum number of iterations spent for a converged solution during current session.
pentakins.tool-offset

TCP offset from effector origin along Z to implement RTCP function. To avoid joints jump change

tool offset only when the platform is not tilted.

pumakins — kinematics for puma typed robots

Kinematics for a puma-style robot with 6 joints

pumakins.A2
pumakins.A3
pumakins.D3
pumakins.D4
Describe the geometry of the robot

rosekins — kinematics for a rose engine using

a transverse, longitudinal, and rotary joint (3 joints)

rotarydeltakins — kinematics for a rotary delta machine

Rotary delta robot (3 Joints)

rotatekins — Rotated Kinematics

The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.

LinuxCNC Documentation 2014-12-22 355

KINS(9) Kinematics Modules KINS(9)

scarakins — kinematics for SCARA-type robots
scarakins.D1
Vertical distance from the ground plane to the center of the inner arm.

scarakins.D2
Horizontal distance between joint[0] axis and joint[1] axis, ie. the length of the inner arm.

scarakins.D3
Vertical distance from the center of the inner arm to the center of the outer arm. May be positive
or negative depending on the structure of the robot.

scarakins.D4
Horizontal distance between joint[1] axis and joint[2] axis, ie. the length of the outer arm.

scarakins.D5
Vertical distance from the end effector to the tooltip. Positive means the tooltip is lower than the
end effector, and is the normal case.

scarakins.D6
Horizontal distance from the centerline of the end effector (and the joints 2 and 3 axis) and the
tooltip. Zero means the tooltip is on the centerline. Non-zero values should be positive, if nega-
tive they introduce a 180 degree offset on the value of joint[3].

tripodkins — Tripod Kinematics
The joints represent the distance of the controlled point from three predefined locations (the motors), giving
three degrees of freedom in position (XYZ)

tripodkins.Bx
tripodkins.Cx
tripodkins.Cy
The location of the three motors is (0,0), (Bx,0), and (Cx,Cy)

xyzac—trt—Kkins — 5 Axis mill (Table Rotary/Tilting)
Tilting table (A) and horizontal rotary mounted tothe table (C) (5 Joints)

xyzbc—trt—kins — 5 Axis mill (Table Rotary/Tilting)
Tilting table (B) and horizontal rotary mounted to table (C axis) (5 Joints)

Saxiskins — 5 Axis bridge mill
XYZBC (5 Joints)

SEE ALSO

Kinematics section in the LinuxCNC documentation

356 2014-12-22 LinuxCNC Documentation

KNOB2FLOAT(9) HAL Component KNOB2FLOAT(9)

NAME

knob2float — Convert counts (probably from an encoder) to a float value
SYNOPSIS

loadrt knob2float [count=N|names=nameI[,name?2...1]
FUNCTIONS

knob2float.N (requires a floating-point thread)

PINS
knob2float.N.counts s32 in
Counts
knob2float.N.enable bit in
When TRUE, output is controlled by count, when FALSE, output is fixed
knob2float.N.scale float in
Amount of output change per count
knob2float.N.out float out
Output value
PARAMETERS
knob2float.N.max-out float rw (default: 1.0)
Maximum output value, further increases in count will be ignored
knob2float.N.min-out float rw (default: 0.0)
Minimum output value, further decreases in count will be ignored
LICENSE

GPL

LinuxCNC Documentation 2020-09-04 357

LATENCYBINS(9) HAL Component
NAME

latencybins — comp utility for scripts/latency-histogram
SYNOPSIS

Usage:

Read availablebins pin for the number of bins available.
Set the maxbinnumber pin for the number of * bins.
Ensure maxbinnumber <= availablebins
For maxbinnumber = N, the bins are numbered:
-N...0... + N bins
(the —0 bin is not populated)
(total effective bins = 2*maxbinnumber +1)
Set nsbinsize pin for the binsize (ns)
Iterate:

Set index pin to a bin number: 0 <= index <= maxbinnumber.

Read check pin and verify that check pin == index pin.
Read output pins:
pbinvalue is count for bin = +index
nbinvalue is count for bin = —index
pextra is count for all bins > maxbinnumber
nextra is count for all bins < maxbinnumber
latency-min is max negative latency
latency-max is max positive latency

If index is out of range (index < O or index > maxbinnumber)

then pbinvalue = nbinvalue = —-1.
The reset pin may be used to restart.
The latency pin outputs the instantaneous latency.

Maintainers note: hardcoded for MAXBINNUMBER==1000

FUNCTIONS

PINS

latencybins.N

latencybins.N.maxbinnumber s32 in (default: 1000)
latencybins.N.index s32 in

latencybins.N.reset bit in

latencybins.N.nsbinsize s32 in
latencybins.N.check s32 out
latencybins.N.latency s32 out
latencybins.N.latency-max s32 out
latencybins.N.latency-min s32 out
latencybins.N.pbinvalue s32 out
latencybins.N.nbinvalue s32 out
latencybins.N.pextra s32 out
latencybins.N.nextra s32 out
latencybins.N.variance s32 out
latencybins.N.availablebins s32 out (default: 7000)

LICENSE

358

GPL

2020-09-04

LATENCYBINS(9)

LinuxCNC Documentation

LCD(9) HAL Component LCD(9)

NAME

led — Stream HAL data to an LCD screen
SYNOPSIS

loadrt led fmt_strings=""""Plain Text %4.4f\nAnd So on|Second Page, Next Inst""
FUNCTIONS

led (requires a floating-point thread). All LCD instances are updated by the
same function.

PINS
lcd.NN.out (u32) out
The output byte stream is sent via this pin. One character is sent every thread invocation. There in
no handshaking provided.
led.NN.page.PP.arg.NN (float/s32/u32/bit) in
The input pins have types matched to the format string specifiers.
led.NN.page_num (u32) in
Selects the page number. Multiple layouts may be defined, and this pin switches between them.
lcd.NN.contrast (float) in

Attempts to set the contrast of the LCD screen using the byte sequence ESC C and then a value
from 0x20 to OxBF. (matching the Mesa 7i73). The value should be between 0 and 1.

PARAMETERS
led.NN.decimal-separator (u32) rw
Sets the decimal separator used for floating point numbers. The default value is 46 (0x2E) which
corresponds to ".". If a comma is required then set this parameter to 44 (0x2C).
DESCRIPTION

led takes format strings much like those used in C and many other languages in the printf and scanf func-
tions and their variants.

The component was written specifically to support the Mesa 7i73 pendant controller, however it may be of
use streaming data to other character devices and, as the output format mimics the ADM3 terminal format,
it could be used to stream data to a serial device. Perhaps even a genuine ADM3. The strings contain a
mixture of text values (which are displayed directly), "escaped” formatting codes and numerical format de-
scriptors. For a detailed description of formatting codes see: http://en.wikipedia.org/wiki/Printf

The component can be configured to display an unlimited number of differently-formatted pages, which
may be selected with a HAL pin.

Escaped codes

\n Inserts a clear-to-end, carriage return and line feed character. This will still linefeed and clear
even if an automatic wrap has occurred (lcd has no knowledge of the width of the lcd display.) To
print in the rightmost column it is necessary to allow the format to wrap and omit the \n code.

\t Inserts a tab (actually 4 spaces in the current version rather than a true tab.)
\NN inserts the character defined by the hexadecimal code NN.

As the °, character is used in the format string to separate LCD instances

it must be represented by \2C in the format string. (the decimal

separator is handled differently)

\\ Inserts a literal \.

LinuxCNC Documentation 2012-09-17 359

LCD(9) HAL Component LCD(9)

Numerical formats

led differs slightly from the standard printf conventions. One significant difference is that width
limits are strictly enforced to prevent the LCD display wrapping and spoiling the layout. The field
width includes the sign character so that negative numbers will often have a smaller valid range

than positive. Numbers that do not fit in the specified width are displayed as a line of asterisks

Each format begins with a "%" symbol. (For a literal % use "%%"). Immediately after the % the
following modifiers may be used:

" " (space) Pad the number to the specified width with spaces. This is the default and is not strictly
necessary.

"0" Pad the number to the specified width with the numeral 0.

"+" Force display of a + symbol before positive numbers. This (like the — sign) will appear imme-
diately to the left of the digits for a space-padded number and in the extreme left position for a
0-padded number.

"1234567890" A numerical entry (other than the leading 0 above) defines the total number of
characters to display including the decimal separator and the sign. Whilst this number can be as
many digits as required the maximum field width is 20 characters. The inherent precision of the
"double" data type means that more than 14 digits will tend to show errors in the least significant
digits. The integer data types will never fill more than 10 decimal digits.

Following the width specifier should be the decimal specifier. This can only be a full-stop charac-
ter (.) as the comma (,) is used as the instance separator. Currently lcd does not access the locale
information to determine the correct separator but the decimal-separator HAL parameter can be
used to choose any desired separator.

Following the decimal separator should be a number that determines how many places of decimals
to display. This entry is ignored in the case of integer formats.

All the above modifiers are optional, but to specify a decimal precision the decimal point must pre-
cede the precision. For example %.3f.
The default decimal precision is 4.

The numerical formats supported are:

%t %F (for example, %+09.3f) These create a floating-point type HAL pin. The example would
be displayed in a 9-character field, with 3 places of decimals, . as a decimal separator, padded to
the left with Os and with a sign displayed for both positive and negative. Conversely a plain %f
would be 6 digits of decimal, variable format width, with a sign only shown for negative numbers.
both %f and %F create exactly the same format.

%i %d (For example %+ 4d) Creates a signed (s32) HAL pin. The example would display the
value at a fixed 4 characters, space padded, width including the + giving a range of +999 to —999.

%1 and %d create identical output.

%0u (for example %08u) Creates an unsigned (u32) HAL pin. The example would be a fixed 8
characters wide, padded with zeros.

%x, %X Creates an unsigned (u32) HAL pin and displays the value in Hexadecimal. Both %x

360 2012-09-17 LinuxCNC Documentation

LCD(9)

AUTHOR

HAL Component LCD(9)

and %X display capital letters for digits ABCDEF. A width may be specified, though the u32 HAL
type is only 8 hex digits wide.

%o Creates an unsigned (u32) pin and displays the value in Octal.

% c Creates a u32 HAL pin and displays the character corresponding to the value of the pin. Val-
ues less than 32 (space) are suppressed. A width specifier may be used, for example %20c might
be used to create a complete line of one character.

%D This specifier has no equivalent in printf. It creates a bit (boolean) type HAL pin. The b
should be followed by two characters and the display will show the first of these when the pin is
true, and the second when false. Note that the characters follow, not precede the "b", unlike the
case with other formats. The characters may be "escaped" Hex values. For example "%b\FF " will
display a solid black block if true, and a space if false and "%b\7F\7E" would display right-arrow
for false and left-arrow for true. An unexpected value of "E’ indicates a formatting error.

Pages The page separator is the "|" (pipe) character. (if the actual character is needed then \7C may
be used). A "Page" in this context refers to a separate format which may be displayed on the same
display.

n|n

Instances The instance separator is the comma. This creates a completely separate lcd instance,
for example to drive a second lcd display on the second 7i73. The use of comma to separate in-
stances is built in to the modparam reading code so not even escaped commas "\," can be used. A
comma may be displayed by using the \2C sequence.

Andy Pugh

LICENSE
GPL

LinuxCNC Documentation 2012-09-17 361

LIMIT1(9) HAL Component

NAME

limitl — Limit the output signal to fall between min and max

SYNOPSIS

loadrt limit1 [count=N|names=name[,name?...]]

FUNCTIONS
limit1.N (requires a floating-point thread)

PINS
limit1.V.in float in
limit1.VN.out float out
limitl.N.min float in (default: -7¢20)
limit1l.N.max float in (default: /e20)

LICENSE
GPL

362 2020-09-04

LIMIT1(9)

LinuxCNC Documentation

LIMIT2(9) HAL Component LIMIT2(9)

NAME
limit2 — Limit the output signal to fall between min and max and limit its slew rate to less than maxv per
second. When the signal is a position, this means that position and velocity are limited.

SYNOPSIS

loadrt limit2 [count=N|names=name[,name?...]]

FUNCTIONS
limit2.N (requires a floating-point thread)

PINS
limit2.N.in float in
limit2.N.out float out
limit2.N.load bit in
When TRUE, immediately set out to in, ignoring maxv
limit2.N.min float in (default: -7e¢20)
limit2.N.max float in (default: /e20)
limit2.N.maxv float in (default: /¢20)
LICENSE

GPL

LinuxCNC Documentation 2020-09-04 363

LIMIT3(9) HAL Component LIMIT3(9)

NAME

limit3 — Follow input signal while obeying limits

SYNOPSIS
Limit the output signal to fall between min and max, limit its slew rate to less than maxv per second, and
limit its second derivative to less than maxa per second squared. When the signal is a position, this means
that the position, velocity, and acceleration are limited.

FUNCTIONS
limit3.N (requires a floating-point thread)

PINS
limit3.MV.in float in
limit3.N.enable bit in (default: 7)
1: out follows in, O: out returns to O (always per constraints)

limit3.N.out float out
limit3.N.load bit in (default: 0)
When TRUE, immediately set out to in, ignoring maxv and maxa

limit3.N.min float in (default: -7¢20)

limit3.N.max float in (default: /e20)

limit3.N.maxv float in (default: /¢20)

limit3.N.maxa float in (default: /¢20)

limit3.N.smooth-steps u32 in (default: 2)
Smooth out acceleration this many periods before reaching input or max/min limit. Higher values
avoid oscillation, but will accelerate slightly more slowly.

LICENSE
GPL

364 2020-09-04 LinuxCNC Documentation

LINCURVE(9) HAL Component LINCURVE(9)

NAME

lincurve — one-dimensional lookup table

SYNOPSIS

loadrt lincurve [count=N|names=nameI[,name2...]] [personality=P,P....]

DESCRIPTION
This component can be used to map any floating-point input to a floating-point output. Typical uses would
include linearisation of thermocouples, defining PID gains that vary with external factors or to substitute for
any mathematical function where absolute accuracy is not required.

The component can be thought of as a 2-dimensional graph of points in (X,y) space joined by straight lines.
The input value is located on the x axis, followed up until it touches the line, and the output of the compo-
nent is set to the corresponding y-value.

The (x,y) points are defined by the x-val-NN and y-val-NN parameters which need to be set in the HAL file
using "setp" commands.

The maximum number if (x,y) points supported is 16.

For input values less than the x-val-00 breakpoint the y-val-00 is returned. For x greater than the largest x-
val-NN the yval corresponding to x-max is returned (ie, no extrapolation is performed.)

Sample usage: loadrt lincurve count=3 personality=4,4.,4 for a set of three 4-element graphs.

FUNCTIONS

lincurve.N (requires a floating-point thread)

PINS
lincurve.N.in float in
The input value

lincurve.N.out float out
The output value

lincurve.N.out-io float io
The output value, compatible with PID gains

PARAMETERS
lincurve.N.x-val-MM float rw (MM=00..personality)
axis breakpoints

lincurve.N.y-val-MM float rw (MM=00..personality)
output values to be interpolated

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 365

LINEARDELTAKINS(9) Kinematics Component LINEARDELTAKINS(9)

NAME

lineardeltakins — Kinematics for a linear delta robot

SYNOPSIS

loadrt lineardeltakins

KINEMATICS
The kinematics model is appropriate for a rostock/kossel-style design with three joints arranged in an equi-
lateral triangle. (0,0) is always the center of the working volume. Joint O is at (O,R) and subsequent joints
are 120 degrees clockwise (note that joint O is not at zero radians). The length of the arm is L.

Joints 0-2 are the linear carriages. Axes ABC and UVW are passed through unchanged in joints 3-8, so
that e.g., A can still be used to control an extruder.

PINS
lineardeltakins.R float in
Effective diameter of the platform.

R is different than the distance from the center of the table to the center of the belt/smooth rod/ex-
trusion that the joints ride on. In RepRap delta parlance, R is DELTA_RADIUS which is com-
puted as

DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CAR-
RIAGE_OFFSET.

lineardeltakins.L float in
Length of the rod connecting the carriage to the effector. In RepRap delta parlance, L is
DELTA_DIAGONAL_ROD

NOTES
The R and L values can be adjusted while LinuxCNC is running. However, doing so while in coordinated
mode will lead to a step change in joint position, which generally will trigger a following error if in joint
mode with machine on.

366 2013-07-11 LinuxCNC Documentation

LOGIC(9) HAL Component LOGIC(9)

NAME

logic — LinuxCNC HAL component providing configurable logic functions

SYNOPSIS

loadrt logic [count=N|names=name[,name2...]] [personality=PF....]

DESCRIPTION

General ‘logic function’ component. Can perform ‘and’, ‘or’, ‘nand’, ‘nor’ and ‘xor’ of up to 16 inputs.
Determine the proper value for ‘personality’ by adding the inputs and outputs then convert to hex:

* The number of input pins, usually from 2 to 16

* 256 (0x100) if the ‘and’ output is desired

e 512 (0x200) if the ‘or’ output is desired

. 1024 (0x400) if the ‘xor’ (exclusive or) output is desired

. 2048 (0x800) if the ‘nand’ output is desired

* 4096 (0x1000) if the ‘nor’ output is desired

Outputs can be combined, for example 2 + 256 + 1024 = 1282 converted to hex would be 0x502 and would
have two inputs and have both ‘xor’ and ‘and’ outputs.

FUNCTIONS
logic.N

PINS
logic.N.in-MM bit in (MM=00..personality & 0xff)
logic.N.and bit out [if personality & 0x100]
logic.N.or bit out [if personality & 0x200]
logic.N.xor bit out [if personality & 0x400]
logic.N.nand bit out [if personality & 0x800]
logic.N.nor bit out [if personality & 0x1000]

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 367

LOWPASS(9) HAL Component LOWPASS(9)

NAME

lowpass — Low-pass filter
SYNOPSIS

loadrt lowpass [count=N|names=name[,name2...]]
FUNCTIONS

lowpass.N (requires a floating-point thread)

PINS
lowpass.N.in float in
lowpass.N.out float out
out += (in - out) * gain

lowpass.N.load bit in
When TRUE, copy in to out instead of applying the filter equation.

PARAMETERS

lowpass.N.gain float rw

NOTES

gain pin setting
The digital filter implemented is equivalent to a unity-gain continuous-time single-pole low-pass filter that
is preceded by a zero-order-hold and sampled at a fixed period. For a pole at -a (radians/seconds) the corre-
sponding continuous-time lowpass filter LaPlace transfer function is:
H(s) = a/(s + a)
For a sampling period T (seconds), the gain for this Hal lowpass component is:
gain=1-¢"(-a*T)
e = 2.71828 https://en.wikipedia.org/wiki/E_(mathematical _constant)
Examples:
T = 0.001 seconds (typical servo thread period)
a=(2*pi*100) (100Hz bandwidth single pole)
gain = 0.466
T = 0.001 seconds (typical servo thread period)
a=(2*pi*10) (10Hz bandwidth single pole)
gain = 0.0609
T = 0.001 seconds (typical servo thread period)

a=(2*pi*l) (1Hz bandwidth single pole)
gain = 0.0063

LICENSE
GPL

368 2020-09-04 LinuxCNC Documentation

LUTS5(9) HAL Component LUT5(9)

NAME

lut5 — Arbitrary 5-input logic function based on a look-up table
SYNOPSIS

loadrt lut5 [count=N|names=name [,name?2...1]
DESCRIPTION

lutS constructs a logic function with up to 5 inputs using a look-up table. The value for function can be de-
termined by writing the truth table, and computing the sum of all the weights for which the output value
would be TRUE. The weights are hexadecimal not decimal so hexadecimal math must be used to sum the
weights. A wiki page has a calculator to assist in computing the proper value for function.

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Lut5

Note that LUTS will generate any of the 4,294,967,296 logical functions of 5 inputs so AND, OR, NAND,
NOR, XOR and every other combinatorial function is possible.

Example Functions
A 5-input and function is TRUE only when all the inputs are true, so the correct value for function is
0x80000000.

A 2-input or function would be the sum of 0x2 + 0x4 + 0x8, so the correct value for function is Oxe.

A 5-input or function is TRUE whenever any of the inputs are true, so the correct value for function is
Oxfffffffe. Because every weight except 0x1 is true the function is the sum of every line except the first one.

A 2-input xor function is TRUE whenever exactly one of the inputs is true, so the correct value for function
is 0x6. Only in-0 and in-1 should be connected to signals, because if any other bit is TRUE then the output
will be FALSE.

LinuxCNC Documentation 2020-09-04 369

LUT5(9)

HAL Component

Weights for each line of truth table

Bit4 Bit3 Bit2 Bitl Bit0 Weight
0 0 0 0 0 0Ox1
0 0 0 0 1 0x2
0 0 0 1 0 0x4
0 0 0 1 1 0x8
0 0 1 0 0 0x10
0 0 1 0 1 0x20
0 0 1 1 0 0x40
0 0 1 1 1 0x80
0 1 0 0 0 0x100
0 1 0 0 1 0x200
0 1 0 1 0 0x400
0 1 0 1 1 0x800
0 1 1 0 0 0x1000
0 1 1 0 1 0x2000
0 1 1 1 0 0x4000
0 1 1 1 1 0x8000
1 0 0 0 0 0x10000
1 0 0 0 1 0x20000
1 0 0 1 0 0x40000
1 0 0 1 1 0x80000
1 0 1 0 0 0x100000
1 0 1 0 1 0x200000
1 0 1 1 0 0x400000
1 0 1 1 1 0x800000
1 1 0 0 0 0x1000000
1 1 0 0 1 0x2000000
1 1 0 1 0 0x4000000
1 1 0 1 1 0x8000000
1 1 1 0 0 0x10000000
1 1 1 0 1 0x20000000
1 1 1 1 0 0x40000000
1 1 1 1 1 0x80000000
FUNCTIONS
lut5.N
PINS
lut5.NV.in-0 bit in
lut5.NV.in-1 bit in
lut5.NV.in-2 bit in
lut5.NV.in-3 bit in
lut5.NV.in-4 bit in
lut5.N.out bit out
PARAMETERS
lut5.N.function u32 rw
LICENSE
GPL
370 2020-09-04

LUT5(9)

LinuxCNC Documentation

MAIJ3(9) HAL Component

NAME
maj3 — Compute the majority of 3 inputs
SYNOPSIS

loadrt maj3 [count=N|names=nameI[,name2...]]

FUNCTIONS
maj3.N

PINS
maj3.N.inl bit in
maj3.N.in2 bit in
maj3.N.in3 bit in
maj3.N.out bit out
PARAMETERS

maj3.N.invert bit rw

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

MAJ3(9)

371

MATCHS(9) HAL Component
NAME

match8 — 8-bit binary match detector
SYNOPSIS

loadrt match8 [count=N|names=nameI[,name?2...]]
FUNCTIONS

match8.N
PINS

match8.N.in bit in (default: TRUE)
cascade input - if false, output is false regardless of other inputs

match8.N.a0 bit in
match8.N.al bit in
match8.N.a2 bit in
match8.N.a3 bit in
match8.N.a4 bit in
match8.N.a5 bit in
match8.N.a6 bit in
match8.N.a7 bit in
match8.N.b0 bit in
match8.N.b1 bit in
match8.N.b2 bit in
match8.N.b3 bit in
match8.N.b4 bit in
match8.N.b5 bit in
match8.N.b6 bit in
match8.N.b7 bit in
match8.N.out bit out

true only if in is true and a[m] matches b[m] for m = O thru 7

LICENSE

372

GPL

2020-09-04

MATCHS(9)

LinuxCNC Documentation

MATRIX_KB(9) HAL Component MATRIX_KB(9)

NAME
matrix_kb — Convert integers to HAL pins. Optionally scan a matrix of IO ports to create those integers.

SYNOPSIS

loadrt matrix_kb config=RxCs,RxCs... names=name Il,name?2...

Creates a component configured for R rows and N columns of matrix keyboard.

If the s option is specified then a set of output rows will be cyclically toggled, and a set of input columns
will be scanned.

The names parameter is optional, but if used then the HAL pins and functions will use the specified names
rather than the default ones. This can be useful for readbility and 2-pass HAL parsing.

There must be no spaces in the parameter lists.

DESCRIPTION

This component was written to convert matrix keyboard scancodes into HAL pins. However, it might also
find uses in converting integers from O to N into N HAL pins.

The component can work in two ways, and the HAL pins created vary according to mode.

In the default mode the component expects to be given a scan code from a separate driver but could be any
integer from any source. Most typically this will be the keypad scancode from a Mesa 7i73. The default
codes for keyup and keydown are based on the Mesa 7i73 specification with 0x40 indicating a keydown and
0x80 a keyup event.

If using the 7173 it is important to match the keypad size jumpers with the HAL component. Valid configs
for the 7173 are 4x8 and 8x8. Note that the component will only work properly with the version 12 (0xC)
7173 firmware. The firmware version is visible on the component parameters in HAL.

In the optional scan-generation mode the matrix_kb.N.keycode pin changes to an output pin and a set of
output row pins and input column pins are created. These need to be connected to physical inputs and out-
puts to scan the matrix and return values to HAL. Note the negative—logic parameter described below, this
will need to be set on the most common forms of inputs which float high when unconnected.

In both modes a set of HAL output pins are created corresponding to each node of the matrix.

FUNCTIONS
matrix_kb.N
Perform all requested functions. Should be run in a slow thread for effective debouncing.

PINS
matrix_kb.N.col-CC—in bit in
The input pin corresponding to column C.

matrix_kb.N.key.rReC bit out
The pin corresponding to the key at row R column C of the matrix.

matrix_kb.N.keycode unsigned in or out depending on mode.
This pin should be connected to the scancode generator if hardware such as a 7173 is being used.
In this mode it is an input pin. In the internally-generated scanning mode this pin is an output, but
will not normally be connected.

matrix_kb.N.row—RR-out bit out
The row scan drive pins.Should be connected to external hardware pins connected to the keypad.

LinuxCNC Documentation 2013-03-24 373

MATRIX_KB(9) HAL Component MATRIX_KB(9)

PARAMETERS
matrix_kb.N.key_rollover unsigned r/w (default 2)

With most matrix keyboards the scancodes are only unambiguous with 1 or 2 keys pressed. With
more keys pressed phantom keystrokes can appear. Some keyboards are optimised to reduce this
problem, and some have internal diodes so that any number of keys may be pressed simultane-

ously. Increase the value of this parameter if such a keyboard is connected, or if phantom key-
strokes are more acceptable than only two keys being active at one time.

matrix_kb.N.negative—logic bit r/w (default 1) only in scan mode

When no keys are pressed a typical digital input will float high. The input will then be pulled low
by the keypad when the corresponding poll line is low. Set this parameter to O if the IO in use re-
quires one row at a time to be high, and a high input corresponds to a button press.

374

2013-03-24 LinuxCNC Documentation

MAX31855(9) HAL Component MAX31855(9)

NAME

max31855 — Support for the MAX31855 Thermocouple-to-Digital converter using bitbanged spi

SYNOPSIS

loadrt max31855 [count=N|names=name[,name?2...]] [personality=PF....]

DESCRIPTION

The component requires at least 3 pins to bitbang spi protocol, for example:
loadrt max31855 personality=1

setp hm2_6i25.0.gpio.023.is_output true
setp hm2_6i25.0.gpio.024.is_output true

net spi.clk.in hm2_6i25.0.gpio.023.0ut max31855.0.clk.out

net spi.cs.in hm2_6i25.0.gpio.024.out max31855.0.cs.out
net spi.data0.in hm2_6i25.0.gpio.033.in_not max31855.0.data.0.in

addf max31855.0.bitbang-spi servo-thread
The MAX31855 supports a range of -270C to 1800C, however linearization data is only available for the
-200C to 1350C range, beyond which raw temperature is returned.

Temperature pins are provided for readings in Celsius, Fahrenheit and Kelvin, temperature values are not
updated while a fault condition is present.

The personality parameter is used to indicate the number of sensors. Multiple sensors share the clk and cs
pins, but connect to discrete data input pins. A maximum of 15 sensors are supported.

FUNCTIONS

PINS

max31855.N.bitbang-spi (requires a floating-point thread)

max31855.N.data.M.in bit in (M=0..(personality & 0xf))
Pin(s) connected to data out.

max31855.N.cs.out bit out
Pin connected to cs, pulled low to shift data, pulled high for data refresh.

max31855.N.clk.out bit out
Pin connected to clk.

max31855.N.temp-celsius.M float out (M=0..(personality & 0xf))
Temperature output values in Celsius.

max31855.N.temp-fahrenheit.)M float out (M=0..(personality & 0xf))
Temperature in Fahrenheit.

max31855.N.temp-kelvin.M float out (M=0..(personality & 0xf))
Temperature in Kelvin.

max31855.N.fault.M bit out (M=0..(personality & 0xf))
Fault condition detected.

max31855.N.fault-flags.M u32 out (M=0..(personality & 0xf))
Fault flags: Ox1 = open sensor, 0x2 short to gnd, 0x3 short to vcc.

LinuxCNC Documentation 2020-09-04 375

MAX31855(9) HAL Component MAX31855(9)

AUTHOR
Joseph Calderon

LICENSE
GPL

376 2020-09-04 LinuxCNC Documentation

MESA_7165(9) HAL Component MESA_7165(9)

NAME

mesa_7i65 — Support for the Mesa 7i65 Octuple Servo Card

SYNOPSIS

loadrt mesa_7i65

DESCRIPTION

PINS

The component takes parameters in the form of a comma-separated list of bspi (buffered SPI) instance
names, for example:

loadrt mesa_7i65 bspi_chans=hm?2_5i23.0.bspi.0, hm2_5i23.0.bspi.1

The BSPI instances are printed to the dmesg buffer during the Hostmot2 setup sequence, one for each bspi
instance included in the bitfile loaded to each installed card during the Hostmot2 setup sequence. Type
"dmesg" at the terminal prompt to view the output.

mesa-7i65.N.analogue.M.out float in (M=0..7)
Analogue output values. The value will be limited to a -1.0 to +1.0 range

mesa-7i65.N.analogue.M.in float out (M=0..7)
Analogue outputs read by the 7i65 (in Volts)

mesa-7i65.N.digital.M.in bit out (M=0..3)
Miscellaneous Digital Inputs

mesa-7i65.N.enable.M.out bit in (M=0..7)
Amplifier-enable control pins

mesa-7i65.N.watchdog.has-bit bit out
Indicates the status of the 7i65 Watchdog (which is separate from the FPGA card watchdog

PARAMETERS

mesa-7i65.N.scale-M float rw (M=0..7) (default: 10)
Analogue output scale factor. For example if the scale is 7 then an input of 1.0 will give 7V on the
output terminals

mesa-7i65.N.is-bipolar-M bit rw (M=0..7) (default: 7)
Set this value to TRUE for a plus/minus "scale" output. Set to O for a 0-"scale" output

AUTHOR

Andy Pugh / Cliff Blackburn

LICENSE

GPL

LinuxCNC Documentation 2020-09-04 377

MESA_PKTGYRO_TEST(9) HAL Component MESA_PKTGYRO_TEST(9)

NAME

mesa_pktgyro_test — PktUART simple test with Microstrain 3DM-GX3-15 gyro

SYNOPSIS

loadrt mesa_pktgyro_test [count=N|names=name[,name2...]]

DESCRIPTION

This component is written in order to test the PktUART driver for Mesa. It resembles partly Andy Pugh’s
mesa_uart.comp .

This module uses the names= mode of loadrt declaration to specify which PktUART instances to enable. A
check is included to ensure that the count= option is not used instead. For simplicity we test only one Pk-
tUART instance, therefore load the component like this:

loadrt mesa_uart names=hm2_5i25.0.pktuart.0

The PktUART instance names are printed to the dmesg buffer during the Hostmot2 setup sequence, one for
each PktUART instance included in the bitfile loaded to each installed card during the Hostmot2 setup se-
quence. Type "dmesg" at the terminal prompt to view the output. If you want to work with more than one
PktUART instance, consult Andy Pugh’s mesa_uart.comp

In order to compile and install do:
halcompile --install src/hal/drivers/mesa_pktgyro_test.comp

The component exports only one function, namely receive, which needs to be added to a realtime thread.
To test this component set DEBUG=5 before and execute this HAL script:

loadrt hostmot2

loadrt hm2_pci

loadrt mesa_pktgyro_test names=hm2_5i25.0.pktuart.0

loadrt threads namel=test1 period1=10000000

addf hm2_5i25.0.pktuart.0.receive testl

start

Check linuxcnc.log for debug output.

FUNCTIONS

PINS

mesa-pktgyro-test.N.receive (requires a floating-point thread)

mesa-pktgyro-test.N.rxbytes s32 out
Number of Bytes received or negative Error code

AUTHOR

Boris Skegin

LICENSE

378

GPL

2020-09-04 LinuxCNC Documentation

MESA_UART(9) HAL Component MESA_UART(9)

NAME

mesa_uart — An example component demonstrating how to access the Hostmot2 UART

SYNOPSIS

loadrt mesa_uart [count=N|names=nameI[,name?2...]]

DESCRIPTION

This component creates 16 input and 16 output pins. It transmits {name}.N.tx-bytes on the selected UART
every thread cycle and reads up to 16 bytes each cycle out of the receive FIFO and writes the values to the
associated output pins. {name}.rx-bytes indicates how many pins have been written to. (pins > rx-bytes
simply hold their previous value)

This module uses the names= mode of loadrt declaration to specifiy which UART instances to enable. A
check is included to ensure that the count= option is not used instead.

The component takes parameters in the form of a comma-separated list of UART instance names, for exam-
ple:

loadrt mesa_uart names=hm2_5i23.0.uart.0,hm2_5i23.0.uart.7

Note that no spaces are allowed in the string unless it is delimited by double quotes.

The UART instance names are printed to the dmesg buffer during the Hostmot2 setup sequence, one for
each UART instance included in the bitfile loaded to each installed card during the Hostmot2 setup se-
quence. Type "dmesg" at the terminal prompt to view the output.

The component exports two functions, send and receive, which need to be added to a realtime thread.

The above example will output data on UART channels 0 and 7 and the pins will have the names of the in-
dividual UARTS. (they need not be on the same card, or even the same bus).

Read the documents on "halcompile" for help with writing realtime components: http://linux-
cnc.org/docs/html/hal/comp.html

FUNCTIONS

PINS

mesa-uart.N.send (requires a floating-point thread)

mesa-uart.N.receive (requires a floating-point thread)

mesa-uart.N.tx-data-MM u32 in (MM=00..15)
Data to be transmitted

mesa-uart.N.rx-data-MM u32 out (MM=00..15)
Data received

mesa-uart.N.tx-bytes s32 in
Number of bytes to transmit

mesa-uart.N.rx-bytes s32 out
Number of Bytes received

AUTHOR

Andy Pugh andy @bodgesoc.org

LICENSE

GPL

LinuxCNC Documentation 2020-09-04 379

MESSAGE(9) HAL Component MESSAGE(9)

NAME

message — Display a message

SYNOPSIS

loadrt message [count=N|names=name[,name?...]] [messages=N]

messages
The messages to display. These should be listed, comma-delimited, inside a single set of
quotes. See the "Description" section for an example. If there are more messages than
"count” or "names" then the excess will be ignored. If there are fewer messages than "count”
or "names" then an error will be raised and the component will not load.

DESCRIPTION
Allows HAL pins to trigger a message. Example hal commands:
loadrt message names=oillow,oilpressure,inverterfail messages="Slideway oil low,No oil pressure,Spindle
inverter fault"
addf oillow servo-thread
addf oilpressure servo-thread
addf inverterfail servo-thread

setp oillow.edge O #this pin should be active low

net no-oil classicladder.0.out-21 oillow.trigger

net no-pressure classicladder.0.out-22 oilpressure.trigger
net no-inverter classicladder.0.out-23 inverterfail.trigger

When any pin goes active, the corresponding message will be displayed.

FUNCTIONS
message.N
Display a message
PINS
message.N.trigger bit in (default: FALSE)
signal that triggers the message

message.N.force bit in (default: FALSE)
A FALSE->TRUE transition forces the message to be displayed again if the trigger is active

PARAMETERS
message.N.edge bit rw (default: TRUE)
Selects the desired edge: TRUE means falling, FALSE means rising

LICENSE
GPL v2

380 2020-09-04 LinuxCNC Documentation

MINMAX(9) HAL Component MINMAX(9)

NAME

minmax — Track the minimum and maximum values of the input to the outputs
SYNOPSIS

loadrt minmax [count=N|names=nameI[,name2...]]
FUNCTIONS

minmax.N (requires a floating-point thread)

PINS
minmax.N.in float in
minmax./N.reset bit in
When reset is asserted, ’in’ is copied to the outputs
minmax.N.max float out
minmax.N.min float out
LICENSE

GPL

LinuxCNC Documentation 2020-09-04 381

MOTION(9) HAL Component MOTION(9)

NAME

motion — accepts NML motion commands, interacts with HAL in realtime

SYNOPSIS

loadrt motmod [base_period_nsec=period] [base_thread_fp=0 or I] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=//-9]] [num_dio=/7-64]] [num_aio=//-64]] [num_spin-
dles=/7-8]] [unlock_joints_mask=jointmask]

The limits for the following items are compile-time settings:

Number of joints available (num_joints) is set by EMCMOT_MAX_JOINTS.
Maximum number of digital inputs (num_dio) is set by EMCMOT_MAX_DIO.
Maximum number of analog inputs (num_aio) is set by EMCMOT_MAX_AIO.
Maximum number of spindles (num_spindles) is set by EMCMOT_MAX_SPINDLES

DESCRIPTION

By default, the base thread does not support floating point. Software stepping, software encoder counting,
and software pwm do not use floating point. base_thread_fp can be used to enable floating point in the
base thread (for example for brushless DC motor control).

These pins and parameters are created by the realtime motmod module. This module provides a HAL inter-
face for LinuxCNC’s motion planner. Basically motmod takes in a list of waypoints and generates a nice
blended and constraint-limited stream of joint positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio.
The default is 4 each.

Pin names starting with "joint" or "axis" are are read and updated by the motion-controller function.

MOTION PINS

382

motion-command-handler.time OUT S32
Time (in CPU clocks) for the motion module motion-command-handler

motion-controller.time OUT S32
Time (in CPU clocks) for the motion module motion-controller

motion.adaptive—feed IN FLOAT
When adaptive feed is enabled with M52 P1, the commanded velocity is multiplied by this value.
This effect is multiplicative with the NML-level feed override value and motion.feed—hold. Nega-
tive values are valid and will run the G—code path in reverse.

motion.analog—in—NN IN FLOAT
These pins are used by M66 Enn wait-for-input mode.

motion.analog—out—NN OUT FLOAT
These pins are used by M67-68.

motion.coord—error OUT BIT
TRUE when motion has encountered an error, such as exceeding a soft limit

LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

motion.coord—mode OUT BIT
TRUE when motion is in "coordinated mode", as opposed to "teleop mode"

motion.current—vel OUT FLOAT
Current cartesian velocity

motion.digital-in—NN IN BIT
These pins are used by M66 Pnn wait-for-input mode.

motion.digital-out—-NN OUT BIT
These pins are controlled by the M62 through M65 words.

motion.distance—to—go OUT FLOAT
Distance remaining in the current move

motion.enable IN BIT
If this bit is driven FALSE, motion stops, the machine is placed in the "machine off" state, and a
message is displayed for the operator. For normal motion, drive this bit TRUE.

motion.eoffset-active OUT BIT
Indicates external offsets are active (non-zero)

motion.eoffset-limited OUT BIT
Indicates motion with external offsets was limited by a soft limit constraint
([AXIS_LIMIN_LIMIT,MAX_LIMIT).

motion.feed—hold IN BIT
When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

motion.feed—inhibit IN BIT
When this pin is TRUE, machine motion is inhibited (this includes jogs, programmed feeds, and
programmed rapids, aka traverse moves).

If the machine is performing a spindle synchronized move when this pin goes TRUE, the spindle
synchronized motion will finish, and any following moves will be inhibited (this is to prevent dam-

age to the machine, the tool, or the work piece).

If the machine is in the middle of a (non-spindle synchronized) move when this pin goes TRUE,
the machine will decelerate to a stop at the maximum allowed acceleration rate.

Motion resumes when this pin goes FALSE.

motion.homing—inhibit IN BIT
If this bit is TRUE, initiation of any joint homing move (including "Home All") is disallowed and
an error is reported. By default, homing is allowed in joint mode whenever motion is enabled.

motion.in—position OUT BIT
TRUE if the machine is in position (ie, not currently moving towards the commanded position).

LinuxCNC Documentation 383

MOTION(9) HAL Component MOTION(9)

motion.motion—enabled OUT BIT

motion.motion—type OUT S32
These values are from src/emc/nml_intf/motion_types.h

0: Idle (no motion)
: Traverse

: Linear feed

: Arc feed

: Tool change

: Probing

AN L AW N =

: Rotary unlock for traverse

motion.on—soft—limit OUT BIT

motion.probe—input IN BIT
G38.n uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

motion.program-line OUT S32
The current program line while executing. Zero if not running or between lines while single step-

ping.

motion.requested—vel OUT FLOAT
The current requested velocity in user units per second. This value is the F-word setting from the
G-code file, possibly reduced to accommodate machine velocity and acceleration limits. The value
on this pin does not reflect the feed override or any other adjustments.

motion.servo.last—period OUT U32
The number of CPU clocks between invocations of the servo thread. Typically, this number di-
vided by the CPU speed gives the time in seconds, and can be used to determine whether the real-
time motion controller is meeting its timing constraints

motion.teleop—mode OUT BIT
Motion mode is teleop (axis coordinate jogging available).

motion.tooloffset.L. OUT FLOAT
Current tool offset for each axis where (L is the axis letter, one of: xyzabcuvw)

motion.tp—reverse OUT BIT
Trajectory planning is reversed (reverse run)

AXIS PINS

(L is the axis letter, one of: xyzabcuvw)

axis.L.eoffset OUT FLOAT
Current external offset.

384 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

axis.L.eoffset-clear IN BIT
Clear external offset request

axis.L.eoffset-counts IN S32
Counts input for external offset. The eoffset-counts are transferred to an internal register. The ap-
plied external offset is the product of the register counts and the eoffset-scale value. The register is
reset to zero at each machine startup. If the machine is turned off with an external offset active,
the eoffset-counts pin should be set to zero before restarting.

axis.L.eoffset-enable IN BIT
Enable for external offset (also requires ini file setting for [AXIS_L]JOFFSET_AV_RATIO)

axis.L.eoffset-request OUT FLOAT
Debug pin for requested external offset.

axis.L.eoffset-scale IN FLOAT
Scale for external offset.

axis.L.jog—accel-fraction IN FLOAT
Sets acceleration for wheel jogging to a fraction of the ini max_acceleration for the axis. Values
greater than 1 or less than zero are ignored.

axis.L.jog—counts IN S32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

axis.L.jog—enable IN BIT
When TRUE (and in manual mode), any change to "jog—counts" will result in motion. When false,
"jog—counts" is ignored.

axis.L.jog—scale IN FLOAT
Sets the distance moved for each count on "jog—counts", in machine units.

axis.L.jog—vel-mode IN BIT
When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog—scale units for each count, regardless of how long that might take. When TRUE, the wheel op-
erates in velocity mode - motion stops when the wheel stops, even if that means the commanded
motion is not completed.

axis.L.kb—jog—active OUT BIT
(free planner axis jogging active (keyboard or halui))

axis.L.pos—cmd OUT FLOAT
The axis commanded position. There may be several offsets between the axis and motor coordi-
nates: backlash compensation, screw error compensation, and home offsets. External offsets are
reported separately (axis.L.eoffset).

axis.L.teleop—pos—cmd OUT FLOAT

LinuxCNC Documentation 385

MOTION(9) HAL Component

axis.L.teleop—tp—enable OUT BIT
TRUE when the "teleop planner” is enabled for this axis

axis.L.teleop—vel-cmd OUT FLOAT
The axis’s commanded velocity

axis.L.teleop—vel-lim OUT FLOAT
The velocity limit for the teleop planner

axis.L.wheel—jog—active OUT BIT

JOINT PINS

386

N is the joint number (0 ... num_joints—1))

(Note: pins marked (DEBUG) serve as debugging aids
and are subject to change or removal at any time.)

joint.N.joint—acc—cmd OUT FLOAT (DEBUG)
The joint’s commanded acceleration

joint.N.active OUT BIT (DEBUG)
TRUE when this joint is active

joint.N.amp-enable—out OUT BIT
TRUE if the amplifier for this joint should be enabled

joint.N.amp—fault—in IN BIT

Should be driven TRUE if an external fault is detected with the amplifier for this joint

joint.N.backlash—corr OUT FLOAT (DEBUG)
Backlash or screw compensation raw value

joint.N.backlash—filt OUT FLOAT (DEBUG)
Backlash or screw compensation filtered value (respecting motion limits)

joint.N.backlash—vel OUT FLOAT (DEBUG)
Backlash or screw compensation velocity

joint.N.coarse—pos—cmd OUT FLOAT (DEBUG)

joint.N.error OUT BIT (DEBUG)
TRUE when this joint has encountered an error, such as a limit switch closing

joint.N.f—error OUT FLOAT (DEBUG)
The actual following error

joint.N.f—error-lim OUT FLOAT (DEBUG)
The following error limit

MOTION(9)

LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

joint.N.f-errored OUT BIT (DEBUG)
TRUE when this joint has exceeded the following error limit

Jjoint.N.faulted OUT BIT (DEBUG)

joint.N.free—pos—cmd OUT FLOAT (DEBUG)
The "free planner" commanded position for this joint.

joint.N.free—tp—enable OUT BIT (DEBUG)
TRUE when the "free planner" is enabled for this joint

joint.N.free—vel-lim OUT FLOAT (DEBUG)
The velocity limit for the free planner

joint.N.home-state OUT S32 (DEBUG)
homing state machine state

joint.N.home-sw—in IN BIT
Should be driven TRUE if the home switch for this joint is closed

joint.N.homed OUT BIT (DEBUG)
TRUE if the joint has been homed

joint.N.homing OUT BIT
TRUE if the joint is currently homing

joint.N.in—position OUT BIT (DEBUG)
TRUE if the joint is using the "free planner" and has come to a stop

joint.N.index—enable 10 BIT
Should be attached to the index—enable pin of the joint’s encoder to enable homing to index pulse

joint.N.is—unlocked IN BIT
Indicates joint is unlocked (see JOINT UNLOCK PINS).

joint.N.jog—accel—fraction IN FLOAT
Sets acceleration for wheel jogging to a fraction of the ini max_acceleration for the joint. Values
greater than 1 or less than zero are ignored.

joint.N.jog—counts IN S32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

joint.N.jog—enable IN BIT
When TRUE (and in manual mode), any change to "jog—counts" will result in motion. When false,
"jog—counts" is ignored.

joint.N.jog—scale IN FLOAT
Sets the distance moved for each count on "jog—counts", in machine units.

LinuxCNC Documentation 387

MOTION(9) HAL Component MOTION(9)

joint.N.jog—vel-mode IN BIT
When FALSE (the default), the jogwheel operates in position mode. The joint will move exactly
jog—scale units for each count, regardless of how long that might take. When TRUE, the wheel op-
erates in velocity mode - motion stops when the wheel stops, even if that means the commanded
motion is not completed.

joint.N.kb—jog—active OUT BIT (DEBUG)
(free planner joint jogging active (keyboard or halui))

joint.N.motor-offset OUT FLOAT (DEBUG)
joint motor offset established when joint is homed.

joint.N.motor—pos—cmd OUT FLOAT
The commanded position for this joint.

joint.N.motor—pos—fb IN FLOAT
The actual position for this joint.

joint.N.neg—hard-limit OUT BIT (DEBUG)
The negative hard limit for the joint

joint.N.neg-lim—sw—in IN BIT
Should be driven TRUE if the negative limit switch for this joint is tripped.

joint.N.pos—cmd OUT FLOAT
The joint (as opposed to motor) commanded position. There may be several offsets between the
joint and motor coordinates: backlash compensation, screw error compensation, and home offsets.

joint.N.pos—fb OUT FLOAT
The joint feedback position. This value is computed from the actual motor position minus joint
offsets. Useful for machine visualization.

joint.N.pos—hard-limit OUT BIT (DEBUG)
The positive hard limit for the joint

joint.N.pos—lim-sw—in IN BIT
Should be driven TRUE if the positive limit switch for this joint is tripped.

joint.N.unlock OUT BIT
TRUE if the axis is a locked joint (typically a rotary) and a move is commanded (see JOINT UN-
LOCK PINS).

joint.N.joint—vel-cmd OUT FLOAT (DEBUG)
The joint’s commanded velocity

joint.N.wheel-jog—active OUT BIT (DEBUG)

388 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

JOINT UNLOCK PINS
The joint pins used for unlocking a joint (joint.N.unlock, joint.N.is-unlocked), are created according to
the unlock_joints_mask=jointmask parameter for motmod. These pins may be required for locking index-
ers (typically a rotary joint)

The jointmask bits are: (Isb)0:joint0, 1:jointl, 2:joint2, ...

Example: loadrt motmod ... unlock_joints_mask=0x38 creates unlock pins for joints 3,4,5

SPINDLE PINS
(M is the spindle number (0 ... num_spindles—1))

spindle.M.amp—fault—in IN BIT
Should be driven TRUE if an external fault is detected with the amplifier for this spindle

spindle.M.at-speed IN BIT
Motion will pause until this pin is TRUE, under the following conditions: before the first feed
move after each spindle start or speed change; before the start of every chain of spindle—synchro-
nized moves; and if in CSS mode, at every rapid—>feed transition.

spindle.M.brake OUT BIT
TRUE when the spindle brake should be applied

spindle.M.forward OUT BIT
TRUE when the spindle should rotate forward

spindle.M.index—enable I/O BIT
For correct operation of spindle synchronized moves, this signal must be hooked to the index—en-
able pin of the spindle encoder.

spindle.M.inhibit IN BIT
When TRUE, the spindle speed is set and held to 0.

spindle.M.is—oriented IN BIT
Acknowledge pin for spindle—orient. Completes orient cycle. If spindle—orient was true when
spindle—is—oriented was asserted, the spindle—orient pin is cleared and the spindle—locked pin is
asserted. Also, the spindle—brake pin is asserted.

spindle.M.locked OUT BIT
Spindle orient complete pin. Cleared by any of M3,M4,M5.

spindle.M.on OUT BIT
TRUE when spindle should rotate

spindle.M.orient OUT BIT
Indicates start of spindle orient cycle. Set by M19. Cleared by any of M3,M4,M5.

If spindle—orient—fault is not zero during spindle—orient true, the M19 command fails with an er-
ror message.

LinuxCNC Documentation 389

MOTION(9) HAL Component MOTION(9)

spindle.M.orient—angle OUT FLOAT
Desired spindle orientation for M19. Value of the M19 R word parameter plus the value of the
[RS274NGC]JORIENT_OFFSET ini parameter.

spindle.M.orient—fault IN S32
Fault code input for orient cycle. Any value other than zero will cause the orient cycle to abort.

spindle.M.orient—-mode OUT BIT
Desired spindle rotation mode. Reflects M19 P parameter word.

spindle.M.reverse OUT BIT
TRUE when the spindle should rotate backward

spindle.M.revs IN FLOAT
For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder.

spindle.M.speed—cmd-rps FLOAT OUT
Commanded spindle speed in units of revolutions per second

spindle.M.speed—in IN FLOAT
Actual spindle speed feedback in revolutions per second; used for G96 (constant surface speed)
and G95 (feed per revolution) modes.

spindle.M.speed—out OUT FLOAT
Desired spindle speed in rotations per minute

spindle.M.speed—out—abs OUT FLOAT
Desired spindle speed in rotations per minute, always positive regardless of spindle direction.

spindle.M.speed—out—-rps OUT FLOAT
Desired spindle speed in rotations per second

spindle.M.speed—out-rps—abs OUT FLOAT
Desired spindle speed in rotations per second, always positive regardless of spindle direction.

MOTION PARAMETERS

Many of the parameters serve as debugging aids, and are subject to change or removal at any time.

motion—command-handler.tmax RW S32
Show information about the execution time of these HAL functions in CPU clocks

motion—command-handler.tmax—increased RO S32

motion—controller.tmax RW S32
Show information about the execution time of these HAL functions in CPU clocks

motion—controller.tmax—increased RO BIT

390 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

motion.debug—*
These values are used for debugging purposes.

FUNCTIONS

Generally, these functions are both added to the servo-thread in the order shown.

motion—command-handler
Processes motion commands coming from user space. The pin named motion-command-han-
dler.time and parameters motion-command-handler.tmax,tmax-increasedare created for this
function.

motion—controller
Runs the LinuxCNC motion controller The pin named motion-controller.time and parameters
motion-controller.tmax,tmax-increased are created for this function.

BUGS

This manual page is incomplete.
Identification of pins categorized with (DEBUG) is dubious.

SEE ALSO
iocontrol(1), milltask(1)

LinuxCNC Documentation 391

MOVEOFF(9) HAL Component MOVEOFF(9)

NAME

moveoff — Component for Hal-only offsets

SYNOPSIS

loadrt moveoff [count=N|names=name[,name2...]] [personality=PF....]

DESCRIPTION

392

The moveoff component is used to offset joint positions using custom Hal connections. Implementing an
offset-while-program-is-paused functionality is supported with appropriate connections for the input pins.
Nine joints are supported.

The axis offset pin values (offset-in-M) are continuously applied (respecting limits on value, velocity, and
acceleration) to the output pins (offset-current-M, pos-plusoffset-M, fb-minusoffset-M) when both enabling
input pins (apply-offsets and move-enable) are TRUE. The two enabling inputs are anded internally. A
warning pin is set and a message issued if the apply-offsets pin is deasserted while offsets are applied. The
warning pin remains TRUE until the offsets are removed or the apply-offsets pin is set.

Typically, the move-enable pin is connected to external controls and the apply-offsets pin is connected to
halui.program.is-paused (for offsets only while paused) or set to TRUE (for continuously applied offsets).

Applied offsets are automatically returned to zero (respecting limits) when either of the enabling inputs is
deactivated. The zero value tolerance is specified by the epsilon input pin value.

Waypoints are recorded when the moveoff componenent is enabled. Waypoints are managed with the way-
point-sample-secs and waypoint-threshold pins. When the backtrack-enable pin is TRUE, the auto-return
path follows the recorded waypoints. When the memory available for waypoints is exhausted, offsets are
frozen and the waypoint-limit pin is asserted. This restriction applies regardless of the state of the back-
track-enable pin. An enabling pin must be deasserted to allow a return to the original (non-offset position).

Backtracking through waypoints results in slower movement rates as the moves are point-to-point respect-
ing velocity and acceleration settings. The velocity and acceleration limit pins can be managed dynami-
cally to control offsets at all times.

‘When backtrack-enable is FALSE, the auto-return move is NOT coordinated, each axis returns to zero at its
own rate. If a controlled path is wanted in this condition, each axis should be manually returned to zero be-
fore deasserting an enabling pin.

The waypoint-sample-secs, waypoint-threshold, and epsilon pins are evaluated only when the component is
idle.

The offsets-applied output pin is provided to indicate the current state to a GUI so that program resumption
can be managed. If the offset(s) are non-zero when the apply-offsets pin is deasserted (for example when
resuming a program when offsetting during a pause), offsets are returned to zero (respecting limits) and an
Error message is issued.

Caution: If offsets are enabled and applied and the machine is turned off for any reason, any external Hal
logic that manages the enabling pins and the offset-in-M inputs is responsible for their state when the ma-
chine is subsequently turned on again.

This Hal-only means of offsetting is typically not known to LinuxCNC nor available in GUI preview dis-
plays. No protection is provided for offset moves that exceed soft limits managed by LinuxCNC. Since
soft limits are not honored, an offset move may encounter hard limits (or CRASH if there are no limit
switches). Use of the offset-min-M and offset-max-M inputs to limit travel is recommended. Triggering a
hard limit will turn off the machine -- see Caution above.

The offset-in-M values may be set with inifile settings, controlled by a GUI, or managed by other Hal

2020-09-04 LinuxCNC Documentation

MOVEOFF(9) HAL Component MOVEOFF(9)

components and connections. Fixed values may be appropriate in simple cases where the direction and
amount of offset is well-defined but a control method is required to deactivate an enabling pin in order to
return offsets to zero. GUIs may provide means for users to set, increment, decrement, and accumulate off-
set values for each axis and may set offset-in-M values to zero before deasserting an enabling pin.

The default values for accel, vel, min, max, epsilon, waypoint-sample-secs, and waypoint-threshold may
not be suitable for any particular application. This Hal component is unaware of limits enforced elsewhere
by LinuxCNC. Users should test usage in a simulator application and understand all hazards before use on
hardware.

The module personality item sets the number of joints supported (default==3, maximum is 9).
Use of the names= option for naming is required for compatibility with the gui provided as scripts/move-
off_gui:

loadrt moveoff names=mv personality=number_of_joints

man moveoff_gui for more information

EXAMPLES

Example simulator configs that demonstrate the moveoff component and a simple gui (scripts/moveoff_gui)
are located in configs/sim/axis/moveoff. The axis gui is used for the demonstrations and the configs can be
adapted for other guis like touchy and gscreen. An example with the touchy gui is provided in con-
figs/sim/touchy/ngcgui/.

FUNCTIONS

PINS

moveoff.N.read-inputs (requires a floating-point thread)
Read all inputs

moveoff.N.write-outputs (requires a floating-point thread)
Write computed offset outputs (offset-current-M, pos-plusoffset-M, fb-minusoffset-M). All other
outputs are updated by read-inputs()

moveoff.N.power-on bit in
Connect to motion.motion-enabled

moveoff.N.move-enable bit in
Enable offsets (Enabling requires apply-offset TRUE also)

moveoff.N.apply-offsets bit in
Enable offsets (Enabling requires move-enable TRUE also)

moveoff.N.backtrack-enable bit in (default: 1)
Enable backtrack on auto-return

moveoff.N.epsilon float in (default: 0.0005)
When enabling pins are deactivated, return to un-offsetted position within epsilon units. Warning:
values that are too small in value may cause overshoot, A minimum value of 0.0001 is silently
enforced

moveoff.N.waypoint-threshold float in (default: 0.02)
Minimum distance (in a single axis) for a new waypoint

moveoff.N.waypoint-sample-secs float in (default: 0.02)
Minimum sample interval (in seconds) for a new waypoint

LinuxCNC Documentation 2020-09-04 393

MOVEOFF(9) HAL Component MOVEOFF(9)

moveoff.N.warning bit out
Set TRUE if apply-offsets is deasserted while offset-applied is TRUE

moveoff.N.offset-applied bit out
TRUE if one or more offsets are applied

moveoff.N.waypoint-limit bit out (default: 0)
Indicates waypoint limit reached (motion ceases), an enabling pin must be deasserted to initiate re-
turn to original position

moveoff.N.waypoint-ct s32 out
Waypoint count (for debugging)

moveoff.N.waypoint-percent-used s32 out
Percent of available waypoints used

moveoff.N.offset-in-M float in (M=0..personality)
Joint offset input value

moveoff.N.pos-M float in (M=0..personality)
Joint position (typ: axis.0.motor-pos-cmd)

moveoff.N.ftb-M float in (M=0..personality)
Joint feedback (typ from encoder and input to pid controller (pid.feedback))

moveoff.N.offset-current-M float out (M=0..personality)
Joint offset current value

moveoff.N.pos-plusoffset-M float out (M=0..personality)
Computed joint position plus offset (typically connect to pid command input)

moveoff.N.fb-minusoffset-M float out (M=0..personality)
Computed Joint feedback minus offset (typically connected to axis.0.motor-pos-fb

moveoff.N.offset-vel-M float in (M=0..personality) (default: /0)
Joint offset velocity limit

moveoff.N.offset-accel-M float in (M=0..personality) (default: /00)
Joint offset acceleration limit

moveoff.N.offset-min-M float in (M=0..personality) (default: -7e20)
Minimum limit for applied joint offset (typ negative)

moveoff.N.offset-max-M float in (M=0..personality) (default: /e20)
Maximum limit for applied offset (typ positive)

moveoff.N.dbg-waypoint-limit-test bit in
Debug input to test with limited number of waypoints

moveoff.N.dbg-state s32 out
Debug output for current state of state machine

LICENSE
GPL

394 2020-09-04 LinuxCNC Documentation

MULT2(9) HAL Component

NAME

mult2 — Product of two inputs

SYNOPSIS

loadrt mult2 [count=N|names=name[,name?...]]

FUNCTIONS
mult2.N (requires a floating-point thread)

PINS
mult2.N.in0 float in
mult2.N.inl float in
mult2.N.out float out
out =in0 * inl
LICENSE
GPL

LinuxCNC Documentation 2020-09-04

MULT2(9)

395

MULTICLICK(9) HAL Component MULTICLICK(9)

NAME

multiclick — Single-, double-, triple-, and quadruple-click detector

SYNOPSIS

loadrt multiclick [count=N|names=nameI[,name?2...]]

DESCRIPTION

A click is defined as a rising edge on the ’in’ pin, followed by the ’in’ pin being True for at most *max-
hold-ns’ nanoseconds, followed by a falling edge.

A double-click is defined as two clicks, separated by at most *'max-space-ns’ nanoseconds with the ’in’ pin
in the False state.

I bet you can guess the definition of triple- and quadruple-click.

You probably want to run the input signal through a debounce component before feeding it to the multiclick
detector, if the input is at all noisy.

The **-click’ pins go high as soon as the input detects the correct number of clicks.

The **-click-only’ pins go high a short while after the click, after the click separator space timeout has ex-
pired to show that no further click is coming. This is useful for triggering halui MDI commands.

FUNCTIONS
multiclick.NV
Detect single-, double-, triple-, and quadruple-clicks
PINS
multiclick.V.in bit in
The input line, this is where we look for clicks.
multiclick.N.single-click bit out
Goes high briefly when a single-click is detected on the ’in’ pin.
multiclick.N.single-click-only bit out
Goes high briefly when a single-click is detected on the ’in’ pin and no second click followed it.
multiclick.N.double-click bit out
Goes high briefly when a double-click is detected on the ’in’ pin.
multiclick.N.double-click-only bit out
Goes high briefly when a double-click is detected on the ’in’ pin and no third click followed it.
multiclick.N.triple-click bit out
Goes high briefly when a triple-click is detected on the ’in’ pin.
multiclick.N.triple-click-only bit out
Goes high briefly when a triple-click is detected on the ’in’ pin and no fourth click followed it.
multiclick.N.quadruple-click bit out
Goes high briefly when a quadruple-click is detected on the ’in’ pin.
multiclick.N.quadruple-click-only bit out
Goes high briefly when a quadruple-click is detected on the ’in’ pin and no fifth click followed it.
multiclick.N.state s32 out
PARAMETERS

396

multiclick.N.invert-input bit rw (default: FALSE)
If FALSE (the default), clicks start with rising edges. If TRUE, clicks start with falling edges.

2020-09-04 LinuxCNC Documentation

MULTICLICK(9) HAL Component MULTICLICK(9)

multiclick.N.max-hold-ns u32 rw (default: 250000000)
If the input is held down longer than this, it’s not part of a multi-click. (Default 250,000,000 ns,
250 ms.)

multiclick.N.max-space-ns u32 rw (default: 250000000)
If the input is released longer than this, it’s not part of a multi-click. (Default 250,000,000 ns, 250
ms.)

multiclick.N.output-hold-ns u32 rw (default: 700000000)
Positive pulses on the output pins last this long. (Default 100,000,000 ns, 100 ms.)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 397

MULTISWITCH(9) HAL Component MULTISWITCH(9)

NAME

multiswitch — This component toggles between a specified number of output bits

SYNOPSIS
loadrt multiswitch personality=P [cfg=N]

cfg cfg should be a comma-separated list of sizes for example cfg=2,4,6 would create 3 instances
of 2, 4 and 6 bits respectively.
Ignore the "personality” parameter, that is auto-generated

FUNCTIONS

multiswitch.N (requires a floating-point thread)

PINS
multiswitch.N.up bit in (default: false)
Receives signal to toggle up

multiswitch.N.down bit in (default: false)
Receives signal to toggle down

multiswitch.N.bit-MM bit out (MM=00..personality) (default: false)
Output bits

PARAMETERS
multiswitch.N.top-position u32 rw
Number of positions

multiswitch.N.position s32 rw
Current state (may be set in the HAL)

AUTHOR
ArcEye schooner30@tiscali.co.uk / Andy Pugh andy @bodgesoc.org

LICENSE
GPL

398 2020-09-04 LinuxCNC Documentation

MUX16(9) HAL Component MUX16(9)

NAME

mux16 — Select from one of sixteen input values
SYNOPSIS

loadrt mux16 [count=N|names=nameI[,name?2...]]
FUNCTIONS

mux16.N (requires a floating-point thread)

PINS
mux16.N.use-graycode bit in
This signifies the input will use Gray code instead of binary. Gray code is a good choice when us-
ing physical switches because for each increment only one select input changes at a time.

mux16.N.suppress-no-input bit in
This suppresses changing the output if all select lines are false. This stops unwanted jumps in out-
put between transitions of input. but make in0O unavaliable.

mux16.N.debounce-time float in
sets debouce time in seconds. eg. .10 = a tenth of a second input must be stable this long before
outputs changes. This helps to ignore ’noisy’ switches.

mux16.N.selM bit in (M=0..3)
Together, these determine which inN value is copied to out.

mux16.N.out-f float out

mux16.N.out-s s32 out
Follows the value of one of the in/N values according to the four sel values and whether use-gray-
code is active. The s32 value will be trunuated and limited to the max and min values of signed
values.

sel3=FALSE, sel2=FALSE, sell=FALSE, sel0=FALSE
out follows inQ

sel3=FALSE, sel2=FALSE, sel1=FALSE, sel0=TRUE
out follows inl

etc.

mux16.N.inMM float in (MM=00..15)
array of selectable outputs

PARAMETERS
mux16.N.elapsed float r
Current value of the internal debounce timer

for debugging.
mux16.VN.selected s32 r
Current value of the internal selection variable after conversion
for debugging
LICENSE
GPL

LinuxCNC Documentation 2020-09-04 399

MUX2(9) HAL Component MUX2(9)

NAME

mux?2 — Select from one of two input values

SYNOPSIS

loadrt mux2 [count=N|names=nameI[,name?2...]]

FUNCTIONS

mux2.N (requires a floating-point thread)

PINS
mux2.N.sel bit in
mux2.N.out float out
Follows the value of inO if sel is FALSE, or in1 if sel is TRUE
mux2.N.inl float in
mux2.N.in0 float in
LICENSE

GPL

400 2020-09-04 LinuxCNC Documentation

MUX4(9) HAL Component MUX4(9)

NAME

mux4 — Select from one of four input values

SYNOPSIS

loadrt mux4 [count=N|names=nameI[,name?2...]]

FUNCTIONS

mux4.N (requires a floating-point thread)

PINS
mux4.N.sel0 bit in
mux4.N.sell bit in
Together, these determine which inN value is copied to out.
mux4.N.out float out
Follows the value of one of the in/N values according to the two sel values
sel1=FALSE, sel0=FALSE
out follows inQ
sel1=FALSE, sel0=TRUE
out follows inl
sel1I=TRUE, sel0=FALSE
out follows in2
sel1I=TRUE, sel0=TRUE
out follows in3
mux4.N.in0 float in
mux4.N.inl float in
mux4.N.in2 float in
mux4.N.in3 float in
LICENSE

GPL

LinuxCNC Documentation 2020-09-04 401

MUX8(9) HAL Component

NAME

mux8 — Select from one of eight input values

SYNOPSIS

loadrt mux8 [count=N|names=nameI[,name?2...]]

FUNCTIONS

mux8.N (requires a floating-point thread)

PINS
mux8.N.sel0 bit in
mux8.N.sell bit in
mux8.N.sel2 bit in
Together, these determine which inN value is copied to out.

mux8.N.out float out

MUXS(9)

Follows the value of one of the in/N values according to the three sel values

sel2=FALSE, sel1=FALSE, sel0=FALSE
out follows inQ

sel2=FALSE, sel1=FALSE, sel0=TRUE
out follows inl

sel2=FALSE, sell=TRUE, sel0=FALSE
out follows in2

sel2=FALSE, sel1=TRUE, sel0=TRUE
out follows in3

sel2=TRUE, sel1=FALSE, sel0=FALSE
out follows in4

sel2=TRUE, sel1=FALSE, sel0=TRUE
out follows in5

sel2=TRUE, sel1=TRUE, sel0=FALSE
out follows in6

sel2=TRUE, sel1=TRUE, sel0=TRUE
out follows in7

mux8.N.in0 float in
mux8.N.inl float in
mux8.N.in2 float in
mux8.N.in3 float in
mux8.N.ind float in
mux8.N.in5 float in
mux8.N.in6 float in
mux8.N.in7 float in

LICENSE
GPL

402 2020-09-04

LinuxCNC Documentation

MUX_GENERIC(9) HAL Component MUX_GENERIC(9)

NAME

mux_generic — choose one from several input values
SYNOPSIS

loadrt mux_generic config="'"bb8,ful2...."
FUNCTIONS

mux—gen.NN Depending on the data types can run in either a floating
point or non-floating point thread.

PINS
mux-gen.NN.suppress—no—input bit in
This suppresses changing the output if all select lines are false. This stops unwanted jumps in out-
put between transitions of input. but makes in00O unavaliable.
mux—gen.NN.debounce—us unsigned in
sets debouce time in microseconds. eg. 100000 = a tenth of a second. The selection inputs must
be stable this long before the output changes. This helps to ignore 'noisy’ switches.
mux-gen.NN.sel-bitMM bit in (M=0..N)
mux—gen.NN.sel-int unsigned in
Together, these determine which inN value is copied to output. The bit pins are interpreted as bi-
nary bits, and the result is simply added on to the integer pin input. It is expected that either one or
the other would normally be used. Hower, the possibility exists to use a higher-order bit to "shift"
the values set by the integer pin. The sel-bit pins are only created when the size of the mux_gen
component is an integer power of two. This component (unlike mux16) does not offer the option
of decoding gray-code, however the same effect can be achieved by arranging the order of the in-
put values to suit.
mux—gen.NN.out—[bit/float/s32/u32] variable-type out
Follows the value of one of the in/N values according to the selection bits and/or the selection num-
ber. Values will be converted/truncated according to standard C rules. This means, for example
that a float input greater than 2147483647 will give an S32 output of —2147483648.
mux—gen.NN.in—[bit/float/s32/u32]-MM variable-type in
The possible output values that are selected by the selection pins.
PARAMETERS
mux-gen.N.elapsed float r
Current value of the internal debounce timer for debugging.
mux-gen.N.selected s32 r
Current value of the internal selection variable after conversion for debugging. Possibly useful for
setting up gray-code switches.
DESCRIPTION

This component is a more general version of the other multiplexing components. It allows the creation of
arbitrary-size multiplexers (up to 1024 entries) and also supports differing data types on the input and out-
put pins. The configuration string is a comma-separated list of code-letters and numbers, such as
"bb4,ful2" This would create a 4-element bit-to-bit mux and a 12-element float-to-unsigned mux. The code
letters are b = bit, f = float, s = signed integer, u = unsigned integer. The first letter code is the input type,
the second is the output type. The codes are not case-sensitive. The order of the letters is significant but the
position in the string is not. Do not insert any spaces in the config string. Any non-zero float value will be

LinuxCNC Documentation 2013-05-27 403

MUX_GENERIC(9) HAL Component MUX_GENERIC(9)
converted to a "true" output in bit form. Be wary that float datatypes can be very, very, close to zero and not
actually be equal to zero.

Each mux has its own HAL function and must be added to a thread separately. If neither input nor output is

of type float then the function is base-thread (non floating-point) safe. Any mux_generic with a floating
point input or output can only be added to a floating-point thread.

LICENSE
GPL

AUTHOR
Andy Pugh

404 2013-05-27 LinuxCNC Documentation

NEAR(9) HAL Component NEAR(9)

NAME

near — Determine whether two values are roughly equal.

SYNOPSIS

loadrt near [count=N|names=namel[,name?...]]

FUNCTIONS

near.N (requires a floating-point thread)

PINS
near.N.inl float in
near.N.in2 float in
near.N.out bit out

out is true if inl1 and in2 are within a factor of scale (i.e., for inl positive, inl/scale <=in2 <=
inl*scale), OR if their absolute difference is no greater than difference (i.c., |in1-in2| <= differ-
ence). out is false otherwise.

PARAMETERS
near.N.scale float rw (default: 1)
near.N.difference float rw (default: 0)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 405

NOT(9) HAL Component NOT(9)

NAME

not — Inverter

SYNOPSIS

loadrt not [count=N|names=nameI[,name?2...]]

FUNCTIONS
not.N

PINS
not.N.in bit in
not.N.out bit out

LICENSE
GPL

406 2020-09-04 LinuxCNC Documentation

OFFSET(9) HAL Component

NAME

offset — Adds an offset to an input, and subtracts it from the feedback value

SYNOPSIS

loadrt offset [count=N|names=name[,name?...1]

FUNCTIONS
offset.N.update-output (requires a floating-point thread)
Updated the output value by adding the offset to the input

offset.N.update-feedback (requires a floating-point thread)
Update the feedback value by subtracting the offset from the feedback

PINS
offset.N.offset float in
The offset value

offset.N.in float in
The input value

offset.N.out float out
The output value

offset.N.fb-in float in
The feedback input value

offset.N.fb-out float out
The feedback output value

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

OFFSET(9)

407

OHMIC(9) HAL Component OHMIC(9)

NAME
ohmic — LinuxCNC HAL component that uses a Mesa THCAD for Ohmic sensing

SYNOPSIS

loadrt ohmic [count=N|names=nameI[,name2...]]

DESCRIPTION
Mesa THCAD Card component to scale input and outputs from the Mesa THCADS, THCAD10 and
THCAD300 cards. Which is designed to allow user configurable voltage threshold for ohmic sensing.
Scaling of the Plasma arc voltage by a voltage divider is supported.
Output pins are provided for:
ohmic-volts (the voltage sensed on ohmic sensing)
ohmic-on (true if ohmic-volts >= ohmic-threshold)
arc-on (true if arc voltage is received eg. full scale reached or exceeded)
Actual voltage as read from the THCAD card (0-300V, 0-10V or 0-5V depending on the THCAD version
used.

Normally, we would use a THCAD-5 for ohmic sensing in conjunction with a 24 volt isolated power supply
and a 390K resistor. (voltage divider = 4.9) This would result in a full scale reading of 24.5 volts which is
above the power supply output voltage.

So if full scale is reached, it can be assumed that the THCAD-5 is sensing an arc voltage. In this case, the
circuit will remain protected by the THCAD’s ability to tolerate a S00V overvoltage indefinitely.

It is optional that power to the Ohmic sensing circuit be disconnected unless probing is in progress ut this
adds additional complexity.

EXAMPLE:

THCADS card using a 1/32 frequency setting and a voltage divider internal to the plasma cutter with range
extended to 24.5 volts with a 390K external resistor as per the manual. Additional information and wiring
diagram is contained in the Plasma Primer in hte main Linuxcnc documents.

loadrt ohmic names=ohmicsense

addf ohmicsense servo-thread

setp ohmicsense.thcad-0-volt-freq 122900
setp ohmicsense.thcad-max-volt-freq 925700

setp ohmicsense.thcad-divide 32
setp ohmicsense.thcad-fullscale 5
setp ohmicsense.volt-divider 32
setp ohmicsense.threshold 22
setp ohmicsense.ohmic-low 1

net ohmic-vel ohmicsense.velocity-in <= hm2_7i76e.0.encoder.00.velocity
net ohmic-true ohmicsense.ohmic-on => plasmac.ohmic-probe

FUNCTIONS

ohmic.N (requires a floating-point thread)

PINS
ohmic.N.thcad-0-volt-freq float in
0 volt calibration data for THCAD card in Hz

ohmic.N.thcad-max-volt-freq float in
Full scale calibration data for THCAD Card in Hz

408 2020-09-04 LinuxCNC Documentation

OHMIC(9) HAL Component OHMIC(9)

ohmic.N.thcad-divide float in (default: 32)
THCAD Divider set by links on THCAD board (1,32,64 or 128

ohmic.N.thcad-fullscale float in (default: 5)
THCAD Fullscale (5, 10 or 300)

ohmic.N.velocity-in float in
The velocity returned from the THCAD and read by the Mesa encoder input

ohmic.N.volt-divider float in (default: 4.9)
The divide ratio (default 1:1)

ohmic.N.ohmic-threshold float in (default: /8)
The threshold volts above which Ohmic sensing is set to be true

ohmic.N.ohmic-low float in (default: 5)
The threshold volts below which Ohmic sensing is set to be false

ohmic.N.arc-on bit out
True if full scale (eg arc is on)

ohmic.N.thcad-volts float out
Measured thcad voltage

ohmic.N.ohmic-volts float out
Calculated Ohmic voltage

ohmic.N.ohmic-on bit out
Threshold plasma torch voltage

ohmic.N.is-probing bit in

True if probing
AUTHOR
Rod Webster
LICENSE
GPL

LinuxCNC Documentation 2020-09-04 409

ONESHOT(9) HAL Component

NAME

oneshot — one-shot pulse generator

SYNOPSIS

loadrt oneshot [count=N|names=nameI[,name?2...]]

DESCRIPTION

ONESHOT(9)

creates a variable-length output pulse when the input changes state. This function needs to run in a thread
which supports floating point (typically the servo thread). This means that the pulse length has to be a mul-
tiple of that thread period, typically 1mS. For a similar function that can run in the base thread, and which

offers higher resolution, see "edge".

FUNCTIONS
oneshot.N (requires a floating-point thread)
Produce output pulses from input edges

PINS
oneshot.N.in bit in
Trigger input
oneshot.N.reset bit in
Reset

oneshot.N.out bit out
Active high pulse

oneshot.N.out-not bit out
Active low pulse

oneshot.N.width float in (default: 0)
Pulse width in seconds

oneshot.N.time-left float out
Time left in current output pulse

PARAMETERS
oneshot.N.retriggerable bit rw (default: TRUE)
Allow additional edges to extend pulse

oneshot.N.rising bit rw (default: TRUE)
Trigger on rising edge

oneshot.N.falling bit rw (default: FALSE)
Trigger on falling edge

LICENSE
GPL

410 2020-09-04

LinuxCNC Documentation

OPTO_AC5(9) HAL Component OPTO_AC5(9)

NAME
opto_ac5 — Realtime driver for opto22 PCI-ACS cards

SYNOPSIS
loadrt opto_ac5 [portconfig0=0xN] [portconfigl=0xN]

DESCRIPTION
These pins and parameters are created by the realtime opto_ac5 module. The portconfigl and portconfigl
variables are used to configure the two ports of each card. The first 24 bits of a 32 bit number represent the
24 i/o points of each port. The lowest (rightmost) bit would be HAL pin 0 which is header connector pin
47. Then next bit to the left would be HAL pin 1, header connector pin 45 and so on, until bit 24 would be
HAL pin 23, header connector pin 1. "1" bits represent output points. So channel 0..11 as inputs and
12..23 as outputs would be represented by (in binary) 111111111111000000000000 which is 0xfff000 in
hexadecimal. That is the number you would use Eg. loadrt opto_ac5 portconfig0=0xfff000

If no portconfig variable is specified the default configuration is 12 inputs then 12 outputs.
Up to 4 boards are supported. Boards are numbered starting at 0.

Portnumber can be 0 or 1. Port 0 is closes to the card bracket.

PINS
opto_ac5.[BOARDNUMBER)].portlPORTNUMBER].in—-[PINNUMBER] OUT bit
opto_ac5.[BOARDNUMBER)].portlPORTNUMBER].in—[PINNUMBER]-not OUT bit
Connect a hal bit signal to this pin to read an i/o point from the card. The PINNUMBER repre-
sents the position in the relay rack. Eg. PINNUMBER O is position 0 in a opto22 relay rack and
would be pin 47 on the 50 pin header connector. The —not pin is inverted so that LOW gives
TRUE and HIGH gives FALSE.

opto_ac5.[BOARDNUMBER)].portlPORTNUMBER)].out—[PINNUMBER] IN bit
Connect a hal bit signal to this pin to write to an i/o point of the card. The PINNUMBER repre-
sents the position in the relay rack.Eg. PINNUMBER 23 is position 23 in a opto22 relay rack and
would be pin 1 on the 50 pin header connector.

opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit
Turns one of the on board LEDS on/off. LEDS are numbered O to 3.

PARAMETERS
opto_ac5.[BOARDNUMBER)].portlPORTNUMBER)].out—[PINNUMBER]—invert W bit
When TRUE, invert the meaning of the corresponding —out pin so that TRUE gives LOW and
FALSE gives HIGH.

FUNCTIONS
opto_ac5.0.digital-read
Add this to a thread to read all the input points.

opto_ac5.0.digital-write
Add this to a thread to write all the output points and LEDS.

BUGS

All boards are loaded with the same port configurations as the first board.

LinuxCNC Documentation 2008-08-04 411

OPTO_AC5(9) HAL Component OPTO_AC5(9)

SEE ALSO
http://wiki.linuxcnc.org/cgi—bin/wiki.pl?OptoPciAc5

412 2008-08-04 LinuxCNC Documentation

OR2(9) HAL Component

NAME
or2 — Two-input OR gate

SYNOPSIS

loadrt or2 [count=N|names=name[,name?...1]

FUNCTIONS
or2.N

PINS
or2.N.in0 bit in
or2.N.inl bit in
or2.N.out bit out

out is computed from the value of in0 and inl according to the following rule:

in0=FALSE in1=FALSE

out=FALSE
Otherwise,
out=TRUE
LICENSE
GPL

LinuxCNC Documentation 2020-09-04

OR2(9)

413

ORIENT(9) HAL Component ORIENT(9)

NAME

orient — Provide a PID command input for orientation mode based on current spindle position, target angle
and orient mode

SYNOPSIS

loadrt orient [count=N|names=namel[,name?2...1]

DESCRIPTION

This component is designed to support a spindle orientation PID loop by providing a command value, and
fit with the motion spindle-orient support pins to support the M19 code.

The spindle is assumed to have stopped in an arbitrary position. The spindle encoder position is linked to
the position pin. The current value of the position pin is sampled on a positive edge on the enable pin,
and command is computed and set as follows: floor(number of full spindle revolutions in the position sam-
pled on positive edge) plus angle/360 (the fractional revolution) +1/-1/0 depending on mode.

The mode pin is interpreted as follows:

0: the spindle rotates in the direction with the lesser angle, which may be clockwise or counterclockwise.

1: the spindle rotates always rotates clockwise to the new angle.

2: the spindle rotates always rotates counterclockwise to the new angle.

HAL USAGE

On spindle.N.orient disconnect the spindle control and connect to the orient-pid loop:

loadrt orient names=orient

loadrt pid names=orient-pid

net orient-angle spindle.N.orient-angle orient.angle

net orient-mode spindle.N.orient-mode orient.mode

net orient-enable spindle.N.orient orient.enable orient-pid.enable
net spindle-in-pos orient.is-oriented spindle.N.is-oriented

net spindle-pos encoder.position orient.position orient-pid.feedback
net orient-command orient.command orient-pid.command

FUNCTIONS

PINS

414

orient.N (requires a floating-point thread)
Update command based on enable, position, mode and angle.

orient.N.enable bit in
enable angular output for orientation mode

orient.N.mode s32 in
0: rotate - shortest move; 1: always rotate clockwise; 2: always rotate counterclockwise

orient.N.position float in
spindle position input, unit 1 rev

orient.N.angle float in
orient target position in degrees, 0 <= angle < 360

orient.N.command float out
target spindle position, input to PID command

2020-09-04 LinuxCNC Documentation

ORIENT(9) HAL Component ORIENT(9)

orient.N.poserr float out
in degrees - aid for PID tuning

orient.N.is-oriented bit out
This pin goes high when poserr < tolerance. Use to drive spindle.N.is-oriented

orient.N.tolerance float in (default: 0.5)
The tolerance in degrees for considering the align completed

AUTHOR
Michael Haberler

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 415

PCL720(9) HAL Component PCL720(9)

NAME
pcl720 — Driver for the Advantech PCL 720 card.

SYNOPSIS
loadrt pcl720 [ioaddr=N]

ioaddr Base address of card. Separate each card base address with a comma but no space to load
more than one card. eg loadrt pcl720 ioaddr=0x200,0x200. use 0xXNNN to define addresses in
Hex

DESCRIPTION
This driver supports the Advantech PCL720 ISA card. It might work with the PCI version too, but this is
untested.
It creates hal pins corresonding to the digital inputs and outputs, but does not support the the coun-
ters/timers.

FUNCTIONS
pcl720.N.read
Reads each of the digital inputs and updates the HAL pins

pcl720.N.write
Writes the values of the output HAL pins to the digital IO

pcl720.N.reset
Waits for the length of time specified by the reset-time parameter and resets any pins for which
the reset parameter has been set. This can be used to allow step generators to make a step every
thread rather than every other thread. This function must be added to the thread after the "write"
function.
Do not use this function if you do not wish to reset any pins.
the stepgen step-space parameter should be set to O to make use of this function.

PINS

pcl720.N.pin-MM-out bit in (MM=00..31)
Output pins

pcl720.N.pin-MM-in bit out (MM=00..31)
Input pins

pcl720.N.pin-MM-in-not bit out (MM=00..31)
Inverted version of each input pin

pcl720.N.wait-clocks u32 out

PARAMETERS
pcl720.N.reset-time u32 rw (default: 5000)
The time in nanoseconds after the write function has run to reset the pins for which the "reset" pa-
rameter is set.

pcl720.N.pin-MM-reset bit rw (MM=00..31)
specifies if the pin should be reset by the "reset" function

pcl720.N.pin-MM-out-invert bit rw (MM=00..31)
Set to true to invert the sense of the output pin

AUTHOR
Andy Pugh

LICENSE
GPL

416 2020-09-04 LinuxCNC Documentation

PID(9) HAL Component PID(9)

NAME

pid — proportional/integral/derivative controller

SYNOPSIS

loadrt pid [num_chan=num | names=nameI[,name?2...1] [debug=dbg]

DESCRIPTION
pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback loops
for servo motors and other closed-loop applications.

pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is three. If debug is set to 1 (the default is 0), some additional HAL parameters
will be exported, which might be useful for tuning, but are otherwise unnecessary.

NAMING
The names for pins, parameters, and functions are prefixed as:
pid.N. for N=0,1,...,num—1 when using num_chan=num
nameN. for nameN=namel,name2,... when using names=namel,name2,...

The pid.N. format is shown in the following descriptions.

FUNCTIONS
pid.N.do—pid—calcs (uses floating-point) Does the PID calculations for control loop N.

PINS
pid.N.command float in
The desired (commanded) value for the control loop.

pid.N.Pgain float in
Proportional gain. Results in a contribution to the output that is the error multiplied by Pgain.

pid.N.Igain float in
Integral gain. Results in a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error (er-
rorl) of 0.2, and if Igain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float in
Derivative gain. Results in a contribution to the output that is the rate of change (derivative) of the
error multiplied by Dgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and if Dgain is 5, the derivative term would
add 0.25 to the output.

pid.N.feedback float in
The actual (feedback) value, from some sensor such as an encoder.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.command—deriv float in
The derivative of the desired (commanded) value for the control loop. If no signal is connected
then the derivative will be estimated numerically.

pid.N.feedback—deriv float in
The derivative of the actual (feedback) value for the control loop. If no signal is connected then
the derivative will be estimated numerically. When the feedback is from a quantized position

LinuxCNC Documentation 2007-01-16 417

PID(9)

418

HAL Component PID(9)

source (e.g., encoder feedback position), behavior of the D term can be improved by using a better
velocity estimate here, such as the velocity output of encoder(9) or hostmot2(9).

pid.N.error—previous—target bit in
Use previous invocation’s target vs. current position for error calculation, like the motion con-
troller expects. This may make torque-mode position loops and loops requiring a large I gain eas-
ier to tune, by eliminating velocity—dependent following error.

pid.N.error float out
The difference between command and feedback.

pid.N.enable bit in
When true, enables the PID calculations. When false, output is zero, and all internal integrators,
etc, are reset.

pid.N.index—enable bit in
On the falling edge of index—enable, pid does not update the internal command derivative esti-
mate. On systems which use the encoder index pulse, this pin should be connected to the in-
dex—enable signal. When this is not done, and FF1 is nonzero, a step change in the input com-
mand causes a single-cycle spike in the PID output. On systems which use exactly one of the —de-
riv inputs, this affects the D term as well.

pid.N.bias float in
bias is a constant amount that is added to the output. In most cases it should be left at zero. How-
ever, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum?2 block.

pid.N.FF0 float in
Zero order feed-forward term. Produces a contribution to the output that is FF0 multiplied by the
commanded value. For position loops, it should usually be left at zero. For velocity loops, FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float in
First order feed-forward term. Produces a contribution to the output that FF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float in
Second order feed-forward term. Produces a contribution to the output that is FF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia. For velocity loops, the contribution is
proportional to jerk, and should usually be left at zero.

pid.N.FF3 float in
Third order feed-forward term. Produces a contribution to the output that is FF3 multiplied by the
third derivative of the commanded value. For position loops, the contribution is proportional to
jerk, and can be used to compensate for residual errors during acceleration. For velocity loops, the
contribution is proportional to snap(jounce), and should usually be left at zero.

pid.N.deadband float in
Defines a range of "acceptable" error. If the absolute value of error is less than deadband, it will
be treated as if the error is zero. When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When
the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the

2007-01-16 LinuxCNC Documentation

PID(9) HAL Component PID(9)

edge of the deadband. (See BUGS.)

pid.N.maxoutput float in
Output limit. The absolute value of the output will not be permitted to exceed maxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

pid.N.maxerror float in
Limit on the internal error variable used for P, I, and D. Can be used to prevent high Pgain values
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change). Not normally needed, but can be useful when tuning non-linear
systems.

pid.N.maxerrorD float in
Limit on the error derivative. The rate of change of error used by the Dgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect of Dgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorlI float in
Limit on error integrator. The error integrator used by the Igain term will be limited to this value,
unless it is zero. Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdD float in
Limit on command derivative. The command derivative used by FF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

pid.N.maxcmdDD float in
Limit on command second derivative. The command second derivative used by FF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.maxcmdDDD float in
Limit on command third derivative. The command third derivative used by FF3 will be limited to
this value, unless the value is zero. Can be used to prevent FF3 from producing large output
spikes if there is a step change on the command. Not normally needed.

pid.N.saturated bit out
When true, the current PID output is saturated. That is,
output = £ maxoutput.

pid.N.saturated—s float out

pid.N.saturated—count s32 out
When true, the output of PID was continually saturated for this many seconds (saturated—s) or pe-
riods (saturated—count).

PARAMETERS
pid.N.errorl float ro (only if debug=1)
Integral of error. This is the value that is multiplied by Igain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied by Dgain to produce the Derivative term of
the output.

pid.N.commandD float ro (only if debug=1)
Derivative of command. This is the value that is multiplied by FF1 to produce the first order feed-
forward term of the output.

LinuxCNC Documentation 2007-01-16 419

PID(9)

BUGS

420

HAL Component PID(9)

pid.N.commandDD float ro (only if debug=1)
Second derivative of command. This is the value that is multiplied by FF2 to produce the second
order feed-forward term of the output.

pid.N.commandDDD float ro (only if debug=1)
Third derivative of command. This is the value that is multiplied by FF3 to produce the third or-
der feed-forward term of the output.

Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband. This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version of pid. However,
the default behavior should not be changed.

Negative gains may lead to unwanted behavior. It is possible in some situations that negative FF gains

make sense, but in general all gains should be positive. If some output is in the wrong direction, negating
gains to fix it is a mistake; set the scaling correctly elsewhere instead.

2007-01-16 LinuxCNC Documentation

PLASMAC(Q9) HAL Component PLASMAC(9)

NAME

plasmac — A plasma cutter controller

SYNOPSIS

loadrt plasmac

DESCRIPTION

A plasma cutting table control component for use with the LinuxCNC V2.8 or later.

VERSION:
0.169 - 2020 Aug 30

SUMMARY:
Usage of this component is demonstrated in the PlasmaC example configurations included with LinuxCNC.

DISCLAIMER:

THE AUTHOR OF THIS SOFTWARE ACCEPTS ABSOLUTELY NO LIABILITY FOR ANY HARM
OR LOSS RESULTING FROM ITS USE.

IT IS EXTREMELY UNWISE TO RELY ON SOFTWARE ALONE FOR SAFETY.

Any machinery capable of harming persons must have provisions for completely stopping all motors and
moving parts etc. before persons enter any danger area.

All machinery must be designed to comply with local and national safety codes, and the author of this soft-
ware can not, and does not, take any responsibility for such compliance.

FUNCTIONS

PINS

plasmac (requires a floating-point thread)

plasmac.arc-fail-delay float in
arc failure timeout (seconds)

plasmac.arc-ok-high float in
maximum voltage level for Arc OK signal [mode 0] (volts)

plasmac.arc-ok-in bit in
external arc ok input signal [mode 1 & mode 2]

plasmac.arc-ok-low float in
minimum voltage level for Arc OK signal [mode 0] (volts)

plasmac.arc-max-starts s32 in
maximum attempts at starting the arc

plasmac.arc-voltage-in float in
arc voltage input [mode 0 & mode 1] see Notes above

plasmac.arc-voltage-offset float in
offset to set arc voltage to 0 at O volts

plasmac.arc-voltage-scale float in
scale to convert arc_voltage input to actual volts

plasmac.axis-z-min-limit float in
axis z minimum limit, connect to ini.z.min-limit

LinuxCNC Documentation 2020-09-04 421

PLASMAC(Q9) HAL Component PLASMAC(9)

422

plasmac.axis-z-max-limit float in
axis z maximum limit, connect to ini.z.max-limit

plasmac.axis-z-position float in
current z axis position, connect to joint.N.pos-fb

plasmac.axis-x-position float in
current X axis position, connect to axis.x.pos-cmd

plasmac.axis-y-position float in
current y axis position, connect to axis.y.pos-cmd

plasmac.breakaway bit in
torch breakaway switch (optional, see float_switch)

plasmac.spotting-start bit in
start a new spot, connect to spindle.2.on

plasmac.spotting-threshold float in
threshold voltage to start spotting delay

plasmac.spotting-time float in
torch off delay after spotting threshold reached

plasmac.consumable-change bit in
change consumables in torch

plasmac.cornerlock-enable bit in
enable corner lock

plasmac.cornerlock-threshold float in
corner lock threshold (% of requested feed rate), speeds below this disable THC

plasmac.current-velocity float in
current machine velocity , connect to motion.current-vel

plasmac.cut-feed-rate float in
cut feed rate, set to O to use feed rate from gcod file (machine units per minute)

plasmac.cut-height float in
cut height (machine units)

plasmac.cut-recovery bit in
recover from cut error

plasmac.cut-volts float in
cut voltage (volts)

plasmac.cutting-start bit in
start a new cut, connect to spindle.0.on

plasmac.external-estop bit in
external estop input

plasmac.feed-reduction float in
reduce adaptive feed to this percentage (connect to motion.analog-out-03)

plasmac.feed-override float in
feed override value from gui (connect to halui.feed-override.value)

plasmac.float-switch bit in
float switch input (can also act as breakaway if it actuates when torch breaks away)

plasmac.float-switch-travel float in
float switch travel (machine units)

2020-09-04 LinuxCNC Documentation

PLASMAC(Q9) HAL Component PLASMAC(9)

plasmac.height-override float in
height override adjustment (volts)

plasmac.height-per-volt float in
torch height change per volt (machine units)

plasmac.homed bit in
machine is homed

plasmac.kerfcross-enable bit in
enable kerf crossing [mode 0 & mode 1]

plasmac.kerfcross-override float in
kerf crossing threshold override as a percentage

plasmac.lowpass-frequency float in
lowpass cutoff frequency for arc voltage output

plasmac.ignore-arc-ok-0 bit in
don’t require arc ok for start or cutting

plasmac.ignore-arc-ok-1 bit in
don’t require arc ok for start or cutting

plasmac.machine-is-on bit in
machine is on signal

plasmac.mesh-enable bit in
enable mesh cutting mode

plasmac.mode s32 in
operating mode

plasmac.motion-type s32 in
motion type, connect to motion.motion-type

plasmac.move-down bit in
external thc down switch [mode 2])

plasmac.move-up bit in
external thc up switch [mode 2]

plasmac.multi-tool bit in
allows the use of multiple tools

plasmac.ohmic-probe-enable bit in
ohmic probe enable input

plasmac.ohmic-probe-offset float in
Z axis offset for ohmic probe (machine units)

plasmac.ohmic-max-attempts s32 in
maximum ohmic probe attempts before fallback to float switch

plasmac.ohmic-probe bit in
ohmic probe input

plasmac.ohmic-test bit in
test for shorted torch

plasmac.paused-motion-speed float in
multiplier for speed of motion when paused, from -1 to 1

plasmac.pause-at-end float in
time to pause at end of cut

LinuxCNC Documentation 2020-09-04 423

PLASMAC(Q9) HAL Component PLASMAC(9)

424

plasmac.pid-d-gain float in
derivative gain input [mode 0 & mode 1]

plasmac.pid-i-gain float in
integral gain input [mode 0 & mode 1]

plasmac.pid-p-gain float in
proportional gain input [mode 0 & mode 1]

plasmac.pierce-delay float in
time required to pierce stock (seconds)

plasmac.pierce-height float in
pierce height (machine units)

plasmac.probe-feed-rate float in
probe down velocity (machine units per minute)

plasmac.probe-test bit in
probe test only

plasmac.probe-start-height float in
probe starting height

plasmac.program-is-idle bit in
program is idle, connect to halui.program.is-idle

plasmac.program-is-paused bit in
program is paused, connect to halui.program.is-paused

plasmac.program-is-running bit in
program is running, connect to halui.program.is-running

plasmac.puddle-jump-delay float in
delay move from pierce height to cut height (seconds), leave disconnected if not required

plasmac.puddle-jump-height float in
puddle jump height (percentage of pierce height), leave disconnected if not required

plasmac.requested-velocity float in
requested velocity, set by a known requested velocity or connect to motion.requested-vel

plasmac.restart-delay float in
time from arc failure till next restart attempt

plasmac.safe-height float in
requested safe traverse height (machine units)

plasmac.scribe-arm-delay float in
delay from scribe arm to scribe on

plasmac.scribe-on-delay float in
delay from scribe on to motion beginning

plasmac.scribe-start bit in
start a new scribe, connect to spindle.1.on

plasmac.setup-feed-rate float in
feed rate for moves to pierce and cut heights (machine units per minute)

plasmac.skip-ihs-distance float in
skip IHS if less than this distance from last cut

plasmac.thc-enable bit in
enable/disable thc and set the IHS skip type

2020-09-04 LinuxCNC Documentation

PLASMAC(Q9) HAL Component PLASMAC(9)

plasmac.thc-disable bit in
the disable

plasmac.thc-delay float in
delay from start of cut to THC enable (seconds)

plasmac.thc-feed-rate float in
maximum feed rate for thc (machine units per minute)

plasmac.thc-threshold float in
the threshold (volts), changes below this have no effect

plasmac.torch-enable bit in
enable torch

plasmac.torch-off bit in
turn torch off

plasmac.torch-pulse-start bit in
torch pulse start

plasmac.torch-pulse-time float in
torch pulse time (seconds)

plasmac.units-per-mm float in
for scale calcs, connect to halui.machine.units-per-mm

plasmac.use-auto-volts bit in
use calculated voltage for thc baseline

plasmac.xy-feed-rate float in
feed-rate for consumable change

plasmac.x-offset float in
offest to apply to axis x for consumable change

plasmac.x-offset-current float in
current x axis offset, connect to axis.x.eoffset

plasmac.y-offset float in
offest to apply to axis y for consumable change

plasmac.y-offset-current float in
current z axis offset, connect to axis.y.eoffset

plasmac.z-offset-current float in
current z axis offset, connect to axis.z.eoffset

plasmac.adaptive-feed float out
for reverse-run, connect to motion.adaptive-feed

plasmac.arc-ok-out bit out
arc ok output

plasmac.arc-voltage-out float out
arc voltage output [mode 0 & mode 1]

plasmac.consumable-changing bit out
consumables are being changed

plasmac.cornerlock-is-locked bit out
corner locked indicator

plasmac.cut-length float out
length of current cut job

LinuxCNC Documentation 2020-09-04 425

PLASMAC(9) HAL Component

426

plasmac.cut-time float out
time of current cut job

plasmac.cut-recovering bit out
recovering from cut error

plasmac.cutting-stop bit out
stop manual cut, connect to halui.spindle.O.stop

plasmac.feed-hold bit out
feed hold, connect to motion.feed_hold

plasmac.kerfcross-is-locked bit out
kerf crossing locked indicator [mode 0 & mode 1]

plasmac.led-down bit out
thc move down indicator

plasmac.led-up bit out
thc move up indicator

plasmac.offset-scale float out
offset scale, connect to axis.<x y z>.eoffset-scale

plasmac.ohmic-enable bit out
on only while probing

plasmac.pierce-count s32 out
number of pierce attempts

plasmac.probe-test-error bit out
minimum limit reached while pobe testing

plasmac.program-pause bit out

pause the current program, connect to halui.program.pause

plasmac.program-resume bit out

resume the currently paused program, connect to halui.program.resume

plasmac.program-run bit out

run the currently loaded program, connect to halui.program.run

plasmac.program-stop bit out
stop current program, connect to halui.program.stop

plasmac.safe-height-is-limited bit out
safe height is limited indicator

plasmac.scribe-arm bit out
arm the scribe

plasmac.scribe-on bit out
turn scribe on

plasmac.state-out s32 out
current state

plasmac.stop-type-out s32 out
current stop type

plasmac.thc-active bit out
the status output

plasmac.thc-enabled bit out
the is enabled

2020-09-04

PLASMAC(9)

LinuxCNC Documentation

PLASMAC(Q9) HAL Component PLASMAC(9)

plasmac.torch-on bit out
turn torch on, connect to your torch on input

plasmac.x-offset-counts s32 out
x offset for consumable change, connect to axis.x.eoffset-counts

plasmac.y-offset-counts s32 out
y offset for consumable change, connect to axis.y.eoffset-counts

plasmac.xy-offset-enable bit out
enable x and y offsets, connect to axis.<x & y>.eoffset-enable

plasmac.z-offset-counts s32 out
z offset for height control, connect to axis.z.eoffset-counts

plasmac.z-offset-enable bit out
enable z offsets, connect to axis.z.eoffset-enable

plasmac.z-relative float out
distance of Z from last probed height

PARAMETERS
plasmac.debug-print bit rw (default: FALSE)
print debug messages

plasmac.kerf-errors-max s32 rw (default: 2)
allowable kerfcross threshold errors

plasmac.mesh-arc-ok bit rw (default: FALSE)
don’t require arc ok for mesh mode

AUTHOR
Phillip A Carter

LICENSE
GPLV?2 or greater

LinuxCNC Documentation 2020-09-04 427

PLUTO_SERVO(9) HAL Component PLUTO_SERVO(9)

NAME

pluto_servo — Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with servo ma-
chines.

SYNOPSIS
loadrt pluto_servo [ioaddr=N] [ioaddr_hi=N] [epp_wide=N] [watchdog=N] [test_encoder=N]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode. 0 means to use ioaddr +
0x400. -1 means there is no secondary address. The secondary address is used to set the port
to EPP mode.

epp_wide [default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions. However, this may not
work on all EPP parallel ports.

watchdog [default: 1]
Set to zero to disable the "hardware watchdog". "Watchdog" will tristate all outputs approxi-
mately 6ms after the last execution of pluto-servo.write, which adds some protection in the
case of LinuxCNC crashes.

test_encoder [default: 0]
Internally connect dout0..2 to QA0, QBO0, QZO0 to test quadrature counting

DESCRIPTION
Pluto_servo is a LinuxCNC software driver and associated firmware that allow the Pluto-P board to be used
to control a servo-based CNC machine.

The driver has 4 PWM channels, 4 quadrature channels with index pulse, 18 digital outputs (8 shared with
PWM), and 20 digital inputs (12 shared with quadrature).

Encoders
The encoder pins and parameters conform to the ‘canonical encoder’ interface described in the HAL man-
ual. It operates in ‘x4 mode’.

The sample rate of the encoder is 40MHz. The maximum number quadrature rate is 8191 counts per Lin-
uxCNC servo cycle. For correct handling of the index pulse, the number of encoder counts per revolution
must be less than 8191.

PWM
The PWM pins and parameters conform to the ‘canonical analog output’ interface described in the HAL
manual. The output pins are ‘up/down’ or ‘pwm/dir’ pins as described in the documentation of the ‘pwm-
gen’ component.

Internally the PWM generator is based on a 12-bit, 40MHz counter, giving 4095 duty cycles from -100% to

+100% and a frequency of approximately 19.5kHz. In PDM mode, the duty periods are approximately
100ns long.

Digital 1/O
The digital output pins conform to the ‘canonical digital output’ interface described in the HAL manual.

The digital input pins conform to the ‘canonical digital input’ interface described in the HAL manual.

428 2020-09-04 LinuxCNC Documentation

PLUTO_SERVO(9)

FUNCTIONS

HAL Component

pluto-servo.read (requires a floating-point thread)
Read all the inputs from the pluto-servo board

pluto-servo.write (requires a floating-point thread)
Write all the outputs on the pluto-servo board

PINS

pluto-servo.encoder.M.count s32 out (M=0..3)
pluto-servo.encoder.M.position float out (M=0..3)
pluto-servo.encoder.M.velocity float out (M=0..3)
pluto-servo.encoder.M.reset bit in (M=0..3)
pluto-servo.encoder.M.index-enable bit io (M=0..3)
encoder.M corresponds to the pins labeled QAM, QBM, and QZM on the pinout diagram

pluto-servo.pwm.M.value float in (M=0..3)

pluto-servo.pwm.M.enable bit in (M=0..3)
pwm.M corresponds to the pins labeled UPM and DNM on the pinout diagram

pluto-servo.dout.MM bit in (MM=00..19)

PLUTO_SERVO(9)

dout.OM corresponds to the pin labeled OUTM on the pinout diagram. Other pins are shared with
the PWM function, as follows:

Pin
Label
dout.10
dout.10
dout.12
dout.14
dout.18
dout.11
dout.13
dout.15
dout.19

pluto-servo.din.MM bit out (MM=00..19)

Shared
with
UPO
UPO
UP1
UpP2
UP3
DOWNO
DOWNI1
DOWN2
DOWN3

pluto-servo.din.MM-not bit out (MM=00..19)
For M=0 through 7, din.OM corresponds to the pin labeled INM on the pinout diagram. Other pins

are shared with the encoder function, as follows:

Pin
Label
din.8
din.9
din.10
din.11
din.12
din.13
din.14
din.15
din.16

LinuxCNC Documentation

Shared
with
QZ0
QZ1
QZ2
QZ3
QB0
QB1
QB2
QB3
QA0

2020-09-04

429

PLUTO_SERVO(9) HAL Component PLUTO_SERVO(9)

din.17 QAl
din.18 QA2
din.19 QA3
PARAMETERS

pluto-servo.encoder.M.scale float rw (M=0..3) (default: /)
pluto-servo.encoder.z-polarity bit rw
Set to TRUE if the index pulse is active low, FALSE if it is active high. Affects all encoders.

pluto-servo.pwm.M.offset float rw (M=0..3)
pluto-servo.pwm.M.scale float rw (M=0..3) (default: /)
pluto-servo.pwm.M.max-dc float rw (M=0..3) (default: /)
pluto-servo.pwm.M.min-dc float rw (M=0..3) (default: 0)
pluto-servo.pwm.M.pwmdir bit rw (M=0..3) (default: 0)

Set to TRUE use PWM-+direction mode. Set to FALSE to use Up/Down mode.

pluto-servo.pwm.is-pdm bit rw
Set to TRUE to use PDM (also called interleaved PWM) mode. Set to FALSE to use traditional
PWM mode. Affects all PWM outputs.

pluto-servo.dout.MM-invert bit rw (MM=00..19)
If TRUE, the output on the corresponding dout.MM is inverted.

pluto-servo.communication-error u32 rw
Incremented each time pluto-servo.read detects an error code in the EPP status register. While this
register is nonzero, new values are not being written to the Pluto-P board, and the status of digital
outputs and the PWM duty cycle of the PWM outputs will remain unchanged. If the watchdog is
enabled, it will activate soon after the communication error is detected. To continue after a com-
munication error, set this parameter back to zero.

pluto-servo.debug-0 s32 rw

pluto-servo.debug-1 s32 rw
These parameters can display values which are useful to developers or for debugging the driver
and firmware. They are not useful for integrators or users.

SEE ALSO

The pluto_servo section in the HAL User Manual, which shows the location of each physical pin on the
pluto board.

LICENSE

430

GPL

2020-09-04 LinuxCNC Documentation

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

NAME
pluto_step — Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with stepper ma-
chines.

SYNOPSIS
loadrt pluto_step ioaddr=addr ioaddr_hi=addr epp_wide=[0|1]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode. 0 means to use ioaddr +
0x400. -1 means there is no secondary address.

epp_wide [default: 1]
Set to zero to disable "wide EPP mode". "Wide" mode allows 16- and 32-bit EPP transfers,
which can reduce the time spent in the read and write functions. However, this mode may not
work on all EPP parallel ports.

watchdog [default: 1]
Set to zero to disable the "hardware watchdog". "Watchdog" will tristate all outputs approxi-
mately 6ms after the last execution of pluto-step.write, which adds some protection in the
case of LinuxCNC crashes.

speedrange [default: 0]
Selects one of four speed ranges:
0: Top speed 312.5kHz; minimum speed 610Hz
1: Top speed 156.25kHz; minimum speed 305Hz
2: Top speed 78.125kHz; minimum speed 153Hz
3: Top speed 39.06kHz; minimum speed 76Hz
Choosing the smallest maximum speed that is above the maximum for any one axis may give
improved step regularity at low step speeds.

DESCRIPTION
Pluto_step is a LinuxCNC software driver and associated firmware that allow the Pluto-P board to be used
to control a stepper-based CNC machine.

The driver has 4 step+direction channels, 14 dedicated digital outputs, and 16 dedicated digital inputs.

Step generators
The step generator takes a position input and output.

The step waveform includes step length/space and direction hold/setup time. Step length and direction
setup/hold time is enforced in the FPGA. Step space is enforced by a velocity cap in the driver.

(all the following numbers are subject to change) In speedrange=0, the maximum step rate is 312.5kHz.
For position feedback to be accurate, the maximum step rate is 512 pulses per servo cycle (so a 1kHz servo
cycle does not impose any additional limitation). The maximum step rate may be lowered by the step
length and space parameters, which are rounded up to the nearest multiple of 1600ns.

In successive speedranges the maximum step rate is divided in half, as is the maximum steps per servo cy-
cle, and the minimum nonzero step rate.

LinuxCNC Documentation 2020-09-04 431

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

Digital /O

The digital output pins conform to the ‘canonical digital output’ interface described in the HAL manual.

The digital input pins conform to the ‘canonical digital input’ interface described in the HAL manual.

FUNCTIONS

PINS

pluto-step.read (requires a floating-point thread)
Read all the inputs from the pluto-step board

pluto-step.write (requires a floating-point thread)
Write all the outputs on the pluto-step board

pluto-step.stepgen.M.position-cmd float in (M=0..3)
pluto-step.stepgen.M.velocity-fb float out (M=0..3)
pluto-step.stepgen.M.position-fb float out (M=0..3)
pluto-step.stepgen.M.counts s32 out (M=0..3)
pluto-step.stepgen.}M.enable bit in (M=0..3)
pluto-step.stepgen.M.reset bit in (M=0..3)

When TRUE, reset position-fb to 0

pluto-step.dout.;MM bit in (MM=00..13)
dout.MM corresponds to the pin labeled OUTM on the pinout diagram.

pluto-step.din.MM bit out (MM=00..15)
pluto-step.din.MM-not bit out (MM=00..15)
din.MM corresponds to the pin labeled INM on the pinout diagram.

PARAMETERS

pluto-step.stepgen.M.scale float rw (M=0..3) (default: 7.0)
pluto-step.stepgen.;M.maxvel float rw (M=0..3) (default: 0)
pluto-step.stepgen.step-polarity bit rw
pluto-step.stepgen.steplen u32 rw

Step length in ns.

pluto-step.stepgen.stepspace u32 rw
Step space in ns

pluto-step.stepgen.dirtime u32 rw
Dir hold/setup in ns. Refer to the pdf documentation for a diagram of what these timings mean.

pluto-step.dout.MM-invert bit rw (MM=00..13)
If TRUE, the output on the corresponding dout.MM is inverted.

pluto-step.communication-error u32 rw
Incremented each time pluto-step.read detects an error code in the EPP status register. While this
register is nonzero, new values are not being written to the Pluto-P board, and the status of digital
outputs and the PWM duty cycle of the PWM outputs will remain unchanged. If the hardware
watchdog is enabled, it will activate shortly after the communication error is detected by Linux-
CNC. To continue after a communication error, set this parameter back to zero.

pluto-step.debug-0 s32 rw
pluto-step.debug-1 s32 rw
pluto-step.debug-2 float rw (default: .5)
pluto-step.debug-3 float rw (default: 2.0)
Registers that hold debugging information of interest to developers

SEE ALSO

432

The pluto_step section in the HAL User Manual, which shows the location of each physical pin on the
pluto board.

2020-09-04 LinuxCNC Documentation

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 433

PWMGEN(9) HAL Component PWMGEN(9)

NAME
pwmgen — software PWM/PDM generation

SYNOPSIS
loadrt pwmgen output_type=rypeO[,typel...]

DESCRIPTION
pwmgen is used to generate PWM (pulse width modulation) or PDM (pulse density modulation) signals.
The maximum PWM frequency and the resolution is quite limited compared to hardware-based approaches,
but in many cases software PWM can be very useful. If better performance is needed, a hardware PWM
generator is a better choice.

pwmgen supports a maximum of eight channels. The number of channels actually loaded depends on the
number of fype values given. The value of each fype determines the outputs for that channel.

type O: single output
A single output pin, pwm, whose duty cycle is determined by the input value for positive inputs,
and which is off (or at min—dc) for negative inputs. Suitable for single ended circuits.

type 1: pwm/direction
Two output pins, pwm and dir. The duty cycle on pwm varies as a function of the input value.
dir is low for positive inputs and high for negative inputs.

type 2: up/down
Two output pins, up and down. For positive inputs, the PWM/PDM waveform appears on up,
while down is low. For negative inputs, the waveform appears on down, while up is low. Suitable
for driving the two sides of an H-bridge to generate a bipolar output.

FUNCTIONS
pwmgen.make—pulses (no floating-point)
Generates the actual PWM waveforms, using information computed by update. Must be called as
frequently as possible, to maximize the attainable PWM frequency and resolution, and minimize
jitter. Operates on all channels at once.

pwmgen.update (uses floating point)
Accepts an input value, performs scaling and limit checks, and converts it into a form usable by
make—pulses for PWM/PDM generation. Can (and should) be called less frequently than
make—pulses. Operates on all channels at once.

PINS
pwmgen.N.enable bit in
Enables PWM generator N - when false, all pwmgen.N output pins are low.

pwmgen.N.value float in
Commanded value. When value = 0.0, duty cycle is 0%, and when value = *scale, duty cycle is
100%. (Subject to min—dc and max—dc limitations.)

pwmgen.N.pwm bit out (output types 0 and 1 only)
PWM/PDM waveform.

pwmgen.N.dir bit out (output type 1 only)
Direction output: low for forward, high for reverse.

pwmgen.N.up bit out (output type 2 only)
PWM/PDM waveform for positive input values, low for negative inputs.

pwmgen.N.down bit out (output type 2 only)
PWM/PDM waveform for negative input values, low for positive inputs.

434 2007-01-16 LinuxCNC Documentation

PWMGEN(9) HAL Component PWMGEN(9)

pwmgen.N.curr—dc float out
The current duty cycle, after all scaling and limits have been applied. Range is from —1.0 to +1.0.

pwmgen.N.max—dc float in/out
The maximum duty cycle. A value of 1.0 corresponds to 100%. This can be useful when using
transistor drivers with bootstrapped power supplies, since the supply requires some low time to
recharge.

pwmgen.N.min—dc float in/out
The minimum duty cycle. A value of 1.0 corresponds to 100%. Note that when the pwm genera-
tor is disabled, the outputs are constantly low, regardless of the setting of min—dc.

pwmgen.N.scale float in/out

pwmgen.N.offset float in/out
These parameters provide a scale and offset from the value pin to the actual duty cycle. The duty
cycle is calculated according to dc = (value/scale) + offset, with 1.0 meaning 100%.

pwmgen.N.pwm—freq float in/out
PWM frequency in Hz. The upper limit is half of the frequency at which make—pulses is invoked,
and values above that limit will be changed to the limit. If dither—pwm is false, the value will be
changed to the nearest integer submultiple of the make—pulses frequency. A value of zero pro-
duces Pulse Density Modulation instead of Pulse Width Modulation.

pwmgen.N.dither—pwm bit in/out
Because software-generated PWM uses a fairly slow timebase (several to many microseconds), it
has limited resolution. For example, if make—pulses is called at a 20KHz rate, and pwm—freq is
2KHz, there are only 10 possible duty cycles. If dither—pwm is false, the commanded duty cycle
will be rounded to the nearest of those values. Assuming value remains constant, the same output
will repeat every PWM cycle. If dither—pwm is true, the output duty cycle will be dithered be-
tween the two closest values, so that the long-term average is closer to the desired level.
dither—pwm has no effect if pwm—freq is zero (PDM mode), since PDM is an inherently dithered
process.

LinuxCNC Documentation 2007-01-16 435

ROSEKINS(9) Kernel Developer’s Manual ROSEKINS(9)

NAME

rosekins — Kinematics for a rose engine

SYNOPSIS

loadrt rosekins

KINEMATICS
joint_O linear, transverse (perpendicular to spindle)
joint_1 linear, longitudinal (parallel to spindle identity to z)
joint_2 rotary, spindle =~ (workholding, not tool holding, e.g.
not a highspeed spindle)

PINS
rosekins.revolutions float out
Count of crossings of the negative X axis. Clockwise crossings increment revolutions by 1, Coun-
terclockwise crossings decrement by 1

rosekins.theta_degrees float out
Principal value for arctan(Y/X)

rosekins.bigtheta_degrees float out
Accumulated angle (theta + revolutions * 360)

NOTES
Theta is the principal value of arctan(Y/X). Joint_2 angle values are not limited to principal values of arc-
tan(Y/X) but accumulate continuously as the spindle is rotated. Hal pins are provided for the principal
value and a count of the number of revolutions.

The transverse motion is exactly perpendicular to the spindle. In a traditional rose engine, the transverse

motion is created by ‘rocking” the headstock about a pivot. A typical pivot length combined with the lim-
ited amount of X travel in a real machine make the perpendicular approximation a reasonable model.

436 LinuxCNC Documentation Kinematics Component

SAMPLE_HOLD(9) HAL Component
NAME

sample_hold — Sample and Hold
SYNOPSIS

loadrt sample_hold [count=N|names=nameI[,name?2...]]
FUNCTIONS

sample-hold.N

PINS
sample-hold.N.in s32 in
sample-hold.N.hold bit in
sample-hold.N.out s32 out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

SAMPLE_HOLD(9)

437

SAMPLER(9) HAL User’s Manual SAMPLER(9)

NAME

sampler — sample data from HAL in real time

SYNOPSIS
loadrt sampler depth=depthli[,depth2...] cfg=stringl[,string2...]

DESCRIPTION

sampler and halsampler(1) are used together to sample HAL data in real time and store it in a file. sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then be-
gins sampling data from the HAL and storing it to the FIFO. halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS

depth=depthl[,depth2...]
sets the depth of the realtime->user FIFO that sampler creates to buffer the realtime data. Multi-
ple values of depth (separated by commas) can be specified if you need more than one FIFO (for
example if you want to sample data from two different realtime threads).

cfg=stringl/[,string2...]
defines the set of HAL pins that sampler exports and later samples data from. One string must be
supplied for each FIFO, separated by commas. sampler exports one pin for each character in
string. Legal characters are:

F, f (float pin)
B, b (bit pin)
S, s (s32 pin)
U, u (u32 pin)

FUNCTIONS
sampler.N
One function is created per FIFO, numbered from zero.

PINS
sampler.N.pin.M input
Pin for the data that will wind up in column M of FIFO N (and in column M of the output file).

The pin type depends on the config string.

sampler.N.curr—depth s32 output
Current number of samples in the FIFO. When this reaches depth new data will begin overwriting
old data, and some samples will be lost.

sampler.N.full bit output
TRUE when the FIFO N is full, FALSE when there is room for another sample.

sampler.N.enable bit input
When TRUE, samples are captured and placed in FIFO N, when FALSE, no samples are acquired.
Defaults to TRUE.

PARAMETERS
sampler.N.overruns s32 read/write
The number of times that sampler has tried to write data to the HAL pins but found no room in

the FIFO. It increments whenever full is true, and can be reset by the setp command.

438 2006-11-18 LinuxCNC Documentation

SAMPLER(9) HAL User’s Manual SAMPLER(9)

sampler.N.sample—num s32 read/write
A number that identifies the sample. It is automatically incremented for each sample, and can be
reset using the setp command. The sample number can optionally be printed in the first column of
the output from halsampler, using the —¢ option. (see man 1 halsampler)

SEE ALSO

halsampler(1) streamer(9) halstreamer(1)

HISTORY

BUGS

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-11-18 439

SCALE(9) HAL Component SCALE(9)

NAME

scale — LinuxCNC HAL component that applies a scale and offset to its input
SYNOPSIS

loadrt scale [count=N|names=namel[,name?2...1]
FUNCTIONS

scale.N (requires a floating-point thread)

PINS
scale.N.in float in
scale.N.gain float in
scale.N.offset float in
scale.N.out float out
out =in * gain + offset
LICENSE

GPL

440 2020-09-04 LinuxCNC Documentation

SELECTS8(9) HAL Component SELECTS8(9)

NAME

select8 — 8-bit binary match detector

SYNOPSIS

loadrt select8 [count=N|names=name[,name?...]]

FUNCTIONS
select8.NV

PINS
select8.N.enable bit in (default: TRUE)
Set enable to FALSE to cause all outputs to be set FALSE

select8.N.sel s32 in
The number of the output to set TRUE. All other outputs well be set FALSE

select8.N.outM bit out (M=0..7)
Output bits. If enable is set and the sel input is between 0 and 7, then the corresponding output bit
will be set true

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 441

SERPORT(9) HAL Component SERPORT(9)

NAME

serport — Hardware driver for the digital I/O bits of the 8250 and 16550 serial port.

SYNOPSIS

loadrt serport io=addr[,addr... |

The pin numbers refer to the 9-pin serial pinout. Keep in mind that these ports generally use rs232 volt-
ages, not 0/5V signals.

Specify the I/O address of the serial ports using the module parameter io=addr/,addr...]. These ports must
not be in use by the kernel. To free up the I/O ports after bootup, install setserial and execute a command
like:

sudo setserial /dev/ttyS0O uart none
but it is best to ensure that the serial port is never used or configured by the Linux kernel by setting a kernel
commandline parameter or not loading the serial kernel module if it is a modularized driver.

FUNCTIONS
serport.N.read
serport.N.write

PINS

serport.N.pin-1-in bit out

Also called DCD (data carrier detect); pin 8 on the 25-pin serial pinout
serport.N.pin-6-in bit out

Also called DSR (data set ready); pin 6 on the 25-pin serial pinout
serport.N.pin-8-in bit out

Also called CTS (clear to send); pin 5 on the 25-pin serial pinout
serport.N.pin-9-in bit out

Also called RI (ring indicator); pin 22 on the 25-pin serial pinout
serport.N.pin-1-in-not bit out

Inverted version of pin-1-in
serport.N.pin-6-in-not bit out

Inverted version of pin-6-in
serport.N.pin-8-in-not bit out

Inverted version of pin-8-in
serport.N.pin-9-in-not bit out

Inverted version of pin-9-in
serport.N.pin-3-out bit in

Also called TX (transmit data); pin 2 on the 25-pin serial pinout
serport.N.pin-4-out bit in

Also called DTR (data terminal ready); pin 20 on the 25-pin serial pinout
serport.N.pin-7-out bit in

Also called RTS (request to send); pin 4 on the 25-pin serial pinout

PARAMETERS

442

serport.N.pin-3-out-invert bit rw
serport.N.pin-4-out-invert bit rw
serport.N.pin-7-out-invert bit rw

2020-09-04 LinuxCNC Documentation

SERPORT(9) HAL Component SERPORT(9)

serport.N.ioaddr u32 r

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 443

SETSERIAL(9) HAL Component SETSERIAL(9)

NAME

setsserial - a utility for setting Smart Serial NVRAM parameters.

NOTE: This rather clunky utility is no longer needed except for flashing new smart-serial remote
firmware. Smart-serial remote parameters can now be set in the HAL file in the normal way.

SYNOPSIS

loadrt setsserial cmd="'"set hm2_8i20.001f.nvmaxcurrent 750"

FUNCTIONS

None

PINS

None

USAGE

loadrt setsserial cmd="{command} {parameter/device} {value/filename}"

Commands available are set and flash.

This utility should be used under halcmd, without LinuxCNC running or any realtime threads running.
A typical command sequence would be:

halrun

loadrt hostmot2 use_serial _numbers=1

loadrt hm2_pci config="firmware=hm?2/5123/svss8_8.bit"
show param

loadrt setsserial cmd="set hm2_8i20.001f.nvmaxcurrent 750"
exit

This example uses the option to have the hal pins and parameters labelled by the serial number of the re-
mote. This is not necessary but can reduce the scope for confusion. (The serial number is normally on a
sticker on the device.)

The next line loads the hm2_pci driver in the normal way. The hm2_7i43 driver should work equally well,
as should any future 7i80 driver. If the card has already been strted up and a firmware has been loaded,
then the config string may be omitted.

"show param" is optional, but provides a handy list of all the devices and parameters. It also shows the cur-
rent values of the parameters which can be useful for determining scaling. u32 pin values are always shown
in hex, but new values can be entered in decimal or hex. Use the Ox123ABC format to enter a hex value.

The next line invokes setsserial. This is run in a slightly strange way in order to have kernel-level access to
a live Hostmot?2 config. It is basically a HAL module that always fails to load. This may lead to error mes-
sages being printed to the halcmd prompt. These can often be ignored. All the real feedback is via the
dmesg command. It is suggested to have a second terminal window open to run dmesg after each command.

On exiting there will typically be a further error message related to the driver failing to unload setsserial.
This can be ignored.

The parameter changes will not show up until the drivers are reloaded. /TODO// Add a "get" command to
avoid this problem.

Flashing Firmware To flash new firmware to an FPGA card such as the 5i25 or 5i20 the "mesaflash" util-
ity should be used. Setsserial is only useful for changing/updating the firmare on smart-serial remote such

444 2012-10-28 LinuxCNC Documentation

SETSERIAL(9) HAL Component SETSERIAL(9)

as the 8i20. The firmware should be placed somewhere in the /lib/firmware/hm?2 tree, where the Linux
firmware loading macros can find it.

The flashing routine operates in a realtime thread, and can only send prompts to the user through the kernel
log (dmesg). It is most convenient to open two terminal windows, one for command entry and one to moni-
tor progress.

In the first terminal enter

tail —f /var/log/kern.log

This terminal will now display status information.

The second window will be used to enter the commands. It is important that LinuxCNC and/or HAL are not
already loaded when the process is started. To flash new firmware it is necessary to move a jumper on the
smart-serial remote drive and to switch smart-serial communication to a slower baudrate.

A typical command sequence is then

halrun

loadrt hostmot?2 sserial_baudrate=115200

loadrt hm2_pci config="firmware=hm?2/5i123/svss8_8.bit"

loadrt setsserial cmd="flash hm2_5i23.0.8120.0.1 hm2/8i20/8120T.BIN"

exit

It is not necessary (or useful) to specify a config string in a system using the 5i25 or 6i25 cards.

Note that it is necessary to exit halrun and unload the realtime environment before flashing the next card
(exit)

The correct sserial channel name to use can be seen in the dmesg output in the feedback terminal after the
loadrt hm2_pci step of the sequence.

LICENSE
GPL

LinuxCNC Documentation 2012-10-28 445

SIGGEN(9) HAL Component SIGGEN(9)

NAME

siggen — signal generator

SYNOPSIS

loadrt siggen [num_chan=num | names=nameI[,name2...1]

DESCRIPTION

siggen is a signal generator that can be used for testing and other applications that need simple waveforms.
It produces sine, cosine, triangle, sawtooth, and square waves of variable frequency, amplitude, and offset,
which can be used as inputs to other HAL components.

siggen supports a maximum of sixteen channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

NAMING

The names for pins, parameters, and functions are prefixed as:
siggen.N. for N=0,1,...,num—1 when using num_chan=num
nameN. for nameN=namel,name2,... when using names=namel,name2,...

The siggen.N. format is shown in the following descriptions.

FUNCTIONS

PINS

446

siggen.N.update (uses floating-point)
Updates output pins for signal generator N. Each time it is called it calculates a new sample. It
should be called many times faster than the desired signal frequency, to avoid distortion and alias-
ing.

siggen.N.frequency float in
The output frequency for signal generator N, in Hertz. The default value is 1.0 Hertz.

siggen.N.amplitude float in
The output amplitude for signal generator N. If offset is zero, the outputs will swing from —am-
plitude to +amplitude. The default value is 1.00.

siggen.N.offset float in
The output offset for signal generator N. This value is added directly to the output signal. The de-
fault value is zero.

siggen.N.reset bit in
Resets output pins to pretermined states:
sine 0
sawtooth 0
square -1 * amplitude
cosine -1 * amplitude
triangle -1 * amplitude

2007-01-16 LinuxCNC Documentation

SIGGEN(9) HAL Component SIGGEN(9)

siggen.N.clock bit out
The clock output. Bit type clock signal output at the commanded frequency.

siggen.N.square float out
The square wave output. Positive while triangle and cosine are ramping upwards, and while sine
is negative.

siggen.N.sine float out
The sine output. Lags cosine by 90 degrees.

siggen.N.cosine float out
The cosine output. Leads sine by 90 degrees.

siggen.N.triangle float out
The triangle wave output. Ramps up while square is positive, and down while square is negative.
Reaches its positive and negative peaks at the same time as cosine.

siggen.N.sawtooth float out
The sawtooth output. Ramps upwards to its positive peak, then instantly drops to its negative peak
and starts ramping again. The drop occurs when triangle and cosine are at their positive peaks,
and coincides with the falling edge of square.

PARAMETERS

None

LinuxCNC Documentation 2007-01-16 447

SIM_AXIS_HARDWARE(9) HAL Component SIM_AXIS_HARDWARE(9)

NAME

sim_axis_hardware — A component to simulate home and limit switches
SYNOPSIS

loadrt sim_axis_hardware [count=N|names=nameI[,name?2...]]
DESCRIPTION

This component creates simulated home and limit switches based on the current position.
It currently can supply simulation for X,Y,Z,U,V and A axes.

FUNCTIONS

sim-axis-hardware.N.update (requires a floating-point thread)

PINS
sim-axis-hardware.N.Xcurrent-pos float in
The current position on the axis - eg connect to joint.0.motor-pos-fb

sim-axis-hardware.N.Y current-pos float in

sim-axis-hardware.N.Zcurrent-pos float in

sim-axis-hardware.N.Acurrent-pos float in

sim-axis-hardware.N.Ucurrent-pos float in

sim-axis-hardware.N.V current-pos float in

sim-axis-hardware.N.Xhomesw-pos float in (default: /)
The position of the home switch

sim-axis-hardware.N.Yhomesw-pos float in (default: /)
sim-axis-hardware.N.Zhomesw-pos float in (default: 7)
sim-axis-hardware.N.Ahomesw-pos float in (default: /)
sim-axis-hardware.N.Uhomesw-pos float in (default: /)
sim-axis-hardware.N.Vhomesw-pos float in (default: /)
sim-axis-hardware.N.Xmaxsw-upper float in

The upper range of the maximum limit switch, above this is false.

sim-axis-hardware.N.Ymaxsw-upper float in
sim-axis-hardware.N.Zmaxsw-upper float in
sim-axis-hardware.N.Amaxsw-upper float in
sim-axis-hardware.N.Umaxsw-upper float in
sim-axis-hardware.N.Vmaxsw-upper float in
sim-axis-hardware.N.Xmaxsw-lower float in

The lower range of the maximum limit switch, below this is false.

sim-axis-hardware.N.Ymaxsw-lower float in
sim-axis-hardware.N.Zmaxsw-lower float in
sim-axis-hardware.N.Amaxsw-lower float in
sim-axis-hardware.N.Umaxsw-lower float in
sim-axis-hardware.N.Vmaxsw-lower float in
sim-axis-hardware.N.Xminsw-upper float in

The upper range of the minimum limit switch, above this is false.

sim-axis-hardware.N.Yminsw-upper float in
sim-axis-hardware.N.Zminsw-upper float in
sim-axis-hardware.N.Aminsw-upper float in
sim-axis-hardware.N.Uminsw-upper float in
sim-axis-hardware.N.Vminsw-upper float in
sim-axis-hardware.N.Xminsw-lower float in

The lower range of the minimum limit switch, below this is false.

448 2020-09-04 LinuxCNC Documentation

SIM_AXIS_HARDWARE(9) HAL Component SIM_AXIS_HARDWARE(9)

sim-axis-hardware.N.Yminsw-lower float in
sim-axis-hardware.N.Zminsw-lower float in
sim-axis-hardware.N.Aminsw-lower float in
sim-axis-hardware.N.Uminsw-lower float in
sim-axis-hardware.N.Vminsw-lower float in
sim-axis-hardware.N.Xhomesw-hyst float in (default: .02)

range that home switch will be true +- half this to the home position

sim-axis-hardware.N.Yhomesw-hyst float in (default: .02)
sim-axis-hardware.N.Zhomesw-hyst float in (default: .02)
sim-axis-hardware.N.Ahomesw-hyst float in (default: .02)
sim-axis-hardware.N.Uhomesw-hyst float in (default: .02)
sim-axis-hardware.N.Vhomesw-hyst float in (default: .02)
sim-axis-hardware.N.Xhomesw-out bit out

Home switch for the X axis

sim-axis-hardware.N.Yhomesw-out bit out
sim-axis-hardware.N.Zhomesw-out bit out
sim-axis-hardware.N.Ahomesw-out bit out
sim-axis-hardware.N.Uhomesw-out bit out
sim-axis-hardware.N.Vhomesw-out bit out
sim-axis-hardware.N.homesw-all bit out
sim-axis-hardware.N.Xmaxsw-out bit out
Max limit switch

sim-axis-hardware.N.Xminsw-out bit out
min limit switch

sim-axis-hardware.N.Xbothsw-out bit out
True for both max and min limit switch

sim-axis-hardware.N.Ymaxsw-out bit out
sim-axis-hardware.N.Yminsw-out bit out
sim-axis-hardware.N.Ybothsw-out bit out
sim-axis-hardware.N.Zmaxsw-out bit out
sim-axis-hardware.N.Zminsw-out bit out
sim-axis-hardware.N.Zbothsw-out bit out
sim-axis-hardware.N.Amaxsw-out bit out
sim-axis-hardware.N.Aminsw-out bit out
sim-axis-hardware.N.Abothsw-out bit out
sim-axis-hardware.N.Umaxsw-out bit out
sim-axis-hardware.N.Uminsw-out bit out
sim-axis-hardware.N.Ubothsw-out bit out
sim-axis-hardware.N.Vmaxsw-out bit out
sim-axis-hardware.N.Vminsw-out bit out
sim-axis-hardware.N.Vbothsw-out bit out
sim-axis-hardware.N.limitsw-all bit out
sim-axis-hardware.N.limitsw-homesw-all bit out
True for all limits and all home.

sim-axis-hardware.N.Xmaxsw-homesw-out bit out
sim-axis-hardware.N.Xminsw-homesw-out bit out
sim-axis-hardware.N.Xbothsw-homesw-out bit out
sim-axis-hardware.N.Ymaxsw-homesw-out bit out
sim-axis-hardware.N.Yminsw-homesw-out bit out
sim-axis-hardware.N.Ybothsw-homesw-out bit out

LinuxCNC Documentation 2020-09-04 449

SIM_AXIS_HARDWARE(9)

sim-axis-hardware.N.Zmaxsw-homesw-out bit out
sim-axis-hardware.N.Zminsw-homesw-out bit out
sim-axis-hardware.N.Zbothsw-homesw-out bit out
sim-axis-hardware.N.Amaxsw-homesw-out bit out
sim-axis-hardware.N.Aminsw-homesw-out bit out
sim-axis-hardware.N.Abothsw-homesw-out bit out
sim-axis-hardware.N.Umaxsw-homesw-out bit out
sim-axis-hardware.N.Uminsw-homesw-out bit out
sim-axis-hardware.N.Ubothsw-homesw-out bit out
sim-axis-hardware.N.Vmaxsw-homesw-out bit out
sim-axis-hardware.N.Vminsw-homesw-out bit out
sim-axis-hardware.N.Vbothsw-homesw-out bit out

sim-axis-hardware.N.limit-offset float in (default: .01)

HAL Component

SIM_AXIS_HARDWARE(9)

how much the limit switches are offset from inputed position. added to max, subracted from min

AUTHOR

Chris Morley

LICENSE

450

GPL

2020-09-04

LinuxCNC Documentation

SIM_ENCODER(9) HAL Component SIM_ENCODER(9)

NAME

sim_encoder — simulated quadrature encoder

SYNOPSIS

loadrt sim_encoder [num_chan=num | names=name[,name2...1]

DESCRIPTION
sim_encoder can generate quadrature signals as if from an encoder. It also generates an index pulse once
per revolution. It is mostly used for testing and simulation, to replace hardware that may not be available.
It has a limited maximum frequency, as do all software based pulse generators.

sim_encoder supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan= argument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

The num_chan= and names= specifiers are mutually exclusive. If neither num_chan= nor names= are
specified, the default value is one.

FUNCTIONS
sim—encoder.make—pulses (no floating-point)
Generates the actual quadrature and index pulses. Must be called as frequently as possible, to
maximize the count rate and minimize jitter. Operates on all channels at once.

sim—encoder.update—speed (uses floating-point)
Reads the speed command and other parameters and converts the data into a form that can be used
by make—pulses. Changes take effect only when update—speed runs. Can (and should) be called
less frequently than make—pulses. Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as:
sim—encoder.N. for N=0,1,...,num-1 when using num_chan=num
nameN. for nameN=namel,name?2,... when using names=namel,name2,...

The sim—encoder.N. format is shown in the following descriptions.

PINS
sim—encoder.N.phase—A bit out
One of the quadrature outputs.

sim—encoder.N.phase-B bit out
The other quadrature output.

sim—encoder.N.phase—Z bit out
The index pulse.

sim—encoder.N.speed float in
The desired speed of the encoder, in user units per per second. This is divided by scale, and the
result is used as the encoder speed in revolutions per second.

PARAMETERS

LinuxCNC Documentation 2007-01-16 451

SIM_ENCODER(9) HAL Component SIM_ENCODER(9)

sim—encoder.N.ppr u32 rw
The pulses per revolution of the simulated encoder. Note that this is pulses, not counts, per revolu-
tion. Each pulse or cycle from the encoder results in four counts, because every edge is counted.
Default value is 100 ppr, or 400 counts per revolution.

sim—encoder.N.scale float rw
Scale factor for the speed input. The speed value is divided by scale to get the actual encoder
speed in revolutions per second. For example, if scale is set to 60, then speed is in revolutions per
minute (RPM) instead of revolutions per second. The default value is 1.00.

452 2007-01-16 LinuxCNC Documentation

SIM_HOME_SWITCH(9) HAL Component SIM_HOME_SWITCH(9)

NAME

sim_home_switch — Simple home switch simulator
SYNOPSIS

loadrt sim_home_switch [count=N|names=nameI[,name?2...1]
DESCRIPTION

After tripping home switch, travel in opposite direction is required (amount set by the hysteresis pin)

FUNCTIONS

sim-home-switch.N (requires a floating-point thread)

PINS
sim-home-switch.N.cur-pos float in
Current position (typically: joint.n.motor-pos-fb)

sim-home-switch.N.home-pos float in (default: 7)
Home switch position

sim-home-switch./N.hysteresis float in (default: 0.1)
Travel required to backoff (hysteresis)

sim-home-switch.N.home-sw bit out
Home switch activated

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 453

SIM_MATRIX_KB(9) HAL Component SIM_MATRIX_KB(9)

NAME

sim_matrix_kb — convert HAL pin inputs to keycodes

SYNOPSIS

loadrt sim_matrix_kb [count=N|names=nameI[,name2...]]

FUNCTIONS

sim-matrix-kb.N (requires a floating-point thread)

PINS
sim-matrix-kb.N.out u32 out
pin that outputs the Keycode

sim-matrix-kb.N.button.c00.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.cO1.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c02.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c03.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c04.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c05.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c06.rMM bit in (MM=00..07)
array of inputs
sim-matrix-kb.N.button.c07.rMM bit in (MM=00..07)
array of inputs

LICENSE
GPL

454 2020-09-04 LinuxCNC Documentation

SIM_PARPORT(9) HAL Component SIM_PARPORT(9)

NAME

sim_parport — A component to simulate the pins of the hal_parport component

SYNOPSIS

loadrt sim_parport [count=N|names=name[,name?...]]

DESCRIPTION

Sim_parport is used to replace the pins of a real parport without changing any of the pins names in the rest
of the config.
It has pass-through pins (ending in —fake) that allows connecting to other components.

eg pin—02—in will follow pin—-02—-in—fake ’s logic.
pin_O1_out—fake will follow pin_01_out (possibly modified by pin_01_out—invert)

It creates all possible pins of both *in’ and ’out’ options of the hal_parport component.

This allows using other hardware 1/O in place of the parport (without having to change the rest of the con-
fig)

or simulating hardware such as limit switches.

it’s primary use is in Stepconf for building simulated configs.

You must use the names= option to have the right pin names.

eg. names=parport.0,parport.1

The read and write functions pass the logic from pins to fake pins or vice vera

The reset function is a no operation.

FUNCTIONS

PINS

sim-parport.N.read

sim-parport.N.write

sim-parport./N.reset

sim-parport.N.pin-01-out bit in
sim-parport.N.pin-02-out bit in
sim-parport.N.pin-03-out bit in
sim-parport.N.pin-04-out bit in
sim-parport.N.pin-05-out bit in
sim-parport.N.pin-06-out bit in
sim-parport.N.pin-07-out bit in
sim-parport.N.pin-08-out bit in
sim-parport.N.pin-09-out bit in
sim-parport.N.pin-14-out bit in
sim-parport.N.pin-16-out bit in
sim-parport.N.pin-17-out bit in
sim-parport.N.pin-01-out-fake bit out
sim-parport.N.pin-02-out-fake bit out
sim-parport.N.pin-03-out-fake bit out
sim-parport.N.pin-04-out-fake bit out
sim-parport.N.pin-05-out-fake bit out
sim-parport.N.pin-06-out-fake bit out
sim-parport.N.pin-07-out-fake bit out

LinuxCNC Documentation 2020-09-04 455

SIM_PARPORT(9)

sim-parport.N.pin-08-out-fake bit out
sim-parport.N.pin-09-out-fake bit out
sim-parport.N.pin-14-out-fake bit out
sim-parport.N.pin-16-out-fake bit out
sim-parport.N.pin-17-out-fake bit out
sim-parport.N.pin-02-in bit out
sim-parport.N.pin-03-in bit out
sim-parport.N.pin-04-in bit out
sim-parport.N.pin-05-in bit out
sim-parport.N.pin-06-in bit out
sim-parport.N.pin-07-in bit out
sim-parport.N.pin-08-in bit out
sim-parport.N.pin-09-in bit out
sim-parport.N.pin-10-in bit out
sim-parport.N.pin-11-in bit out
sim-parport.N.pin-12-in bit out
sim-parport.N.pin-13-in bit out
sim-parport.N.pin-15-in bit out
sim-parport.N.pin-02-in-fake bit in
sim-parport.N.pin-03-in-fake bit in
sim-parport.N.pin-04-in-fake bit in
sim-parport.N.pin-05-in-fake bit in
sim-parport.N.pin-06-in-fake bit in
sim-parport.N.pin-07-in-fake bit in
sim-parport.N.pin-08-in-fake bit in
sim-parport.N.pin-09-in-fake bit in
sim-parport.N.pin-10-in-fake bit in
sim-parport.N.pin-11-in-fake bit in
sim-parport.N.pin-12-in-fake bit in
sim-parport.N.pin-13-in-fake bit in
sim-parport.N.pin-15-in-fake bit in
sim-parport.N.pin-02-in-not bit out
sim-parport.N.pin-03-in-not bit out
sim-parport.N.pin-04-in-not bit out
sim-parport.N.pin-05-in-not bit out
sim-parport.N.pin-06-in-not bit out
sim-parport.N.pin-07-in-not bit out
sim-parport.N.pin-08-in-not bit out
sim-parport.N.pin-09-in-not bit out
sim-parport.N.pin-10-in-not bit out
sim-parport.N.pin-11-in-not bit out
sim-parport.N.pin-12-in-not bit out
sim-parport.N.pin-13-in-not bit out
sim-parport.N.pin-15-in-not bit out
sim-parport.N.reset-time float in

PARAMETERS

456

sim-parport.N.pin-01-out-invert bit rw
sim-parport.N.pin-02-out-invert bit rw
sim-parport.N.pin-03-out-invert bit rw
sim-parport.N.pin-04-out-invert bit rw
sim-parport.N.pin-05-out-invert bit rw
sim-parport.N.pin-06-out-invert bit rw

HAL Component

2020-09-04

SIM_PARPORT(9)

LinuxCNC Documentation

SIM_PARPORT(9) HAL Component SIM_PARPORT(9)

sim-parport.N.pin-07-out-invert bit rw
sim-parport.N.pin-08-out-invert bit rw
sim-parport.N.pin-09-out-invert bit rw
sim-parport.N.pin-14-out-invert bit rw
sim-parport.N.pin-16-out-invert bit rw
sim-parport.N.pin-17-out-invert bit rw
sim-parport.N.pin-01-out-reset bit rw
sim-parport.N.pin-02-out-reset bit rw
sim-parport.N.pin-03-out-reset bit rw
sim-parport.N.pin-04-out-reset bit rw
sim-parport.N.pin-05-out-reset bit rw
sim-parport.N.pin-06-out-reset bit rw
sim-parport.N.pin-07-out-reset bit rw
sim-parport.N.pin-08-out-reset bit rw
sim-parport.N.pin-09-out-reset bit rw
sim-parport.N.pin-14-out-reset bit rw
sim-parport.N.pin-16-out-reset bit rw
sim-parport.N.pin-17-out-reset bit rw

AUTHOR
Chris Morley

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 457

SIM_SPINDLE(9) HAL Component
NAME

sim_spindle — Simulated spindle with index pulse
SYNOPSIS

loadrt sim_spindle [count=N|names=nameI[,name?2...1]
FUNCTIONS

sim-spindle.N (requires a floating-point thread)

PINS
sim-spindle.N.velocity-cmd float in
Commanded speed

sim-spindle.N.position-fb float out
Feedback position, in revolutions

sim-spindle.N.index-enable bit io
Reset position-fb to 0 at the next full rotation

PARAMETERS
sim-spindle.N.scale float rw (default: 1.0)
factor applied to velocity-cmd.

SIM_SPINDLE(9)

The result of "velocity-cmd * scale’ be in revolutions per second. For example, if velocity-cmd is

in revolutions/minute, scale should be set to 1/60 or 0.016666667.

LICENSE
GPL

458 2020-09-04

LinuxCNC Documentation

SIMPLE_TP(9) HAL Component

NAME

SIMPLE_TP(9)

simple_tp — This component is a single axis simple trajectory planner, same as used for jogging in linux-

cnc.

SYNOPSIS

Used by PNCconf to allow testing of acceleration and velocity values for an axis.

FUNCTIONS

PINS

simple-tp.N.update (requires a floating-point thread)

simple-tp.N.target-pos float in
target position to plan for.

simple-tp.N.maxvel float in
Maximum velocity

simple-tp.N.maxaccel float in
Acceleration rate

simple-tp.N.enable bit in

If disabled, planner sets velocity to zero immediately.

simple-tp.N.current-pos float out
position commanded at this point in time.

simple-tp.N.current-vel float out
velocity commanded at this moment in time.

simple-tp.N.active bit out
if active is true, the planner is requesting movement.

LICENSE

GPL

LinuxCNC Documentation 2020-09-04

459

SPHEREPROBE(@9) HAL Component

NAME

sphereprobe — Probe a pretend hemisphere

SYNOPSIS

loadrt sphereprobe [count=N|names=nameI[,name?2...]]

FUNCTIONS
sphereprobe.N
update probe-out based on inputs

PINS
sphereprobe.N.px s32 in
sphereprobe.N.py s32 in
sphereprobe.N.pz s32 in
rawcounts position from software encoder

sphereprobe.N.cx s32 in
sphereprobe.N.cy s32 in
sphereprobe.N.cz s32 in

Center of sphere in counts

sphereprobe.N.r s32 in
Radius of hemisphere in counts

sphereprobe.N.probe-out bit out

AUTHOR
Jeff Epler

LICENSE
GPL

460 2020-09-04

SPHEREPROBE(9)

LinuxCNC Documentation

SPINDLE(9) HAL Component SPINDLE(9)

NAME

spindle — Control a spindle with different acceleration and deceleration and optional gear change scaling

SYNOPSIS

loadrt spindle [count=N|names=nameI[,name?2...1]

DESCRIPTION
This component will control a spindle with adjustable acceleration and deceleration. It is designed for use
with non-servo spindle drives that have separate fwd/reverse inputs, such as DC drives and inverters. If a
spindle encoder is available it is used to tailor the acceleration and deceleration to the spindle load. If not
the spindle speed is simulated. The component allows for gearboxes with up to 16 gears. Each gear has in-
dividual control of speeds, acceleration, driver gain and direction.

FUNCTIONS
spindle.N (requires a floating-point thread)

PINS
spindle.N.select-gear u32 in
Select a gear. Must be in the range 0 -> number of available gears -1. If you use this, do not use
the select.x input pins.

spindle.N.commanded-speed float in
Commanded spindle speed (in RPM)

spindle.N.actual-speed float in
Actual spindle speed from a spindle encoder (in RPS) If you do not have a spindle encoder set the
simulate_encoder parameter to 1

spindle.N.simulate-encoder bit in
If you do not have an encoder, set this to 1

spindle.N.enable bit in
If FALSE, the spindle is stopped at the gear’s maximum deceleration

spindle.N.spindle-1pf float in
Smooth the spindle-rpm-abs output when at speed. 0 = disabled. Suitable values are probably be-
tween | and 20 depending on how stable your spindle is

spindle.N.spindle-rpm float out
Current spindle speed in RPM.+ve = forward, -ve = reverse. Uses the encoder input if available. If
not, uses a simulated encoder speed.

spindle.N.spindle-rpm-abs float out
Absolute spindle speed in RPM. Useful for spindle speed displays

spindle.N.output float out
Scaled output

spindle.N.current-gear u32 out
Currently selected gear.

spindle.N.at-speed bit out
TRUE when the spindle is at speed

spindle.N.forward bit out
TRUE for forward rotation

spindle.N.reverse bit out
TRUE for reverse rotation. Both forward and reverse are false when the spindle is stopped.

spindle.N.brake bit out
TRUE when decelerating

LinuxCNC Documentation 2020-09-04 461

SPINDLE(9) HAL Component SPINDLE(9)

spindle.N.zero-speed bit out
TRUE when the spindle is stationary

spindle.N.limited bit out
TRUE when the commanded spindle speed is >max or <min.

NOTES
The following pins are created depending the ’gears=" parameter.
One of each pin is created for each gear. If no gears are specified then one gear will be created. For
instance if you have gears=1 on your command line, you will have two scale pins:
spindle.N.scale.0
spindle.N.scale.1

spindle.N.scale.x float in
Scale the output. For multiple gears you would use a different scale for each gear. If you need to
reverse the output for some gears, use a negative scale.

spindle.N.min.x float in
Set the minimum speed allowed (in RPM). The limit output will be TRUE while the commanded
speed is between 0 RPM and the min speed.

spindle.N.max.x float in
Set the maximum speed allowed (in RPM). The limit output will be TRUE while the commanded
speed is above this value

spindle.N.accel.x float in
Set the maximum acceleration. If you do not have a spindle encoder this is in RPM/second. If you
do have an encoder the output is the actual speed plus this value. This way the acceleration can be
dependent on the spindle load.

spindle.N.decel.x float in
Set the minimum deceleration. If you do not have a spindle encoder this is in RPM/second. If you
do have an encoder the output is the actual speed minus this value.

spindle.N.speed-tolerance.x float in
Tolerance for "at-speed’ signal (in RPM). Actual spindle speeds within this amount of the com-
manded speed will cause the at-speed signal to go TRUE.

spindle.N.zero-tolerance.x float in
Tolerance for *zero-speed’ signal (in RPM).

spindle.N.offset.x float in
The output command is offset by this amount (in RPM).

spindle.N.select.x bit in

Selects this gear. If no select inputs are active, gear 0 is selected. If multiple select inputs are active
the highest is selected.

LICENSE
GPL

462 2020-09-04 LinuxCNC Documentation

SPINDLE_MONITOR(9) HAL Component

NAME

spindle_monitor — spindle at-speed and underspeed detection

SYNOPSIS

loadrt spindle_monitor [count=N|names=nameI[,name2...]]

FUNCTIONS

spindle-monitor.N (requires a floating-point thread)

PINS
spindle-monitor.N.spindle-is-on bit in
spindle-monitor.N.spindle-command float in
spindle-monitor.N.spindle-feedback float in
spindle-monitor.N.spindle-at-speed bit out
spindle-monitor.N.spindle-underspeed bit out

PARAMETERS
spindle-monitor.N.level u32 rw
state machine state

spindle-monitor.N.threshold float rw

LICENSE
gpl v2 or higher

LinuxCNC Documentation 2020-09-04

SPINDLE_MONITOR(9)

463

SSERIAL(9) HAL Component SSERIAL(9)

NAME

hostmot2 - Smart Serial LinuxCNC HAL driver for the Mesa Electronics HostMot2 Smart-Serial remote
cards

SYNOPSIS

PORTS

464

The Mesa Smart-Serial interface is a 2.5Mbs proprietary interface between the Mesa Anything-IO cards
and a range of subsidiary devices termed "smart-serial remotes". The remote cards perform a variety of
functions, but typically they combine various classes of IO. The remot cards are self-configuring, in that
they tell the main LinuxCNC Hostmot2 driver what their pin functions are and what they should be named.

Many sserial remotes offer different pinouts depending on the mode they are started up in. This is set using
the sserial_port_N= option in the hm2_pci modparam. See the hostmot2 manpage for further details.

It is likely that this documentation will be permanently out of date.

Each Anything-10 board can attach up to 8 sserial remotes to each header (either the 5-pin headers on the
5120/5122/5123/7143 or the 25-pin connectors on the 5i25, 6i25 and 7i80). The remotes are grouped into
"ports" of up to 8 "channels". Typically each header will be a single 8 channel port, but this is not necessar-
ily always the case.

In addition to the per-channel/device pins detailed below there are three per-port pins and three parameters.
Pins:

(bit, in) .sserial.port—N.run: Enables the specific Smart Serial module. Setting this pin low will disable all
boards on the port and puts the port in a pass-through mode where device parameter setting is possible. It is
necessary to toggle the state of this pin if there is a requirement to alter a remote parameter on a live sys-
tem. This pin defaults to TRUE and can be left unconnected. However, toggling the pin low-to-high will
re-enable a faulted drive so the pin could usefully be connected to the iocontrol.0.user—enable—out pin.

(u32, ro) .run_state: Shows the state of the sserial communications state-machine. This pin will generally
show a value of 0x03 in normal operation, 0x07 in setup mode and 0x00 when the "run" pin is false.

(u32, ro) .error—count: Indicates the state of the Smart Serial error handler, see the parameters sections for
more details.

Parameters:

(u32 r/w) .fault—inc: Any over-run or handshaking error in the SmartSerial communications will increment
the .fault—count pin by the amount specified by this parameter. Default = 10.

(u32 r/w) .fault—dec: Every successful read/write cycle decrements the fault counter by this amount. De-
fault=1.

(u32 r/w) .fault—lim: When the fault counter reaches this threshold the Smart Serial interface on the corre-
sponding port will be stopped and an error printed in dmesg. Together these three pins allow for control
over the degree of fault- tolerance allowed in the interface. The default values mean that if more than one
transaction in ten fails, more than 20 times, then a hard error will be raised. If the increment were to be set
to zero then no error would ever be raised, and the system would carry on regardless. Conversely setting
decrement to zero, threshold to 1 and limit to 1 means that absolutely no errors will be tolerated. (This
structure is copied directly from vehicle ECU practice)

Any other parameters than the ones above are created by the card istelf from data in the remote firmware.
They may be set in the HAL file using "setp” in the usual way.

2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

NOTE: Because a Smart-Serial remote can only communicate non-process data to the host card in setup

mode it is necessary to stop and re-start the smart-serial port associated with the card to alter the value of a
parameter.

HALSO NOTE: in the case of parameters beginning with "nv" (which are stored in non-volatile memory)
the effect will not be seen until after the next power cycle of the drive.

Unchanged values will not be re-written so it is safe to leave the "setp" commands in the HAL file or delete
them as you see fit.

DEVICES

The other pins and parameters created in HAL depend on the devices detected. The following list of Smart
Serial devices is by no means exhaustive.

8i20 The 8i20 is a 2.2kW three-phase drive for brushless DC motors and AC servo motors. 8i20 pins
and parameters have names like "hm2_<BoardType>.< BoardNum>.8120.< PortNum>.< Chan-
Num>.<Pin>", for example "hm2_5i23.0.8120.1.3.current" would set the phase current for the
drive connected to the fourth channel of the second sserial port of the first 5123 board. Note that
the sserial ports do not necessarily correlate in layout or number to the physical ports on the card.

Pins:

(float in) angle
The rotor angle of the motor in fractions of a full phase revolution. An angle of 0.5 indicates that
the motor is half a turn / 180 degrees / mradians from the zero position. The zero position is taken
to be the position that the motor adopts under no load with a poitive voltage applied to the A (or
U) phase and both B and C (or V and W) connected to —V or OV. A 6 pole motor will have 3 zero
positions per physical rotation. Note that the 8i20 drive automatically adds the phase lead/lag an-
gle, and that this pin should see the raw rotor angle. There is a HAL module (bldc) which handles
the complexity of differing motor and drive types.

(float, in) current

The phase current command to the drive. This is scaled from —1 to +1 for forwards and reverse
maximum currents. The absolute value of the current is set by the max_current parameter.

(float, ro) bus-voltage

The drive bus voltage in V. This will tend to show 25.6V when the drive is unpowered and the
drive will not operate below about 50V.

(float, ro) temp
The temperature of the driver in degrees C.

(u32, ro) comms
The communication status of the drive. See the manual for more details.

(bit, ro) status and fault.
The following fault/status bits are exported. For further details see the 8120 manual. fault.U—cur-
rent / fault.U—current—not fault.V—current / fault. V—current—not fault. W—current / fault. W—cur-
rent—not fault.bus—high / fault.bus—high—not fault.bus—overv / fault.bus—overv—not fault.bus—un-
derv / fault.bus—underv—not fault.framingr / fault.framingr—not fault.module / fault.module—not
fault.no—enable / fault.no—enable—not fault.overcurrent / fault.overcurrent—not fault.overrun /

LinuxCNC Documentation 2008-05-13 465

SSERIAL(9)

466

HAL Component SSERIAL(9)

fault.overrun—not fault.overtemp / fault.overtemp—not fault.watchdog / fault.watchdog—not

status.brake—old / status.brake—old—not status.brake—on / status.brake—on—not status.bus—underv /
status.bus—underv—not status.current—lim / status.current—lim—no status.ext—reset / status.ext—re-
set—not status.no—enable / status.no—enable—not status.pid—on / status.pid—on—not status.sw—reset
/ status.sw—reset—not status.wd-reset / status.wd—reset—not

Parameters:

The following parameters are exported. See the pdf documentation downloadable from Mesa for
further details

hm2_5i25.0.8120.0.1.angle—maxlim
hm2_5i25.0.8i20.0.1.angle-minlim
hm2_5i25.0.8120.0.1.angle—scalemax
hm2_5i25.0.8i20.0.1.current—maxlim
hm2_5i25.0.8i20.0.1.current—minlim
hm2_5i25.0.8120.0.1.current—scalemax
hm?2_5i25.0.8i20.0.1.nvbrakeoffv
hm?2_5i25.0.8i20.0.1.nvbrakeonv
hm2_5i25.0.8i20.0.1.nvbusoverv
hm?2_5i25.0.8i20.0.1.nvbusundervmax
hm?2_5i25.0.8i20.0.1.nvbusundervmin
hm?2_5i25.0.8i20.0.1.nvkdihi
hm?2_5i25.0.8i20.0.1.nvkdil
hm?2_5i25.0.8i20.0.1.nvkdilo
hm2_5i25.0.8i20.0.1.nvkdp
hm2_5i25.0.8i20.0.1.nvkqihi
hm2_5i25.0.8i20.0.1.nvkqil
hm2_5i25.0.8i20.0.1.nvkqilo
hm2_5i25.0.8i20.0.1.nvkqp
hm2_5i25.0.8120.0.1.nvmaxcurrent
hm2_5i25.0.8i20.0.1.nvrembaudrate
hm?2_5i25.0.8120.0.1.swrevision
hm?2_5i25.0.8i20.0.1.unitnumber

(float, rw) max_current

Sets the maximum drive current in Amps. The default value is the maximum current programmed
into the drive EEPROM. The value must be positive, and an error will be raised if a current in ex-
cess of the drive maximum is requested.

(u32, ro) serial_number

7164

The serial number of the connected drive. This is also shown on the label on the drive.

The 7164 is a 24-input 24-output IO card. 7i64 pins and parameters have names like
"hm2_<BoardType>.<BoardNum>.7164. <PortNum>.<ChanNum>.<Pin>", for example
hm?2_5i23.0.7i64.1.3.output—01

Pins: (bit, in) 7164.0.0.output—NN: Writing a 1 or TRUE to this pin will enable output driver NN.
Note that the outputs are drivers (switches) rather than voltage outputs. The LED adjacent to the

connector on the board shows the status. The output can be inverted by setting a parameter.

(bit, out) 7i64.0.0.input—NN: The value of input NN. Note that the inputs are isolated and both
pins of each input must be connected (typically to signal and the ground of the signal. This need

2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

not be the ground of the board.)
(bit, out) 7i64.0.0.input—NN—not: An inverted copy of the corresponding input.

(float, out) 7164.0.0.analog0 & 7i64.0.0.analogl: The two analogue inputs (0 to 3.3V) on the
board.

Parameters: (bit, rw) 7i64.0.0.output—NN—invert: Setting this parameter to 1 / TRUE will invert
the output value, such that writing O to .gpio.NN.out will enable the output and vice-versa.

7i76 The 7i76 is not only a smart-serial device. It also serves as a breakout for a number of other Host-
mot2 functions. There are connections for 5 step generators (for which see the main hostmot2
manpage). The stepgen pins are associated with the 5125 (hm2_5i25.0.stepgen.00....) whereas the
smart-serial pins are associated with the 7176 (hm2_5i25.0.7i76.0.0.output—00).
Pins:
(float out) .7176.0.0.analogN (modes 1 and 2 only) Analogue input values.
(float out) .7176.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.

(bit in) .7176.0.0.spindir: This pin provides a means to drive the spindle VFD direction terminals
on the 7i76 board.

(bit in) .7176.0.0.spinena: This pin drives the spindle-enable terminals on the 7i76 board.

(float in) .7176.0.0.spinout: This controls the analogue output of the 7i76. This is intended as a
speed control signal for a VFD.

(bit out) .7i76.0.0.output—NN: (NN = 0 to 15). 16 digital outputs. The sense of the signal can be
set via a parameter

(bit out) .7i176.0.0.input—NN: (NN =0 to 31) 32 digital inputs.

(bit in) .7176.0.0.input—NN—not: (NN = 0 to 31) An inverted copy of the inputs provided for con-
venience. The two complementary pins may be connected to different signal nets.

Parameters:
(u32 ro) .7i76.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered.

(u32 ro) .7176.0.0.nvunitnumber: Indicates the serial number of the device and should match a
sticker on the card. This can be useful for working out which card is which.

(u32 ro) .7i176.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(bit rw) .7176.0.0.output—NN—-invert: Invert the sense of the corresponding output pin.
(bit rw) .7176.0.0.spindir—invert: Invert the senseof the spindle direction pin.
(bit rw) .7176.0.0.spinena—invert: Invert the sense of the spindle—enable pin.

(float rw) .7176.0.0.spinout—maxlim: The maximum speed request allowable

LinuxCNC Documentation 2008-05-13 467

SSERIAL(9)

468

7177

HAL Component SSERIAL(9)

(float rw) .7176.0.0.spinout—minlim: The minimum speed request.

(float rw) .7176.0.0.spinout—scalemax: The spindle speed scaling. This is the speed request which
would correspond to full-scale output from the spindle control pin. For example with a 10V drive
voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin would produce 10V
output. However, if spinout—maxlim were set to 5,000 rpm then no voltage above 5V would be
output.

(u32 ro) .7176.0.0.swrevision: The onboard firmware revision number. Utilities (man setsserial for
details) exist to update and change this firmware.

The 7177 is an 6-axis servo control card. The analogue outputs are smart-serial devices but the en-
coders are conventional hostmot2 encoders and further details of them may be found in the host-
mot2 manpage.

Pins: (bit out) .7i77.0.0.input—NN: (NN = 0 to 31) 32 digital inputs.

(bit in) .7177.0.0.input—NN—not: (NN = 0 to 31) An inverted copy of the inputs provided for con-
venience. The two complementary pins may be connected to different signal nets.

(bit out) .7i77.0.0.output—NN: (NN = 0 to 15). 16 digital outputs. The sense of the signal can be
set via a parameter

(bit in) .7177.0.0.spindir: This pin provides a means to drive the spindle VFD direction terminals
on the 7i76 board.

(bit in) .7177.0.0.spinena: This pin drives the spindle-enable terminals on the 7i76 board.

(float in) .7177.0.0.spinout: This controls the analog output of the 7i77. This is intended as a speed
control signal for a VFD.

(bitin) .7177.0.1.analogena: This pin drives the analog enable terminals on the 7i77 board.

(float in) .7177.0.1.analogoutN: (N = 0 to 5) This controls the analog output of the 7i77.
Parameters: (bit rw) .7i77.0.0.output—NN-invert: Invert the sense of the corresponding output pin.
(bit rw) .7177.0.0.spindir—invert: Invert the sense of the spindle direction pin.

(bit rw) .7177.0.0.spinena—invert: Invert the sense of the spindle—enable pin.

(float rw) .7177.0.0.spinout—maxlim: The maximum speed request allowable

(float rw) .7177.0.0.spinout—minlim: The minimum speed request.

(float rw) .7177.0.0.spinout—scalemax: The spindle speed scaling. This is the speed request which
would correspond to full-scale output from the spindle control pin. For example with a 10V drive
voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin would produce 10V
output. However, if spinout—maxlim were set to 5,000 rpm then no voltage above 5V would be
output.

(float rw) .7177.0.0.analogoutN-maxlim: (N = 0 to 5) The maximum speed request allowable

(float rw) .7177.0.0.analogoutN—minlim: (N = 0 to 5) The minimum speed request.

2008-05-13 LinuxCNC Documentation

SSERIAL(9)

7169

7i70

HAL Component SSERIAL(9)

(float rw) .7177.0.0.analogoutN-scalemax: (N = 0 to 5) The analog speed scaling. This is the
speed request which would correspond to full-scale output from the spindle control pin. For exam-
ple with a 10V drive voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin
would produce 10V output. However, if spinout—maxlim were set to 5,000 rpm then no voltage
above 5V would be output.

The 7169 is a 48 channel digital IO card. It can be configured in four different modes: Mode 0 B
48 pins bidirectional (all outputs can be set high then driven low to work as inputs)

Mode 1 48 pins, input only

Mode 2 48 pins, all outputs

Mode 3 24 inputs and 24 outputs.

Pins: (bit in) .7169.0.0.output—NN: Digital output. Sense can be inverted with the corresponding
Parameter

(bit out) .7169.0.0.input—NN: Digital input

(bit out) .7169.0.0.input—NN-not: Digital input, inverted.

Parameters:

(u32 ro) .7169.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered.

(u32 ro) .7169.0.0.nvunitnumber: Indicates the serial number of the device and should match a
sticker on the card. This can be useful for working out which card is which.

(u32 ro) .7169.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(bit rw) .7169.0.0.output—NN—-invert: Invert the sense of the corresponding output pin.

(u32 ro) .7169.0.0.swrevision: The onboard firmware revision number. Ultilities exist to update and
change this firmware.

The 7170 is a remote isolated 48 input card. The 7170 inputs sense positive inputs relative to a
common field ground. Input impedance is 10K Ohms and input voltage can range from SVDC to
32VDC. All inputs have LED status indicators. The input common field ground is galvanically
isolated from the communications link.

The 7170 has three software selectable modes. These different modes select different sets of 7170
data to be transferred between the host and the 7170 during real time process data exchanges. For
high speed applications, choosing the correct mode can reduced the data transfer sizes, resulting in
higher maximum update rates.

MODE 0 Input mode (48 bits input data only
MODE 1 Input plus analog mode (48 bits input data plus 6 channels of analog data)
MODE 2 Input plus field voltage

Pins:

LinuxCNC Documentation 2008-05-13 469

SSERIAL(9)

470

7i71

HAL Component SSERIAL(9)

(float out) .7170.0.0.analogN (modes 1 and 2 only) Analogue input values.
(float out) .7170.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.
(bit out) .7i170.0.0.input—NN: (NN = 0 to 47) 48 digital inputs.

(bit in) .7170.0.0.input—NN—not: (NN = 0 to 47) An inverted copy of the inputs provided for con-
venience. The two complementary pins may be connected to different signal nets.

Parameters:
(u32 ro) .7i70.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered.

(u32 ro) .7170.0.0.nvunitnumber: Indicates the serial number of the device and should match a
sticker on the card. This can be useful for working out which card is which.

(u32 ro) .7i70.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(u32 ro) .7169.0.0.swrevision: The onboard firmware revision number. Ultilities exist to update and
change this firmware.

The 7171 is a remote isolated 48 output card. The 48 outputs are 8VDC to 28VDC sourcing drivers
(common + field power) with 300 mA maximum current capability. All outputs have LED status
indicators.

The 7171 has two software selectable modes. For high speed applications, choosing the correct
mode can reduced the data transfer sizes, resulting in higher maximum update rates

MODE 0 Output only mode (48 bits output data only)

MODE 1 Outputs plus read back field voltage

Pins:

(float out) .7171.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.

(bit out) .7i71.0.0.output—NN: (NN = 0 to 47) 48 digital outputs. The sense may be inverted by the
invert parameter.

Parameters:
(bit rw) .7171.0.0.output—NN—-invert: Invert the sense of the corresponding output pin.
(u32 ro) .7i71.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered.

(u32 ro) .7171.0.0.nvunitnumber: Indicates the serial number of the device and should match a
sticker on the card. This can be useful for determining which card is which.

(u32 ro) .7i71.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

(u32 ro) .7169.0.0.swrevision: The onboard firmware revision number. Ultilities exist to update and
change this firmware.

7i73 The 7173 is a remote real time pendant or control panel interface.

The 7173 supports up to four S0KHz encoder inputs for MPGs, 8 digital inputs and 6 digital out-
puts and up to a 64 Key keypad. If a smaller keypad is used, more digital inputs and outputs be-
come available. Up to eight 0.0V to 3.3V analog inputs are also provided. The 7173 can drive a 4
line 20 character LCD for local DRO applications.

The 7173 has 3 software selectable process data modes. These different modes select different sets
of 7173 data to be transferred between the host and the 7 I73 during real time process data ex-
changes. For high speed applications, choosing the correct mode can reduced the data transfer
sizes, resulting in higher maximum update rates

MODE 0 I/O + ENCODER

MODE 1 I/O + ENCODER +ANALOG IN

MODE 2 I/0 + ENCODER +ANALOG IN FAST DISPLAY

Pins:

(float out) .7173.0.0.analoginN: Analogue inputs. Up to 8 channels may be available dependent on
software and hardware configuration modes. (see the pdf manual downlaodable from
www.mesanet.com)

(u32in) .7i73.0.1.display (modes 1 and 2). Data for LCD display. This pin may be conveniently
driven by the HAL "lcd" component which allows the formatted display of the values any number
of HAL pins and textual content.

(u32in) .7173.0.1.display32 (mode 2 only). 4 bytes of data for LCD display. This mode is not sup-
ported by the HAL "lcd" component.

(s32 out) .7i73.0.1.encN: The position of the MPG encoder counters.

(bit out) .7i73.0.1.input—NN: Up to 24 digital inputs (dependent on config)
(bit out) .7i73.0.1.input—NN-not: Inverted copy of the digital inputs

(bit in) .7173.0.1.output—NN: Up to 22 digital outputs (dependent on config)
Parameters:

(u32 ro) .7i73.0.1.nvanalogfilter:
(u32 ro) .7i73.0.1.nvbaudrate

(u32 ro) .7i73.0.1.nvcontrast

(u32 ro) .7i73.0.1.nvdispmode

(u32 ro) .7i73.0.1.nvencmode0
(u32 ro) .7173.0.1.nvencmodel
(u32 ro) .7i73.0.1.nvencmode2
(u32 ro) .7i73.0.1.nvencmode3
(u32 ro) .7i73.0.1.nvkeytimer

(u32 ro) .7173.0.1.nvunitnumber
(u32 ro) .7i73.0.1.nvwatchdogtimeout
(u32 ro) .7i173.0.1.output—00—invert

LinuxCNC Documentation 2008-05-13 471

SSERIAL(9) HAL Component SSERIAL(9)

For further details of the use of the above see the Mesa manual.
(bit rw) .7173.0.1.output—01—invert: Invert the corresponding output bit.
(s32 ro) .7i73.0.1.swrevision: The version of firmware installed.

TODO: Add 7i77, 7166, 7172, 7i83, 7i84, 7i87.

472 2008-05-13 LinuxCNC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

NAME

stepgen — software step pulse generation

SYNOPSIS
loadrt stepgen step_type=typeO[,typel...] [ctrl_type=typeO|,typel...]] [user_step_type=##...]

DESCRIPTION
stepgen is used to control stepper motors. The maximum step rate depends on the CPU and other factors,
and is usually in the range of 5KHz to 25KHz. If higher rates are needed, a hardware step generator is a
better choice.

stepgen has two control modes, which can be selected on a channel by channel basis using ctrl_type. Pos-
sible values are "p" for position control, and "v" for velocity control. The default is position control, which
drives the motor to a commanded position, subject to acceleration and velocity limits. Velocity control
drives the motor at a commanded speed, again subject to accel and velocity limits. Usually, position mode
is used for machine axes. Velocity mode is reserved for unusual applications where continuous movement
at some speed is desired, instead of movement to a specific position. (Note that velocity mode replaces the
former component freqgen.)

stepgen can control a maximum of 16 motors. The number of motors/channels actually loaded depends on
the number of fype values given. The value of each fype determines the outputs for that channel. Position
or velocity mode can be individually selected for each channel. Both control modes support the same 16
possible step types.

By far the most common step type is *0’, standard step and direction. Others include up/down, quadrature,
and a wide variety of three, four, and five phase patterns that can be used to directly control some types of
motor windings. (When used with appropriate buffers of course.)

Some of the stepping types are described below, but for more details (including timing diagrams) see the
stepgen section of the HAL reference manual.

type O: step/dir
Two pins, one for step and one for direction. make—pulses must run at least twice for each step
(once to set the step pin true, once to clear it). This limits the maximum step rate to half (or less)
of the rate that can be reached by types 2-14. The parameters steplen and stepspace can further
lower the maximum step rate. Parameters dirsetup and dirhold also apply to this step type.

type 1: up/down
Two pins, one for ’step up’ and one for ’step down’. Like type 0, make—pulses must run twice per
step, which limits the maximum speed.

type 2: quadrature
Two pins, phase—A and phase—B. For forward motion, A leads B. Can advance by one step every
time make—pulses runs.

type 3: three phase, full step
Three pins, phase—A, phase—B, and phase—C. Three steps per full cycle, then repeats. Only one
phase is high at a time - for forward motion the pattern is A, then B, then C, then A again.

type 4: three phase, half step
Three pins, phases A through C. Six steps per full cycle. First A is high alone, then A and B to-
gether, then B alone, then B and C together, etc.

types 5 through 8: four phase, full step
Four pins, phases A through D. Four steps per full cycle. Types 5 and 6 are suitable for use with
unipolar steppers, where power is applied to the center tap of each winding, and four open-collec-
tor transistors drive the ends. Types 7 and 8 are suitable for bipolar steppers, driven by two H-
bridges.

LinuxCNC Documentation 2007-01-16 473

STEPGEN(9) HAL Component STEPGEN(9)

types 9 and 10: four phase, half step
Four pins, phases A through D. Eight steps per full cycle. Type 9 is suitable for unipolar drive,
and type 10 for bipolar drive.

types 11 and 12: five phase, full step
Five pins, phases A through E. Five steps per full cycle. See HAL reference manual for the pat-
terns.

types 13 and 14: five phase, half step
Five pins, phases A through E. Ten steps per full cycle. See HAL reference manual for the pat-
terns.

type 15: user-specified
This uses the waveform specified by the user_step_type module parameter, which may have up to
10 steps and 5 phases.

FUNCTIONS
stepgen.make—pulses (no floating-point)
Generates the step pulses, using information computed by update—freq. Must be called as fre-
quently as possible, to maximize the attainable step rate and minimize jitter. Operates on all chan-
nels at once.

stepgen.capture—position (uses floating point)
Captures position feedback value from the high speed code and makes it available on a pin for use
elsewhere in the system. Operates on all channels at once.

stepgen.update—freq (uses floating point)
Accepts a velocity or position command and converts it into a form usable by make—pulses for
step generation. Operates on all channels at once.

PINS
stepgen.N.counts s32 out
The current position, in counts, for channel N. Updated by capture—position.

stepgen.N.position—fb float out
The current position, in length units (see parameter position—scale). Updated by capture—posi-
tion. The resolution of position—fb is much finer than a single step. If you need to see individual
steps, use counts.

stepgen.N.enable bit in
Enables output steps - when false, no steps are generated.

stepgen.N.velocity—cmd float in (velocity mode only)
Commanded velocity, in length units per second (see parameter position—scale).

stepgen.N.position—cmd float in (position mode only)
Commanded position, in length units (see parameter position—scale).

stepgen.N.step bit out (step type 0 only)
Step pulse output.

stepgen.N.dir bit out (step type O only)
Direction output: low for forward, high for reverse.

stepgen.N.up bit out (step type 1 only)
Count up output, pulses for forward steps.

stepgen.N.down bit out (step type 1 only)
Count down output, pulses for reverse steps.

stepgen.N.phase—A thru phase—E bit out (step types 2-14 only)
Output bits. phase—A and phase—B are present for step types 2-14, phase—C for types 3-14,
phase-D for types 5-14, and phase—E for types 11-14. Behavior depends on selected stepping

474 2007-01-16 LinuxCNC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

type.

PARAMETERS
stepgen.N.frequency float ro
The current step rate, in steps per second, for channel N.

stepgen.N.maxaccel float rw
The acceleration/deceleration limit, in length units per second squared.

stepgen.N.maxvel float rw
The maximum allowable velocity, in length units per second. If the requested maximum velocity
cannot be reached with the current combination of scaling and make—pulses thread period, it will
be reset to the highest attainable value.

stepgen.N.position—scale float rw
The scaling for position feedback, position command, and velocity command, in steps per length
unit.

stepgen.N.rawcounts s32 ro
The position in counts, as updated by make—pulses. (Note: this is updated more frequently than
the counts pin.)

stepgen.N.steplen u32 rw
The length of the step pulses, in nanoseconds. Measured from rising edge to falling edge.

stepgen.N.stepspace u32 rw (step types 0 and 1 only) The minimum
space between step pulses, in nanoseconds. Measured from falling edge to rising edge. The actual
time depends on the step rate and can be much longer. If stepspace is O, then step can be asserted
every period. This can be used in conjunction with hal_parport’s auto-resetting pins to output
one step pulse per period. In this mode, steplen must be set for one period or less.

stepgen.N.dirsetup u32 rw (step type O only)
The minimum setup time from direction to step, in nanoseconds periods. Measured from change
of direction to rising edge of step.

stepgen.N.dirhold u32 rw (step type O only)
The minimum hold time of direction after step, in nanoseconds. Measured from falling edge of
step to change of direction.

stepgen.N.dirdelay u32 rw (step types 1 and higher only)
The minimum time between a forward step and a reverse step, in nanoseconds.

TIMING
There are five timing parameters which control the output waveform. No step type uses all five, and only
those which will be used are exported to HAL. The values of these parameters are in nano-seconds, so no
recalculation is needed when changing thread periods. In the timing diagrams that follow, they are ident-
fied by the following numbers:

(1) stepgen.n.steplen
(2) stepgen.n.stepspace
(3) stepgen.n.dirhold
(4) stepgen.n.dirsetup
(5) stepgen.n.dirdelay

For step type 0, timing parameters 1 thru 4 are used. The following timing diagram shows the output wave-
forms, and what each parameter adjusts.

STEP / \ / \ / \

LinuxCNC Documentation 2007-01-16 475

STEPGEN(9) HAL Component STEPGEN(9)

Time [- () -|-—-@)— |- (D) -|--3)— |- - |- (1) -]

DIR /

For step type 1, timing parameters 1, 2, and 5 are used. The following timing diagram shows the output
waveforms, and what each parameter adjusts.

| | | |
—(--@--@) = |- () == |- @) - |- (2) - |- (1) -
|| ||

DOWN / \ / \

For step types 2 and higher, the exact pattern of the outputs depends on the step type (see the HAL manual
for a full listing). The outputs change from one state to another at a minimum interval of steplen. When a
direction change occurs, the minimum time between the last step in one direction and the first in the other
direction is the sum of steplen and dirdelay.

UP _/ \ / \
|
|

Time

SEE ALSO

476

The HAL User Manual.

2007-01-16 LinuxCNC Documentation

STEPTEST(9) HAL Component STEPTEST(9)

NAME

steptest — Used by Stepconf to allow testing of acceleration and velocity values for an axis.

SYNOPSIS

loadrt steptest [count=N|names=name[,name?...]]

FUNCTIONS

PINS

steptest.N (requires a floating-point thread)

steptest.N.jog-minus bit in
Drive TRUE to jog the axis in its minus direction

steptest.N.jog-plus bit in
Drive TRUE to jog the axis in its positive direction

steptest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

steptest.N.maxvel float in
Maximum velocity

steptest.N.maxaccel float in
Permitted Acceleration

steptest.N.amplitude float in
Approximate amplitude of positions to command during ’run’

steptest.N.dir s32 in
Direction from central point to test: 0 = both, 1 = positive, 2 = negative

steptest.N.position-cmd float out
steptest.N.position-fb float in
steptest.N.running bit out
steptest.N.run-target float out
steptest.N.run-start float out
steptest.N.run-low float out
steptest.N.run-high float out
steptest.N.pause s32 in (default: 0)
pause time for each end of run in seconds

PARAMETERS

steptest.N.epsilon float rw (default: .007)
steptest.N.elapsed float r
Current value of the internal timer

LICENSE

GPL

LinuxCNC Documentation 2020-09-04 477

STREAMER(9) LinuxCNC Documentation STREAMER(9)

NAME

streamer — stream file data into HAL in real time
SYNOPSIS

loadrt streamer depth=depthi[,depth2...] cfg=stringl[,string2...]
DESCRIPTION

streamer and halstreamer(1) are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so that streamer can write
it to the HAL pins.

OPTIONS
depth=depthl[,depth2...]
Sets the depth of the userarealtime FIFO that streamer creates to receive data from hal-streamer.
Multiple values of depth (separated by commas) can be specified if you need more than one FIFO (for
example if you want to stream data from two different realtime threads).

cfg=stringl[,string?2...]
Defines the set of HAL pins that streamer exports and later writes data to. One string must be
supplied for each FIFO, separated by commas. streamer exports one pin for each character in string.
Legal characters are:
e F, f (float pin)
* B, b (bit pin)
* S,s(s32 pin)
e U, u (u32 pin)
FUNCTIONS

streamer.N
One function is created per FIFO, numbered from zero.

PINS
streamer.N.pin.M output
Data from column M of the data in FIFO N appears on this pin. The pin type depends on the config
string.

streamer.N.curr—depth s32 output
Current number of samples in the FIFO. When this reaches zero, new data will no longer be written to
the pins.

streamer.N.empty bit output
TRUE when the FIFO N is empty, FALSE when valid data is available.

streamer.N.enable bit input
When TRUE, data from FIFO N is written to the HAL pins. When false, no data is transferred.
Defaults to TRUE.

streamer.N.underruns s32 read/write
The number of times that sampler has tried to write data to the HAL pins but found no fresh data in
the FIFO. It increments whenever empty is true, and can be reset by the setp command.

streamer.N.*clock bit input
Clock for data as specified by the clock—mode pin

streamer.N.*clock—mode s32 input
Defines behavior of clock pin:

* 0 (default) free run at every iteration

* 1 clock on falling edge of clock pin

478 08/16/2020 LinuxCNC

STREAMER(9) LinuxCNC Documentation STREAMER(9)

» 2 clock on rising edge of clock pin

* 3 clock on any edge of clock pin

SEE ALSO

halstreamer(1) sampler(9) halsampler(1)

BUGS
Should an enable HAL pin be added, to allow streaming to be turned on and off?

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other
members of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich. This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC 08/16/2020 479

SUM2(9) HAL Component

NAME

sum?2 — Sum of two inputs (each with a gain) and an offset

SYNOPSIS

loadrt sum2 [count=N|names=nameI[,name?2...]]

FUNCTIONS

sum2.N (requires a floating-point thread)

PINS
sum?2.N.in0 float in
sum2.N.in1 float in
sum?2.N.out float out
out =1in0 * gain0 + inl * gainl + offset

PARAMETERS
sum2.N.gain0 float rw (default: 1.0)
sum2.N.gainl float rw (default: 1.0)
sum?2.N.offset float rw

LICENSE
GPL

480 2020-09-04

SUM2(9)

LinuxCNC Documentation

SUPPLY(9) HAL Component SUPPLY(9)

NAME
supply — set output pins with values from parameters (obsolete)

SYNOPSIS

loadrt supply num_chan=num

DESCRIPTION
supply was used to allow the inputs of other HAL components to be manipulated for testing purposes.
When it was written, the only way to set the value of an input pin was to connect it to a signal and connect
that signal to an output pin of some other component, and then let that component write the pin value.
supply was written to be that "other component". It reads values from parameters (set with the HAL
command setp) and writes them to output pins.

Since supply was written, the setp command has been modified to allow it to set unconnected pins as well
as parameters. In addition, the sets command was added, which can directly set HAL signals, as long as
there are no output pins connected to them. Therefore, supply is obsolete.

supply supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan argument when the module is loaded. If numchan is not specified, the default value is one.

FUNCTIONS
supply.N.update (uses floating-point)
Updates output pins for channel N.

PINS
supply.N.q bit out
Output bit, copied from parameter supply.N.d.

supply.N._q bit out
Output bit, inverted copy of parameter supply.N.d.

supply.N.variable float out
Analog output, copied from parameter supply.N.value.

supply.N._variable float out
Analog output, equal to —1.0 times parameter supply.N.value.

supply.N.d bit rw
Data source for q and _q output pins.

supply.N.value bit rw
Data source for variable and _variable output pins.

LinuxCNC Documentation 2007-01-16 481

THC(9)

NAME

HAL Component THC(9)

thc — Torch Height Control

SYNOPSIS

loadrt the

DESCRIPTION

Torch Height Control Mesa THC > Encoder > LinuxCNC THC component

The Mesa THC sends a frequency based on the voltage detected to the encoder. The velocity from the
encoder is converted to volts with the velocity scale parameter inside the THC component.

The THCAD card sends a frequency at 0 volts so the scale offset parameter is used to zero the calculated
voltage.

Component Functions If enabled and torch is on and X + Y velocity is within tolerance of set speed allow
the THC to offset the Z axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.
If not enabled pass the Z position and feed back untouched.

Physical Connections

Plasma Torch Arc Voltage Signal => 6 x 487k 1% resistors => THC Arc Voltage In
THC Frequency Signal => Encoder #0, pin A (Input)

Plasma Torch Arc OK Signal => input pin

output pin => Plasma Torch Start Arc Contacts

HAL Plasma Connections

encoder.nn.velocity => thc.encoder-vel (tip voltage)
spindle.0.on => output pin (start the arc)

thc.arc-ok <= motion.digital-in-00 <= input pin (arc ok signal)

HAL Motion Connections
thc.requested-vel <= motion.requested-vel
the.current-vel <= motion.current-vel

FUNCTIONS

PINS

482

the (requires a floating-point thread)

thc.encoder-vel float in
Connect to hm2_5i20.0.encoder.00.velocity

thc.current-vel float in
Connect to motion.current-vel

the.requested-vel float in
Connect to motion.requested-vel

the.volts-requested float in
Tip Volts current_vel >= min_velocity requested

2020-09-04 LinuxCNC Documentation

THC(9) HAL Component

the.vel-tol float in
Velocity Tolerance (Corner Lock)

the.torch-on bit in
Connect to spindle.N.on

thc.arc-ok bit in
Arc OK from Plasma Torch

thc.enable bit in
Enable the THC, if not enabled Z position is passed through

the.z-pos-in float in
Z Motor Position Command in from axis.n.motor-pos-cmd

the.z-pos-out float out
Z Motor Position Command Out

thc.z-fb-out float out
Z Position Feedback to Axis

the.volts float out
The Calculated Volts

the.vel-status bit out
When the THC thinks we are at requested speed

thc.offset-value float out
The Current Offset

PARAMETERS
the.vel-scale float rw
The scale to convert the Velocity signal to Volts

the.scale-offset float rw
The offset of the velocity input at 0 volts

the.velocity-tol float rw
The deviation percent from planned velocity

the.voltage-tol float rw
The deviation of Tip Voltage before correction takes place

the.correction-vel float rw
The amount of change in user units per period to move Z to correct

AUTHOR

John Thornton

LICENSE
GPLV2 or greater

LinuxCNC Documentation 2020-09-04

THC(9)

483

THCUD(9) HAL Component THCUD(9)

NAME

thcud — Torch Height Control Up/Down Input

SYNOPSIS

loadrt thcud

DESCRIPTION

Torch Height Control This THC takes either an up or a down input from a THC

If enabled and torch is on and X + Y velocity is within tolerance of set speed allow the THC to offset the Z
axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.
If not enabled pass the Z position and feed back untouched.

Typical Physical Connections using a Parallel Port
Parallel Pin 12 <= THC controller Plasma Up
Parallel Pin 13 <= THC controller Plasma Down
Parallel Pin 15 <= Plasma Torch Arc Ok Signal
Parallel Pin 16 => Plasma Torch Start Arc Contacts

HAL Plasma Connections

net torch-up thcud.torch-up <= parport.0.pin-12-in

net torch-down thcud.torch-down <= parport.0.pin-13-in

net torch-on spindle.0.on => parport.0.pin-16-out (start the arc)

net arc-ok thcud.arc-ok <= motion.digital-in-00 <= parport.0.pin-15-in (arc ok signal)

HAL Motion Connections
net requested-vel thcud.requested-vel <= motion.requested-vel
net current-vel thcud.current-vel <= motion.current-vel

Pyvcp Connections In the xml file you need something like:

<pyVCp>
<checkbutton>
<text>"THC Enable"</text>
<halpin>"thc-enable" </halpin>
</checkbutton>
</pyvcp>

Connect the Pyvcp pins in the postgui.hal file like this:

net thc-enable thcud.enable <= pyvcp.thc-enable

FUNCTIONS

484

thecud (requires a floating-point thread)

2020-09-04 LinuxCNC Documentation

THCUD(9) HAL Component

PINS

thcud.torch-up bit in
Connect to an input pin

thcud.torch-down bit in
Connect to input pin

thcud.current-vel float in
Connect to motion.current-vel

thcud.requested-vel float in
Connect to motion.requested-vel

thcud.torch-on bit in
Connect to spindle.N.on

thcud.arc-ok bit in
Arc Ok from Plasma Torch

thcud.enable bit in

Enable the THC, if not enabled Z position is passed through

thcud.z-pos-in float in
Z Motor Position Command in from axis.n.motor-pos-cmd

thcud.z-pos-out float out
Z Motor Position Command Out

thcud.z-fb-out float out
Z Position Feedback to Axis

thcud.cur-offset float out
The Current Offset

thcud.vel-status bit out
When the THC thinks we are at requested speed

thcud.removing-offset bit out
Pin for testing

PARAMETERS

thcud.velocity-tol float rw
The deviation percent from planned velocity

thcud.correction-vel float rw
The Velocity to move Z to correct

AUTHOR

John Thornton

LICENSE

GPLV?2 or greater

LinuxCNC Documentation 2020-09-04

THCUD(9)

485

THREADS(9) HAL Component THREADS(9)

NAME

threads — creates hard realtime HAL threads

SYNOPSIS
loadrt threads namel=name periodl=period [fp1=<0|1>] [<thread-2-info>] [<thread-3-info>]

DESCRIPTION
threads is used to create hard realtime threads which can execute HAL functions at specific intervals. It is
not a true HAL component, in that it does not export any functions, pins, or parameters of its own. Once it
has created one or more threads, the threads stand alone, and the threads component can be unloaded
without affecting them. In fact, it can be unloaded and then reloaded to create additional threads, as many
times as needed.

threads can create up to three realtime threads. Threads must be created in order, from fastest to slowest.
Each thread is specified by three arguments. namel is used to specify the name of the first thread (thread
1). periodl is used to specify the period of thread 1 in nanoseconds. Both name and period are required.
The third argument, fp1 is optional, and is used to specify if thread 1 will be used to execute floating point
code. If not specified, it defaults to 1, which means that the thread will support floating point. Specify 0 to
disable floating point support, which saves a small amount of execution time by not saving the FPU
context. For additional threads, name2, period2, fp2, name3, period3, and fp3 work exactly the same. If
more than three threads are needed, unload threads, then reload it to create more threads.

FUNCTIONS

None

PINS

None

PARAMETERS

None

BUGS
The existence of threads might be considered a bug. Ideally, creation and deletion of threads would be
done directly with halemd commands, such as "newthread name period", "delthread name", or similar.
However, limitations in the current HAL implementation require thread creation to take place in kernel
space, and loading a component is the most straightforward way to do that.

486 2007-01-16 LinuxCNC Documentation

THREADTEST(9) HAL Component

NAME
threadtest — LinuxCNC HAL component for testing thread behavior

SYNOPSIS

loadrt threadtest [count=N|names=name[,name?...]]

FUNCTIONS

threadtest.N.increment
threadtest.N.reset
PINS

threadtest.N.count u32 out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04

THREADTEST(9)

487

TIME(9)

NAME

time — Time on in Hours, Minutes, Seconds

SYNOPSIS

loadrt time [count=N|names=nameI[,name?2...]]

DESCRIPTION

488

Time

When either the time.N.start or time.N.pause bits goes true the cycle timer resets and starts to time until
time.N.start AND time.N.pause go false. When the time.N.pause bit goes true timing is paused until
time.N.pause goes false. If you connect time.N.start to halui.program.is-running and leave time.N.pause
unconnected the timer will reset during a pause. See the example connections below for more information.

Time returns the hours, minutes, and seconds that time.N.start is true.

Sample pyVCP code to display the hours:minutes:seconds.

<pyvcp>
<hbox>
<label>
<text>"Cycle Time" </text>
("Helvetica",14)
</label>
<u32>
<halpin>"time-hours" </halpin>
("Helvetica",14)
<format>"2d"</format>
<fu32>
<label>
<text>":"</text>
("Helvetica",14)
</label>
<u32>
<halpin>"time-minutes"</halpin>
("Helvetica",14)
<format>"2d"</format>
<fu32>
<label>
<text>":"</text>
("Helvetica",14)
</label>
<u32>
<halpin>"time-seconds" </halpin>
("Helvetica",14)
<format>"2d"</format>
</fu32>
</hbox> </pyvcp>

In your post-gui.hal file you might use one of the following to connect this timer:

For a new config:

loadrt time
addf time.O servo-thread

net cycle-timer time.0.start <= halui.program.is-running

HAL Component

LinuxCNC Documentation

TIME(9)

HAL Component

net cycle-timer-pause time.0.pause <= halui.program.is-paused
net cycle-seconds pyvcp.time-seconds <= time.0.seconds

net cycle-minutes pyvcp.time-minutes <= time.0.minutes

net cycle-hours pyvcp.time-hours <= time.0.hours

Previous to this version if you wanted the timer to continue running

during a pause instead of resetting, you had to use a HAL NOT component
to invert the halui.program.is-idle pin and connect to time.N.start as

shown below:

loadrt time

loadrt not

addf time.O servo-thread

addf not.0 servo-thread

net prog-running not.0.in <= halui.program.is-idle

net cycle-timer time.0.start <= not.0.out

net cycle-seconds pyvcp.time-seconds <= time.0.seconds
net cycle-minutes pyvcp.time-minutes <= time.0.minutes
net cycle-hours pyvcp.time-hours <= time.0.hours

For those who have this setup already, you can simply add a net connecting
time.N.pause to halui.program.is-paused:

net cycle-timer-pause time.0.pause <= halui.program.is-paused

FUNCTIONS

PINS

time.N (requires a floating-point thread)

time.N.start bit in
Timer On

time.N.pause bit in (default: 0)
Pause

time.N.seconds u32 out
Seconds

time.N.minutes u32 out
Minutes

time.N.hours u32 out
Hours

AUTHOR

John Thornton, itaib, Moses McKnight

LICENSE

GPL

LinuxCNC Documentation 2020-09-04

TIME(9)

489

TIMEDELAY (9) HAL Component TIMEDELAY (9)

NAME

timedelay — The equivalent of a time-delay relay
SYNOPSIS

loadrt timedelay [count=N|names=namel[,name?2...1]
FUNCTIONS

timedelay.N (requires a floating-point thread)

PINS
timedelay.N.in bit in
timedelay.N.out bit out
Follows the value of in after applying the delays on-delay and off-delay.

timedelay.N.on-delay float in (default: 0.5)
The time, in seconds, for which in must be true before out becomes true

timedelay.N.off-delay float in (default: 0.5)
The time, in seconds, for which in must be false before out becomes false

timedelay.N.elapsed float out
Current value of the internal timer

AUTHOR
Jeff Epler, based on works by Stephen Wille Padnos and John Kasunich

LICENSE
GPL

490 2020-09-04 LinuxCNC Documentation

TIMEDELTA(9) HAL Component TIMEDELTA(9)

NAME

timedelta — LinuxCNC HAL component that measures thread scheduling timing behavior

SYNOPSIS

loadrt timedelta [count=N[names=nameI[,name?2...]]

FUNCTIONS
timedelta.N

PINS
timedelta.N.out s32 out
timedelta.N.err s32 out (default: 0)
timedelta.N.min s32 out (default: 0)
timedelta.N.max s32 out (default: 0)
timedelta.N.jitter s32 out (default: 0)
timedelta.N.avg-err float out (default: 0)
timedelta.N.reset bit in

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 491

TOGGLE(9) HAL Component

NAME

toggle — *push-on, push-off” from momentary pushbuttons

SYNOPSIS

loadrt toggle [count=N|names=namel[,name2...1]

FUNCTIONS
toggle.N

PINS
toggle.N.in bit in
button input

toggle.N.out bit io
on/off output

PARAMETERS
toggle.N.debounce u32 rw (default: 2)
debounce delay in periods

LICENSE
GPL

492 2020-09-04

TOGGLE(9)

LinuxCNC Documentation

TOGGLE2NIST(9) HAL Component TOGGLE2NIST(9)

NAME

toggle2nist — toggle button to nist logic
SYNOPSIS

loadrt toggle2nist [count=N|names=name[,name?...]]
DESCRIPTION

toggle2nist can be used with a momentary push button connected to a toggle component to control a device
that has separate on and off inputs and has an is-on output. If in changes states via the toggle output

If is-on is true then on is false and off is true.

If is-on is false the on true and off is false.

FUNCTIONS
toggle2nist.N

PINS
toggle2nist.N.in bit in
toggle2nist.N.is-on bit in
toggle2nist.N.on bit out
toggle2nist.N.off bit out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 493

TRISTATE_BIT(9) HAL Component TRISTATE_BIT(9)

NAME

tristate_bit — Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS

loadrt tristate_bit [count=N|names=name[,name2...]]

FUNCTIONS
tristate-bit.N
If enable is TRUE, copy in to out.

PINS
tristate-bit./NV.in bit in
Input value

tristate-bit.N.out bit io
Output value

tristate-bit.N.enable bit in
When TRUE, copy in to out

LICENSE
GPL

494 2020-09-04 LinuxCNC Documentation

TRISTATE_FLOAT(9) HAL Component TRISTATE_FLOAT(9)

NAME

tristate_float — Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics
SYNOPSIS

loadrt tristate_float [count=N|names=name[,name?...]]
FUNCTIONS

tristate-float.N (requires a floating-point thread)
If enable is TRUE, copy in to out.

PINS
tristate-float.N.in float in
Input value

tristate-float.N.out float io
Output value

tristate-float.N.enable bit in
When TRUE, copy in to out

LICENSE
GPL

LinuxCNC Documentation 2020-09-04 495

UPDOWN(9) HAL Component

NAME

updown — Counts up or down, with optional limits and wraparound behavior

SYNOPSIS

loadrt updown [count=N|names=name[,name?...1]

FUNCTIONS
updown.N
Process inputs and update count if necessary

PINS
updown.N.countup bit in
Increment count when this pin goes from O to 1

updown.N.countdown bit in
Decrement count when this pin goes from 0 to 1

updown.N.reset bit in
Reset count when this pin goes from O to 1

updown.N.count s32 out
The current count

PARAMETERS
updown.N.clamp bit rw
If TRUE, then clamp the output to the min and max parameters.

updown.N.wrap bit rw

UPDOWN(9)

If TRUE, then wrap around when the count goes above or below the min and max parameters.

Note that wrap implies (and overrides) clamp.

updown.N.max s32 rw (default: Ox7FFFFFFF)
If clamp or wrap is set, count will never exceed this number

updown.N.min s32 rw
If clamp or wrap is set, count will never be less than this number

LICENSE
GPL

496 2020-09-04

LinuxCNC Documentation

WATCHDOG(9) HAL Component WATCHDOG(9)

NAME

watchdog — monitor multiple inputs for a "heartbeat"

SYNOPSIS

loadrt watchdog num_inputs=N

You must specify the number of inputs, from 1 to 32. Each input has a separate timeout value.

FUNCTIONS
process
Check all input pins for transitions, clear the ok—out pin if any input has no transition within its
timeout period. This function does not use floating point, and should be added to a fast thread.

set—timeouts
Check for timeout changes, and convert the float timeout inputs to int values that can be used in
process. This function also monitors enable—in for false to true transitions, and re-enables
monitoring when such a transition is detected. This function does use floating point, and it is
appropriate to add it to the servo thread.

PINS
watchdog.input—n bit in
Input number n. The inputs are numbered from 0 to num_inputs—1.

watchdog.enable—in bit in (default: FALSE)
If TRUE, forces out—ok to be false. Additionally, if a timeout occurs on any input, this pin must
be set FALSE and TRUE again to re-start the monitoring of input pins.

watchdog.ok—out bit out (default: FALSE)
OK output. This pin is true only if enable—in is TRUE and no timeout has been detected. This
output can be connected to the enable input of a charge_pump or stepgen (in v mode), to provide
a heartbeat signal to external monitoring hardware.

PARAMETERS
watchdog.timeout—n float in
Timeout value for input number n. The inputs are numbered from O to num_inputs—1. The
timeout is in seconds, and may not be below zero. Note that a timeout of 0.0 will likely prevent
ok—out from ever becoming true. Also note that excessively long timeouts are relatively useless
for monitoring purposes.

LICENSE
GPL

LinuxCNC Documentation 2010-06-22 497

WCOMP(9) HAL Component

NAME

wcomp — Window comparator

SYNOPSIS

loadrt wcomp [count=N|names=name|[,name?2...1]

FUNCTIONS

PINS

weomp.N (requires a floating-point thread)

wcomp.N.in float in
Value being compared

wcomp.N.min float in
Low boundary for comparison

wcomp.N.max float in
High boundary for comparison

wcomp.N.out bit out
True if in is strictly between min and max

wcomp.N.under bit out
True if in is less than or equal to min

wcomp.N.over bit out
True if in is greater than or equal to max

NOTES

If max <= min then the behavior is undefined.

LICENSE

498

GPL

2020-09-04

WCOMP(9)

LinuxCNC Documentation

WEIGHTED_SUM(9) HAL Component WEIGHTED_SUM(9)

NAME

weighted_sum — convert a group of bits to an integer

SYNOPSIS

loadrt weighted_sum wsum_sizes=size/,size,...|

Creates weighted sum groups each with the given number of input bits (size).

DESCRIPTION
This component is a "weighted summer": Its output is the offset plus the sum of the weight of each TRUE
input bit. The default value for each weight is 2"n where n is the bit number. This results in a binary to
unsigned conversion.

There is a limit of 8 weighted summers and each may have up to 16 input bits.

FUNCTIONS
process_wsums (requires a floating point thread)
Read all input values and update all output values.

PINS
wsum.N.bit.M.in bit in
The m’th input of weighted summer 7.

wsum.N.hold bit in
When TRUE, the sum output does not change. When FALSE, the sum output tracks the bif inputs
according to the weights and offset.

wsum.N.sum signed out
The output of the weighted summer

wsum.N.bit.M.weight signed rw
The weight of the m’th input of weighted summer n. The default value is 2"m.

wsum.N.offset signed rw
The offset is added to the weights corresponding to all TRUE inputs to give the final sum.

LinuxCNC Documentation 2007-01-16 499

XHC_HBO04_UTIL(9)

NAME

xhc_hb04_util — xhc-hb04 convenience utility

SYNOPSIS

loadrt xhc_hb04_util [count=N|names=name[,name2...1]

DESCRIPTION

Provides logic for a start/pause button and an interface to halui.program.is_paused, is_idle, is_running to

generate outputs for halui.program.pause, resume, run.

HAL Component

XHC_HBO04_UTIL(9)

Includes 4 simple lowpass filters with coef and scale pins. The coef value should be 0 <= coef <=1, smaller
coef values slow response. See the lowpass manpage for calculating the filter time constant ($ man

lowpass).

FUNCTIONS

PINS

xhc-hb04-util.N (requires a floating-point thread)

xhc-hb04-util. N.start-or-pause bit in
xhc-hb04-util. N.is-paused bit in
xhc-hb04-util. N.is-idle bit in
xhc-hb04-util. N.is-running bit in
xhc-hb04-util. N.pause bit out
xhc-hb04-util. N.resume bit out
xhc-hb04-util. N.run bit out
xhc-hb04-util. N.in0 s32 in
xhc-hb04-util.N.in1 s32 in
xhc-hb04-util.N.in2 s32 in
xhc-hb04-util.N.in3 s32 in
xhc-hb04-util.N.out0 s32 out
xhc-hb04-util.N.outl s32 out
xhc-hb04-util.N.out2 s32 out
xhc-hb04-util.N.out3 s32 out
xhc-hb04-util.NV.scale0 float in (default: 1.0)
xhc-hb04-util.N.scalel float in (default: 1.0)
xhc-hb04-util.NV.scale2 float in (default: 1.0)
xhc-hb04-util.NV.scale3 float in (default: 1.0)
xhc-hb04-util.N.coef0 float in (default: 1.0)
xhc-hb04-util.NV.coef1 float in (default: 1.0)
xhc-hb04-util.NV.coef2 float in (default: 1.0)
xhc-hb04-util.NV.coef3 float in (default: 1.0)
xhc-hb04-util. N.divide-by-k-in float in
xhc-hb04-util. N.divide-by-k-out float out
xhc-hb04-util. V.k float in (default: 1.0)

LICENSE

500

GPL

2020-09-04

LinuxCNC Documentation

XOR2(9) HAL Component XOR2(9)

NAME
xor2 — Two-input XOR (exclusive OR) gate

SYNOPSIS

loadrt xor2 [count=N|names=name[,name?...1]

FUNCTIONS
xor2.N

PINS
xor2.N.in0 bit in
xor2.N.inl bit in
xor2.N.out bit out
out is computed from the value of in0 and inl according to the following rule:

in0=TRUE in1=FALSE
in0=FALSE in1=TRUE

out=TRUE
Otherwise,
out=FALSE
LICENSE
GPL

LinuxCNC Documentation 2020-09-04 501

