Integrator Manual V2.7.0-pre5, 2015-03-10

Integrator Manual V2.7.0-pre5, 2015-03-10

Integrator Manual V2.7.0-pre5, 2015-03-10 ii
Contents

I LinuxCNC Introduction 1

1 Integrator Concepts 3

1.1 Stepper Systems L L e e e e e 3

1.1.1 BasePeriod 3

L2 StepTiming o o o e e e e e e e e e e 3

1.2 Servo Systems o o e e e e e e e e 4

1.2.1 BasicOperation e e e e e 4

1.2.2 Proportional termo e e e e e e e e e 5

1.2.3 Integralterm e e e e e e e e e 5

1.2.4 Derivative term o v v it e e e e e e e e e e e e e e e e 5

1.25 LOoOptuning o v v it e e e e e e e e e 6

1.2.6 Manual tuning e e e e e e e e e e e e e e 6

1.3 RTAL. . . 6

131 ACPL . . 6

II Configuration 7

2 Latency Test 8

3 Starting LinuxCNC 12

3.1 Running LInuxCNC 0 L . o e e e e e 12

3.2 Files Used for Configuration 0 it i 13

3.3 TWOPASS . o 14

4 INI Configuration 16

4.1 TheINIFile Components v v v v it e ettt e e e e e e e e e 16

411 Commentsl e e e e e e e e e e e 16

412 SeCHiONS v v i e e e e e e e e e e e e e 17

4.1.3 Variables 17

Integrator Manual V2.7.0-pre5, 2015-03-10 iii
4.14 Custom Sections and Variables e 18

4.1.5 Include Files o o 18

4.2 INIFile Sections 19
421 [EMC]Section oo v i i it e e e e 19
4.2.2 [DISPLAY] Section i i e 19
423 [FILTER] Section o e e e e e e e e e 21
424 [RS27ANGC] Section o o e 22
425 [EMCMOT] Sectiono v v v i i i it e e e e e e e e e e 23
426 [TASK] Section o e e 23
4277 [HALJSECtion o e e e e e e e 23
4.2.8 [HALUIJSECHON v v v it e e e e e e e e e e e e e e e e e e 24
4.2.9 [APPLICATIONS] Section o v it e e e e e e e e e e e s 24
4210 [TRAJ]ISection o e e e e 25
4211 [AXIS_<num>] Section i e e e e e e 27
42111 Homing e 29

42112 Servo . . . oo 29

42013 SEPPET . . o o o e e e e e e e e 32

4212 [EMCIO] Section o oot i e 32

5 Homing Configuration 34
5.1 OVEIVIEW o o e 34
52 Homing SeqUencettt e e e e e e e 34
5.3 Configuration e e e e e e 36
5.3.1 HOME_SEARCH_VEL s 36

532 HOME_LATCH_VEL e e e s 36

533 HOME_FINAL_VEL e 36
534 HOME_IGNORE_LIMITS 36

53,5 HOME_USE_INDEX e 37
5.3.6 HOME_OFESET e e e e e e 37
537 HOME 37
5.3.8 HOME_IS_SHARED 37
539 HOME_SEQUENCE 37
5.3.10 VOLATILE_HOME e e e e e s 37
5.3.11 LOCKING_INDEXER e e 37
5.3.12 Immediate Homing 38

6 Lathe Configuration 39
6.1 DefaultPlane e 39
6.2 INISettings o o e e 39

Integrator Manual V2.7.0-pre5, 2015-03-10 iv
7 HALTCL Files 40
7.1 Compatibility e e 40
7.2 Haltcl Commands e e e 40
7.3 Haltcl Inifile variables oL e e e e 41
7.4 Converting .hal files to .tcl files L 41
7.5 HaltcI NOtes o o e e 41
7.6 Haltcl Examples e e e e e 42
7.7 Haltcl Interactive oL e e e e e e e e e e 42
7.8 Haltcl Distribution Examples (SIm) e e e 42

8 Core Components 43
8.1 MOLION vt e e e e 43
.11 Options L e e e e e e e e e 44

8.1.2 PInS . . . e 44

8.1.2.1 HAL pinusage for M19 orientspindle 45

8.1.3 Parameters e e e 46

8.1.4 Functions e e 47

8.2 AXiS(JOINtS) e e e e e 47
82.1 PInS . . . 47

8.2.2 Parameters e e e 48

8.3 10controlo e e e e e e 48
83.1 PIns . . . 48

84 INISEHNGS o e e e 49
841 PInS . . . L e 49

9 Stepper Configuration 50
9.1 Introduction e e e e 50
0.2 Maximum StEP TAE o i i e e e e e e e e e e e e e e e e e e e 50

0.3 PINOUL e 50
9.3.1 standard_pinouthal L e 51

032 OVEIVIEW . . . o vttt e e e e e e e e e e e e 52

9.3.3 Changing the standard_pinout.hal 52

9.3.4 Changing polarity of asignal e e 53

9.3.5 Adding PWM Spindle Speed Control e 53

9.3.6 Addinganenablesignal 53

9.3.7 External ESTOPbutton e 53

Integrator Manual V2.7.0-pre5, 2015-03-10 v
10 Basic HAL Reference 55
10.1 HAL Commands 55
10.1.1 loadrt . . .o oo e 56
10.1.2 addf . . e e 56
10.1.3 loadusro 57
10.1.4 net . . .o e e 57
T0.15 Setp .« o . o o e e e 58
T0.1.6 SELS . . o v o o e 59
10.1.7 unlinkp o 59
10.1.8 Obsolete Commands 59
10.1.8.1 linksp . . . o o o 59

10.1.8.2 Iinkps o o e e 60

10.1.8.3 MewWSIZ o o e e e e e e e e 60

10.2 HAL Data e 60
10.2.1 Bit .o e e 60
1022 Float o 60
10.2.3 832 L o 60
10.2.4 u32 . oL 60

103 HALFiles 61
10.4 HAL COMPONEGNLS o ot v v it e e et e e e e e e e e e e e e e e e e e 61
10.5 Logic COMPONENLS v v v v e 61
10.5.1 and2 . . . Lo 61
1052 not . . .o e 62
10.5.3 0r2 o oL 62
1054 XOI2 . . o o o e 62
10.5.5 Logic Examples e 63

10.6 Conversion COMPONENLS v v v v v e i e 63
10.6.1 weighted_sum e 63

11 Extending LinuxCNC 65
11.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes 65
11.1.1 A Definition: Remapping Codes e e e e e e e 65
11.1.2 Why would you want to extend the RS274NGC Interpreter? 65
11.1.2.1 How to glue things together e 66

11.1.2.2 How Embedded Python fitsin 66

11.1.2.3 A Word on Embedded Python 66

11.2 Getting started e e e e e e e e e e e e 66
11.2.1 Pickingacode e 67
11.2.2 Parameter handling e 67

Integrator Manual V2.7.0-pre5, 2015-03-10 Vi

11.3

11.4
11.5

11.6

11.7
11.8

11.9

11.2.3 Handling results e e 67
11.2.4 EXecution SEqUENCING v v v v i v e 67
11.2.5 An minimal example remappedcode 68
Configuring Remapping o e e e e e e e e e 68
11.3.1 The REMAP statement ittt e e et e e e e e 68
11.3.2 Useful REMAP option combinations i vttt et e e e 69
11.3.3 The argspec parameter o e e e 69

11.3.3.1 Example for named parameter passing to NGC procedures 70

11.3.3.2 Example for positional parameter passing to NGC procedures 71

11.3.3.3 Simple example for named parameter passing to a Python function 71

11.3.3.4 Advanced example: Remapped codes in pure Python 71
Upgrading an existing configuration for remapping e 73
Remapping tool change-related codes: T, M6, M61 73
LT1.5.1 OVErVIEW o o i e e e 73
11.5.2 Understanding the role of iocontrol with remapped tool changecodes 74
11.5.3 Specifying the M6 replacement e e e e e e e e e 75
11.5.4 Configuring iocontrol with aremapped M6 76
11.5.5 Writing the change and prepare O-word procedures vt v i 76
11.5.6 Making minimal changes to the built in codes, includingM6, 77
11.5.7 Specifying the T (prepare) replacement i i vt i e e e 77
11.5.8 Error handling: dealing with abort 78
11.5.9 Error handling: failing a remapped code NGC procedure 79
Remapping other existing codes: S, MO, M1,M60 L 80
11.6.1 Automatic gear selection be remapping S (set spindle speed) 80
11.6.2 Adjusting the behavior of MO, M1, M60 80
Creating new G-code cycles L e e e e e e 80
Configuring Embedded Python L 81
11.8.1 Python plugin : ini file configuration 81
11.8.2 Executing Python statements from the interpreter 81
Programming Embedded Python in the RS274NGC Interpreter 82
11.9.1 The Python plugin namespace 82
11.9.2 The Interpreter as seen from Python 82
11.9.3 The Interpreter __init___and __delete_ functions. 82
11.9.4 Calling conventions: NGCtoPython 83

11.9.4.1 Calling O-word Python subroutines 83

11.9.4.2 Return values of O-word Python subroutines 83

11.9.4.3 Calling conventions for prolog= and epilog= subroutines 84

11.9.4.4 Calling conventions for python= subroutines 84

11.9.4.5 Dealing with queue-buster: Probe, Tool change and waiting foraHAL pin 85

Integrator Manual V2.7.0-pre5, 2015-03-10 Vii

11.9.5 Calling conventions: Python to NGC 85
11.9.5.1 Inserting parameters in a prolog, and retrieving them inanepilog 85

11.9.5.2 Calling the interpreter from Python 86

11.9.5.3 Interpreter Exception during execute() o v it e 86

11954 Canon L e 87

11.9.6 Builtinmodules 87
11.10Adding Predefined Named Parameters e 87
I1.11Standard Glue routines o it e e e e e e e e e e e e e 88
11.11.1 T: prepare_prologand prepare_epilog« v vt v v v it i i it e e 88
11.11.1.1 Actions of prepare_prolog v v v i v i i i e e e e e e e e e e e e 88

11.11.1.2 Actions of prepare_epilog . . .« . o v v v v i i it e e e e 89

11.11.2M6: change_prologand change_epilog o v i v i i ittt it e e e e e e e 89
11.11.2.1 Actions of change_prolog o v v it i it e e e e e 89

11.11.2.2 Actions of change_epilog i i i i i it e e e e e e e e 89

11.11.3 G code Cycles: cycle_prolog and cycle _epilog 90
11.11.3.1 Actions of cycle_prolog o v i v i i i e e e e e e e e e e e e e e 90

11.11.3.2 Actions of cycle_epilog o v v i vttt s e e e 90

11.11.4 S (Set Speed) : setspeed_prologand setspeed_epilog v i v i 90
11.11.5F (Set Feed) : setfeed_prologand setfeed_epilog 90
11.11.6 M61 Set tool number : settool_prologand settool_epilog 90
11.12Remapped code execution e e e e 91
11.12.1 NGC procedure call environment during remaps v v v v v v v v et e e e e e e 91
I11.122Nested remapped codes e 91
11.12.3 Sequence number during remaps v v v v v e e e e e e e e e e e e e e e e e e e 91
11.12.4 Debugging flags e 91
11.12.5 Debugging Embedded Pythoncode 91
11.13Axis Preview and Remapped code execution Lo e 92
11.14Remappable Codes e e e e e e e e e e e 93
11.14.1 Existing codes which can be remapped L o Lo 93
11.14.2 Currently unallocated G-codes: e e e e e 93
11.14.3 Currently unallocated M-codes: e 94
11.14.4 readahead time and execution time L. e 94
11.14.5 plugin/pickle hack 0o L e 95
11.14.6 Module, methods, classes, etc reference o e e e e e 95
11.15Introduction: Extending Task Execution L o 95
11.15.1 Why would you want to change Task Execution? 95
11.15.2 A diagram: task, interp, iocontrol, UL (??) o o 95
11.16Models of Task execution L e e e 95

11.16.1 Traditional iocontrol/iocontrolv2 eXecution o v v v i i e e e e e e e 95

Integrator Manual V2.7.0-pre5, 2015-03-10 viii

11.16.2 Redefining IO procedures 95
11.16.3 Execution-time Python procedures 95
11.17 A short survey of LinuxCNC program eXeCUution v v v v v v vt et e e et e e e e 95
IT.17. 1 Interpreter State o i i e e e e e e e e e e e e 96
11.17.2 Task and Interpreter interaction, Queuing and Read-Ahead 96
11.17.3 Predicting the machine position i i i e e e e e e e 96
11.17.4 Queue-busters break position prediction oL e e 96
11.17.5 How queue-busters are dealt with 97
11.17.6 Word order and execution order e e 97
TLAT7.7Parsing o o o e e e e e e e e 97
TTI7.8EXeCution o o o v e e e e e e e e e e e 98
11.17.9 Procedure €XeCUtion i vt v i e e e e e e e e 98
11.17.1How tool change currently works L 98
11.17.10.1How tool information is communicated L. 98

11.17.1How Tx (Prepare Tool) works L e 99
11.17.11. nterpreter actionona Tx command 99
11.17.11.2Task action on SELECT_POCKET e e e 99
11.17.11.3locontrol action on EMC_TOOL_PREPARE 99
11.17.11.4Building the prolog and epilog for Tx 99

11.17.1How M6 (Change tool) works o e 99
11.17.12. Interpreter actionon a M6 commando 99
11.17.12.2What task does when it sees a CHANGE_TOOL command 100
11.17.12.3locontrol action on EMC_TOOL_LOAD it is 100
11.17.12.4Building the prolog and epilog for M6 Lo 100

11.17.1How M61 (Change tool number) works 100
11.17.13.1Building the replacement for M61 100
11.18Optional Interpreter features: ini file configuration L oL 101
11.19Named parameters and inifile variables oL 101
11.20Named parameters and HAL items e 102
TI2IStatus o e 102
11.22Build notes - Lucid (10.04) e 103
11.23Build notes - Hardy (8.04) e e 103
11.24Workarounds oL e e e 104
I1.25Changes o o o e e e 104
12 Moveoff Component 105

12.1 Modifying an existing configurationo e e e 105

Integrator Manual V2.7.0-pre5, 2015-03-10 ix
III GUI 108
13 Python Virtual Control Panel 109
13.1 Introduction e e e e e e e e 109
13.2 Panel Constructiono e e e e e e e 110
13.3 Security o e 111
13.4 AXIS . . 111
13.5 Stand Alone 112
13.6 WIdZELs o o e e e e e 113
13.6.1 Syntax 113
13.6.2 General NOtes o o i i e e 113
13.6.2.1 Comments e e e e e 114

13.6.2.2 Editingthe XML file 114

13.6.2.3 Colors o e 114

13.6.24 HALPINS 114

13.6.3 Label 115
13.6.4 Multi_Label 115
13.6.5 LEDso 115
13.6.5.1 RoundLED 116

13.6.5.2 Rectangle LED e 116

13.6.6 BUttons 116
13.6.6.1 TextButton 117

13.6.6.2 Checkbutton 117

13.6.6.3 Radiobutton 117

13.6.7 Number Displays 118
13.6.7.1 Number 118

13.6.7.2 s32Number 119

13.6.7.3 u32Number 119

13.6.7.4 Bar 119

13.6.7.5 MEIer. o oot e 119

13.6.8 NumberInputs e 120
13.6.8.1 Spinbox 120

13.6.8.2 Scale 121

13.6.8.3 Dial 122

13.6.8.4 Jogwheel 122

13.6.9 ITmages o i i e 123
13.6.9.1 Tmage Bit e e e e 123

13.6.9.2 Tmageu32 e e 123
13.6.10Containers e e e e e e e 124

Integrator Manual V2.7.0-pre5, 2015-03-10 X

13.6.10.1 Borders L e e 124

13.6.10.2 HbOX o o o 125

13.6.103 VDOX o o 125

13.6.10.4 Labelframe e e e e 126

13.6.10.5 Table o e e e 126

13.6.10.6 Tabs 127

14 PyVCP Examples 129
14.1 AXIS .« o 129
14.2 Floating o o e e e e e e e e 129
14.3 Jog BUttons L e e e e 130
14.3.1 Createthe Widgets o 131
1432 Make Connections o v i it i e e e e e e e e 133

14.4 Port Tester o o o e e e e 133
145 GS2RPM MEter o o 136
14.5.1 ThePanel o o e 136
1452 The Connections i i ittt et et e e e e e e 138

15 Glade Virtual Control Panel 139
15.1 Whatis GladeVCP? o e e 139
15.1.1 PyVCP versus GladeVCPataglance 139

15.2 A Quick Tour with the Example Panel 140
15.2.1 Exploring the example panel e e e 143
15.2.2 Exploring the User Interface description 143
15.2.3 Exploring the Python callback 144

15.3 Creating and Integrating a Glade user interface e 144
15.3.1 Prerequisite: Glade installation L e e 144
15.3.2 Running Glade to create a new user interface L. 144
1533 Testingapanel e e 145
15.3.4 Preparing the HAL command file L o 145
15.3.5 Integrating into Axis like PyVCP 0 . 146
15.3.6 Integrating into Axis as a tab next to DRO and Preview 146
15.3.7 Imtegratinginto Touchy e e e e e e e e 147

15.4 GladeVCP command line options o ot i e e e e e e e e e e 147
15.5 Understanding the gladeVCP startup process o o ot ittt e e 148
15.6 HAL Widgetreference 0 i e e 149
15.6.1 Widgetand HAL pinnaming 0 0 i i e e e e e e e 149
15.6.2 Python attributes and methods of HAL Widgets 150

15.6.3 Setting pin and widget values 150

Integrator Manual V2.7.0-pre5, 2015-03-10 Xi

15.6.4 The hal-pin-changed signal 150
15.6.5 BUtONS o o e e e e e e 151
15.6.6 Scales e 152
15.6.7 SpinButton e e e e e e e 152
15.6.8 Hal_Dial 152
15.6.9 JogWheel. o e e e e e 154
15.6.10Label 156
15.6.11 Containers: HAL_HideTable HAL_Table State_Sensitive_Table and HAL_HBox 156
I5.6.12LED e 157
15.6.13 ProgressBar e e e e e e 157
15.6.14ComboBOX 158
15.6.15Bars L e 159
I5.6.16 Meter o e e e 160
15.6.17 Gremlin tool path preview for .ngcfiles e 160
15.6.18 HAL_Offset e 163
15.6.19 DRO widget e 163
15.6.20 Combi_DRO widget 164
15.6.21 IconView (File selection) widget e e e e 167
15.6.22 Calculator widget L L e e e e e 170
15.6.23 Tooleditor Widget o e e e e e e e e e e e 171
15.6.24 Offsetpage o o o e e 171
15.6.25 HAL _sourceview Widget 0 i i e e e e e e e e e e 173
15626 MDI hiStory o o e e e 174
15.6.27 Animated function diagrams: HAL widgetsinabitmap 174
15.7 Action Widgets reference L e 175
15.7.1 EMC Action Widets o o i e e e e e e e e e e e 176
15.7.2 EMC ToggleAction widgets e 176
15.7.3 The Action_MDI Toggle and Action_MDI widgets i 176
15.7.4 A simple example: Execute MDI command on button press 176
15.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets 177
15.7.6 An advanced example: Feeding parameters to an O-word subroutine 177
15.7.7 Preparing for an MDI Action, and cleaning up afterwards 178
15.7.8 Using the LinuxCNC Stat object to deal with status changes 178
15.8 GladeVCP Programming i v i i e e e e e e e e e e e e 179
15.8.1 User Defined Actions o o e e e e 179
15.8.2 An example: adding custom user callbacksinPython 180
15.8.3 HAL valuechangeevents e 180
15.8.4 Programming model e 180

15.8.4.1 Thesimple handlermodel 181

Integrator Manual V2.7.0-pre5, 2015-03-10 Xii

15.8.4.2 The class-based handlermodel 181

15.8.4.3 The get_handlers protocol 181

15.8.5 Initialization SEQUENCE o i e e e e e e e e e e e e e 182

15.8.6 Multiple callbacks with the samename 182

15.8.7 The GladeVCP -U <useropts>flag 182

15.8.8 Persistent variables in GladeVCP L 183

15.8.8.1 Persistence, program versions and the signature check oL 183

15.8.9 Using persistent variableso 183

15.8.10 Saving the state on Gladvep shutdown oL 184

15.8.11 Saving state when Ctrl-Cispressed 0 i e 184

15.8.12 Hand-editing .ini files e 185

15813 Adding HAL pins e 185

15.8.14 Adding tiIMers L e e e e e e 185

15.8.15 Setting HAL widget properties programmatically 185

15.8.16 Examples, and rolling your own GladeVCP application 186

15.9 FAQ . . . 186
15.10Troubleshooting o 0 e e e e e e e e e e 187
15.11Implementation note: Key handling in Axis e 187
15.12Adding Custom Widgets o e e 187

16 HAL User Interface 188
16.1 Introduction e e e e 188
16.2 Haluipinreference o o i e e e e e e e 188

17 Halui Examples 194
17.1 Remote Start o e e e e e e 194
17.2 Pause & Resume L e 195
IV Hardware Drivers 196
18 Parallel Port Driver 197
I8.1 Parport. . . . o o o e e e e e 197
18.1.1 Imstalling e 197

18.1.2 PINS . . . o o o 199

18.1.3 Parameters L e e e e e e 200

18.1.4 Functions i i it it e e e e e e 200

18.1.5 Common problems L e e e e e e e 200

18.1.6 Using DoubleStep o 200

Integrator Manual V2.7.0-pre5, 2015-03-10 Xiii
19 AXS5214H Driver 202
19.1 Installing o o e 202
19.2 PINS . . L o o e 202
19.3 Parameters i e e e e e e e e e e e e e e 202
19.4 FUNCHONS vttt e et e e e e e e e 203

20 GS2 VFD Driver 204
20.1 Command Line Options o o it e e e e e e 204
20.2 PINS e e 204
203 Parameters e e e e 205

21 Mesa HostMot2 Driver 206
211 IntroducCtion ot e e e e e e e e e e e e 206
21.2 Firmware Binaries L L e e e 206
21.3 Installing Firmware L L e e e e 207
21.4 Loading HOStMOL2 o o e e e e e e e e e 207
21.5 Watchdog L 207
2151 PInS: . . oo e 207

21.5.2 Parameters: i i e e e e e e e e e e e e 207

21.6 HostMot2 Functions e e e e e e 208
217 PINOULS . . . o o e e 208
21.8 PINFiles o e 209
21.9 Firmware e e e e e 209
21L1I0HAL PINS o e e 209
21.11COoNAGUIALIONS .« . . v v v v e e e e e e e e e e e e e e 210
2112GPIO . . o e e 212
2L12.1PINS © . o oo e 212

21 122Parameters e e e e e e e e e e e e e e e e e e e 212

21 13StepGen . . . o o o e e e e 213
2113.1PINS « . oo o e e 213

21 13.2Parameters e e e e e e e e e e e e e e e e e e 213

21.13.3 Output Parameters oL e e e e e 214
2LLTA4PWMGEN . . . o oot e e 214
2L14.1PINS © . oo o e e 214
21.142Parameterso e e e e e e e e e e e e e e e e e 214

21.14.3 Output Parameters e e e 215
2115Encoder L e e e 215
2L5.1PINS . . . o o o e 215
2115.2Parameterso .o i e e e e e e e 216

Integrator Manual V2.7.0-pre5, 2015-03-10 Xiv
21.165125 Configuration L. e e e e e e e 216
2L16.1 Firmware o oo e e e e e 216
21.16.2Configuration e e e e e e e e e e e e e e e 216

21.16.3 SSERIAL Configuration e 217

21164 TITTLIMILS o o oo o e e e e e 217
21.17Example Configurations i e e e e e e e e e e e e e e e 217

22 Motenc Driver 218
221 PINS . . o o e e e 218
222 Parameters e e e e e e e e e e 219
223 FUNCHONS o v ittt e e e e 219

23 Opto22 Driver 220
23.1 The Adapter Card e e e e e e e e 220
232 The Driver o e e 220
233 PINS e 220
234 Parameters i .o e 221
23.5 FUNCTIONS . . . o e e e e s e 221
23.6 Configuring /O POItS o . e e e e e e e e 221
2377 PInNumbering e e e e e e e 222

24 Pico Drivers 223
24.1 Command Line Options o o e e e e e 223
242 PINS e e 224
243 Parameters e e e e e e e e e e e e 225
244 FUNCHONS v v vt et ittt e e e e e e e e e e e e 226

25 Pluto P Driver 227
25.1 General Info L. e 227
25.1.1 Requirements i e e e e e e e 227

25.1.2 CONNECLOTS . .« o v v v v e e e et e e e e e e e 227

25.1.3 Physical PIns e e e e 227

25.1.4 LED o . e 228

25.1.5 POWEr 228

25.1.6 PCinterface e 228

25.1.7 Rebuilding the FPGA firmware e 228

25.1.8 Formore information e e e e e e e e 228

252 PIUtO Servo o e e 228
2521 PINOUL . . . L L e e 229

25.2.2 Input latching and output updating L. L e 230

Integrator Manual V2.7.0-pre5, 2015-03-10 XV
25.2.3 HAL Functions, Pins and Parameters 230

25.2.4 Compatible driver hardware L 231

253 PIUtOStED . . . o o e e e e 231
2531 PInout L e e e 231

25.3.2 Inputlatching and output updating e e e 232

25.3.3 Step Waveform Timings o o o e 232

25.3.4 HAL Functions, Pins and Parameters 233

26 Servo To Go Driver 234
26.1 Installing e e e e e e e e e 234
20.2 PINS e e 235
20.3 Parameters e e e e e e e e 235
26.4 FUNCHONS v it ittt e e e 235

27 ShuttleXpress 236
27.1 DeSCription v v v vttt e e e e e e e e e 236
27.2 SEUP . o v v e 236
273 PINS . . o o e 236

28 General Mechatronics Driver 238
28.1 TJOCONNECIOTS .« . . v v v v it e e e e e e e e e e e e e e 239
28. 1.1 PINS . . . oo 240

28.1.2 Parameters e e e e e e e e e e e e e e 240

28.2 AXISCONMNECIOTS . .« . v v v vt et v e i e e e e e e e e e e e e e e e e e e 241
28.2.1 Axisinterfacemodules L L e e e e 241

2822 Encoder e 242

28.2.2.1 PINS . . .o 243

28222 Parameters i i e e e e e e e e e e 243

28223 HALexample e 244

28.2.3 Stepgenmodule e e e 244

28.2.3.1 Pins e 246

28.2.3.2 Parameterso e e e e e e e e e e e e 246

28.2.33 HALexample e e 247

28.2.4 Enable and Faultsignals e 248

28.2.4.1 PINS 248

28.2.5 AXiSDAC . . . o o 248

28.2.5.1 PInS . . .o 249

28.2.52 Parameters e e e e e 249

28.3 CAN-bus servo amplifiers e e e e e e e 249
28.3.1 PINS L e 251

Integrator Manual V2.7.0-pre5, 2015-03-10

XVi

28.3.2 Parameters
28.4 Watchdog timer
284.1 Pins

28.4.2 Parameters

28.5 End-, homing- and E-stop switches L e

28.5.1 Pins
28.5.2 Parameters
28.6 StatusLEDs
28.6.1 CAN
28.6.2 RS485.
28.63 EMC
28.64 Boot.
28.6.5 Error

28.7 RS485 /O expander modules L e e

28.7.1 Relayoutputmodule L

28.7.1.1 Pins . .

28.7.1.2 Parameters e e e e e e e e e e
28.7.1.3 HALexample e e e

28.7.2 Digital inputmoduleo e

28.7.2.1 Pins . .

28.7.2.2 HALexample e e
28.7.3 DAC& ADCmodule

28.7.3.1 Pins . .

28.7.3.2 Parameters e e e e e e
28733 HALexample e e
28.7.4 Teach Pendantmodule e

28.74.1 Pins . .

28.8 Errata

28.8.1 GMO6-PClcard Errata e e

V Advanced Topics

29 Python Interface

29.1 The linuxenc Pythonmodule o e
29.2 Usage Patterns for the LinuxCNC NML interface

29.3 Reading LinuxCNC status

251
251
251
251
252
253
253
253
253
253
254
254
254
254
255
255
255
256
256
256
256
256
257
257
257
258
258
258
258
259
259
259

260

Integrator Manual V2.7.0-pre5, 2015-03-10 XVii
29.3.1 linuxcne.statattributes L. e e e e e 262

293.2 Theaxisdictionary e 266

29.4 Preparing to send commands oLl e e e e e e e 267
29.5 Sending commands through 1inuxcnc.command ittt e 268
29.5.1 linuxcnc.commandattributes e 269

29.5.2 linuxcnc.commandmethods: e e 269

29.6 Readingtheerrorchannel L e 271
29.7 Readinginifile values e e 271
29.8 The linuxcnc.positionlogger tyPe o v v v v i i i i it e e e e e e 272
20.8.1 members e e e e e e 272

2082 methods L e 272

30 Kinematics 273
30.1 Introduction e e e 273
30.1.1 JOINtS VS. AXES '+« v v v v e 273

30.2 Trivial Kinematics L L e e e e e 273
30.3 Non-trivial kKinematics L . e e e e e e 274
30.3.1 Forward transformation L e e 275

30.3.2 Inverse transformation Ll e e e e 275

30.4 Implementationdetails e e e e e 276

31 Stepper Tuning 277
31.1 Getting the most out of Software Stepping e 277
31.1.1 RunaLatency Test L . i e 277

31.1.2 Figure out what your drives €Xpect o i it e e e e e e e 278

31.1.3 Choose your BASE_PERIOD e 278

31.1.4 Use steplen, stepspace, dirsetup, and/ordirhold oo 279

31.1.5 NoGuessing! o e 279

32 PID Tuning 280
32.1 PID Controller o o o e e e e e e e e e e 280
32.1.1 Controlloopbasics e 280

32.1.2 Theory e e e 281

32.1.2.1 Proportional e e 281

32.1.2.2 Integral e e e e e e e e 281

32.1.2.3 Derivative e e e 281

32.1.3 LoopTuning o oo o i e e e 281

32.1.3.1 Simplemethod 282

32.1.3.2 Ziegler-Nichols method 282

32.1.33 Final Steps 282

Integrator Manual V2.7.0-pre5, 2015-03-10 XViii
VI Ladder Logic 283
33 Classicladder Introduction 284
331 HIiStOry . . . o o e 284
33.2 Introduction Ll 284
333 Example e e e 285
33.4 Basic Latching On-Off Circuit e 285
34 Classicladder Programming 287
34.1 Ladder Concepts o v v v i v i e e e e e e e e e e e e e 287
342 Lan@Uageso it e e e e e e e e e e 287
343 COMPONENLS « « . v v v v v e 287
343.1 Files. o 288

343.2 Realtime Module e e 288

3433 Variables 288

34.4 Loading the Classic Ladder usermodule e 289
345 Classic Ladder GUI o 0 . 0 e 289
34.5.1 Sections Managerl e e e e e e e e 290

3452 Section Display e e e e e e e e 290

34.5.3 The Variable Windows e e 291

3454 Symbol Window 294

3455 TheEditor window L 295

345.6 Config Window o L L e e e e e e e 296

34.6 Ladder objects L e e 298
34.6.1 CONTACTS e e e e 298

34.62 IECTIMERS 298

34.6.3 TIMERS 299

34.64 MONOSTABLES e e e 299

34.6.5 COUNTERS e e e 299

34.6.6 COMPARE 300

34.6.7 VARIABLE ASSIGNMENT 301

34.6.8 COILS 302
34.6.8.1 JUMPCOIL 303

34682 CALLCOIL 303

347 Classic Ladder Variables o L e e 303
34.8 GRAFCET Programming ottt e ettt e e e e e e 304
349 Modbus 305
34.9.1 MODBUS Settings o v v ittt e e e e e e e e e 308

3492 MODBUSInfo o 309

Integrator Manual V2.7.0-pre5, 2015-03-10 XiX

3493 Communication Errors L 309

34.9.4 MODBUS Bugs o e e 309
34.10Setting up Classic Ladder o e 310
34.10.1 Add the Modules 310

34.10.2 Adding Ladder Logic e e 310

35 Classicladder Examples 317
35.1 Wrapping COUNLEr ot i e e e e 317
35.2 Reject Extra Pulses o o e e e e e 318
353 External E-Stop e 319
35.4 Timer/Operate Example L e e e 322
VII Hardware Examples 324
36 PCI Parallel Port 325
37 Spindle Control 326
37.1 0-10v Spindle Speed e e e e e e 326
37.2 PWM Spindle Speed L e 326
37.3 Spindle Enable L. e e e e 327
37.4 Spindle Direction e e e 327
37.5 Spindle Soft Start e e e 327
37.6 Spindle Feedback e 328
37.6.1 Spindle Synchronized Motion L e 328

37.6.2 Spindle AtSpeed L e e e e e 329

38 MPG Pendant 330
39 GS2 Spindle 333
VIII Diagnostics 334
40 Stepper Diagnostics 335
40.1 Common Problems e 335
40.1.1 Stepper Moves One Step L 335

40.1.2 No Steppers MOVE o i i e e e e e e e e e e e e e 335

40.1.3 Distance Not COITeCt o v it e et et e e e e e e e 335

40.2 Error MeSSages v vt i e e e e e e e e e e e e e e e e e 335
40.2.1 Following Error o o e 335

40.2.2 RTAPILError e e 336

403 TeStNG . . . o oo e e e 336

40.3.1 StepTiming e e 336

Integrator Manual V2.7.0-pre5, 2015-03-10 XX
41 Glossary 338
42 Legal Section 343
42.1 Copyright Terms L e e 343
42.2 GNU Free Documentation License 0 i i i e e e 343
43 Index 347

Integrator Manual V2.7.0-pre5, 2015-03-10 XXi

The LinuxCNC Team

Integrator Manual V2.7.0-pre5, 2015-03-10 1/349

Part I

LinuxCNC Introduction

Integrator Manual V2.7.0-pre5, 2015-03-10 2 /349

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2014 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

Integrator Manual V2.7.0-pre5, 2015-03-10 3/349

Chapter 1

Integrator Concepts

1.1 Stepper Systems

1.1.1 Base Period

BASE_PERIOD is the heartbeat of your LinuxCNC computer.! Every period, the software step generator decides if it is time
for another step pulse. A shorter period will allow you to generate more pulses per second, within limits. But if you go too short,
your computer will spend so much time generating step pulses that everything else will slow to a crawl, or maybe even lock up.
Latency and stepper drive requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you can get very rare errors that ruin a part every once in a while and are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest timing requirement of your
drive, and the worst case latency of your computer. This is not always the best choice. For example, if you are running a drive
with a 20 us direction signal hold time requirement, and your latency test said you have a maximum latency of 11 us, then if you
set the BASE_PERIOD to 20+11 =31 us you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per second
in another mode.

The problem is with the 20 us hold time requirement. That plus the 11 us latency is what forces us to use a slow 31 us period. But
the LinuxCNC software step generator has some parameters that let you increase the various times from one period to several.
For example, if steplen ? is changed from 1 to 2, then there will be two periods between the beginning and end of the step pulse.
Likewise, if dirhold > is changed from 1 to 3, there will be at least three periods between the step pulse and a change of the
direction pin.

If we can use dirhold to meet the 20 us hold time requirement, then the next longest time is the 4.5 us high time. Add the 11 us
latency to the 4.5 us high time, and you get a minimum period of 15.5 us . When you try 15.5 us, you find that the computer
is sluggish, so you settle on 16 us . If we leave dirhold at 1 (the default), then the minimum time between step and direction is
the 16 us period minus the 11 us latency = 5 us , which is not enough. We need another 15 us . Since the period is 16 us , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the step pulse to the changing
direction pin is 5+16=21 us, and we don’t have to worry about the drive stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section of the HAL manual.

1.1.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes important. If the drive steps on the
falling edge then the output pin should be inverted.

! This section refers to using stepgen, LinuxCNC’s built-in step generator. Some hardware devices have their own step generator and do not use LinuxCNC’s
built-in one. In that case, refer to your hardware manual.

2 steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL component. This parameter
adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3 dirhold refers to a parameter that adjusts the length of the direction hold time.

Integrator Manual V2.7.0-pre5, 2015-03-10 4 /349

1.2 Servo Systems

1.2.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are more costly and complex.
Unlike stepper systems, servo systems require some type of position feedback device, and must be adjusted or funed, as they
don’t quite work right out of the box as a stepper system might. These differences exist because servos are a closed loop system,
unlike stepper motors which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram of
how a servomotor system is connected.

Summing amp Power amp
Input signal + z
[command signal | SUMMEr amp
- drives power amp

input fcommand) signal
ard fesgback sighal
drive summing amp

Powear amp
frives

feedback signal molor

feedback device Motor

AMTTIYVIAIA AL
.||I'|,||I'I,||I |Il ‘
ILSRRARRARANRALS o

motor drives load
and feadback device

Figure 1.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the summing amplifier drives
the power amplifier, the power amplifier drives the motor, the motor drives the load (and the feedback device), and the feedback
device (and the input signal) drive the motor. This looks very much like a circle (a closed loop) where A controls B, B controls
C, C controls D, and D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first, especially as compared
to more normal electronic circuits, where the inputs proceed smoothly to the outputs, and never go back.* If everything controls
everything else, how can that ever work, who’s in charge? The answer is that LinuxCNC can control this system, but it has to do
it by choosing one of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is called
PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction to the current error, the
Integral value determines the reaction based on the sum of recent errors, and the Derivative value determines the reaction based
on the rate at which the error has been changing. They are three common mathematical techniques that are applied to the task of
getting a working process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis position
and the set point is the commanded axis position.

4 If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where what the outputs are doing now
depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then nevermind.

Integrator Manual V2.7.0-pre5, 2015-03-10 5/349

t
—setpoint@—ermra- K [e(r)dt E—»{ Process %nutput—r

Figure 1.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action designed for specific
process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error,
the degree to which the controller overshoots the set point and the degree of system oscillation.

1.2.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to the current error value. A high
proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the
system can become unstable. In contrast, a small gain results in a small output response to a large input error. If the proportional
gain is too low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is
a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice
indicate that it is the proportional term that should contribute the bulk of the output change.

1.2.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude of the error and the
duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should
have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process towards set point and eliminates
the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to
accumulated errors from the past, it can cause the present value to overshoot the set point value (cross over the set point and then
create a deviation in the other direction).

1.2.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with
respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller
set point. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and
improve the combined controller-process stability.

Integrator Manual V2.7.0-pre5, 2015-03-10 6/349

1.2.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled
process input can be unstable, i.e. its output diverges, with or without oscillation, and is limited only by saturation or mechanical
breakage. Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

1.2.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output of the loop oscillates, then the P
should be set to be approximately half of that value for a quarter amplitude decay type response. Then increase I until any offset
is correct in sufficient time for the process. However, too much I will cause instability. Finally, increase D, if required, until the
loop is acceptably quick to reach its reference after a load disturbance. However, too much D will cause excessive response and
overshoot. A fast PID loop tuning usually overshoots slightly to reach the set point more quickly; however, some systems cannot
accept overshoot, in which case an over-damped closed-loop system is required, which will require a P setting significantly less
than half that of the P setting causing oscillation.

1.3 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance. The RTAI patched kernel
lets you write applications with strict timing constraints. RTAI gives you the ability to have things like software step generation
which require precise timing.

1.3.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which interfere with RT
performance (for example: power management, CPU power down, CPU frequency scaling, etc). The LinuxCNC kernel (and
probably all RTAI-patched kernels) has ACPI disabled. ACPI also takes care of powering down the system after a shutdown has
been started, and that’s why you might need to push the power button to completely turn off your computer. The RTAI group has
been improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

Integrator Manual V2.7.0-pre5, 2015-03-10 7 /349

Part 11

Configuration

Integrator Manual V2.7.0-pre5, 2015-03-10 8/349

Chapter 2

Latency Test

This test is the first test that should be performed on a PC to see if it is able to drive a CNC machine.

Latency is how long it takes the PC to stop what it is doing and respond to an external request. For LinuxCNC the request is
BASE_THREAD that makes the periodic heartbeat that serves as a timing reference for the step pulses. The lower the latency,
the faster you can run the heartbeat, and the faster and smoother the step pulses will be.

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within 10 microseconds each and
every time can give better results than the latest and fastest P4 Hyperthreading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a number of other things can
hurt the latency. The best way to find out what you are dealing with is to run the RTAI latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a parallel port that is capable
of outputting step pulses that are generated by the software. However, software step pulses also have some disadvantages:

* limited maximum step rate
* jitter in the generated pulses

¢ Joads the CPU

The best way to find out how well your PC will Irun LinuxCNC is to run the HAL latency test. To run the test, open a terminal
window (In Ubuntu, from Applications — Accessories — Terminal) and run the following command:

latency-test

You should see something like this:

Integrator Manual V2.7.0-pre5, 2015-03-10 9/349

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring emc2.

While the test is running, you should "abuse” the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1.0ms): 1001089 5929 995302

Base thread (25.0ps): 33954 9075 24843

Reset Statistics

Figure 2.1: HAL Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf the web. Copy some large
files around on the disk. Play some music. Run an OpenGL program such as glxgears. The idea is to put the PC through its paces
while the latency test checks to see what the worst case numbers are.

Note
Do not run LinuxCNC or Stepconf while the latency test is running.

The important numbers are the max jitter. In the example above, that is 9075 nanoseconds, or 9.075 microseconds. Record this
number, and enter it in Stepconf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least several minutes; sometimes
the worst case latency doesn’t happen very often, or only happens when you do some particular action. For instance, one Intel
motherboard worked pretty well most of the time, but every 64 seconds it had a very bad 300 us latency. Fortunately that was
fixable, see http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-20000 nanoseconds), the
computer should give very nice results with software stepping. If the max latency is more like 30-50 microseconds, you can still
get good results, but your maximum step rate might be a little disappointing, especially if you use microstepping or have very
fine pitch leadscrews. If the numbers are 100 us or more (100,000 nanoseconds), then the PC is not a good candidate for software
stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC is not a good candidate for LinuxCNC, regardless
of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. Another PC had very bad latency (several milliseconds)
when using the onboard video. But a $5 used video card solved the problem.

Note
LinuxCNC does not require bleeding edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.
Additional command line tools are availalbe for examining latency when LinuxCNC is not running.

latency-plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes in latency when other
applications are started or used. Usage:

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

Integrator Manual V2.7.0-pre5, 2015-03-10

10/349

latency-plot —-help

Usage:

latency-plot ——-help | -2
latency-plot —--hal

Options:
—-base n
——sServo

S
ns

--relative

—-—actual

(
(
——time mS (
(
(

(this)
[Options]

base thread interval,
servo thread interval,
report interval, default:
relative clock time
actual clock time)

default:
default:

1000)

(default))

25000)
1000000)

— max
— ETIAX
b:latency
slatency =
)
0
U I
R | PLs: 240 -+

Latency (uSeconds) vs Time (seconds)

Wall:

latency-histogram displays a histogram of latency (jitter) for a base and servo thread. Usage:

latency-histogram --help

Usage:

latency-histogram —--help | -2

or

latency-histogram

Options:
—-—version
——base
—-—servo
——bbinsize
——sbinsize
—-bbins
—-—-sbins
—-—logscale
——text
——show
——nobase
—-—verbose

ns
ns
ns
ns

0]1
note

[Options]

show version and exit)
base thread interval,
servo thread interval,
base bin size,
servo bin size,
base Dbins,
servo bins,
y axis log scale,
additional note,

servo thread only)

(
(
(
(
(
(
(
(
(
(
(
(progress and debug)

default:
default:
default: 200
default: 200
default:
default: ""
show count of undisplayed bins)

default:
default:
100

100

1)

25000, min:

1000000, min:

5000)
25000)

Integrator Manual V2.7.0-pre5, 2015-03-10 11/349

Notes:
Linuxcnc and Hal should not be running, stop with halrun -U.
Large number of bins and/or small binsizes will slow updates.
For single thread, specify --nobase (and options for servo thread).
Measured latencies outside of the +/- bin range are reported
with special end bars. Use --show to show count for
the off-chart [pos|neg] bin

i fusr/bin/hal-histogram (histo-1)

Pin: motion-controller.time Sig: hhs-1 (histo-1)
Date LinuxCNC:version OS: version Hostname
Commandline_Note

1ES

1E4

1E3

1E2

1E1

[[[[
L 10000 20000 30000

min | 2079 mean:| 10522.58 sdev:| 11739.17 max| 71490
Minvalue:| 0 Binsize:| 10po0 nBin5:| 50 Maxvalue| 50000 Updatel
F!.estart| v ylogscale Screenshot Elapsed Time: 319 @

Integrator Manual V2.7.0-pre5, 2015-03-10 12 /349

Chapter 3

Starting LinuxCNC

3.1 Running LinuxCNC

LinuxCNC is started with the script file linuxcnc.

linuxcnc [options] [<ini-file>]
LINUXCNC SCRIPT OPTIONS

* -v = verbose - prints info as it works

* -d = echoes script commands to screen for debugging
If the linuxcnc script is passed an ini file it reads the ini file and starts LinuxCNC. The ini file [HAL] section specifies the order
of loading up HAL files if more than one is used. Once the HAL=xxx.hal files are loaded then the GUI is loaded then the

POSTGUI=.xxx.hal file is loaded. If you create PyVCP or GladeVCP objects with HAL pins you must use the postgui HAL file
to make any connections to those pins. See the [HAL] section of the INI configuration for more information.

Configuration Selector

If no ini file is passed to the linuxcnc script it loads the configuration selector so you can choose and save a sample configuration.
Once a sample configuration has been saved it can be modified to suit your application.

Integrator Manual V2.7.0-pre5, 2015-03-10 13/ 349

Ll LinuxCNC Configuration Selector &)

Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

E Sample Configurations "\| This is a simulation of an XYZBC 5 axis bridge
Saxis mill.

Sherline3Axis

SherlinedAxis

SherlineLathe

boss

classicladder

cooltool

dallur-thc

demo_mazak

demo_sim_cl _
demo_step _cl

etch-servo

gantry

gladevcp

halui_pywvcp

hexapod-sim

hm2-servo

hm2-stepper

lathe-pluto

oy A
[Create Desktop Shortcut ‘ Cancel

Figure 3.1: Configuration Selector

3.2 Files Used for Configuration

LinuxCNC is configured with human readable text files. All of these files can be read and edited in any of the common text file
editors available with most any Linux distribution.! You’ll need to be a bit careful when you edit these files. Some mistakes will
cause the start up to fail. These files are read whenever the software starts up. Some of them are read repeatedly while the CNC
is running.

Configuration files include

 [NI The ini file overrides defaults that are compiled into the LinuxCNC code. It also provides sections that are read directly by
the Hardware Abstraction Layer.

* HAL The HAL files start up process modules and provide linkages between LinuxCNC signals and specific hardware pins.

* VAR The var file is a way for the interpreter to save some values from one run to the next. These values are saved from one run
to another but not always saved immediately. See the Parameters section of the G Code Manual for information on what each
parameter is.

e TBL The tbl file saves tool information. See the User Manual Tool File section for more info.

e NML The nml file configures the communication channels used by the LinuxCNC. It is normally setup to run all of the
communication within a single computer but can be modified to communicate between several computers.

! Don’t confuse a text editor with a word processor. A text editor like gedit or kwrite produce files that are plain text. They also produce lines of text that are
separated from each other. A word processor like Libre Office produces files with paragraphs and word wrapping and lots of embedded codes that control font
size and such. A text editor does none of this.

Integrator Manual V2.7.0-pre5, 2015-03-10 14/ 349

* linuxcncrce This file saves user specific information and is created to save the name of the directory when the user first selects
an LinuxCNC configuration.’

Items marked (in HAL) are used by the sample HAL files and are suggested as a good convention. Other items are used by
LinuxCNC directly, and must always have the section and item names given.

3.3 TWOPASS

LinuxCNC 2.5 supports TWOPASS processing of hal configuration files that can help in the modularization and readability of
hal files. (Hal files are specified in an LinuxCNC ini file in the HAL stanza as [HAL]JHALFILE=filename).

Normally, a set of one or more hal configuration files must use a single, unique loadrt line to load a kernel module that may
handle multiple instances of a component. For example, if you use a two input AND gate component (and2) in three different
places in your setup, you would need to have a single line somewhere to specify:

loadrt and2 count=3

resulting in components and2.0, and2.1, and2.2.
Configurations are more readable if you specify with the names=option for components where it is supported, e.g.,:

loadrt and2 names=aa, ab, ac

resulting in components aa,ab,ac.

It can be a maintenance problem to keep track of the components and their names since when you add (or remove) a component,
you must find and update the single loadrt directive applicable to the component.

TWOPASS processing is enabled by including an ini file parameter in the [HAL] section:

[HAL]

TWOPASS = anystring

Where "anystring" can be any non-null string. With this setting, you can have multiple specifications like:

loadrt and2 names=aa
loadrt and2 names=ab, ac

loadrt and2 names=ad

These commands can appear in different HALFILES. The HALFILES are processed in the order of their appearance in the ini
file.

The TWOPASS option can be specified with options to add output for debugging (verbose) and to prevent deletion of temporary
files (nodelete). The options are separated with commas.

Example:

[HAL]

TWOPASS = on,verbose,nodelete

With TWOPASS processing, all [HALJHALFILES are first read and multiple appearances of loadrt directives for each module
are accumulated. No hal commands are executed in this initial pass.

After the initial pass, the modules are loaded automatically with a number equal to the total number when using the count= option
or with all of the individual names specified when using the names= option.

2 Usually this file is in the users home directory (e.g. /home/user/)

Integrator Manual V2.7.0-pre5, 2015-03-10 15/ 349

A second pass is then made to execute all of the other hal instructions specified in the HALFILES. The addf commands that
associate a component’s functions with thread execution are executed in the order of appearance with other commands during
this second pass.

While you can use either the count= or names= options, they are mutually exclusive — only one type can be specified for a given
module.

TWOPASS processing is most effective when using the names= option. This option allows you to provide unique names that are
mnemonic or otherwise relevant to the configuration. For example, if you use a derivative component to estimate the velocities
and accelerations on each (x,y,z) coordinate, using the count= method will give arcane component names like ddt.0, ddt.1, ddt.2,
etc.

Alternatively, using the names= option like:

loadrt ddt names=xvel,yvel, zvel

loadrt ddt names=xacel,yacel, zacel

results in components sensibly named xvel,yvel,zvel, xacel,yacel,zacel.

Many comps supplied with the distribution are created with the comp utility and support the names= option. These include the
common logic components that are the glue of many hal configurations.

User-created comps that use the comp utility automatically support the names= option as well. In addition to comps generated
with the comp utility, numerous other comps support the names=option. Comps that support names= option include: at_pid,
encoder, encoder_ratio, pid, siggen, and sim_encoder.

Twopass processing occurs before the loading of a gui. When using a [HAL]JPOSTGUI_HALFILE, it is convenient to place all
the loadrt statements for components needed in a halfile that is loaded earlier.

Example of a HAL section when using a POSTGUI_HALFILE :

[HAL]

TWOPASS = on

HALFILE = core_sim.hal

HALFILE = sim_spindle_encoder.hal

HALFILE = axis_manualtoolchange.hal

HALFILE = simulated_home.hal

HALFILE = load_for_postgui.hal <-- loadrt lines for components in postgui.hal

POSTGUI_HALFILE = postgui.hal
HALUI = halui

Examples of TWOPASS usage for a simulator are included in the directories:

configs/sim/axis/twopass/

configs/sim/axis/simtcl/

Integrator Manual V2.7.0-pre5, 2015-03-10 16/ 349

Chapter 4

INI Configuration

4.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

¢ comments
e sections

e variables

Each of these elements is separated on single lines. Each end of line or newline character creates a new element.

41.1 Comments
A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at the start a line, the rest of the
line is ignored by the software. Comments can be used to describe what an INI element will do.

; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone carelessly edits a list
like this and leaves two of the lines uncommented, the first one encountered will be used.

Note that inside a variable, the "#" and ";" characters do not denote comments:

INCORRECT = value # and a comment

Correct Comment
CORRECT = wvalue

Integrator Manual V2.7.0-pre5, 2015-03-10 17 / 349

4.1.2 Sections

Related parts of an ini file are separated into sections. A section name is enclosed in brackets like this [THIS_SECTION] The
order of sections is unimportant. Sections begin at the section name and end at the next section name.

The following sections are used by LinuxCNC:

e [EMC] general information

» [DISPLAY] settings related to the graphical user interface

e [FILTER] settings input filter programs

* [RS274NGC] settings used by the g-code interpreter

* [EMCMOT] settings used by the real time motion controller

» [TASK] settings used by the task controller

» [HAL] specifies .hal files

» [HALUI] MDI commands used by HALUI

» [APPLICATIONS] Other applications to be started by LinuxCNC
» [TRAJ] additional settings used by the real time motion controller
e [AXIS_ n] individual axis variables

* [EMCIO] settings used by the I/O Controller

4.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the first non-white space character
after the = up to the end of the line is passed as the value, so you can embed spaces in string symbols if you want to or need to.
A variable name is often called a keyword.

Variable Example

MACHINE = My Machine

A variable line may be extended to multiple lines with a terminal backslash (\) character. A maximum of MAX_EXTEND_LINES
(==20) are allowed. There must be no whitespace following the trailing backslash character.

Section identifiers may not be extended to multiple lines.

Variable with Line extends Example

APP = sim_pin \
ini.0.max_acceleration \
ini.l.max_acceleration \
ini.2.max_acceleration \
ini.0.max_velocity \
ini.l.max_velocity \
ini.2.max_velocity

The following sections detail each section of the configuration file, using sample values for the configuration lines.

Variables that are used by LinuxCNC must always use the section names and variable names as shown. In the following example
the variable MACHINE is assigned the value My Machine.

Integrator Manual V2.7.0-pre5, 2015-03-10 18 /349

4.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one location for convenience.
To use a custom section variable in your HAL file add the section and variable to the INI file.
Custom Section Example

[OFFSETS]
OFFSET_1 = 0.1234

To add a custom variable to a LinuxCNC section simply include the variable in that section.
Custom Variable Example

[AXIS_O0]
TYPE = LINEAR

SCALE = 16000

To use the custom variables in your HAL file put the section and variable name in place of the value.
HAL Example

setp offset.l.offset [OFFSETS]OFFSET_1
setp stepgen.0.position-scale [AXIS_0]SCALE

Note
The value stored in the variable must match the type specified by the component pin.

4.1.5 Include Files

An INI file may include the contents of another file by using a #INCLUDE directive.
#INCLUDE Format

#INCLUDE filename
The filename can be specified as:

* afile in the same directory as the INI file
* afile located relative to the working directory
* an absolute file name (starts with a /)

¢ a user-home-relative file name (starts with a ~)

Multiple #INCLUDE directives are supported.
#INCLUDE Examples

#INCLUDE axis_0.inc

#INCLUDE ../parallel/axis_1l.inc

#INCLUDE below/axis_2.inc

#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not include additional files. The
recommended file extension is .inc. Do not use a file extension of .ini for included files.

Integrator Manual V2.7.0-pre5, 2015-03-10 19/ 349

4.2 INI File Sections

4.2.1 [EMC] Section

* VERSION = $Revision: 1.3 $ - The version number for the INI file. The value shown here looks odd because it is automatically
updated when using the Revision Control System. It’s a good idea to change this number each time you revise your file. If you
want to edit this manually just change the number and leave the other tags alone.

* MACHINE = My Controller - This is the name of the controller, which is printed out at the top of most graphical interfaces.
You can put whatever you want here as long as you make it a single line long.

* DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a terminal. Debug flags are
usually only useful to developers. See src/emc/nml_intf/debugflags.h for other settings.

4.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every user interface. The main
two interfaces for LinuxCNC are AXIS and Touchy. There are several newer interfaces, like gmoccapy and gscreen. Axis is an
interface for use with normal computer and monitor, Touchy is for use with touch screens. Gmoccapy can be used both ways
and offers also many connections for hardware controls. Descriptions of the interfaces are in the Interfaces section of the User
Manual.

* DISPLAY = axis - The name of the user interface to use. Valid options may include: axis, touchy, gmoccapy, gscreen, keystick,
mini, tklinuxcnc, xemc,

* POSITION_OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show when the user interface
starts. The RELATIVE coordinate system reflects the G92 and G5x coordinate offsets currently in effect.

e POSITION_FEEDBACK = ACTUAL - The coordinate value (COMMANDED or ACTUAL) to show when the user interface
starts. The COMMANDED position is the ideal position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors.

e MAX_FEED_OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of the programmed feed
rate.

* MIN_SPINDLE_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means 50% of the programmed
spindle speed. (This is useful as it’s dangerous to run a program with a too low spindle speed).

e MAX_SPINDLE_OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means 100% of the programmed
spindle speed.

* DEFAULT_SPINDLE_SPEED = 100 - The default spindle RPM when the spindle is started in manual mode. This is not the
minimum speed. In AXIS this defaults to 1 RPM if this setting is not present.

* PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default location for g-code files and the location for user-defined M-codes.
This location is searched for the file name before the subroutine path and user M path if specified in the [RS274NGC] section.

* INTRO_GRAPHIC = emc2.gif - The image shown on the splash screen.
e INTRO_TIME = 5 - The maximum time to show the splash screen, in seconds.

e CYCLE_TIME = 0.05 - Cycle time in seconds that display will sleep between polls.

Note
The following [DISPLAY] items are for the AXIS interface only, many of them are used also from gmoccapy, see the gmoccapy
document for details.

* DEFAULT LINEAR VELOCITY = .25 - The default velocity for linear jogs, in , machine units per second.

Integrator Manual V2.7.0-pre5, 2015-03-10 20/ 349

MIN_VELOCITY = .0I - The approximate lowest value the jog slider.

MAX_LINEAR_VELOCITY = 1.0 - The maximum velocity for linear jogs, in machine units per second.
MIN_LINEAR _VELOCITY = .01 - The approximate lowest value the jog slider.

DEFAULT ANGULAR_VELOCITY = .25 - The default velocity for angular jogs, in machine units per second.
MIN_ANGULAR_VELOCITY = .01 - The approximate lowest value the angular jog slider.

MAX _ANGULAR_VELOCITY = 1.0 - The maximum velocity for angular jogs, in machine units per second.

INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The INCREMENTS can be used to
override the default. The values can be decimal numbers (e.g., 0.1000) or fractional numbers (e.g., 1/16), optionally followed
by a unit (cm, mm, um, inch, in or mil). If a unit is not specified the machine unit is assumed. Metric and imperial distances
may be mixed: INCREMENTS = 1 inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

GRIDS = 10 mm, 1 in, ... - Defines the preset values for grid lines. The value is interpreted the same way as INCREMENTS.

OPEN_FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts. Use a blank string "" and no file
will be loaded at start up.

EDITOR = gedit - The editor to use when selecting File > Edit to edit the G code from the AXIS menu. This must be configured
for this menu item to work. Another valid entry is gnome-terminal -e vim.

TOOL_EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting "File > Edit tool table..."

"non

in Axis). Other valid entries are "gedit", "gnome-terminal -e vim", and "gvim".
PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP section for more information.
LATHE = | - This displays in lathe mode with a top view and with Radius and Diameter on the DRO.

GEOMETRY = XYZABCUVW - Controls the preview and backplot of rotary motion. This item consists of a sequence of axis
letters, optionally preceded by a "-" sign. Only axes defined in [TRAJJAXES should be used. This sequence specifies the
order in which the effect of each axis is applied, with a "-" inverting the sense of the rotation. The proper GEOMETRY string
depends on the machine configuration and the kinematics used to control it. The example string GEOMETRY=XYZBCUVW
is for a 5-axis machine where kinematics causes UVW to move in the coordinate system of the tool and XYZ to move in the
coordinate system of the material. The order of the letters is important, because it expresses the order in which the different
transformations are applied. For example rotating around C then B is different than rotating around B then C. Geometry has
no effect without a rotary axis.

ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into a number of straight lines;
a semicircle is divided into ARCDIVISION parts. Larger values give a more accurate preview, but take longer to load and
result in a more sluggish display. Smaller values give a less accurate preview, but take less time to load and may result in a
faster display. The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).!

MDI_HISTORY_FILE = - The name of a local MDI history file. If this is not specified Axis will save the MDI history in
.axis_mdi_history in the user’s home directory. This is useful if you have multiple configurations on one computer.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

HELP_FILE = tklinucnc.txt - Path to help file.

!'In LinuxCNC 2.4 and earlier, the default value was 128.

Integrator Manual V2.7.0-pre5, 2015-03-10 21/ 349

4.2.3 [FILTER] Section

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task: Something as simple as
making sure the file ends with M2, or something as complicated as detecting whether the input is a depth image, and generating
g-code to mill the shape it defines. The [FILTER] section of the ini file controls how filters work. First, for each type of file, write
a PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program is given the name of
the input file as its first argument, and must write RS274NGC code to standard output. This output is what will be displayed in
the text area, previewed in the display area, and executed by LinuxCNC when Run.

* PROGRAM_EXTENSION = .extension Description

If your post processor outputs files in all caps you might want to add the following line:

e PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-gcode converter included with LinuxCNC:

* PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
— png = image-to-gcode
— gif = image-to-gcode
— jpg = image-to-gcode

It is also possible to specify an interpreter:

* PROGRAM_EXTENSION = .py Python Script

- py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example script is available at
nc_files/holecircle.py. This script creates g-code for drilling a series of holes along the circumference of a circle. Many more
g-code generators are on the LinuxCNC Wiki site http://wiki.linuxcnc.org/.

If the environment variable AXIS_ PROGRESS_BAR is set, then lines written to stderr of the form

* FILTER_PROGRESS=%d

sets the AXIS progress bar to the given percentage. This feature should be used by any filter that runs for a long time.
Python filters should use the print function to output the result to Axis.

This example program filters a file and adds a W axis to match the Z axis. It depends on there being a space between each axis
word to work.

#! /usr/bin/env python
import sys

def main (argv) :
openfile = open(argv[0], ’'r’)
file_in = openfile.readlines()
openfile.close()
file_out = []
for line in file_in:
print line
if line.find('z") != -1:
words = line.rstrip(’\n’)

http://wiki.linuxcnc.org/

Integrator Manual V2.7.0-pre5, 2015-03-10 22/ 349

words = words.split (' ')
newword = "'
for i in words:
if i[0] == "'Z":
newword = W'+ 1[1:]

if len (newword) > 0O:
words.append (newword)
newline = ' ’.join (words)
file_out.append(newline)

else:

file_out.append(line)

for item in file_out:
print "%s" & item
if _ name_ == "_ main_ ":
main(sys.argv[l:])

4.2.4 [RS274NGC] Section

* PARAMETER_FILE = myfile.var - The file located in the same directory as the ini file which contains the parameters used by
the interpreter (saved between runs).

* ORIENT_OFFSET = 0 - A float value added to the R word parameter of an M19 Orient Spindle operation. Used to define an
arbitrary zero position regardless of encoder mount orientation.

* RS274NGC_STARTUP_CODE = G17 G20 G40 G49 G64 P0.001 G80 G90 G92 G94 G97 G98 - A string of NC codes that
the interpreter is initialized with. This is not a substitute for specifying modal g-codes at the top of each ngc file, because the
modal codes of machines differ, and may be changed by g-code interpreted earlier in the session.

e SUBROUTINE_PATH = ncsubroutines./tmp/testsubs:lathesubs:millsubs - Specifies a colon (:) separated list of up to 10 di-
rectories to be searched when single-file subroutines are specified in gcode. These directories are searched after searching
[DISPLAY]JPROGRAM_PREFIX (if it is specified) and before searching [WIZARD]JWIZARD_ROOT (if specified). The
paths are searched in the order that they are listed. The first matching subroutine file found in the search is used. Directo-
ries are specified relative to the current directory for the ini file or as absolute paths. The list must contain no intervening
whitespace.

e USER_M_PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated directories for user
defined functions. Directories are specified relative to the current directory for the ini file or as absolute paths. The list must
contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order is:
1. [DISPLAY]PROGRAM_PREFIX (if specified)
2. If [DISPLAY]PROGRAM_PREFIX is not specified, search the default location: nc_files
3. Then search each directory in the list [RS274ANGC]JUSER_M_PATH

The first executable M 1xx found in the search is used for each M 1xx.

e USER_DEFINED_FUNCTION_MAX_DIRS=5. The maximum number of directories defined at compile time.

Note
[WIZARD]WIZARD_ROQOT is a valid search path but the Wizard has not been fully implemented and the results of using it are
unpredictable.

Integrator Manual V2.7.0-pre5, 2015-03-10 23/ 349

4.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values from this section to load
the motion controller. For more information on the motion controller see the Motion Section.

EMCMOT = motmod - the motion controller name is typically used here.
BASE_PERIOD = 50000 - the Base task period in nanoseconds.
SERVO_PERIOD = 1000000 - This is the "Servo" task period in nanoseconds.

TRAJ_PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

4.2.6 [TASK] Section

TASK = milltask - Specifies the name of the rask executable. The fask executable does various things, such as communicate
with the Uls over NML, communicate with the realtime motion planner over non-HAL shared memory, and interpret gcode.
Currently there is only one task executable that makes sense for 99.9% of users, milltask.

CYCLE_TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the polling interval when
waiting for motion to complete, when executing a pause instruction, and when accepting a command from a user interface.
There is usually no need to change this number.

4.2.7 [HAL] section

HALFILE = example.hal - Execute the file example.hal at start up. If HALFILE is specified multiple times, the files are
executed in the order they appear in the ini file. Almost all configurations will have at least one HALFILE, and stepper
systems typically have two such files, one which specifies the generic stepper configuration (core_stepper.hal) and one which
specifies the machine pin out (xxx_pinout.hal). HALFILES are found using a search. If the named file is found in the directory
containing the ini file, it is used. If the named file is not found in this ini file directory, a search is made using a system library
of halfiles.

HALFILE = texample.tcl [argl [arg2] ...]] - Execute the tcl file rexample.tcl at start up with argl, arg2, etc as ::argv list. Files
with a .tcl suffix are processed as above but use haltcl for processing See the section on HALTCL for more information.

HALFILE = LIB:sys_example.hal - Execute the system library file sys_example.hal at start up. Explicit use of the LIB: prefix
causes use of the system library HALFILE without searching the ini file directory.

HALFILE = LIB:sys_texample.tcl [argl [arg2 ...]] - Execute the system library file sys_texample.tcl at start up. Explicit use
of the LIB: prefix causes use of the system library HALFILE without searching the ini file directory.

HALFILE items specify files that loadrt Hal components and make signal connections between component pins. Common
mistakes are 1) omission of the addf statement needed to add a component’s function(s) to a thread, 2) incomplete signal
(net) specifiers. Omission of required addf statements is almost always an error. Signals usually include one or more input
connections and a single output (but both are not strictly required). A system library file is provided to make checks for these
conditions and report to stdout and in a popup gui:

HALFILE = LIB:halcheck.tcl [nopopup]

Note
The LIB:halcheck.tcl line should be the last [HAL]HALFILE. Specify the nopopup option to suppress the popup message and
allow immediate starting. Connections made using a POSTGUI_HALFILE are not checked.

Integrator Manual V2.7.0-pre5, 2015-03-10 24 / 349

* TWOPASS = ON - Use twopass processing for loading HAL components. With TWOPASS processing, [HALJHALFILE=
lines are processed in two passes. In the first pass (pass0), all HALFILES are read and multiple appearances of loadrt and
loadusr commands are accumulated. These accumulated load commands are executed at the end of pass0. This accumulation
allows load lines to be specified more than once for a given component (provided the names= names used are unique on each
use). In the second pass (passl), the HALFILES are reread and all commands except the previously executed load commands
are executed.

The TWOPASS item can be activated with any non-null string including the keywords verbose and nodelete. The verbose
keyword causes printing of details to stdout. The nodelete keyword preserves temporary files in /tmp. Example:

TWOPASS = nodelete verbose

See the section on TWOPASS for more information.

Some GUIs support halfiles that are processed after the GUI is started in order to connect hal pins that are created by the GUL
When using a postgui halfile with TWOPASS processing, include all loadrt items for components added by postgui halfiles in a
separate halfile that is processed before the GUI. The addf commands can also be included in the file. Example:

[HAL]
HALFILE = file_1.hal

HALFILE = file_n.hal
HALFILE = file_with_all_loads_for_postgui.hal

POSTGUI_HALFILE = the_postgui_file.hal

* HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple times, the commands
are executed in the order they appear in the ini file. HALCMD lines are executed after all HALFILE lines.

* SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending on the hardware drivers
used, this may make it possible to set outputs to defined values when LinuxCNC is exited normally. However, because there
is no guarantee this file will be executed (for instance, in the case of a computer crash) it is not a replacement for a proper
physical e-stop chain or other protections against software failure.

e POSTGUI_HALFILE = example2.hal - Execute example2.hal after the GUI has created its HAL pins. Some GUISs create hal
pins and support the use of a postgui halfile to use them. GUIs that support postgui halfiles include Touchy, Axis, Gscreen, and
Gmoccapy.

See section <<sec:pyvcp-with-axis,pyVCP with Axis>> Section for more information.

* HALUI = halui - adds the HAL user interface pins. For more information see the HAL User Interface chapter.

4.2.8 [HALUI] section

* MDI COMMAND = G53 GO X0 YO Z0 - An MDI command can be executed by using halui.mdi-command-00. Increment the
number for each command listed in the [HALUI] section.

4.2.9 [APPLICATIONS] Section

LinuxCNC can start other applications before the specified gui is started. The applications can be started after a specified delay
to allow for gui-dependent actions (like creating gui-specific hal pins).

* DELAY = value - seconds to wait beore starting other applications. A delay may be needed if an application has dependencies
on [HAL]JPOSTGUI_HALFILE actions or gui-created hal pins (default DELAY=0).

Integrator Manual V2.7.0-pre5, 2015-03-10 25/ 349

* APP = appname [argl [arg2 ...]] - Application to be started. This specification can be included multiple times. The appname
can be explicitly named as an absolute or tilde specified filename (first character is / or ~), a relative filename (first characters
of filename are ./), or as a file in the inifile directory. If no executable file is found using these names, then the user search
PATH is used to find the application.

Examples:

— Simulate inputs to hal pins for testing (using sim_pin — a simple gui to set inputs to parameters, unconnected pins, or signals
with no writers):

APP = sim_pin motion.probe-input halui.abort motion.analog-in-00

— Invoke halshow with a previuosly saved watchlist. Since linuxcnc sets the working directory to the directory for the inifile,
you can refer to files in that directory (example: my.halshow):

APP = halshow my.halshow

— Alternatively, a watchlist file identified with a full pathname could be specified:

APP = halshow ~/saved_shows/spindle.halshow

— Open halscope using a previously saved configuration:

APP = halscope -i my.halscope

4.2.10 [TRAJ] Section

Warning

The new Trajectory Planner (TP) is on by default.

If you have no TP settings in your [TRAJ] section - LinuxCNC defaults to:
ARC_BLEND_ENABLE = 1

ARC_BLEND_FALLBACK_ENABLE =0
ARC_BLEND_OPTIMIZATION_DEPTH = 50
ARC_BLEND_GAP_CYCLES =4

ARC_BLEND_RAMP_FREQ = 100

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

* ARC_BLEND_ENABLE = I - Turn on new TP. If set to 0 TP uses parabolic blending (1 segment look ahead.) Default value 1.

* ARC_BLEND_FALLBACK_ENABLE = 0 - Optionally fall back to parabolic blends if the estimated speed is faster. However,
this estimate is rough, and it seems that just disabling it gives better performance. Default value 0.
* ARC_BLEND_OPTIMIZATION_DEPTH = 50 - Look ahead depth in number of segments.

To expand on this a bit, you can choose this value somewhat arbitrarily. Here’s a formula to estimate how much depth you
need for a particular config:

#n=v_max /(2.0 * a_max * t_c) # where: # n = optimization depth # v_max = max axis velocity (UU / sec) # a_max = max
axis acceleration (UU / sec) # t_c = servo period (seconds)

So, a machine with a maximum axis velocity of 10 IPS, a max acceleration of 100 IPS"2, and a servo period of 0.001 sec would
need:

10/(2.0 * 100 * 0.001) = 50 segments to always reach maximum velocity along the fastest axis.

In practice, this number isn’t that important to tune, since the look ahead rarely needs the full depth unless you have lots of very
short segments. If during testing, you notice strange slowdowns and can’t figure out where they come from, first try increasing
this depth using the formula above.

Integrator Manual V2.7.0-pre5, 2015-03-10 26/ 349

If you still see strange slowdowns, it may be because you have short segments in the program. If this is the case, try adding a
small tolerance for Naive CAM detection. A good rule of thumb is this:

min_length ~= v_req * t_c # where: # v_req = desired velocity in UU / sec # t_c = servo period (seconds)

If you want to travel along a path at 1 IPS = 60 IPM, and your servo period is 0.001 sec, then any segments shorter than
min_length will slow the path down. If you set Naive CAM tolerance to around this min length, overly short segments will
be combined together to eliminate this bottleneck. Of course, setting the tolerance too high means big path deviations, so you
have to play with it a bit to find a good value. I'd start at 1/2 of the min_length, then work up as needed.

* ARC_BLEND_GAP_CYCLES = 4 How short the previous segment must be before the trajectory planner consumes it.

Often, a circular arc blend will leave short line segments in between the blends. Since the geometry has to be circular, we
can’t blend over all of a line if the next one is a little shorter. Since the trajectory planner has to touch each segment at least
once, it means that very tiny segments will slow things down significantly. My fix to this way to "consume" the short segment
by making it a part of the blend arc. Since the line+blend is one segment, we don’t have to slow down to hit the very short
segment. Likely, you won’t need to touch this setting.

* ARC_BLEND_RAMP_FREQ = 20 - This is a cutoff frequency for using ramped velocity.

Ramped velocity in this case just means constant acceleration over the whole segment. This is less optimal than a trapezoidal
velocity profile, since the acceleration is not maximized. However, if the segment is short enough, there isn’t enough time to
accelerate much before we hit the next segment. Recall the short line segments from the previous example. Since they’re lines,
there’s no cornering acceleration, so we’re free to accelerate up to the requested speed. However, if this line is between two
arcs, then it will have to quickly decelerate again to be within the maximum speed of the next segment. This means that we
have a spike of acceleration, then a spike of deceleration, causing a large jerk, for very little performance gain. This setting is
a way to eliminate this jerk for short segments.

Basically, if a segment will complete in less time than 1 / ARC_BLEND_RAMP_FREQ, we don’t bother with a trapezoidal
velocity profile on that segment, and use constant acceleration. (Setting ARC_BLEND_RAMP_FREQ = 1000 is equivalent to
always using trapezoidal acceleration, if the servo loop is 1kHz).

You can characterize the worst-case loss of performance by comparing the velocity that a trapezoidal profile reaches vs. the
ramp:

v_ripple = a_max / (4.0 * f) # where: # v_ripple = average velocity "loss" due to ramping # a_max = max axis acceleration
f = cutoff frequency from INI

For the aforementioned machine, the ripple for a 20Hz cutoff frequency is 100 / (4 * 20) = 1.25 IPS. This seems high, but
keep in mind that it is only a worst-case estimate. In reality , the trapezoidal motion profile is limited by other factors, such
as normal acceleration or requested velocity, and so the actual performance loss should be much smaller. Increasing the cutoff
frequency can squeeze out more performance, but make the motion rougher due to acceleration discontinuities. A value in the
range 20Hz to 200Hz should be reasonable to start.

Finally, no amount of tweaking will speed up a toolpath with lots of small, tight corners, since you’re limited by cornering
acceleration.

* COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are valid. Only axes named
in COORDINATES are accepted in g-code. This has no effect on the mapping from G-code axis names (X- Y- Z-) to joint
numbers—for trivial kinematics, X is always joint 0, A is always joint 3, and U is always joint 6, and so on. It is permitted to
write an axis name twice (e.g., X Y Y Z for a gantry machine) but this has no effect.

e AXES = 3 - One more than the number of the highest joint number in the system. For an XYZ machine, the joints are numbered
0, 1 and 2; in this case AXES should be 3. For an XYUV machine using trivial kinematics, the V joint is numbered 7 and
therefore AXES should be 8. For a machine with nontrivial kinematics (e.g., scarakins) this will generally be the number of
controlled joints.

* JOINTS = 3 - (This config variable is used by the Axis GUI only, not by the trajectory planner in the motion controller.)
Specifies the number of joints (motors) in the system. For example, an XYZ machine with a single motor for each axis has 3
joints. A gantry machine with one motor on each of two of the axes, and two motors on the third axis, has 4 joints.

* HOME = 0 0 0 - Coordinates of the homed position of each axis. Again for a fourth axis you will need 0 0 0 0. This value is
only used for machines with nontrivial kinematics. On machines with trivial kinematics this value is ignored.

* LINEAR_UNITS = <units> - Specifies the machine units for linear axes. Possible choices are (in, inch, imperial, metric, mm).
This does not affect the linear units in NC code (the G20 and G21 words do this).

Integrator Manual V2.7.0-pre5, 2015-03-10 27 / 349

ANGULAR_UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are deg, degree (360 per
circle), rad, radian (2pi per circle), grad, or gon (400 per circle). This does not affect the angular units of NC code. In
RS274NGC, A-, B- and C- words are always expressed in degrees.

DEFAULT_VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per second. The value shown in
Axis equals machine units per minute.

DEFAULT_ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration used for "teleop" (Cartesian
space) jogs, in machine units per second per second.

MAX_VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, in machine units per second. The value
shown equals 300 units per minute.

MAX_ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis move, in machine units per
second per second.

POSITION_FILE = position.txt - If set to a non-empty value, the joint positions are stored between runs in this file. This allows
the machine to start with the same coordinates it had on shutdown. This assumes there was no movement of the machine while
powered off. If unset, joint positions are not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller
machines without home switches.

NO_FORCE_HOMING = I - The default behavior is for LinuxCNC to force the user to home the machine before any MDI
command or a program is run. Normally, only jogging is allowed before homing. Setting NO_FORCE_HOMING = 1 allows
the user to make MDI moves and run programs without homing the machine first. Interfaces without homing ability will need
to have this option set to 1.

() Warning
Using this will allow the machine to go beyond the soft limits while in operation. It is not generally desirable to allow
this.

4.2.11 [AXIS_<num>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components in the axis control module.
The axis section names begin numbering at 0, and run through the number of axes specified in the [TRAJ] AXES entry minus 1.

Typically (but not always):

AXIS_0=X
AXIS_1=Y
AXIS 2=7Z
AXIS_ 3=A
AXIS_ 4=B
AXIS_5=C
AXIS_6=U
AXIS_ 7=V
AXIS_8=W

TYPE = LINEAR - The type of axes, either LINEAR or ANGULAR.

WRAPPED_ROTARY = I - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999 degrees. Positive
Numbers will move the axis in a positive direction and negative numbers will move the axis in the negative direction.

Integrator Manual V2.7.0-pre5, 2015-03-10 28 / 349

e LOCKING_INDEXER = I - When this is set to 1 a GO move for this axis will initiate an unlock with axis.N.unlock pin then
wait for the axis.N.is-unlocked pin then move the axis at the rapid rate for that axis. After the move the axis.N.unlock will be
false and motion will wait for axis.N.is-unlocked to go false. Moving with other axes is not allowed when moving a locked
rotary axis.

* UNITS = INCH - If specified, this setting overrides the related [TRAJ] UNITS setting. (e.g., [TRAJJLINEAR_UNITS if the
TYPE of this axis is LINEAR, [TRAJJANGULAR_UNITS if the TYPE of this axis is ANGULAR)

* MAX_VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.
* MAX_ACCELERATION = 20.0 - Maximum acceleration for this axis in machine units per second squared.

* BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to make up for small deficiencies
in the hardware used to drive an axis. If backlash is added to an axis and you are using steppers the STEPGEN_MAXACCEL
must be increased to 1.5 to 2 times the MAX_ACCELERATION for the axis.

* COMP_FILE = file.extension - A file holding compensation structure for the axis. The file could be named xscrew.comp,
for example, for the X axis. File names are case sensitive and can contain letters and/or numbers. The values are triplets
per line separated by a space. The first value is nominal (where it should be). The second and third values depend on the
setting of COMP_FILE_TYPE. Currently the limit inside LinuxCNC is for 256 triplets per axis. If COMP_FILE is specified,
BACKLASH is ignored. Compensation file values are in machine units.

* COMP_FILE TYPE =0or I -

— If 0: The second and third values specify the forward position (where the axis is while traveling forward) and the reverse
position (where the axis is while traveling reverse), positions which correspond to the nominal position.’

— If 1: The second and third values specify the forward trim (how far from nominal while traveling forward) and the reverse
trim (how far from nominal while traveling in reverse), positions which correspond to the nominal position.

Example triplet with COMP_FILE_TYPE = 0: 1.00 1.01 0.99 +
Example triplet with COMP_FILE_TYPE 1: 1.00 0.01 -0.01

e MIN_LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

e MAX_LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

* MIN_FERROR = 0.010 - This is the value in machine units by which the axis is permitted to deviate from commanded position
at very low speeds. If MIN_FERROR is smaller than FERROR, the two produce a ramp of error trip points. You could think
of this as a graph where one dimension is speed and the other is permitted following error. As speed increases the amount of
following error also increases toward the FERROR value.

* FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference between commanded
and sensed position exceeds this amount, the controller disables servo calculations, sets all the outputs to 0.0, and disables the
amplifiers. If MIN_FERROR is present in the .ini file, velocity-proportional following errors are used. Here, the maximum al-
lowable following error is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJIMAX_VELOCITY,
and proportionally smaller following errors for slower speeds. The maximum allowable following error will always be greater
than MIN_FERROR. This prevents small following errors for stationary axes from inadvertently aborting motion. Small fol-
lowing errors will always be present due to vibration, etc. The following polarity values determine how inputs are interpreted
and how outputs are applied. They can usually be set via trial-and-error since there are only two possibilities. The LinuxCNC
Servo Axis Calibration utility program (in the AXIS interface menu Machine/Calibration and in TkLinuxCNC it is under Set-
ting/Calibration) can be used to set these and more interactively and verify their results so that the proper values can be put in
the INI file with a minimum of trouble.

Integrator Manual V2.7.0-pre5, 2015-03-10 29/ 349

4.2.11.1 Homing

These parameters are Homing related, for a better explanation read the Homing Configuration Chapter.

e HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

* HOME_OFFSET = 0.0 - The axis position of the home switch or index pulse, in machine units. When the home point is found
during the homing process, this is the position that is assigned to that point. When sharing home and limit switches and using
a home sequence that will leave the home/limit switch in the toggled state the home offset can be used define the home switch
position to be other than 0 if your HOME position is desired to be 0.

* HOME_SEARCH_VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direction of travel. A value
of zero means assume that the current location is the home position for the machine. If your machine has no home switches
you will want to leave this value at zero.

e HOME_LATCH_VEL = 0.0 - Homing velocity in machine units per second to the home switch latch position. Sign denotes
direction of travel.

* HOME_FINAL_VEL = 0.0 - Velocity in machine units per second from home latch position to home position. If left at 0 or
not included in the axis rapid velocity is used. Must be a positive number.

* HOME_USE_INDEX = NO - If the encoder used for this axis has an index pulse, and the motion card has provision for this
signal you may set it to yes. When it is yes, it will affect the kind of home pattern used. Currently, you can’t home to index
with steppers unless you’re using stepgen in velocity mode and PID.

* HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch this should be set to
YES. When set to YES the limit switch for this axis is ignored when homing. You must configure your homing so that at the
end of your home move the home/limit switch is not in the toggled state you will get a limit switch error after the home move.

* HOME_IS_SHARED = <n> - If the home input is shared by more than one axis set <n> to 1 to prevent homing from starting
if the one of the shared switches is already closed. Set <n> to 0 to permit homing if a switch is closed.

* HOME_SEQUENCE = <n> - Used to define the "Home All" sequence. <n> starts at 0 and no numbers may be skipped. If left
out or set to -1 the joint will not be homed by the "Home All" function. More than one axis can be homed at the same time.

* VOLATILE HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is off or if E-Stop is on.
This is useful if your machine has home switches and does not have position feedback such as a step and direction driven
machine.

4.2.11.2 Servo

These parameters are relevant to axes controlled by servos.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a PID component and the assumption is that the output is volts.

* DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine units. This is often set to
a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict rules. Looser (larger) settings allow less servo
hunting at the expense of lower accuracy. Tighter (smaller) settings attempt higher accuracy at the expense of more servo
hunting. Is it really more accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Integrator Manual V2.7.0-pre5, 2015-03-10 30/ 349

Be careful about going below 1 encoder count, since you may create a condition where there is no place that your servo is happy.
This can go beyond hunting (slow) to nervous (rapid), and even to squealing which is easy to confuse with oscillation caused by
improper tuning. Better to be a count or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines = 4 pulselline 1revolution 4000 pulses 1 pulse

* BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is added to the output. In most cases
it should be left at zero. However, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like all other components of the
output.

e P = 50 - The proportional gain for the axis servo. This value multiplies the error between commanded and actual position in
machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the P gain are volts per
volts

machine unit, e.g., unit

* [= 0 - The integral gain for the axis servo. The value multiplies the cumulative error between commanded and actual position
in machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the I gain are volts
volts

per machine unit second, e.g., Unit second

* D = 0 - The derivative gain for the axis servo. The value multiplies the difference between the current and previous errors,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the D gain are volts per machine unit
volts

per second, e.g., UMt second

e FFO = 0 - The Oth order feed forward gain. This number is multiplied by the commanded position, resulting in a contribution
volts

to the computed voltage for the motor amplifier. The units on the FF0 gain are volts per machine unit, e.g., UMNIT

e FF1 = 0 - The 1st order feed forward gain. This number is multiplied by the change in commanded position per second,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF1 gain are volts per machine
volts

unit per second, e.g., UNit second

e FF2 = 0 - The 2nd order feed forward gain. This number is multiplied by the change in commanded position per second per
second, resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF2 gain are volts per
volts

. . p 3
machine unit per second per second, e.g., unit second

* OUTPUT_SCALE = 1.000 -

* OUTPUT_OFFSET = 0.000 - These two values are the scale and offset factors for the axis output to the motor amplifiers.
The second value (offset) is subtracted from the computed output (in volts), and divided by the first value (scale factor),
before being written to the D/A converters. The units on the scale value are in true volts per DAC output volts. The units on
the offset value are in volts. These can be used to linearize a DAC. Specifically, when writing outputs, the LinuxCNC first
converts the desired output in quasi-SI units to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

e output— offset

ra
scale

Integrator Manual V2.7.0-pre5, 2015-03-10 31 /349

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.

mim

amplifier| volts |=(outpu |ser |~ offset| ser) secvolt

Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from the sensor readings. The
value for this offset is obtained by finding the value of your output which yields 0.0 for the actuator output. If the DAC is
linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the combined effects of amplifier
gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring the result.

2. Do a least-squares linear fit to get coefficients a, b such that

3. Note that we want raw output such that our measured result is identical to the commanded output. This means

a. command =a=raw+b
. rfaw={command—b)/a

4. As aresult, the a and b coefficients from the linear fit can be used as the scale and offset for the controller directly.

See the following table for an example of voltage measurements.

Table 4.1: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

* MAX_OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the motor amplifier, in
volts. The computed output value is clamped to this limit. The limit is applied before scaling to raw output units. The value is
applied symmetrically to both the plus and the minus side.

e INPUT_SCALE = 20000 - in Sample configs

e ENCODER_SCALE = 20000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one
machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of LINEAR_UNITS.
For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

Integrator Manual V2.7.0-pre5, 2015-03-10 32 /349

4.2.11.3 Stepper

These parameters are relevant to axes controlled by steppers.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a stepgen component.

* SCALE = 4000 - in Sample configs

e STEP_SCALE = 4000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one machine
unit as set in the [TRAIJ] section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
axis one machine unit will be equal to the setting of LINEAR_UNITS. For an angular axis one unit is equal to the setting in
ANGULAR_UNITS. For servo systems, this is the number of feedback pulses per machine unit. A second number, if specified,
is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired machine units of inch, we
have:

2steps 360 degree +10-7__ 4000 s1reps
1.8 degrees rev inch inch

inputscale=

e ENCODER_SCALE = 20000 (Optionally used in PNCconf built configs) - Specifies the number of pulses that corresponds to
a move of one machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of
LINEAR_UNITS. For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified,
is ignored. For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

o STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10% larger than the axis
MAX_ACCELERATION. This value improves the tuning of stepgen’s "position loop". If you have added backlash compen-
sation to an axis then this should be 1.5 to 2 times greater than MAX_ACCELERATION.

o STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as well. If specified, it should
also be 1% to 10% larger than the axis MAX_VELOCITY. Subsequent testing has shown that use of STEPGEN_MAXVEL
does not improve the tuning of stepgen’s position loop.

4.2.12 [EMCIOQO] Section

* EMCIO = io - Name of IO controller program

* CYCLE_TIME = 0.100 - The period, in seconds, at which EMCIO will run. Making it 0.0 or a negative number will tell
EMCIO not to sleep at all. There is usually no need to change this number.

e TOOL_TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

* TOOL_CHANGE_POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool change if three digits
are used. Specifies the XYZABC location when 6 digits are used. Specifies the XYZABCUVW location when 9 digits are
used. Tool Changes can be combined. For example if you combine the quill up with change position you can move the Z first
then the X and Y.

Integrator Manual V2.7.0-pre5, 2015-03-10 33 /349

* TOOL_CHANGE_WITH_SPINDLE_ON = 1 - The spindle will be left on during the tool change when the value is 1. Useful
for lathes or machines where the material is in the spindle, not the tool.

* TOOL_CHANGE_QUILL_UP = 1 - The Z axis will be moved to machine zero prior to the tool change when the value is 1.
This is the same as issuing a GO G53 Z0.

* TOOL_CHANGE_AT_G30 = I - The machine is moved to reference point defined by parameters 5181-5186 for G30 if the
value is 1. For more information on G30 and Parameters see the G Code Manual.

* RANDOM_TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it came from. For
example, machines that exchange the tool in the active pocket with the tool in the spindle.

Integrator Manual V2.7.0-pre5, 2015-03-10 34 /349

Chapter 5

Homing Configuration

5.1 Overview

Homing seems simple enough - just move each joint to a known location, and set LinuxCNC’s internal variables accordingly.
However, different machines have different requirements, and homing is actually quite complicated.

5.2 Homing Sequence

There are four possible homing sequences defined by the sign of SEARCH_VEL and LATCH_VEL, along with the associated
configuration parameters as shown in the following table. Two basic conditions exist, SEARCH_VEL and LATCH_VEL are
the same sign or they are opposite signs. For a more detailed description of what each configuration parameter does, see the
following section.

Integrator Manual V2.7.0-pre5, 2015-03-10

35/349

SEARCHVEL = POSITIVE
LATCHWEL = NEGATIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.00¢

— HOME SWITCH RELEASES
HOME SWITCH TRIPS

— OWEREHDOT
e

< £ SEARCH FOR HOME SWITCH (SEARCHVEL)

s - FINAL DETECTION OF SWITCH [LATCHVEL)

fa:

1.000

G0 TO HOME POSITION [MAXVEL)

3000

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.000 — HOME SWITCH RELEASES

e HOME SWITCH TRIFS

@ £== SEARCH FOR HOME SWITCH [SEARCHVEL}

BACK OFF OF HOME SWITCH [SEARCHVEL)

== FIMAL DETECTION OF SWITCH (LATCHVEL)

bt
TH

1.000

G0 TO HOME POSITION [MAXWVEL)

3.000

SEARCHVEL = POSITIVE
LATCHVEL = NEGATIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HOME = 1000 —— HOME SWITCH RELEASES
- T <
/P/—I-IEM[SWITCH TRIFS

£== SEARCH FOR HOME SWITCH (SEARCHVEL)

FINAL DETECTION OF SWITCH AND
NOEX PULSE [LATCHYEL)

GO TO HOME POSITION [MAXVEL)
I |

“
.
3000 SNNDEX PULSES

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HUME = 1000 — HOME SWITLH RELEASES
—— HOME SWITCH TRIPS
/

4 L":-— SEARCH FOR HOME SWITCH [SEARCHYEL)
-t © BACK OFF DF HOME SWITCH ISEARCHVEL)
: 4 oy FIMAL DETECTION OF SWITCH ANO
= MOEX PULSE [LATCHYELD

1.00¢

G0 TO HOME FOSITION [MAXVEL)

‘-"‘—n___ |\
3000 TIwupew pULSES

Figure 5.1: Homing Sequences

Integrator Manual V2.7.0-pre5, 2015-03-10 36 /349

5.3 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [AXIS] section of the inifile.

Homing Type SEARCH_VEL LATCH_VEL USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES

Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

5.3.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch; the search stage of homing
is skipped.

If HOME_SEARCH_VEL is non-zero, then LinuxCNC assumes that there is a home switch. It begins by checking whether the
home switch is already tripped. If tripped it backs off the switch at HOME_SEARCH_VEL. The direction of the back-off is
opposite the sign of HOME_SEARCH_VEL. Then it searches for the home switch by moving in the direction specified by the
sign of HOME_SEARCH_VEL, at a speed determined by its absolute value. When the home switch is detected, the joint will
stop as fast as possible, but there will always be some overshoot. The amount of overshoot depends on the speed. If it is too high,
the joint might overshoot enough to hit a limit switch or crash into the end of travel. On the other hand, if HOME_SEARCH_VEL
is too low, homing can take a long time.

5.3.2 HOME_LATCH_VEL

This variable has units of machine-units per second.

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination of the home switch (if
present) and index pulse location (if present). It will usually be slower than the search velocity to maximize accuracy. If
HOME_SEARCH_VEL and HOME_LATCH_VEL have the same sign, then the latch phase is done while moving in the same
direction as the search phase. (In that case, LinuxCNC first backs off the switch, before moving towards it again at the latch
velocity.) If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while moving in
the opposite direction from the search phase. That means LinuxCNC will latch the first pulse after it moves off the switch. If
HOME_SEARCH_VEL is zero (meaning there is no home switch), and this parameter is nonzero, LinuxCNC goes ahead to the
index pulse search. If HOME_SEARCH_VEL is non-zero and this parameter is zero, it is an error and the homing operation will
fail. The default value is zero.

5.3.3 HOME_FINAL_VEL

This variable has units of machine-units per second.

It specifies the speed that LinuxCNC uses when it makes its move from HOME_OFFSET to the HOME position. If the
HOME_FINAL_VEL is missing from the ini file, then the maximum joint speed is used to make this move. The value must
be a positive number.

5.3.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether LinuxCNC will ignore
the limit switch input for this axis while homing. Setting this to YES will not ignore limit inputs for other axes. If you do not have

Integrator Manual V2.7.0-pre5, 2015-03-10 37 /349

a separate home switch set this to YES and case connect the limit switch signal to the home switch input in HAL. LinuxCNC
will ignore the limit switch input for this axis while homing. To use only one input for all homing and limits you will have to
block the limit signals of the axes not homing in HAL and home one axis at a time.

5.3.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME_USE_INDEX = YES), LinuxCNC will latch on the
rising edge of the index pulse. If false, LinuxCNC will latch on either the rising or falling edge of the home switch (depending
on the signs of HOME_SEARCH_VEL and HOME_LATCH_VEL). The default value is NO.

5.3.6 HOME_OFFSET

Contains the location of the home switch or index pulse, in joint coordinates. It can also be treated as the distance between the
point where the switch or index pulse is latched and the zero point of the joint. After detecting the index pulse, LinuxCNC sets
the joint coordinate of the current point to HOME_OFFSET. The default value is zero.

5.3.7 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the index pulse, and setting the
coordinate of that point to HOME_OFFSET, LinuxCNC makes a move to HOME as the final step of the homing process. The
default value is zero. Note that even if this parameter is the same as HOME_OFFSET, the joint will slightly overshoot the latched
position as it stops. Therefore there will always be a small move at this time (unless HOME_SEARCH_VEL is zero, and the
entire search/latch stage was skipped). This final move will be made at the joint’s maximum velocity. Since the joint is now
homed, there should be no risk of crashing the machine, and a rapid move is the quickest way to finish the homing sequence. !

5.3.8 HOME_IS_SHARED

If there is not a separate home switch input for this axis, but a number of momentary switches wired to the same pin, set this
value to 1 to prevent homing from starting if one of the shared switches is already closed. Set this value to O to permit homing
even if the switch is already closed.

5.3.9 HOME_SEQUENCE

Used to define a multi-axis homing sequence HOME ALL and enforce homing order (e.g., Z may not be homed if X is not
yet homed). An axis may be homed after all axes with a lower HOME_SEQUENCE have already been homed and are at the
HOME_OFFSET. If two axes have the same HOME_SEQUENCE, they may be homed at the same time. If HOME_SEQUENCE
is -1 or not specified then this joint will not be homed by the HOME ALL sequence. HOME_SEQUENCE numbers start with O
and there may be no unused numbers.

5.3.10 VOLATILE_HOME

If this setting is true, this axis becomes unhomed whenever the machine transitions into the OFF state. This is appropriate for
any axis that does not maintain position when the axis drive is off. Some stepper drives, especially microstep drives, may need
this.

5.3.11 LOCKING_INDEXER

If this axis is a locking rotary indexer, it will unlock before homing, and lock afterward.

! The distinction between home_offset and home is that home_offset first establishes the scale location on the machine by applying the home_offset value to
the location where home was found, and then home says where the joint should move to on that scale.

Integrator Manual V2.7.0-pre5, 2015-03-10 38 /349

5.3.12 Immediate Homing

If an axis does not have home switches or does not have a logical home position like a rotary axis and you want that axis to home
at the current position when the "Home All" button is pressed in Axis the following ini entries for that axis are needed.

1. SEARCH_VEL =0

2. LATCH_VEL =0

3. USE_INDEX = NO

4. HOME_SEQUENCE =0

Integrator Manual V2.7.0-pre5, 2015-03-10 39/ 349

Chapter 6

Lathe Configuration

6.1 Default Plane

When LinuxCNC'’s interpreter was first written, it was designed for mills. That is why the default plane is XY (G17). A normal
lathe only uses the XZ plane (G18). To change the default plane place the following line in the .ini file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G138

The above can be overwritten in a g code program so always set important things in the preamble of the g code file.

6.2 INI Settings

The following .ini settings are needed for lathe mode in Axis in addition to or replacing normal settings in the .ini file. Gmoccapy
uses also the mentioned settings, but does offer additional settings, check the gmoccapy Section for details.

[DISPLAY]
DISPLAY = axis
LATHE =1

[TRAJ]

AXES = 3
COORDINATES = X Z
[AXIS_0]

[AXIS_2]

Integrator Manual V2.7.0-pre5, 2015-03-10 40/ 349

Chapter 7

HALTCL Files

The halcmd language excels in specifiying components and connections but offers no computational capabilities. As a result, ini
files are limited in the clarity and brevity that is possible with higher level languages.

The haltcl facility provides a means to use tcl scripting and its features for computation, looping, branching, procedures, etc. in
ini files. To use this functionality, you use the tcl language and the extension .tcl for halfiles.

The .tcl extension is understood by the main script (linuxcnc) that processes ini files. Haltcl files are identified in the the HAL
section of ini files (just like .hal files).

Example

[HAL]
HALFILE conventional_file.hal
HALFILE = tcl_based file.tcl

With appropriate care, .hal and .tcl files can be intermixed.

7.1 Compatibility

The halcmd language used in .hal files has a simple syntax that is actually a subset of the more powerful general-purpose tcl
scripting language.

7.2 Haltcl Commands

Haltcl files use the tcl scripting language augmented with the specific commands of the LinuxCNC hardware abstraction layer
(HAL). The hal-specific commands are.

addf, alias,

delf, delsig,

getp, gets

ptype,

stype,

help,

linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,

save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Integrator Manual V2.7.0-pre5, 2015-03-10 41/ 349

Two special cases occur for the gets and list commands due to conflicts with tcl builtin commands. For haltcl, these commands
must be preceded with the keyword hal.

halcmd haltcl

gets hal gets
list hal list

7.3 Haltcl Inifile variables

Inifile variables are accessible by both halemd and haltcl but with differing syntax.
LinuxCNC ini files use SECTION and ITEM specifiers to identify configuration items.

[SECTION_A]
ITEM1 = value_1
ITEM2 = value_2

[SECTION_B]
The ini file values are accessible by text substition in .hal files using the form.
[SECTION]ITEM

The same ini file values are accessible in .tcl files using the form of a tcl global array variable.
$::SECTION (ITEM)

For example, an ini file item like:

[AXIS_0]

MAX_ VELOCITY = 4

is expressed as [AXIS_0]MAX_VELOCITY in .hal files for halemd and as $::AXIS_0(MAX_VELOCITY) in .tcl files for haltcl

7.4 Converting .hal files to .tcl files

Existing .hal files can be converted to .tcl files by hand editing to adapt to the differences mentioned above. The process can be
automated with scripts that convert using these substitutions.

[SECTION]ITEM ———> $::SECTION (ITEM)
gets —-——> hal gets
list -—=> hal list

7.5 Haltcl Notes

In haltcl, the value argument for the sets and sefp commands is implicitly treated as an expression in the tcl language.
Example

set gain to convert deg/sec to units/min for AXIS_O0 radius
setp scale.0.gain 6.28/360.0%x$::AXIS_0(radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:

Integrator Manual V2.7.0-pre5, 2015-03-10 42 / 349

setp scale.0.gain "6.28 / 360.0 * $::AXIS_O0(radius) = 60.0"

In other contexts, such as loadrt, you must explicitly use the tcl expr command ([expr { }]) for computational expressions.
Example

loadrt motion base_period=[expr {500000000/$::TRAJ (MAX_PULSE_RATE) }]

7.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint that is "a bit higher" than the
one used by the motion planner. So, when using halemd files, we force inifiles to have a manually calculated value.

[AXIS_O0]
MAXACCEL = 10.0
STEPGEN_MAXACCEL = 10.5

With haltcl, you can use tcl commands to do the computation and eliminate the STEPGEN_MAXACCEL inifile item altogether.
setp stepgen.0.maxaccel $::AXIS_0 (MAXACCEL)=x1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use "core_sim.hal" or "core_sim9.hal"
hal files. These differ because of the requirement to connect more or fewer axes. The following haltcl code would work for any
combination of axes in a trivkins machine.

Create position, velocity and acceleration signals for each axis
set ddt O
foreach axis {X Y Z A B C U V W} axno {0 1 2 345 6 7 8} {
’list pin’ returns an empty list if the pin doesn’t exist
if {[hal list pin axis.$axno.motor-pos-cmd] == {}} {
continue
}
net ${axis}pos axis.S$axno.motor-pos—-cmd => axis.S$axno.motor-pos-fb \
=> ddt.$ddt.in
net ${axis}vel <= ddt.S$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.$ddt.out
incr ddt
}
puts [show sig xvel]
puts [show sig xacc]

7.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a tcl interpreter. This capability
is useful for testing and for standalone hal applications.

Example

$ halrun -T haltclfile.tcl

7.8 Haltcl Distribution Examples (sim)

The configs/sim/axis/simtcl directory includes an ini file that uses a .tcl file to demonstrate a haltcl configuration in conjunction
with the usage of twopass processing. The example shows the use of tcl procedures, looping, the use of comments, and output to
the terminal.

Integrator Manual V2.7.0-pre5, 2015-03-10 43/ 349

Chapter 8

Core Components

See also the man pages motion(9).

8.1 Motion

These pins and parameters are created by the realtime motmod module. This module provides a HAL interface for LinuxCNC’s
motion planner. Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited stream of joint
positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio. The default is 4 each.

Pin names starting with axis are actually joint values, but the pins and parameters are still called axis.N. They are read and
updated by the motion-controller function.

Motion is loaded with the motmod command. A kins should be loaded before motion.

loadrt motmod [base_period_nsec=period] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=[0-9] ([num_dio=1-64] num_aio=1-16])]

* base_period_nsec = 50000 - the Base task period in nanoseconds. This is the fastest thread in the machine.

Note

On servo-based systems, there is generally no reason for base_period_nsec to be smaller than servo_period_nsec. On
machines with software step generation, the base_period _nsec determines the maximum number of steps per second. In the
absence of long step length and step space requirements, the absolute maximum step rate is one step per base_period_nsec.
Thus, the base _period_nsec shown above gives an absolute maximum step rate of 20,000 steps per second. 50,000 ns (50
us) is a fairly conservative value. The smallest usable value is related to the Latency Test result, the necessary step length,
and the processor speed. Choosing a base_period_nsec that is too low can lead to the "Unexpected real time delay" message,
lockups, or spontaneous reboots.

* servo_period_nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be rounded to an integer multiple
of base_period_nsec. This period is used even on systems based on stepper motors.

This is the rate at which new motor positions are computed, following error is checked, PID output values are updated, and so
on. Most systems will not need to change this value. It is the update rate of the low level motion planner.

* traj_period_nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value will be rounded to an
integer multiple of servo_period_nsec. Except for machines with unusual kinematics (e.g., hexapods) there is no reason to
make this value larger than servo_period_nsec.

Integrator Manual V2.7.0-pre5, 2015-03-10 44 / 349

8.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by using the num_dio option
when loading motmod.

If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by using the num_aio option
when loading motmod.

8.1.2 Pins

These pins, parameters, and functions are created by the realtime motmod module.

* motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P , the commanded velocity is multiplied by this
value. This effect is multiplicative with the NML-level feed override value and motion.feed-hold.

* motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M66.

* motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled by M67 or M68.
* motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a soft limit

* motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop mode

* motion.current-vel - (float, out) The current tool velocity in user units per second.

* motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M62-65.

* motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by the M62-65.

* motion.distance-to-go - (float,out) The distance remaining in the current move.

* motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the machine off state, and a message
is displayed for the operator. For normal motion, drive this bit TRUE.

* motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

* motion.feed-inhibit - (bit, in) When this bit is TRUE, the feed rate is set to 0. This will be delayed during spindle synch moves
till the end of the move.

* motion.in-position - (bit, out) TRUE if the machine is in position.
* motion.motion-enabled - (bit, out) TRUE when in machine on state.
* motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

* motion.probe-input - (bit, in) G38.x uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

* motion.program-line - (s32, out) The current program line while executing. Zero if not running or between lines while single
stepping.

* motion.requested-vel - (float, out) The current requested velocity in user units per second from the F=n setting in the G Code
file. No feed overrides or any other adjustments are applied to this pin.

* motion.spindle-at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions: before the first
feed move after each spindle start or speed change; before the start of every chain of spindle-synchronized moves; and if in
CSS mode, at every rapid to feed transition. This input can be used to ensure that the spindle is up to speed before starting a cut,
or that a lathe spindle in CSS mode has slowed down after a large to small facing pass before starting the next pass at the large
diameter. Many VFDs have an at speed output. Otherwise, it is easy to generate this signal with the HAL near component, by
comparing requested and actual spindle speeds.

* motion.spindle-brake - (bit, out) TRUE when the spindle brake should be applied.

Integrator Manual V2.7.0-pre5, 2015-03-10 45/ 349

* motion.spindle-forward - (bit, out) TRUE when the spindle should rotate forward.

* motion.spindle-index-enable - (bit, I/O) For correct operation of spindle synchronized moves, this pin must be hooked to the
index-enable pin of the spindle encoder.

* motion.spindle-inhibit - (bit, in) When this bit is TRUE, the spindle speed is set to 0.
* motion.spindle-on - (bit, out) TRUE when spindle should rotate.
* motion.spindle-reverse - (bit, out) TRUE when the spindle should rotate backward

* motion.spindle-revs - (float, in) For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder. The spindle encoder position should be scaled such that spindle-revs increases by 1.0 for each
rotation of the spindle in the clockwise (M3) direction.

* motion.spindle-speed-in - (float, in) Feedback of actual spindle speed in rotations per second. This is used by feed-per-
revolution motion (G95). If your spindle encoder driver does not have a velocity output, you can generate a suitable one by
sending the spindle position through a ddf component. If you do not have a spindle encoder, you can loop back motion.spindle-
speed-out-rps.

* motion.spindle-speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for spindle forward (M3),
negative for spindle reverse (M4).

* motion.spindle-speed-out-abs - (float, out) Commanded spindle speed in rotations per minute. This will always be a positive
number.

* motion.spindle-speed-out-rps - (float, out) Commanded spindle speed in rotations per second. Positive for spindle forward
(M3), negative for spindle reverse (M4).

* motion.spindle-speed-out-rps-abs - (float, out) Commanded spindle speed in rotations per second. This will always be a
positive number.

* motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated mode

* motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect; it could come from the tool
table (G43 active), or it could come from the gcode (G43.1 active)

* motion.spindle-orient-angle - (float,out) Desired spindle orientation for M19. Value of the M19 R word parameter
plus the value of the [RS274NGC]JORIENT_OFFSET ini parameter.

* motion.spindle-orient-mode - (s32,0out) Desired spindle rotation mode M19. Default 0.

* motion.spindle-orient - (out,bit) Indicates start of spindle orient cycle. Set by M19. Cleared by any of M3,M4,MS5.
If spindle-orient-fault is not zero during spindle-orient true, the M19 command fails with an error message.

* motion.spindle—-is-oriented - (in, bit) Acknowledge pin for spindle-orient. Completes orient cycle. If spindle-orient
was true when spindle-is-oriented was asserted, the spindle-orient pin is cleared and the spindle-locked pin is asserted. Also,
the spindle-brake pin is asserted.

* motion.spindle-orient-fault - (s32, in) Fault code input for orient cycle. Any value other than zero will cause the
orient cycle to abort.

* motion.spindle-lock - (bit, out) Spindle orient complete pin. Cleared by any of M3,M4,M5.

8.1.2.1 HAL pin usage for M19 orient spindle

Conceptually the spindle is in one of the following modes:

* rotation mode (the default)
* searching for desired orientation mode

* orienation complete mode.

Integrator Manual V2.7.0-pre5, 2015-03-10 46/ 349

When an M19 is executed, the spindle changes to searching for desired orientation , and the spindle-orient HAL pin is
asserted. The desired target position is specified by the spindle-orient-angle and spindle-orient-fwd pins and
driven by the M19 R and P parameters.

The HAL support logic is expected to react to spindle-orient by moving the spindle to the desired position. When this is
complete, the HAL logic is expected to acknowledge this by asserting the spindle-is—oriented pin.

Motion then acknowledges this by deasserting the spindle-orient pin and asserts the spindle-locked pin to indicate
orientation complete mode. It also raises the spindle-brake pin. The spindle now is in orientation complete mode.

If, during spindle-orient being true, and spindle-is—-oriented not yet asserted the spindle-orient-fault
pin has a value other than zero, the M19 command is aborted, a message including the fault code is displayed, and the motion
queue is flushed. The spindle reverts to rotation mode.

Also, any of the M3,M4 or M5 commands cancel either searching for desired orientation or orientation complete mode. This is
indicated by deasserting both the spindle-orient and spindle-locked pins.

The spindle-orient-mode pin reflects the M19 P word and shall be interpreted as follows:

* 0: rotate clockwise or counterclockwise for smallest angular movement
 1: always rotate clockwise

* 2: always rotate counterclockwise

It can be used with the orient HAL component which provides a PID command value based on spindle encoder positon,
spindle-orient-angle and spindle-orient-mode.

8.1.3 Parameters
Many of these parameters serve as debugging aids, and are subject to change or removal at any time.

e motion-command-handler.time - (s32, RO)

e motion-command-handler.tmax - (s32, RW)

e motion-controller.time - (s32, RO)

e motion-controller.tmax - (s32, RW)

* motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.

* motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.

» motion.debug-float-0 - (float, RO) This is used for debugging purposes.
* motion.debug-float-1 - (float, RO) This is used for debugging purposes.
* motion.debug-float-2 - (float, RO) This is used for debugging purposes.
* motion.debug-float-3 - (float, RO) This is used for debugging purposes.
* motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.

* motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

* motion.servo.last-period - (132, RO) The number of CPU cycles between invocations of the servo thread. Typically, this
number divided by the CPU speed gives the time in seconds, and can be used to determine whether the realtime motion
controller is meeting its timing constraints

e motion.servo.last-period-ns - (float, RO)

* motion.servo.overruns - (u32, RW) By noting large differences between successive values of motion.servo.last-period , the
motion controller can determine that there has probably been a failure to meet its timing constraints. Each time such a failure
is detected, this value is incremented.

Integrator Manual V2.7.0-pre5, 2015-03-10 47 |/ 349

8.1.4 Functions
Generally, these functions are both added to the servo-thread in the order shown.

* motion-command-handler - Processes motion commands coming from user space

e motion-controller - Runs the LinuxCNC motion controller

8.2 Axis (Joints)

These pins and parameters are created by the realtime motmod module. These are actually joint values, but the pins and parame-
ters are still called axis.N.' They are read and updated by the motion-controller function.

8.2.1 Pins

e axis.N.active - (bit, out)

* axis.N.amp-enable-out - (bit, out) TRUE if the amplifier for this joint should be enabled

* axis.N.amp-fault-in - (bit, in) Should be driven TRUE if an external fault is detected with the amplifier for this joint
e axis.N.backlash-corr - (float, out)

e axis.N.backlash-filt - (float, out)

* axis.N.backlash-vel - (float, out)

* axis.N.coarse-pos-cmd - (float, out)

e axis.N.error - (bit, out)

e axis.N.f-error - (float, out)

* axis.N.f-error-lim - (float, out)

* axis.N.f-errored - (bit, out)

* axis.N.faulted - (bit, out)

* axis.N.free-pos-cmd - (float, out)

* axis.N.free-tp-enable - (bit, out)

* axis.N.free-vel-lim - (float, out)

* axis.N.home-sw-in - (bit, in) Should be driven TRUE if the home switch for this joint is closed.
e axis.N.homed - (bit, out)

* axis.N.homing - (bit, out) TRUE if the joint is currently homing

* axis.N.in-position - (bit, out)

e axis.N.index-enable - (bit, 1/0)

* axis.N.jog-counts - (s32, in) Connect to the counts pin of an external encoder to use a physical jog wheel.

* axis.N.jog-enable - (bit, in) When TRUE (and in manual mode), any change in jog-counts will result in motion. When false,
Jjog-counts is ignored.

* axis.N.jog-scale - (float, in) Sets the distance moved for each count on jog-counts, in machine units.

UIn trivial kinematics machines, there is a one-to-one correspondence between joints and axes.

Integrator Manual V2.7.0-pre5, 2015-03-10 48 / 349

* axis.N.jog-vel-mode - (bit, in) When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog-scale units for each count, regardless of how long that might take. When TRUE, the wheel operates in velocity mode -
motion stops when the wheel stops, even if that means the commanded motion is not completed.

* axis.N.joint-pos-cmd - (float, out) The joint (as opposed to motor) commanded position. There may be an offset between the
joint and motor positions—for example, the homing process sets this offset.

* axis.N.joint-pos-fb - (float, out) The joint (as opposed to motor) feedback position.

* axis.N.joint-vel-cmd - (float, out)

* axis.N.kb-jog-active - (bit, out)

* axis.N.motor-pos-cmd - (float, out) The commanded position for this joint.

* axis.N.motor-pos-fb - (float, in) The actual position for this joint.

* axis.N.neg-hard-limit - (bit, out)

* axis.N.pos-lim-sw-in - (bit, in) Should be driven TRUE if the positive limit switch for this joint is closed.
* axis.N.pos-hard-limit - (bit, out)

* axis.N.neg-lim-sw-in - (bit, in) Should be driven TRUE if the negative limit switch for this joint is closed.

* axis.N.wheel-jog-active - (bit, out)

8.2.2 Parameters

* axis.N.home-state - Reflects the step of homing currently taking place.

8.3 iocontrol

iocontrol - accepts NML I/O commands, interacts with HAL in userspace.

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more i/0, consider using
the realtime synchronized i/o provided by motion instead.

8.3.1 Pins

* iocontrol.0.coolant-flood - (bit, out) TRUE when flood coolant is requested.

* iocontrol.0.coolant-mist - (bit, out) TRUE when mist coolant is requested.

* iocontrol.0.emc-enable-in - (bit, in) Should be driven FALSE when an external E-Stop condition exists.
* jocontrol.0.lube - (bit, out) TRUE when lube is commanded.

* iocontrol.0.lube_level - (bit, in) Should be driven TRUE when lube level is high enough.

* iocontrol.0.tool-change - (bit, out) TRUE when a tool change is requested.

* iocontrol.0.tool-changed - (bit, in) Should be driven TRUE when a tool change is completed.

¢ jocontrol.0.tool-number - (s32, out) The current tool number.

* iocontrol.0.tool-prep-number - (s32, out) The number of the next tool, from the RS274NGC T-word.
* iocontrol.0.tool-prepare - (bit, out) TRUE when a tool prepare is requested.

* iocontrol.0.tool-prepared - (bit, in) Should be driven TRUE when a tool prepare is completed.

* iocontrol.0.user-enable-out - (bit, out) FALSE when an internal E-Stop condition exists.

* iocontrol.0.user-request-enable - (bit, out) TRUE when the user has requested that E-Stop be cleared.

Integrator Manual V2.7.0-pre5, 2015-03-10 49/ 349

8.4 ini settings

A number of ini settings are made available as hal input pins.

8.4.1 Pins

* ini.n.min_limit - (float, in) [AXIS_n]MIN_LIMIT

* ini.n.max_limit - (float, in) [AXIS_n]MAX_LIMIT

* ini.n.ferror - (float, in) [AXIS_n]FERROR

* ini.n.min_ferror - (float, in) [AXIS_n]MIN_FERROR

* ini.n.max_velocity - (float, in) [AXIS_n]MAX_VELOCITY

e ini.n.max_acceleration - (float, in) [AXIS_n]MAX_ACCELERATION
e ini.n.backlash - (float, in) [AXIS_n]BACKLASH

Note

The per-axis min_limit and max_limit pins are honored continuously after homing. The per-axis ferror and min_ferror pins are
honored when the machine is on and not in position. The per-axis max_velocity and max_acceleration pins are sampled when
the machine is on and the motion_state is free (homing or jogging) but are not sampled when in a program is running (auto
mode) or in mdi mode. Consequently, changing the pin values when a program is running will not have effect until the program
is stopped and the motion_state is again free.

* ini.traj_arc_blend_enable - (bit, in) [TRAJJARC_BLEND_ENABLE

* ini.traj_arc_blend_fallback_enable - (bit, in) [TRAJJARC_BLEND_FALLBACK_ENABLE

* ini.traj_arc_blend_gap_cycles - (float, in) [TRAJJARC_BLEND_GAP_CYCLES

* ini.traj_arc_blend_optimization_depth - (float, in) [TRAJJARC_BLEND_OPTIMIZATION_DEPTH
* ini.traj_arc_blend_ramp_freq - (float, in) [TRAJJARC_BLEND_RAMP_FREQ

Note
The traj_arc_blend pins are sampled continuously but changing pin values while a program is running may not have immediate
effect due to queueing of commands.

* ini.traj_default_acceleration - (float, in) [TRAJ]IDEFAULT_ACCELERATION
* ini.traj_default_velocity - (float, in) [TRAJ]DEFAULT_VELOCITY
* ini.traj_max_acceleration - (float, in) [TRAJIMAX_ACCELERATION

Integrator Manual V2.7.0-pre5, 2015-03-10 50/ 349

Chapter 9

Stepper Configuration

9.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See the Getting Started Guide.

This chapter describes some of the more common settings for manually setting up a stepper based system. Because of the various
possibilities of configuring LinuxCNC, it is very hard to document them all, and keep this document relatively short.

The most common LinuxCNC usage is for stepper based systems. These systems are using stepper motors with drives that accept
step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the motors), yet the system
needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on the sample config released along with LinuxCNC. The config is called stepper, and usually it is
found in /etc/emc2/sample-configs/stepper.

9.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for step-and-direction output. The
maximum requested step rate is the product of an axis” MAX_VELOCITY and its INPUT_SCALE. If the requested step rate is
not attainable, following errors will occur, particularly during fast jogs and GO moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step is possible for each
BASE_PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will cause the machine to become
unresponsive or even lock up), the INPUT_SCALE (if you can select different step sizes on your stepper driver, change pulley
ratios, or leadscrew pitch), or the MAX_VELOCITY and STEPGEN_MAXVEL.

If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then consider using hard-
ware step generation (such as with the LinuxCNC-supported Universal Stepper Controller, Mesa cards, and others.)

9.3 Pinout

One of the major flaws in LinuxCNC was that you couldn’t specify the pinout without recompiling the source code. LinuxCNC
is far more flexible, and now (thanks to the Hardware Abstraction Layer) you can easily specify which signal goes where. See
the HAL manual for more detailed information on HAL.

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside the HAL.

Integrator Manual V2.7.0-pre5, 2015-03-10

51/349

Note

We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:

signals:
pins:

Xstep,

Xdir & Xen
parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your .ini file you are using either standard_pinout.hal or xylotex_pinout.hal. These are
two files that instruct the HAL how to link the various signals & pins. Further on we’ll investigate the standard_pinout.hal.

9.3.1

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers

standard_pinout.hal

using a parport for I/O

#

first load the parport driver
loadrt hal_parport cfg="0x0378"

#

next connect the parport functions to threads

read inputs first
addf parport.0.read base-thread 1
write outputs last

addf parport.O0.write base-thread -1

#

finally connect physical pins to the signals
.pin-03-out
.pin-02-out
.pin-05-out
.pin-04-out
.pin-07-out
.pin-06-out

net
net
net
net
net
net

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared

net tool-change-loop iocontrol.0.tool-change iocontrol.0O.tool-changed

connect

Xstep =>
Xdir =>
Ystep =>
Ydir =>
Zstep =>
Zzdir =>

parport.
parport.
parport.
parport.
parport.
parport.

0

O O O O O

"spindle on" motion controller pin to a physical pin

net spindle-on motion.spindle-on

#H#

You might use something like
the Xen signal is defined in

i

net Xen => parport.0.pin-0l-out

i

If you want active low for this pin,

idid

setp parport.0.pin-0Ol-out-invert 1

##H#

=> parport.0.pin-09-out

this to enable chopper drives when machine ON
core_stepper.hal

invert it like this:

Integrator Manual V2.7.0-pre5, 2015-03-10

52 /349

A sample home switch on the X axis (axis 0). make a signal,

link the incoming parport pin to the signal, then link the signal
to LinuxCNC’s axis 0 home switch input pin

#H#4#

net Xhome parport.0.pin-10-in => axis.0.home-sw-in

#H4#

##4# Shared home switches all on one parallel port pin?

that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the ini file. See the
user manual!

#H#4#

net homeswitches <= parport.0.pin-10-in
net homeswitches => axis.0O.home-sw—in

net homeswitches => axis.l.home-sw—in

net homeswitches => axis.2.home-sw-in

#H#
Sample separate limit switches on the X axis (axis 0)
###

net X-neg-limit parport.0.pin-11-in => axis.O.neg-lim-sw-in
net X-pos—-limit parport.0.pin-12-in => axis.O.pos-lim-sw-in

###

Just like the shared home switches example, you can wire together

limit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this.

44

net Xlimits parport.0.pin-13-in => axis.0.neg-lim-sw—-in axis.O.pos-lim-sw-in

The lines starting with # are comments, and their only purpose is to guide the reader through the file.

9.3.2 Overview

There are a couple of operations that get executed when the standard_pinout.hal gets executed/interpreted:

* The Parport driver gets loaded (see the Parport section of the HAL Manual for details)
* The read & write functions of the parport driver get assigned to the base thread !

* The step & direction signals for axes X,Y,Z get linked to pins on the parport

Further I/O signals get connected (estop loopback, toolchanger loopback)

* A spindle-on signal gets defined and linked to a parport pin

9.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and locate the parts you want to

change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to do is to change the number in

the parport.0.pin-XX-out name:

! the fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds

Integrator Manual V2.7.0-pre5, 2015-03-10 53/349

net Xstep parport.0.pin-03-out
net Xdir parport.0.pin-02-out

can be changed to:

net Xstep parport.0.pin-02-out
net Xdir parport.0.pin-03-out

or basically any other out pin you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

9.3.4 Changing polarity of a signal
If external hardware expects an “active low” signal, set the corresponding -invert parameter. For instance, to invert the spindle
control signal:

setp parport.0.pin-09-invert TRUE

9.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value

net spindle-on motion.spindle-on => pwmgen.0.enable

net spindle-pwm pwmgen.O.pwm => parport.0.pin-09-out

setp pwmgen.0O.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10% PWM gives 180 RPM, etc.
If there is a minimum PWM required to get the spindle to turn, follow the example in the nist-lathe sample configuration to use
a scale component.

9.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the motors. For this reason
there are already defined signals called Xen, Yen, Zen.

To connect them use the following example:

net Xen parport.0.pin-08-out

You can either have one single pin that enables all drives; or several, depending on the setup you have. Note, however, that
usually when one axis faults, all the other drives will be disabled as well, so having only one enable signal / pin for all drives is a
common practice.

9.3.7 External ESTOP button

As you can see in the standard_pinout.hal file by default the stepper configuration assumes no external ESTOP button. 2

To add a simple external button you need to replace the line:

2 An extensive explanation of hooking up ESTOP circuitry is explained in the wiki.linuxcnc.org and elsewhere in the Integrator Manual

Integrator Manual V2.7.0-pre5, 2015-03-10 54 /349

net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

with
net estop-loop parport.0.pin-01-in iocontrol.0.emc-enable-in
This assumes an ESTOP switch connected to pin 01 on the parport. As long as the switch will stay pushed®, LinuxCNC will be

in the ESTOP state. When the external button gets released LinuxCNC will immediately switch to the ESTOP-RESET state, and
all you need to do is switch to Machine On and you’ll be able to continue your work with LinuxCNC.

3 make sure you use a maintained switch for ESTOP.

Integrator Manual V2.7.0-pre5, 2015-03-10 55/349

Chapter 10

Basic HAL Reference

10.1 HAL Commands

More detailed information can be found in the man page for halemd: run man halcmd in a terminal window.

To see the HAL configuration and check the status of pins and parameters use the HAL Configuration window on the Machine
menu in AXIS. To watch a pin status open the Watch tab and click on each pin you wish to watch and it will be added to the
watch window.

Integrator Manual V2.7.0-pre5, 2015-03-10 56 / 349

- HAILL Configuration BiEE
Tree View
Components SHOW | waATCH
Fins
axis Component Pins:
axisui Owner Type Dirc Value Name
hal_manualtoolchange 6 hit IN FALSE parport. 0. pin-0l-out <{==
iocontrol estop-out :

. 6 hit IN FALSE parport. 0. pin-02-out <{== xstep
motion 6 hit IN FALSE parport. 0. pin-03-out <{== =dir
parport 6 hit IN FALSE parport. 0. pin-04-out <== ystep

0 6 hit IN FALSE parport. 0. pin-05-out <{== wydir
pywrmgen & bit 1IN FALSE parport. 0 pin-06-out <== =zstep
stepgen & bit 1IN FALSE parport. 0. pin-07-out <== =zdir

E— Parameters & bit 1IN FALSE parport. 0 pin-08-out <== astep
- 6 hit IN FALSE parport. 0. pin-09-out <{== adir
b= Slg"a!s 6 hit OUT TRUE parport. 0. pin-10-in
&— Functions & hit OUT FALSE parport. 0. pin-10-in-not
E— Threads & bit OUT TRUE parport. 0. pin-11-in
6 hit OUT FALSE parport. 0. pin-11-in-not
6 hit OUT TRUE parport. 0. pin-12-in
6 hit OUT FALSE parport. 0. pin-12-in-not
6 hit OUT TRUE parport. 0. pin-13-in
6 hit OUT FALSE parport. 0. pin-13-in-not
6 hit IN FALSE parport. 0. pin-14-out <{==
spindle-cw
6 hit OUT TRUE parport. 0. pin-15-in
6 hit OUT FALSE parport. 0. pin-15-in-not
6 hit IN FALSE parport. 0. pin-16-oukt <{==
spindle-puwm
Test HAL command : Execute

Commands may be tested here but they will NOT be sawed

Figure 10.1: HAL Configuration Window

10.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be added to a thread to be
updated at the rate of the thread. You cannot load a user space component into the real time space.

The syntax and an example:

loadrt <component> <options>

loadrt mux4 count=1

10.1.2 addf

The command addf adds a real time component function to a thread. You have to add a function from a HAL real time component
to a thread to get the function to update at the rate of the thread.
If you used the Stepper Config Wizard to generate your config you will have two threads.

* base-thread (the high-speed thread): this thread handles items that need a fast response, like making step pulses, and reading
and writing the parallel port.

Integrator Manual V2.7.0-pre5, 2015-03-10 57 /349

* servo-thread (the slow-speed thread): this thread handles items that can tolerate a slower response, like the motion controller,
ClassicLadder, and the motion command handler.

The syntax and an example:

addf <component> <thread>

addf mux4 servo-thread

10.1.3 loadusr

The command loadusr loads a user space HAL component. User space programs are their own separate processes, which
optionally talk to other HAL components via pins and parameters. You cannot load real time components into user space.

Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have the same name as the
first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only applies if the component
has a name option.

-W to wait for the program to exit
-i to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

The syntax and examples:

loadusr <component> <options>
loadusr halui

loadusr -Wn spindle gs2_vfd -n spindle

In English it means loadusr wait for name spindle component gs2_vfd name spindle.

10.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not exist net creates the new
signal. This replaces the need to use the command newsig. The optional direction arrows <=, => and <=> make it easier to
follow the logic when reading a net command line and are not used by the net command. The direction arrows must be separated
by a space from the pin names.

Syntax and Example:

net signal-name pin-name <optional arrow> <optional second pin-name>

net home-x axis.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, axis.0.home-sw-in is a Direction IN pin, <= is the optional direction arrow, and
parport.0.pin-11-in is a Direction OUT pin. This may seem confusing but the in and out labels for a parallel port pin indicates
the physical way the pin works not how it is handled in HAL.

A pin can be connected to a signal if it obeys the following rules:

Integrator Manual V2.7.0-pre5, 2015-03-10 58/349

* An IN pin can always be connected to a signal
* An IO pin can be connected unless there’s an OUT pin on the signal

* An OUT pin can be connected only if there are no other OUT or IO pins on the signal

The same signal-name can be used in multiple net commands to connect additional pins, as long as the rules above are obeyed.

Signal
Source

Dir
Qut

Signal

Dir Dir
+ In In +

Signal Signal
Reader Reader

Figure 10.2: Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers, parport.0.pin-02-out and parport.0.pin-
08-out. Basically the value of stepgen.0.out is sent to the signal xStep and that value is then sent to parport.0.pin-02-out and
parport.0.pin-08-out.

signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal again to send the value to
another reader. To do this just use the signal with the readers on another line.

net xStep => parport.0.pin-02-out

I/0O pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

10.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of the pin or parameter. It is an
error if the data types do not match.

Integrator Manual V2.7.0-pre5, 2015-03-10 59/349

Some components have parameters that need to be set before use. Parameters can be set before use or while running as needed.
You cannot use setp on a pin that is connected to a signal.

The syntax and an example:

setp <pin/parameter—-name> <value>

setp parport.0.pin-08-out TRUE

10.1.6 sets

The command sets sets the value of a signal.
The syntax and an example:

sets <signal—-name> <value>
net mysignal and2.0.in0 pyvcp.my-led

sets mysignal 1
It is an error if:

* The signal-name does not exist
* If the signal already has a writer

* If value is not the correct type for the signal

10.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin prior running the command,
nothing happens. The unlinkp command is useful for trouble shooting.

The syntax and an example:

unlinkp <pin-name>

unlinkp parport.0.pin-02-out

10.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new configuration should use the net
command. These commands are included so older configurations will still work.

10.1.8.1 linksp

The command linksp creates a connection between a signal and one pin.
The syntax and an example:
linksp <signal-name> <pin-name>

linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.

Integrator Manual V2.7.0-pre5, 2015-03-10 60 /349

10.1.8.2 linkps

The command linkps creates a connection between one pin and one signal. It is the same as linksp but the arguments are reversed.
The syntax and an example:

linkps <pin-name> <signal-name>

linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.

10.1.8.3 newsig

the command newsig creates a new HAL signal by the name <signame> and the data type of <type>. Type must be bit, s32, u32
or float. Error if <signame> all ready exists.

The syntax and an example:

newsig <signame> <type>

newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

10.2 HAL Data

10.2.1 Bit

A bit value is an on or off.

* bit values = true or 1 and false or O (True, TRUE, true are all valid)

10.2.2 Float

A float is a floating point number. In other words the decimal point can move as needed.

* float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.
For more information on floating point numbers see:

http://en.wikipedia.org/wiki/Floating_point

10.2.3 s32

An 532 number is a whole number that can have a negative or positive value.

* 532 values = integer numbers -2147483648 to 2147483647

10.2.4 u32

A u32 number is a whole number that is positive only.

* u32 values = integer numbers 0 to 4294967295

http://en.wikipedia.org/wiki/Floating_point

Integrator Manual V2.7.0-pre5, 2015-03-10 61/349

10.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in your config directory.

* my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if you used the Stepper Config
Wizard.

* custom.hal This file is loaded next and before the GUI loads. This is where you put your custom HAL commands that you
want loaded before the GUI is loaded.

* custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL commands that you want
loaded after the GUI is loaded. Any HAL commands that use py VCP widgets need to be placed here.

10.4 HAL Components

Two parameters are automatically added to each HAL component when it is created. These parameters allow you to scope the
execution time of a component.

.time
.tmax
Time is the number of CPU cycles it took to execute the function.

Tmax is the maximum number of CPU cycles it took to execute the function. Tmax is a read/write parameter so the user can set
it to O to get rid of the first time initialization on the function’s execution time.

10.5 Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states what the output is for any
given input. Typically these are bit manipulators and follow electrical logic gate truth tables.

10.5.1 and2

The and2 component is a two input and gate. The truth table below shows the output based on each combination of input.
Syntax

and2 [count=N] | [names=namel[,name2...]]

Functions
and2.n
Pins

and2.N.in0O (bit, in)
and2.N.inl (bit, in)
and2.N.out (bit, out)

Truth Table
in0 inl out
False False False
True False False
False True False
True True True

Integrator Manual V2.7.0-pre5, 2015-03-10

62 /349

10.5.2 not

The not component is a bit inverter.

Syntax

not [count=n] |

Functions

not.all
not.n

Pins

not.n.in (bit,
not.n.out (bit,

in)
out)

[names=namel [, name2...]]

Truth Table
in out
True False
False True
10.5.3 or2

The or2 component is a two input OR gate.

Syntax

or2[count=n] | [names=namel[,name2...]]

Functions
or2.n
Pins

or2.n.in0 (bit,
or2.n.inl (bit,
or2.n.out (bit,

in)
in)
out)

Truth Table
in0 inl out
True False True
True True True
False True True
False False False
10.5.4 xor2

The xor2 component is a two input XOR (exclusive OR)gate.

Syntax

xor2 [count=n] |

Functions

[names=namel [, name2...]]

Integrator Manual V2.7.0-pre5, 2015-03-10 63 /349

X0or2.n
Pins

xor2.n.in0 (bit, in)
xor2.n.inl (bit, in)
xor2.n.out (bit, out)

Truth Table
in0 inl out
True False True
True True False
False True True
False False False

10.5.5 Logic Examples

An and2 example connecting two inputs to one output.

loadrt and2 count=l

addf and2.0 servo-thread

net my-siginl and2.0.in0 <= parport.0.pin-11-in
net my-sigin2 and2.0.inl <= parport.0.pin-12-in

net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and?2 is loaded into real time space and added to the servo thread. Next pin 11 of the parallel
port is connected to the in0 bit of the and gate. Next pin 12 is connected to the inl bit of the and gate. Last we connect the and2
out bit to the parallel port pin 14. So following the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be
on.

10.6 Conversion Components

10.6.1 weighted_sum

The weighted_sum converts a group of bits to an integer. The conversion is the sum of the weights of the bits that are on plus
any offset. The weight of the m-th bit is 2°m. This is similar to a binary coded decimal but with more options. The hold bit stops
processing the input changes so the sum will not change.

The following syntax is used to load the weighted_sum component.

loadrt weighted_sum wsum_sizes=sizel[,size,...]

Creates weighted sum groups each with the given number of input bits (size).
To update the weighted_sum you need to attach process_wsums to a thread.

addf process_wsums servo—-thread

This updates the weighted_sum component.

In the following example clipped from the HAL Configuration window in Axis the bits 0 and 2 are true and there is no offset.
The weight of 0 is 1 and the weight of 2 is 4 so the sum is 5.

weighted_sum

Integrator Manual V2.7.0-pre5, 2015-03-10

64 /349

Component Pins:

Owner
10
10
10
10
10
10
10
10
10
10
10

Type
bit
s32
bit
s32
bit
s32
bit
s32
bit
s32
s32

Dir
In
I/0
In
I/0
In
I/0
In
I/0
In
I/0
Oout

Value
TRUE

FALSE

TRUE

FALSE

FALSE

Name

wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.

O O O O O O O o o o o

.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.hold
.offset
.sum

[CSERCVEN \ VRV i N e @)

.in
.weight
o L
.weight
.in
.weight
.in
.weight

Integrator Manual V2.7.0-pre5, 2015-03-10 65 /349

Chapter 11

Extending LinuxCNC

11.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes

11.1.1 A Definition: Remapping Codes
By remapping codes we mean one of the following:

1. define the semantics of new - that is, currently unallocated - M- or G-codes

2. redefine the semantics of a - currently limited - set of existing codes.

11.1.2 Why would you want to extend the RS274NGC Interpreter?

The set of codes (M,G,T,S,F) currently understood by the RS274NGC interpreter is fixed and cannot be extended by configuration
options.

In particular, some of these codes implement a fixed sequence of steps to be executed. While some of these, like M6, can be
moderately configured by activating or skipping some of these steps through ini file options, overall the behavior is fairly rigid.
So - if your are happy with this situation, then this manual section is not for you.

In many cases, this means that supporting a non out of the box configuration or machine is either cumbersome or impossible, or
requires resorting to changes at the C/C+\+ language level. The latter is unpopular for good reasons - changing internals requires
in-depth understanding of interpreter internals, and moreover brings its own set of support issues. While it is conceivable that
certain patches might make their way into the main LinuxCNC distribution, the result of this approach is a hodge-podge of
special-case solutions.

A good example for this deficiency is tool change support in LinuxCNC: while random tool changers are well supported, it is
next to impossible to reasonably define a configuration for a manual-tool change machine with, for example, an automatic tool
length offset switch being visited after a tool change, and offsets set accordingly. Also, while a patch for a very specific rack tool
changer exists, it has not found its way back into the main code base.

However, many of these things may be fixed by using an O-word procedure instead of a built in code - whenever the - insufficient
- built in code is to be executed, call the O-word procedure instead. While possible, it is cumbersome - it requires source-editing
of NGC programs, replacing all calls to the deficient code by a an O-word procedure call.

In it’s simplest form a remapped code isn’t much more than a spontaneous call to an O-word procedure. This happens behind the
scenes - the procedure is visible at the configuration level, but not at the NGC program level.

Generally, the behavior of a remapped code may be defined in the following ways:

* you define a O-word subroutine which implements the desired behavior

* alternatively, you may employ a Python function which extends the interpreter’s behavior.

Integrator Manual V2.7.0-pre5, 2015-03-10 66 /349

11.1.2.1 How to glue things together

M- and G-codes, and O-words subroutine calls have some fairly different syntax.
O-word procedures, for example, take positional parameters with a specific syntax like so:

o<test> call [1.234] [4.65]

whereas M- or G-codes typically take required or optional word parameters. For instance, G76 (threading) requires the P,Z,1,J
and K words, and optionally takes the R,Q,H, E and L words.

So itisn’t simply enough to say whenever you encounter code X, please call procedure Y - at least some checking and conversion
of parameters needs to happen. This calls for some glue code between the new code, and its corresponding NGC procedure to
execute before passing control to the NGC procedure.

This glue code is impossible to write as an O-word procedure itself since the RS274NGC language lacks the introspective
capabilities and access into interpreter internal data structures to achieve the required effect. Doing the glue code in - again -
C/C+\+ would be an inflexible and therefore unsatisfactory solution.

11.1.2.2 How Embedded Python fits in

To make a simple situation easy and a complex situation solvable, the glue issue is addressed as follows:

« for simple situations, a built-in glue procedure (argspec) covers most common parameter passing requirements
* for remapping T,M6,M61,S,F there is some standard Python glue which should cover most situations, see Standard Glue

* for more complex situations, one can write your own Python glue to implement new behavior.

Embedded Python functions in the Interpreter started out as glue code, but turned out very useful well beyond that. Users familiar
with Python will likely find it easier to write remapped codes, glue, O-word procedures etc in pure Python, without resorting to
the somewhat cumbersome RS274NGC language at all.

11.1.2.3 A Word on Embedded Python

Many people are familiar w