Integrator Manual V2.7.0-pre3, 2015-02-19

Integrator Manual V2.7.0-pre3, 2015-02-19

Integrator Manual V2.7.0-pre3, 2015-02-19 ii
Contents

I LinuxCNC Introduction 1

1 Integrator Concepts 3

1.1 Stepper Systems L L e e e e e 3

1.1.1 BasePeriod 3

L2 StepTiming o o o e e e e e e e e e e 3

1.2 Servo Systems o o e e e e e e e e 4

1.2.1 BasicOperation e e e e e 4

1.2.2 Proportional termo e e e e e e e e e 5

1.2.3 Integralterm e e e e e e e e e 5

1.2.4 Derivative term o v v it e e e e e e e e e e e e e e e e 5

1.25 LOoOptuning o v v it e e e e e e e e e 6

1.2.6 Manual tuning e e e e e e e e e e e e e e 6

1.3 RTAL. . . 6

131 ACPL . . 6

II Configuration 7

2 Latency Test 8

3 Starting LinuxCNC 12

3.1 Running LInuxCNC 0 L . o e e e e e 12

3.2 Files Used for Configuration 0 it i 13

3.3 TWOPASS . o 14

4 INI Configuration 16

4.1 TheINIFile Components v v v v it e ettt e e e e e e e e e 16

411 Commentsl e e e e e e e e e e e 16

412 SeCHiONS v v i e e e e e e e e e e e e e 17

4.1.3 Variables 17

Integrator Manual V2.7.0-pre3, 2015-02-19 iii
4.14 Custom Sections and Variables e 18

4.1.5 Include Files o o 18

4.2 INIFile Sections 19
421 [EMC]Section oo v i i it e e e e 19
4.2.2 [DISPLAY] Section i i e 19
423 [FILTER] Section o e e e e e e e e e 21
424 [RS27ANGC] Section o o e 22
425 [EMCMOT] Sectiono v v v i i i it e e e e e e e e e e 23
426 [TASK] Section o e e 23
4277 [HALJSECtion o e e e e e e e 23
4.2.8 [HALUIJSECHON v v v it e e e e e e e e e e e e e e e e e e 24
4.2.9 [APPLICATIONS] Section o v it e e e e e e e e e e e s 24
4210 [TRAJ]ISection o e e e e 25
4211 [AXIS_<num>] Section i e e e e e e 27
42111 Homing e 29

42112 Servo . . . oo 29

42013 SEPPET . . o o o e e e e e e e e 32

4212 [EMCIO] Section o oot i e 32

5 Homing Configuration 34
5.1 OVEIVIEW o o e 34
52 Homing SeqUencettt e e e e e e e 34
5.3 Configuration e e e e e e 36
5.3.1 HOME_SEARCH_VEL s 36

532 HOME_LATCH_VEL e e e s 36

533 HOME_FINAL_VEL e 36
534 HOME_IGNORE_LIMITS 36

53,5 HOME_USE_INDEX e 37
5.3.6 HOME_OFESET e e e e e e 37
537 HOME 37
5.3.8 HOME_IS_SHARED 37
539 HOME_SEQUENCE 37
5.3.10 VOLATILE_HOME e e e e e s 37
5.3.11 LOCKING_INDEXER e e 37
5.3.12 Immediate Homing 38

6 Lathe Configuration 39
6.1 DefaultPlane e 39
6.2 INISettings o o e e 39

Integrator Manual V2.7.0-pre3, 2015-02-19 iv
7 HALTCL Files 40
7.1 Compatibility e e 40
7.2 Haltcl Commands e e e 40
7.3 Haltcl Inifile variables oL e e e e 41
7.4 Converting .hal files to .tcl files L 41
7.5 HaltcI NOtes o o e e 41
7.6 Haltcl Examples e e e e e 42
7.7 Haltcl Interactive oL e e e e e e e e e e 42
7.8 Haltcl Distribution Examples (SIm) e e e 42

8 Core Components 43
8.1 MOLION vt e e e e 43
.11 Options L e e e e e e e e e 44

8.1.2 PInS . . . e 44

8.1.2.1 HAL pinusage for M19 orientspindle 45

8.1.3 Parameters e e e 46

8.1.4 Functions e e 47

8.2 AXiS(JOINtS) e e e e e 47
82.1 PInS . . . 47

8.2.2 Parameters e e e 48

8.3 10controlo e e e e e e 48
83.1 PIns . . . 48

84 INISEHNGS o e e e 49
841 PInS . . . L e 49

9 Stepper Configuration 50
9.1 Introduction e e e e 50
0.2 Maximum StEP TAE o i i e e e e e e e e e e e e e e e e e e e 50

0.3 PINOUL e 50
9.3.1 standard_pinouthal L e 51

032 OVEIVIEW . . . o vttt e e e e e e e e e e e e 52

9.3.3 Changing the standard_pinout.hal 52

9.3.4 Changing polarity of asignal e e 53

9.3.5 Adding PWM Spindle Speed Control e 53

9.3.6 Addinganenablesignal 53

9.3.7 External ESTOPbutton e 53

Integrator Manual V2.7.0-pre3, 2015-02-19 v
10 Basic HAL Reference 55
10.1 HAL Commands 55
10.1.1 loadrt . . .o oo e 56
10.1.2 addf . . e e 56
10.1.3 loadusro 57
10.1.4 net . . .o e e 57
T0.15 Setp .« o . o o e e e 58
T0.1.6 SELS . . o v o o e 59
10.1.7 unlinkp o 59
10.1.8 Obsolete Commands 59
10.1.8.1 linksp . . . o o o 59

10.1.8.2 Iinkps o o e e 60

10.1.8.3 MewWSIZ o o e e e e e e e e 60

10.2 HAL Data e 60
10.2.1 Bit .o e e 60
1022 Float o 60
10.2.3 832 L o 60
10.2.4 u32 . oL 60

103 HALFiles 61
10.4 HAL COMPONEGNLS o ot v v it e e et e e e e e e e e e e e e e e e e e 61
10.5 Logic COMPONENLS v v v v e 61
10.5.1 and2 . . . Lo 61
1052 not . . .o e 62
10.5.3 0r2 o oL 62
1054 XOI2 . . o o o e 62
10.5.5 Logic Examples e 63

10.6 Conversion COMPONENLS v v v v v e i e 63
10.6.1 weighted_sum e 63

11 Extending LinuxCNC 65
11.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes 65
11.1.1 A Definition: Remapping Codes e e e e e e e 65
11.1.2 Why would you want to extend the RS274NGC Interpreter? 65
11.1.2.1 How to glue things together e 66

11.1.2.2 How Embedded Python fitsin 66

11.1.2.3 A Word on Embedded Python 66

11.2 Getting started e e e e e e e e e e e e 66
11.2.1 Pickingacode e 67
11.2.2 Parameter handling e 67

Integrator Manual V2.7.0-pre3, 2015-02-19 Vi

11.3

11.4
11.5

11.6

11.7
11.8

11.9

11.2.3 Handling results e e 67
11.2.4 EXecution SEqUENCING v v v v i v e 67
11.2.5 An minimal example remappedcode 68
Configuring Remapping o e e e e e e e e e 68
11.3.1 The REMAP statement ittt e e et e e e e e 68
11.3.2 Useful REMAP option combinations i vttt et e e e 69
11.3.3 The argspec parameter o e e e 69

11.3.3.1 Example for named parameter passing to NGC procedures 70

11.3.3.2 Example for positional parameter passing to NGC procedures 71

11.3.3.3 Simple example for named parameter passing to a Python function 71

11.3.3.4 Advanced example: Remapped codes in pure Python 71
Upgrading an existing configuration for remapping e 73
Remapping tool change-related codes: T, M6, M61 73
LT1.5.1 OVErVIEW o o i e e e 73
11.5.2 Understanding the role of iocontrol with remapped tool changecodes 74
11.5.3 Specifying the M6 replacement e e e e e e e e e 75
11.5.4 Configuring iocontrol with aremapped M6 76
11.5.5 Writing the change and prepare O-word procedures vt v i 76
11.5.6 Making minimal changes to the built in codes, includingM6, 77
11.5.7 Specifying the T (prepare) replacement i i vt i e e e 77
11.5.8 Error handling: dealing with abort 78
11.5.9 Error handling: failing a remapped code NGC procedure 79
Remapping other existing codes: S, MO, M1,M60 L 80
11.6.1 Automatic gear selection be remapping S (set spindle speed) 80
11.6.2 Adjusting the behavior of MO, M1, M60 80
Creating new G-code cycles L e e e e e e 80
Configuring Embedded Python L 81
11.8.1 Python plugin : ini file configuration 81
11.8.2 Executing Python statements from the interpreter 81
Programming Embedded Python in the RS274NGC Interpreter 82
11.9.1 The Python plugin namespace 82
11.9.2 The Interpreter as seen from Python 82
11.9.3 The Interpreter __init___and __delete_ functions. 82
11.9.4 Calling conventions: NGCtoPython 83

11.9.4.1 Calling O-word Python subroutines 83

11.9.4.2 Return values of O-word Python subroutines 83

11.9.4.3 Calling conventions for prolog= and epilog= subroutines 84

11.9.4.4 Calling conventions for python= subroutines 84

11.9.4.5 Dealing with queue-buster: Probe, Tool change and waiting foraHAL pin 85

Integrator Manual V2.7.0-pre3, 2015-02-19 Vii

11.9.5 Calling conventions: Python to NGC 85
11.9.5.1 Inserting parameters in a prolog, and retrieving them inanepilog 85

11.9.5.2 Calling the interpreter from Python 86

11.9.5.3 Interpreter Exception during execute() o v it e 86

11954 Canon L e 87

11.9.6 Builtinmodules 87
11.10Adding Predefined Named Parameters e 87
I1.11Standard Glue routines o it e e e e e e e e e e e e e 88
11.11.1 T: prepare_prologand prepare_epilog« v vt v v v it i i it e e 88
11.11.1.1 Actions of prepare_prolog v v v i v i i i e e e e e e e e e e e e 88

11.11.1.2 Actions of prepare_epilog . . .« . o v v v v i i it e e e e 89

11.11.2M6: change_prologand change_epilog o v i v i i ittt it e e e e e e e 89
11.11.2.1 Actions of change_prolog o v v it i it e e e e e 89

11.11.2.2 Actions of change_epilog i i i i i it e e e e e e e e 89

11.11.3 G code Cycles: cycle_prolog and cycle _epilog 90
11.11.3.1 Actions of cycle_prolog o v i v i i i e e e e e e e e e e e e e e 90

11.11.3.2 Actions of cycle_epilog o v v i vttt s e e e 90

11.11.4 S (Set Speed) : setspeed_prologand setspeed_epilog v i v i 90
11.11.5F (Set Feed) : setfeed_prologand setfeed_epilog 90
11.11.6 M61 Set tool number : settool_prologand settool_epilog 90
11.12Remapped code execution e e e e 91
11.12.1 NGC procedure call environment during remaps v v v v v v v v et e e e e e e 91
I11.122Nested remapped codes e 91
11.12.3 Sequence number during remaps v v v v v e e e e e e e e e e e e e e e e e e e 91
11.12.4 Debugging flags e 91
11.12.5 Debugging Embedded Pythoncode 91
11.13Axis Preview and Remapped code execution Lo e 92
11.14Remappable Codes e e e e e e e e e e e 93
11.14.1 Existing codes which can be remapped L o Lo 93
11.14.2 Currently unallocated G-codes: e e e e e 93
11.14.3 Currently unallocated M-codes: e 94
11.14.4 readahead time and execution time L. e 94
11.14.5 plugin/pickle hack 0o L e 95
11.14.6 Module, methods, classes, etc reference o e e e e e 95
11.15Introduction: Extending Task Execution L o 95
11.15.1 Why would you want to change Task Execution? 95
11.15.2 A diagram: task, interp, iocontrol, UL (??) o o 95
11.16Models of Task execution L e e e 95

11.16.1 Traditional iocontrol/iocontrolv2 eXecution o v v v i i e e e e e e e 95

Integrator Manual V2.7.0-pre3, 2015-02-19 viii

11.16.2 Redefining IO procedures 95
11.16.3 Execution-time Python procedures 95
11.17 A short survey of LinuxCNC program eXeCUution v v v v v v vt et e e et e e e e 95
IT.17. 1 Interpreter State o i i e e e e e e e e e e e e 96
11.17.2 Task and Interpreter interaction, Queuing and Read-Ahead 96
11.17.3 Predicting the machine position i i i e e e e e e e 96
11.17.4 Queue-busters break position prediction oL e e 96
11.17.5 How queue-busters are dealt with 97
11.17.6 Word order and execution order e e 97
TLAT7.7Parsing o o o e e e e e e e e 97
TTI7.8EXeCution o o o v e e e e e e e e e e e 98
11.17.9 Procedure €XeCUtion i vt v i e e e e e e e e 98
11.17.1How tool change currently works L 98
11.17.10.1How tool information is communicated L. 98

11.17.1How Tx (Prepare Tool) works L e 99
11.17.11. nterpreter actionona Tx command 99
11.17.11.2Task action on SELECT_POCKET e e e 99
11.17.11.3locontrol action on EMC_TOOL_PREPARE 99
11.17.11.4Building the prolog and epilog for Tx 99

11.17.1How M6 (Change tool) works o e 99
11.17.12. Interpreter actionon a M6 commando 99
11.17.12.2What task does when it sees a CHANGE_TOOL command 100
11.17.12.3locontrol action on EMC_TOOL_LOAD it is 100
11.17.12.4Building the prolog and epilog for M6 Lo 100

11.17.1How M61 (Change tool number) works 100
11.17.13.1Building the replacement for M61 100
11.18Optional Interpreter features: ini file configuration L oL 101
11.19Named parameters and inifile variables oL 101
11.20Named parameters and HAL items e 102
TI2IStatus o e 102
11.22Build notes - Lucid (10.04) e 103
11.23Build notes - Hardy (8.04) e e 103
11.24Workarounds oL e e e 104
I1.25Changes o o o e e e 104
12 Moveoff Component 105

12.1 Modifying an existing configurationo e e e 105

Integrator Manual V2.7.0-pre3, 2015-02-19 ix
III GUI 107
13 Python Virtual Control Panel 108
13.1 Introduction e e e e e e e e 108
13.2 Panel Constructiono e e e e e e e 109
13.3 Security o e 110
13.4 AXIS . . 110
13.5 Stand Alone 111
13.6 WIdZELs o o e e e e e 112
13.6.1 Syntax 112
13.6.2 General NOtes o o i i e e 112
13.6.2.1 Comments e e e e e 113

13.6.2.2 Editingthe XML file 113

13.6.2.3 Colors o e 113

13.6.24 HALPINS 113

13.6.3 Label 114
13.6.4 Multi_Label 114
13.6.5 LEDso 114
13.6.5.1 RoundLED 115

13.6.5.2 Rectangle LED e 115

13.6.6 BUttons 115
13.6.6.1 TextButton 116

13.6.6.2 Checkbutton e 116

13.6.6.3 Radiobutton 116

13.6.7 Number Displays 117
13.6.7.1 Number 117

13.6.7.2 s32Number 118

13.6.7.3 u32Number 118

13.6.7.4 Bar 118

13.6.7.5 MEIer. o oot e 118

13.6.8 NumberInputs e 119
13.6.8.1 Spinbox 119

13.6.8.2 Scale 120

13.6.8.3 Dial 121

13.6.8.4 Jogwheel 121

13.6.9 ITmages o i i e 122
13.6.9.1 Tmage Bit e e e e 122

13.6.9.2 Tmageu32 e e 122
13.6.10Containers e e e e e e e 123

Integrator Manual V2.7.0-pre3, 2015-02-19 X

13.6.10.1 Borders L e e 123

13.6.10.2 HbOX o o o 124

13.6.10.3 VDOX . . . o o o e e e 124

13.6.10.4 Labelframe e e e e 125

13.6.10.5 Table o e e e 125

13.6.10.6 Tabs e 126

14 PyVCP Examples 128
14.1 AXIS . 128
14.2 Floating o o e e e e e e e e 128
143 Jog Buttons L e 129
14.3.1 Createthe Widgets o 130
1432 Make Connections o v i it i e e e e e e e e 132

14.4 Port Tester o o o e e e e 132
145 GS2RPM MEter o o 135
14.5.1 ThePanel o o e 135
1452 The Connections i i ittt et et e e e e e e 137

15 Glade Virtual Control Panel 138
15.1 Whatis GladeVCP? o e e 138
15.1.1 PyVCP versus GladeVCPataglance 138

15.2 A Quick Tour with the Example Panel 139
15.2.1 Exploring the example panel e e e 142
15.2.2 Exploring the User Interface description 142
15.2.3 Exploring the Python callback 143

15.3 Creating and Integrating a Glade user interface e 143
15.3.1 Prerequisite: Glade installation L e e 143
15.3.2 Running Glade to create a new user interface L. 143
1533 Testingapanel e e 144
15.3.4 Preparing the HAL command file e 144
15.3.5 Integrating into Axis like PyVCP 0 . 145
15.3.6 Integrating into Axis as a tab next to DRO and Preview 145
15.3.7 Imtegratinginto Touchy e e e e e e e e 146

15.4 GladeVCP command line options o ot i e e e e e e e e e e 146
15.5 Understanding the gladeVCP startup process o o ot ittt e e 147
15.6 HAL Widgetreference 0 i e e 148
15.6.1 Widgetand HAL pinnaming 0 0 i i e e e e e e e 148
15.6.2 Python attributes and methods of HAL Widgets 149

15.6.3 Setting pin and widget values 149

Integrator Manual V2.7.0-pre3, 2015-02-19 Xi

15.6.4 The hal-pin-changed signal 149
15.6.5 BUtONS o o e e e e e e 150
15.6.6 Scales e 151
15.6.7 SpinButton e e e e e e e 151
15.6.8 Hal_Dial 151
15.6.9 JogWheel. o e e e e e 153
15.6.10Label 155
15.6.11 Containers: HAL_HideTable HAL_Table State_Sensitive_Table and HAL_HBox 155
I5.6.12LED e 156
15.6.13 ProgressBar e e e e e e 156
15.6.14ComboBOX 157
15.6.15Bars L e 158
I5.6.16 Meter o e e e 159
15.6.17 Gremlin tool path preview for .ngcfiles e 159
15.6.18 HAL_Offset e 162
15.6.19 DRO widget e 162
15.6.20 Combi_DRO widget 163
15.6.21 IconView (File selection) widget e e e e 166
15.6.22 Calculator widget L e 169
15.6.23 Tooleditor Widget o e e e e e e e e e e e 170
15.6.24 Offsetpage o o o e e 170
15.6.25 HAL _sourceview Widget 0 i i e e e e e e e e e e 172
15626 MDI hiStory o o e e e 173
15.6.27 Animated function diagrams: HAL widgetsinabitmap 173
15.7 Action Widgets reference L e e 174
15.7.1 EMC Action Widets o o i e e e e e e e e e e e 175
15.7.2 EMC ToggleAction widgets e 175
15.7.3 The Action_MDI Toggle and Action_MDI widgets i 175
15.7.4 A simple example: Execute MDI command on button press 175
15.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets 176
15.7.6 An advanced example: Feeding parameters to an O-word subroutine 176
15.7.7 Preparing for an MDI Action, and cleaning up afterwards 177
15.7.8 Using the LinuxCNC Stat object to deal with status changes 177
15.8 GladeVCP Programming i v i i e e e e e e e e e e e e 178
15.8.1 User Defined Actions o o e e e e 178
15.8.2 An example: adding custom user callbacksinPython 179
15.8.3 HAL valuechangeevents e 179
15.8.4 Programming model e 179

15.8.4.1 Thesimple handlermodel 180

Integrator Manual V2.7.0-pre3, 2015-02-19 Xii
15.8.4.2 The class-based handlermodel 180

15.8.4.3 The get_handlers protocol 180

15.8.5 Initialization SEQUENCE o i e e e e e e e e e e e e e 181

15.8.6 Multiple callbacks with the samename 181

15.8.7 The GladeVCP -U <useropts>flag 181

15.8.8 Persistent variables in GladeVCP L 182

15.8.8.1 Persistence, program versions and the signature check oL 182

15.8.9 Using persistent variableso 182

15.8.10 Saving the state on Gladvep shutdown oL 183

15.8.11 Saving state when Ctrl-Cispressed 0 i e 183

15.8.12 Hand-editing .ini files e 184

15813 Adding HAL pins e 184

15.8.14 Adding tiIMers L e e e e e e 184

15.8.15 Setting HAL widget properties programmatically 184

15.8.16 Examples, and rolling your own GladeVCP application 185

15.9 FAQ . . . 185
15.10Troubleshooting o 0 e e e e e e e e e e 186
15.11Implementation note: Key handling in Axis e 186
15.12Adding Custom Widgets o e e 186

16 HAL User Interface 187
16.1 Introduction e e e e 187
16.2 Haluipinreference o o i e e e e e e e 187

17 Halui Examples 193
17.1 Remote Start o e e e e e e 193
17.2 Pause & Resume L e 194
IV Hardware Drivers 195
18 Parallel Port Driver 196
I8.1 Parport. . . . o o o e e e e e 196
18.1.1 Imstalling e 196

18.1.2 PINS . . . o o o 198

18.1.3 Parameters L e e e e e e 199

18.1.4 Functions i i it it e e e e e e 199

18.1.5 Commonproblems e 199

18.1.6 Using DoubleStep o 199

Integrator Manual V2.7.0-pre3, 2015-02-19 Xiii
19 AXS5214H Driver 201
19.1 Installing o o e 201
19.2 PINS . . L o o e 201
19.3 Parameters i e e e e e e e e e e e e e e 201
19.4 FUNCHONS vttt e et e e e e e e e 202

20 GS2 VFD Driver 203
20.1 Command Line Options o o it e e e e e e 203
20.2 PINS e e 203
203 Parameters e e e e 204

21 Mesa HostMot2 Driver 205
211 IntroducCtion ot e e e e e e e e e e e e 205
21.2 Firmware Binaries L L e e e 205
21.3 Installing Firmware L L e e e e 206
21.4 Loading HOStMOL2 o o e e e e e e e e e 206
21.5 Watchdog L 206
2151 PInS: . . oo e 206

21.5.2 Parameters: i i e e e e e e e e e e e e 206

21.6 HostMot2 Functions e e e e e e 207
217 PINOULS . . . o o e e 207
21.8 PINFiles o e 208
21.9 Firmware e e e e e 208
21L1I0HAL PINS o e e 208
21.11CoNfgUrations L L L e e e e e e e 209
2112GPIO . . o e e 211
2L12.1PINS © . o oo e 211

21 122Parameters e e e e e e e e e e e e e e e e e e e 211

21 13StepGen . . . o o o e e e e 212
2113.1PINS « . oo o e e 212

21 13.2Parameters e e e e e e e e e e e e e e e e e e 212

21.13.3 Output Parameters oL e e e e e 213
2LLTA4PWMGEN . . . o oot e e 213
2L14.1PINS © . oo o e e 213
21.142Parameterso e e e e e e e e e e e e e e e e e 213

21.14.3 Output Parameters e e e 214
2115Encoder L e e e 214
2L5.1PINS . . . o o o e 214

21 052Parameters e e e e e e e e e e e e e e e e e 215

Integrator Manual V2.7.0-pre3, 2015-02-19 Xiv
21.165125 Configuration L. e e e e e e e 215
2L16.1 Firmware o oo e e e e e 215
21.16.2Configuration e e e e e e e e e e e e e e e 215

21.16.3 SSERIAL Configuration e 216

21164 TITTLIMILS o o oo o e e e e e 216
21.17Example Configurations i e e e e e e e e e e e e e e e 216

22 Motenc Driver 217
221 PINS . . o o e e e 217
222 Parameters e e e e e e e e e e 218
223 FUNCHONS o v ittt e e e e 218

23 Opto22 Driver 219
23.1 The Adapter Card e 219
232 The Driver o e e 219
233 PINS e 219
234 Parameters i .o e 220
23.5 FUNCTIONS . . . o e e e e s e 220
23.6 Configuring /O POItS o . e e e e e e e e 220
2377 PInNumbering e e e e e e e 221

24 Pico Drivers 222
24.1 Command Line Options o o e e e e e 222
242 PINS e e 223
243 Parameters e e e e e e e e e e e e 224
244 FUNCHONS v v vt et ittt e e e e e e e e e e e e 225

25 Pluto P Driver 226
25.1 General Info L. e 226
25.1.1 Requirements i e e e e e e e 226

25.1.2 CONNECLOTS . .« o v v v v e e e et e e e e e e e 226

25.1.3 Physical PIns e e e e 226

25.1.4 LED o . e 227

25.1.5 POWEr 227

25.1.6 PCinterface e 227

25.1.7 Rebuilding the FPGA firmware e 227

25.1.8 Formore information e e e e e e e e 227

252 PIUtO Servo o e e 227
2521 PINOUL . . . L L e e 228

25.2.2 Input latching and output updating L. L e 229

Integrator Manual V2.7.0-pre3, 2015-02-19 XV
25.2.3 HAL Functions, Pins and Parameters e 229

25.2.4 Compatible driver hardware L 230

253 PIUtOStED . . . o o e e e e 230
2531 PInout L e e e 230

25.3.2 Inputlatching and output updating e e e 231

25.3.3 Step Waveform Timings o o o e 231

25.3.4 HAL Functions, Pins and Parameters 232

26 Servo To Go Driver 233
26.1 Installing e e e e e e e e e 233
20.2 PINS e e 234
20.3 Parameters e e e e e e e e 234
26.4 FUNCHONS v it ittt e e e 234

27 ShuttleXpress 235
27.1 DeSCription v v v vttt e e e e e e e e e 235
27.2 SEUP . o v v e 235
273 PINS . . o o e 235

28 General Mechatronics Driver 237
28.1 TJOCONNECIOTS .« . . v v v v it e e e e e e e e e e e e e e 238
28. 1.1 PINS . . . oo 239

28.1.2 Parameters e e e e e e e e e e e e e e 239

28.2 AXISCONMNECIOTS . .« . v v v vt et v e i e e e e e e e e e e e e e e e e e e 240
28.2.1 Axisinterfacemodules L L e e e e 240

2822 Encoder e 241

28.2.2.1 PINS . . .o 242

28222 Parameters i i e e e e e e e e e e 242

28223 HALexample e 243

28.2.3 Stepgenmodule e e e 243

28.2.3.1 Pins e 245

28.2.3.2 Parameterso e e e e e e e e e e e e 245

28233 HALexample e e 246

28.2.4 Enable and Faultsignals e 247

28241 PINS . . .o e e 247

2825 AxiSDAC 247

28.2.5.1 PInS . . .o 248

28.2.52 Parameters e e e e e 248

28.3 CAN-bus servo amplifiers L e e e e 248
28.3.1 PINS L e 250

Integrator Manual V2.7.0-pre3, 2015-02-19

XVi

28.3.2 Parameters
28.4 Watchdog timer
284.1 Pins

28.4.2 Parameters

28.5 End-, homing- and E-stop switches L e

28.5.1 Pins
28.5.2 Parameters
28.6 StatusLEDs
28.6.1 CAN
28.6.2 RS485.
28.63 EMC
28.64 Boot.
28.6.5 Error

28.7 RS485 /O expander modules L e e

28.7.1 Relayoutputmodule L

28.7.1.1 Pins . .

28.7.1.2 Parameters e e e e e e e e e e
28.7.1.3 HALexample e e e

28.7.2 Digital inputmoduleo e

28.7.2.1 Pins . .

28.7.2.2 HALexample e e
28.7.3 DAC& ADCmodule

28.7.3.1 Pins . .

28.7.3.2 Parameters e e e e e e
28733 HALexample e e
28.7.4 Teach Pendantmodule e

28.74.1 Pins . .

28.8 Errata

28.8.1 GMO6-PClcard Errata e e

V Advanced Topics

29 Python Interface

29.1 The linuxenc Pythonmodule o e
29.2 Usage Patterns for the LinuxCNC NML interface

29.3 Reading LinuxCNC status

250
250
250
250
251
252
252
252
252
252
253
253
253
253
254
254
254
255
255
255
255
255
256
256
256
257
257
257
257
258
258
258

259

Integrator Manual V2.7.0-pre3, 2015-02-19 XVii
29.3.1 linuxcne.statattributes L. e e e e e 261

293.2 Theaxisdictionary e 265

29.4 Preparing to send commands oLl e e e e e e e 266
29.5 Sending commands through 1inuxcnc.command ittt e 267
29.5.1 linuxcnc.commandattributes e 268

29.5.2 linuxcnc.commandmethods: e e 268

29.6 Readingtheerrorchannel L e 270
29.7 Readinginifile values e e 270
29.8 The linuxcnc.positionlogger tyPe o v v v v i i i i it e e e e e e 271
20.8.1 members e e e e e e 271

2082 methods L e 271

30 Kinematics 272
30.1 Introduction e e e 272
30.1.1 JOINtS VS. AXES '+« v v v v e 272

30.2 Trivial Kinematics L L e e e e e 272
30.3 Non-trivial kKinematics L . e e e e e e 273
30.3.1 Forward transformation L e e 274

30.3.2 Inverse transformation Ll e e e e 274

30.4 Implementationdetails e e e e e 275

31 Stepper Tuning 276
31.1 Getting the most out of Software Stepping e 276
31.1.1 RunaLatency Test L . i e 276

31.1.2 Figure out what your drives €Xpect o i it e e e e e e e 277

31.1.3 Choose your BASE_PERIOD e 277

31.1.4 Use steplen, stepspace, dirsetup, and/ordirhold oo 278

31.1.5 NoGuessing! o e 278

32 PID Tuning 279
32.1 PID Controller o o o e e e e e e e e e e 279
32.1.1 Controlloopbasics e 279

32.1.2 Theory e e e 280

32.1.2.1 Proportional e e 280

32.1.2.2 Integral e e e e e e e e 280

32.1.2.3 Derivative e e e 280

32.1.3 LoopTuning o oo o i e e e 280

32.1.3.1 Simplemethod 281

32.1.3.2 Ziegler-Nichols method 281

32.1.33 Final Steps 281

Integrator Manual V2.7.0-pre3, 2015-02-19 XViii
VI Ladder Logic 282
33 Classicladder Introduction 283
331 HIiStOry . . . o o e 283
33.2 Introduction Ll 283
333 Example e e e 284
33.4 Basic Latching On-Off Circuit e 284
34 Classicladder Programming 286
34.1 Ladder CONCepts o v v ittt e e e e e e e e 286
342 Lan@Uageso it e e e e e e e e e e 286
343 COMPONENLS « « . v v v v v e 286
343.1 Files. o 287

343.2 Realtime Module e e 287

3433 Variables 287

34.4 Loading the Classic Ladder usermodule e 288
345 Classic Ladder GUI o 0 . 0 e 288
34.5.1 Sections Managerl e e e e e e e e 289

3452 Section Display e e e e e e e e 289

34.5.3 The Variable Windows e e 290

3454 Symbol Window 293

3455 TheEditor window L 294

345.6 Config Window o L L e e e e e e e 295

34.6 Ladder objects L e e 297
34.6.1 CONTACTS e e e e 297

34.62 IECTIMERS 297

34.63 TIMERS o 298

34.64 MONOSTABLES e e e 298

34.6.5 COUNTERS e e e 298

34.6.6 COMPARE 299

34.6.7 VARIABLE ASSIGNMENT 300

34.6.8 COILS 301
34.6.8.1 JUMPCOIL 302

34682 CALLCOIL 302

347 Classic Ladder Variables o L e e 302
34.8 GRAFCET Programming ottt e ettt e e e e e e 303
349 Modbus 304
34.9.1 MODBUS Settings o v v ittt e e e e e e e e e 307

3492 MODBUSInfo o 308

Integrator Manual V2.7.0-pre3, 2015-02-19 XiX
3493 Communication Errors L 308

34.9.4 MODBUS Bugs o e e 308
34.108Setting up Classic Ladder o o e 309
34.10.1 Addthe Modules 309

34.10.2 Adding Ladder Logic e e 309

35 Classicladder Examples 316
35.1 Wrapping COUNLEr ot i e e e e 316
35.2 Reject Extra Pulses o o e e e e e 317
35.3 External E-Stop L L e e e 318
35.4 Timer/Operate Example L e e e 321
VII Hardware Examples 323
36 PCI Parallel Port 324
37 Spindle Control 325
37.1 0-10v Spindle Speed e e e e e e 325
37.2 PWM Spindle Speed L e 325
37.3 Spindle Enable L. e e e e 326
37.4 Spindle Direction e e e 326
37.5 Spindle Soft Start e e e 326
37.6 Spindle Feedback e 327
37.6.1 Spindle Synchronized Motion L e 327

37.6.2 Spindle AtSpeed L e e e e e 328

38 MPG Pendant 329
39 GS2 Spindle 332
VIII Diagnostics 333
40 Stepper Diagnostics 334
40.1 Common Problems e 334
40.1.1 Stepper Moves One Step L 334

40.1.2 No Steppers MOVE o i i e e e e e e e e e e e e e 334

40.1.3 Distance Not COITeCt o v it e et et e e e e e e e 334

40.2 Error MeSSages v vt i e e e e e e e e e e e e e e e e e 334
40.2.1 Following Error o o e 334

40.2.2 RTAPILError e e 335

403 TeStNG . . . o oo e e e 335
40.3.1 StepTiming e e 335

Integrator Manual V2.7.0-pre3, 2015-02-19 XX
41 Glossary 337
42 Legal Section 342
42.1 Copyright Terms L e e 342
42.2 GNU Free Documentation License 0 i i i e e e 342
43 Index 346

Integrator Manual V2.7.0-pre3, 2015-02-19 XXi

The LinuxCNC Team

Integrator Manual V2.7.0-pre3, 2015-02-19 1/348

Part I

LinuxCNC Introduction

Integrator Manual V2.7.0-pre3, 2015-02-19 2 /348

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2014 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

Integrator Manual V2.7.0-pre3, 2015-02-19 3/348

Chapter 1

Integrator Concepts

1.1 Stepper Systems

1.1.1 Base Period

BASE_PERIOD is the heartbeat of your LinuxCNC computer.! Every period, the software step generator decides if it is time
for another step pulse. A shorter period will allow you to generate more pulses per second, within limits. But if you go too short,
your computer will spend so much time generating step pulses that everything else will slow to a crawl, or maybe even lock up.
Latency and stepper drive requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you can get very rare errors that ruin a part every once in a while and are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest timing requirement of your
drive, and the worst case latency of your computer. This is not always the best choice. For example, if you are running a drive
with a 20 us direction signal hold time requirement, and your latency test said you have a maximum latency of 11 us, then if you
set the BASE_PERIOD to 20+11 =31 us you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per second
in another mode.

The problem is with the 20 us hold time requirement. That plus the 11 us latency is what forces us to use a slow 31 us period. But
the LinuxCNC software step generator has some parameters that let you increase the various times from one period to several.
For example, if steplen ? is changed from 1 to 2, then there will be two periods between the beginning and end of the step pulse.
Likewise, if dirhold > is changed from 1 to 3, there will be at least three periods between the step pulse and a change of the
direction pin.

If we can use dirhold to meet the 20 us hold time requirement, then the next longest time is the 4.5 us high time. Add the 11 us
latency to the 4.5 us high time, and you get a minimum period of 15.5 us . When you try 15.5 us, you find that the computer
is sluggish, so you settle on 16 us . If we leave dirhold at 1 (the default), then the minimum time between step and direction is
the 16 us period minus the 11 us latency = 5 us , which is not enough. We need another 15 us . Since the period is 16 us , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the step pulse to the changing
direction pin is 5+16=21 us, and we don’t have to worry about the drive stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section of the HAL manual.

1.1.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes important. If the drive steps on the
falling edge then the output pin should be inverted.

! This section refers to using stepgen, LinuxCNC’s built-in step generator. Some hardware devices have their own step generator and do not use LinuxCNC’s
built-in one. In that case, refer to your hardware manual.

2 steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL component. This parameter
adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3 dirhold refers to a parameter that adjusts the length of the direction hold time.

Integrator Manual V2.7.0-pre3, 2015-02-19 4/348

1.2 Servo Systems

1.2.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are more costly and complex.
Unlike stepper systems, servo systems require some type of position feedback device, and must be adjusted or funed, as they
don’t quite work right out of the box as a stepper system might. These differences exist because servos are a closed loop system,
unlike stepper motors which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram of
how a servomotor system is connected.

Summing amp Power amp
Input signal + z
[command signal | SUMMEr amp
- drives power amp

input fcommand) signal
ard fesgback sighal
drive summing amp

Powear amp
frives

feedback signal molor

feedback device Motor

AMTTIYVIAIA AL
.||I'|,||I'I,||I |Il ‘
ILSRRARRARANRALS o

motor drives load
and feadback device

Figure 1.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the summing amplifier drives
the power amplifier, the power amplifier drives the motor, the motor drives the load (and the feedback device), and the feedback
device (and the input signal) drive the motor. This looks very much like a circle (a closed loop) where A controls B, B controls
C, C controls D, and D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first, especially as compared
to more normal electronic circuits, where the inputs proceed smoothly to the outputs, and never go back.* If everything controls
everything else, how can that ever work, who’s in charge? The answer is that LinuxCNC can control this system, but it has to do
it by choosing one of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is called
PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction to the current error, the
Integral value determines the reaction based on the sum of recent errors, and the Derivative value determines the reaction based
on the rate at which the error has been changing. They are three common mathematical techniques that are applied to the task of
getting a working process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis position
and the set point is the commanded axis position.

4 If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where what the outputs are doing now
depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then nevermind.

Integrator Manual V2.7.0-pre3, 2015-02-19 5/348

t
—setpoint@—ermra- K [e(r)dt E—»{ Process %nutput—r

Figure 1.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action designed for specific
process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error,
the degree to which the controller overshoots the set point and the degree of system oscillation.

1.2.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to the current error value. A high
proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the
system can become unstable. In contrast, a small gain results in a small output response to a large input error. If the proportional
gain is too low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is
a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice
indicate that it is the proportional term that should contribute the bulk of the output change.

1.2.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude of the error and the
duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should
have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process towards set point and eliminates
the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to
accumulated errors from the past, it can cause the present value to overshoot the set point value (cross over the set point and then
create a deviation in the other direction).

1.2.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with
respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller
set point. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and
improve the combined controller-process stability.

Integrator Manual V2.7.0-pre3, 2015-02-19 6/348

1.2.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled
process input can be unstable, i.e. its output diverges, with or without oscillation, and is limited only by saturation or mechanical
breakage. Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

1.2.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output of the loop oscillates, then the P
should be set to be approximately half of that value for a quarter amplitude decay type response. Then increase I until any offset
is correct in sufficient time for the process. However, too much I will cause instability. Finally, increase D, if required, until the
loop is acceptably quick to reach its reference after a load disturbance. However, too much D will cause excessive response and
overshoot. A fast PID loop tuning usually overshoots slightly to reach the set point more quickly; however, some systems cannot
accept overshoot, in which case an over-damped closed-loop system is required, which will require a P setting significantly less
than half that of the P setting causing oscillation.

1.3 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance. The RTAI patched kernel
lets you write applications with strict timing constraints. RTAI gives you the ability to have things like software step generation
which require precise timing.

1.3.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which interfere with RT
performance (for example: power management, CPU power down, CPU frequency scaling, etc). The LinuxCNC kernel (and
probably all RTAI-patched kernels) has ACPI disabled. ACPI also takes care of powering down the system after a shutdown has
been started, and that’s why you might need to push the power button to completely turn off your computer. The RTAI group has
been improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

Integrator Manual V2.7.0-pre3, 2015-02-19 7 /348

Part 11

Configuration

Integrator Manual V2.7.0-pre3, 2015-02-19 8/348

Chapter 2

Latency Test

This test is the first test that should be performed on a PC to see if it is able to drive a CNC machine.

Latency is how long it takes the PC to stop what it is doing and respond to an external request. For LinuxCNC the request is
BASE_THREAD that makes the periodic heartbeat that serves as a timing reference for the step pulses. The lower the latency,
the faster you can run the heartbeat, and the faster and smoother the step pulses will be.

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within 10 microseconds each and
every time can give better results than the latest and fastest P4 Hyperthreading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a number of other things can
hurt the latency. The best way to find out what you are dealing with is to run the RTAI latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a parallel port that is capable
of outputting step pulses that are generated by the software. However, software step pulses also have some disadvantages:

* limited maximum step rate
* jitter in the generated pulses

¢ Joads the CPU

The best way to find out how well your PC will Irun LinuxCNC is to run the HAL latency test. To run the test, open a terminal
window (In Ubuntu, from Applications — Accessories — Terminal) and run the following command:

latency-test

You should see something like this:

Integrator Manual V2.7.0-pre3, 2015-02-19 9/348

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring emc2.

While the test is running, you should "abuse” the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1.0ms): 1001089 5929 995302

Base thread (25.0ps): 33954 9075 24843

Reset Statistics

Figure 2.1: HAL Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf the web. Copy some large
files around on the disk. Play some music. Run an OpenGL program such as glxgears. The idea is to put the PC through its paces
while the latency test checks to see what the worst case numbers are.

Note
Do not run LinuxCNC or Stepconf while the latency test is running.

The important numbers are the max jitter. In the example above, that is 9075 nanoseconds, or 9.075 microseconds. Record this
number, and enter it in Stepconf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least several minutes; sometimes
the worst case latency doesn’t happen very often, or only happens when you do some particular action. For instance, one Intel
motherboard worked pretty well most of the time, but every 64 seconds it had a very bad 300 us latency. Fortunately that was
fixable, see http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-20000 nanoseconds), the
computer should give very nice results with software stepping. If the max latency is more like 30-50 microseconds, you can still
get good results, but your maximum step rate might be a little disappointing, especially if you use microstepping or have very
fine pitch leadscrews. If the numbers are 100 us or more (100,000 nanoseconds), then the PC is not a good candidate for software
stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC is not a good candidate for LinuxCNC, regardless
of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. Another PC had very bad latency (several milliseconds)
when using the onboard video. But a $5 used video card solved the problem.

Note
LinuxCNC does not require bleeding edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.
Additional command line tools are availalbe for examining latency when LinuxCNC is not running.

latency-plot makes a strip chart recording for a base and a servo thread. It may be useful to see spikes in latency when other
applications are started or used. Usage:

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

Integrator Manual V2.7.0-pre3, 2015-02-19

10/348

latency-plot —-help

Usage:

latency-plot ——-help | -2
latency-plot —--hal

Options:
—-base n
——sServo

S
ns

--relative

—-—actual

(
(
——time mS (
(
(

(this)
[Options]

base thread interval,
servo thread interval,
report interval, default:
relative clock time
actual clock time)

default:
default:

1000)

(default))

25000)
1000000)

— max
— ETIAX
b:latency
slatency =
)
0
U I
R | PLs: 240 -+

Latency (uSeconds) vs Time (seconds)

Wall:

latency-histogram displays a histogram of latency (jitter) for a base and servo thread. Usage:

latency-histogram --help

Usage:

latency-histogram —--help | -2

or

latency-histogram

Options:
—-—version
——base
—-—servo
——bbinsize
——sbinsize
—-bbins
—-—-sbins
—-—logscale
——text
——show
——nobase
—-—verbose

ns
ns
ns
ns

0]1
note

[Options]

show version and exit)
base thread interval,
servo thread interval,
base bin size,
servo bin size,
base Dbins,
servo bins,
y axis log scale,
additional note,

servo thread only)

(
(
(
(
(
(
(
(
(
(
(
(progress and debug)

default:
default:
default: 200
default: 200
default:
default: ""
show count of undisplayed bins)

default:
default:
100

100

1)

25000, min:

1000000, min:

5000)
25000)

Integrator Manual V2.7.0-pre3, 2015-02-19

11/348

Notes:
Linuxcnc and Hal should not be running,

stop with halrun -U.

Large number of bins and/or small binsizes will slow updates.

For single thread, specify —--nobase

(and options for servo thread).

Measured latencies outside of the +/- bin range are reported
with special end bars.
[pos|neg]

the off-chart bin

Use —--show to show count for

B /usr/binflatency-histogram

Date Host_name Machine_name OS5_version LinuxCNC_version Display User_name Note_from_command_line
Number of cores Isolcpus usage Vendor id Model name
Latency (uS) base thread (25.0 uSec period , binsize=0.1 uS) Latency (uS) servo thread (1000.0 uSec period , binsize=0.1 uS)
1E7
1ES

1E6
1E5
1E4
1E3
1E2
1E1
1E0

] T T T T 1 T] T T T T T T 1

20 -10 4 20 2 4 10 20 -10 4 20 2 4 10 20
Display +/-bins: ~ 2 ~ 4 T 10 7 20 © 40 © 100 * 200 Display +/-bins: ©— 2 © 4 T 10 20 © 40 © 100 * 200
Reset| ¥ ylogscale Screenshot Glegears|0 Elapsed Time:| 612 Exit

Integrator Manual V2.7.0-pre3, 2015-02-19 12 /348

Chapter 3

Starting LinuxCNC

3.1 Running LinuxCNC

LinuxCNC is started with the script file linuxcnc.

linuxcnc [options] [<ini-file>]
LINUXCNC SCRIPT OPTIONS

* -v = verbose - prints info as it works

* -d = echoes script commands to screen for debugging
If the linuxcnc script is passed an ini file it reads the ini file and starts LinuxCNC. The ini file [HAL] section specifies the order
of loading up HAL files if more than one is used. Once the HAL=xxx.hal files are loaded then the GUI is loaded then the

POSTGUI=.xxx.hal file is loaded. If you create PyVCP or GladeVCP objects with HAL pins you must use the postgui HAL file
to make any connections to those pins. See the [HAL] section of the INI configuration for more information.

Configuration Selector

If no ini file is passed to the linuxcnc script it loads the configuration selector so you can choose and save a sample configuration.
Once a sample configuration has been saved it can be modified to suit your application.

Integrator Manual V2.7.0-pre3, 2015-02-19 13 /348

Ll LinuxCNC Configuration Selector &)

Welcome to LinuxCNC.

Select a machine configuration from the list on the left.
Details about the selected configuration will appear in the display on the right.
Click "OK' to run the selected configuration

E Sample Configurations "\| This is a simulation of an XYZBC 5 axis bridge
Saxis mill.

Sherline3Axis

SherlinedAxis

SherlineLathe

boss

classicladder

cooltool

dallur-thc

demo_mazak

demo_sim_cl _
demo_step _cl

etch-servo

gantry

gladevcp

halui_pywvcp

hexapod-sim

hm2-servo

hm2-stepper

lathe-pluto

oy A
[Create Desktop Shortcut ‘ Cancel

Figure 3.1: Configuration Selector

3.2 Files Used for Configuration

LinuxCNC is configured with human readable text files. All of these files can be read and edited in any of the common text file
editors available with most any Linux distribution.! You’ll need to be a bit careful when you edit these files. Some mistakes will
cause the start up to fail. These files are read whenever the software starts up. Some of them are read repeatedly while the CNC
is running.

Configuration files include

 [NI The ini file overrides defaults that are compiled into the LinuxCNC code. It also provides sections that are read directly by
the Hardware Abstraction Layer.

* HAL The HAL files start up process modules and provide linkages between LinuxCNC signals and specific hardware pins.

* VAR The var file is a way for the interpreter to save some values from one run to the next. These values are saved from one run
to another but not always saved immediately. See the Parameters section of the G Code Manual for information on what each
parameter is.

e TBL The tbl file saves tool information. See the User Manual Tool File section for more info.

e NML The nml file configures the communication channels used by the LinuxCNC. It is normally setup to run all of the
communication within a single computer but can be modified to communicate between several computers.

! Don’t confuse a text editor with a word processor. A text editor like gedit or kwrite produce files that are plain text. They also produce lines of text that are
separated from each other. A word processor like Libre Office produces files with paragraphs and word wrapping and lots of embedded codes that control font
size and such. A text editor does none of this.

Integrator Manual V2.7.0-pre3, 2015-02-19 14 /348

* linuxcncrce This file saves user specific information and is created to save the name of the directory when the user first selects
an LinuxCNC configuration.’

Items marked (in HAL) are used by the sample HAL files and are suggested as a good convention. Other items are used by
LinuxCNC directly, and must always have the section and item names given.

3.3 TWOPASS

LinuxCNC 2.5 supports TWOPASS processing of hal configuration files that can help in the modularization and readability of
hal files. (Hal files are specified in an LinuxCNC ini file in the HAL stanza as [HAL]JHALFILE=filename).

Normally, a set of one or more hal configuration files must use a single, unique loadrt line to load a kernel module that may
handle multiple instances of a component. For example, if you use a two input AND gate component (and2) in three different
places in your setup, you would need to have a single line somewhere to specify:

loadrt and2 count=3

resulting in components and2.0, and2.1, and2.2.
Configurations are more readable if you specify with the names=option for components where it is supported, e.g.,:

loadrt and2 names=aa, ab, ac

resulting in components aa,ab,ac.

It can be a maintenance problem to keep track of the components and their names since when you add (or remove) a component,
you must find and update the single loadrt directive applicable to the component.

TWOPASS processing is enabled by including an ini file parameter in the [HAL] section:

[HAL]

TWOPASS = anystring

Where "anystring" can be any non-null string. With this setting, you can have multiple specifications like:

loadrt and2 names=aa
loadrt and2 names=ab, ac

loadrt and2 names=ad

These commands can appear in different HALFILES. The HALFILES are processed in the order of their appearance in the ini
file.

The TWOPASS option can be specified with options to add output for debugging (verbose) and to prevent deletion of temporary
files (nodelete). The options are separated with commas.

Example:

[HAL]

TWOPASS = on,verbose,nodelete

With TWOPASS processing, all [HALJHALFILES are first read and multiple appearances of loadrt directives for each module
are accumulated. No hal commands are executed in this initial pass.

After the initial pass, the modules are loaded automatically with a number equal to the total number when using the count= option
or with all of the individual names specified when using the names= option.

2 Usually this file is in the users home directory (e.g. /home/user/)

Integrator Manual V2.7.0-pre3, 2015-02-19 15/ 348

A second pass is then made to execute all of the other hal instructions specified in the HALFILES. The addf commands that
associate a component’s functions with thread execution are executed in the order of appearance with other commands during
this second pass.

While you can use either the count= or names= options, they are mutually exclusive — only one type can be specified for a given
module.

TWOPASS processing is most effective when using the names= option. This option allows you to provide unique names that are
mnemonic or otherwise relevant to the configuration. For example, if you use a derivative component to estimate the velocities
and accelerations on each (x,y,z) coordinate, using the count= method will give arcane component names like ddt.0, ddt.1, ddt.2,
etc.

Alternatively, using the names= option like:

loadrt ddt names=xvel,yvel, zvel

loadrt ddt names=xacel,yacel, zacel

results in components sensibly named xvel,yvel,zvel, xacel,yacel,zacel.

Many comps supplied with the distribution are created with the comp utility and support the names= option. These include the
common logic components that are the glue of many hal configurations.

User-created comps that use the comp utility automatically support the names= option as well. In addition to comps generated
with the comp utility, numerous other comps support the names=option. Comps that support names= option include: at_pid,
encoder, encoder_ratio, pid, siggen, and sim_encoder.

Twopass processing occurs before the loading of a gui. When using a [HAL]JPOSTGUI_HALFILE, it is convenient to place all
the loadrt statements for components needed in a halfile that is loaded earlier.

Example of a HAL section when using a POSTGUI_HALFILE :

[HAL]

TWOPASS = on

HALFILE = core_sim.hal

HALFILE = sim_spindle_encoder.hal

HALFILE = axis_manualtoolchange.hal

HALFILE = simulated_home.hal

HALFILE = load_for_postgui.hal <-- loadrt lines for components in postgui.hal

POSTGUI_HALFILE = postgui.hal
HALUI = halui

Examples of TWOPASS usage for a simulator are included in the directories:

configs/sim/axis/twopass/

configs/sim/axis/simtcl/

Integrator Manual V2.7.0-pre3, 2015-02-19 16/ 348

Chapter 4

INI Configuration

4.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

¢ comments
e sections

e variables

Each of these elements is separated on single lines. Each end of line or newline character creates a new element.

41.1 Comments
A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at the start a line, the rest of the
line is ignored by the software. Comments can be used to describe what an INI element will do.

; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone carelessly edits a list
like this and leaves two of the lines uncommented, the first one encountered will be used.

Note that inside a variable, the "#" and ";" characters do not denote comments:

INCORRECT = value # and a comment

Correct Comment
CORRECT = wvalue

Integrator Manual V2.7.0-pre3, 2015-02-19 17 / 348

4.1.2 Sections

Related parts of an ini file are separated into sections. A section name is enclosed in brackets like this [THIS_SECTION] The
order of sections is unimportant. Sections begin at the section name and end at the next section name.

The following sections are used by LinuxCNC:

e [EMC] general information

» [DISPLAY] settings related to the graphical user interface

e [FILTER] settings input filter programs

* [RS274NGC] settings used by the g-code interpreter

* [EMCMOT] settings used by the real time motion controller

» [TASK] settings used by the task controller

» [HAL] specifies .hal files

» [HALUI] MDI commands used by HALUI

» [APPLICATIONS] Other applications to be started by LinuxCNC
» [TRAJ] additional settings used by the real time motion controller
e [AXIS_ n] individual axis variables

* [EMCIO] settings used by the I/O Controller

4.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the first non-white space character
after the = up to the end of the line is passed as the value, so you can embed spaces in string symbols if you want to or need to.
A variable name is often called a keyword.

Variable Example

MACHINE = My Machine

A variable line may be extended to multiple lines with a terminal backslash (\) character. A maximum of MAX_EXTEND_LINES
(==20) are allowed. There must be no whitespace following the trailing backslash character.

Section identifiers may not be extended to multiple lines.

Variable with Line extends Example

APP = sim_pin \
ini.0.max_acceleration \
ini.l.max_acceleration \
ini.2.max_acceleration \
ini.0.max_velocity \
ini.l.max_velocity \
ini.2.max_velocity

The following sections detail each section of the configuration file, using sample values for the configuration lines.

Variables that are used by LinuxCNC must always use the section names and variable names as shown. In the following example
the variable MACHINE is assigned the value My Machine.

Integrator Manual V2.7.0-pre3, 2015-02-19 18 /348

4.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one location for convenience.
To use a custom section variable in your HAL file add the section and variable to the INI file.
Custom Section Example

[OFFSETS]
OFFSET_1 = 0.1234

To add a custom variable to a LinuxCNC section simply include the variable in that section.
Custom Variable Example

[AXIS_O0]
TYPE = LINEAR

SCALE = 16000

To use the custom variables in your HAL file put the section and variable name in place of the value.
HAL Example

setp offset.l.offset [OFFSETS]OFFSET_1
setp stepgen.0.position-scale [AXIS_0]SCALE

Note
The value stored in the variable must match the type specified by the component pin.

4.1.5 Include Files

An INI file may include the contents of another file by using a #INCLUDE directive.
#INCLUDE Format

#INCLUDE filename
The filename can be specified as:

* afile in the same directory as the INI file
* afile located relative to the working directory
* an absolute file name (starts with a /)

¢ a user-home-relative file name (starts with a ~)

Multiple #INCLUDE directives are supported.
#INCLUDE Examples

#INCLUDE axis_0.inc

#INCLUDE ../parallel/axis_1l.inc

#INCLUDE below/axis_2.inc

#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not include additional files. The
recommended file extension is .inc. Do not use a file extension of .ini for included files.

Integrator Manual V2.7.0-pre3, 2015-02-19 19/ 348

4.2 INI File Sections

4.2.1 [EMC] Section

* VERSION = $Revision: 1.3 $ - The version number for the INI file. The value shown here looks odd because it is automatically
updated when using the Revision Control System. It’s a good idea to change this number each time you revise your file. If you
want to edit this manually just change the number and leave the other tags alone.

* MACHINE = My Controller - This is the name of the controller, which is printed out at the top of most graphical interfaces.
You can put whatever you want here as long as you make it a single line long.

* DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a terminal. Debug flags are
usually only useful to developers. See src/emc/nml_intf/debugflags.h for other settings.

4.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every user interface. The main
two interfaces for LinuxCNC are AXIS and Touchy. There are several newer interfaces, like gmoccapy and gscreen. Axis is an
interface for use with normal computer and monitor, Touchy is for use with touch screens. Gmoccapy can be used both ways
and offers also many connections for hardware controls. Descriptions of the interfaces are in the Interfaces section of the User
Manual.

* DISPLAY = axis - The name of the user interface to use. Valid options may include: axis, touchy, gmoccapy, gscreen, keystick,
mini, tklinuxcnc, xemc,

* POSITION_OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show when the user interface
starts. The RELATIVE coordinate system reflects the G92 and G5x coordinate offsets currently in effect.

e POSITION_FEEDBACK = ACTUAL - The coordinate value (COMMANDED or ACTUAL) to show when the user interface
starts. The COMMANDED position is the ideal position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors.

e MAX_FEED_OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of the programmed feed
rate.

* MIN_SPINDLE_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means 50% of the programmed
spindle speed. (This is useful as it’s dangerous to run a program with a too low spindle speed).

e MAX_SPINDLE_OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means 100% of the programmed
spindle speed.

* DEFAULT_SPINDLE_SPEED = 100 - The default spindle RPM when the spindle is started in manual mode. This is not the
minimum speed. In AXIS this defaults to 1 RPM if this setting is not present.

* PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default location for g-code files and the location for user-defined M-codes.
This location is searched for the file name before the subroutine path and user M path if specified in the [RS274NGC] section.

* INTRO_GRAPHIC = emc2.gif - The image shown on the splash screen.
e INTRO_TIME = 5 - The maximum time to show the splash screen, in seconds.

e CYCLE_TIME = 0.05 - Cycle time in seconds that display will sleep between polls.

Note
The following [DISPLAY] items are for the AXIS interface only, many of them are used also from gmoccapy, see the gmoccapy
document for details.

* DEFAULT LINEAR VELOCITY = .25 - The default velocity for linear jogs, in , machine units per second.

Integrator Manual V2.7.0-pre3, 2015-02-19 20/ 348

MIN_VELOCITY = .0I - The approximate lowest value the jog slider.

MAX_LINEAR_VELOCITY = 1.0 - The maximum velocity for linear jogs, in machine units per second.
MIN_LINEAR _VELOCITY = .01 - The approximate lowest value the jog slider.

DEFAULT ANGULAR_VELOCITY = .25 - The default velocity for angular jogs, in machine units per second.
MIN_ANGULAR_VELOCITY = .01 - The approximate lowest value the angular jog slider.

MAX _ANGULAR_VELOCITY = 1.0 - The maximum velocity for angular jogs, in machine units per second.

INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The INCREMENTS can be used to
override the default. The values can be decimal numbers (e.g., 0.1000) or fractional numbers (e.g., 1/16), optionally followed
by a unit (cm, mm, um, inch, in or mil). If a unit is not specified the machine unit is assumed. Metric and imperial distances
may be mixed: INCREMENTS = 1 inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

GRIDS = 10 mm, 1 in, ... - Defines the preset values for grid lines. The value is interpreted the same way as INCREMENTS.

OPEN_FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts. Use a blank string "" and no file
will be loaded at start up.

EDITOR = gedit - The editor to use when selecting File > Edit to edit the G code from the AXIS menu. This must be configured
for this menu item to work. Another valid entry is gnome-terminal -e vim.

TOOL_EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting "File > Edit tool table..."

"non

in Axis). Other valid entries are "gedit", "gnome-terminal -e vim", and "gvim".
PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP section for more information.
LATHE = | - This displays in lathe mode with a top view and with Radius and Diameter on the DRO.

GEOMETRY = XYZABCUVW - Controls the preview and backplot of rotary motion. This item consists of a sequence of axis
letters, optionally preceded by a "-" sign. Only axes defined in [TRAJJAXES should be used. This sequence specifies the
order in which the effect of each axis is applied, with a "-" inverting the sense of the rotation. The proper GEOMETRY string
depends on the machine configuration and the kinematics used to control it. The example string GEOMETRY=XYZBCUVW
is for a 5-axis machine where kinematics causes UVW to move in the coordinate system of the tool and XYZ to move in the
coordinate system of the material. The order of the letters is important, because it expresses the order in which the different
transformations are applied. For example rotating around C then B is different than rotating around B then C. Geometry has
no effect without a rotary axis.

ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into a number of straight lines;
a semicircle is divided into ARCDIVISION parts. Larger values give a more accurate preview, but take longer to load and
result in a more sluggish display. Smaller values give a less accurate preview, but take less time to load and may result in a
faster display. The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).!

MDI_HISTORY_FILE = - The name of a local MDI history file. If this is not specified Axis will save the MDI history in
.axis_mdi_history in the user’s home directory. This is useful if you have multiple configurations on one computer.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

HELP_FILE = tklinucnc.txt - Path to help file.

!'In LinuxCNC 2.4 and earlier, the default value was 128.

Integrator Manual V2.7.0-pre3, 2015-02-19 21 /348

4.2.3 [FILTER] Section

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task: Something as simple as
making sure the file ends with M2, or something as complicated as detecting whether the input is a depth image, and generating
g-code to mill the shape it defines. The [FILTER] section of the ini file controls how filters work. First, for each type of file, write
a PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program is given the name of
the input file as its first argument, and must write RS274NGC code to standard output. This output is what will be displayed in
the text area, previewed in the display area, and executed by LinuxCNC when Run.

* PROGRAM_EXTENSION = .extension Description

If your post processor outputs files in all caps you might want to add the following line:

e PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-gcode converter included with LinuxCNC:

* PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
— png = image-to-gcode
— gif = image-to-gcode
— jpg = image-to-gcode

It is also possible to specify an interpreter:

* PROGRAM_EXTENSION = .py Python Script

- py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example script is available at
nc_files/holecircle.py. This script creates g-code for drilling a series of holes along the circumference of a circle. Many more
g-code generators are on the LinuxCNC Wiki site http://wiki.linuxcnc.org/.

If the environment variable AXIS_ PROGRESS_BAR is set, then lines written to stderr of the form
e FILTER PROGRESS=%d

sets the AXIS progress bar to the given percentage. This feature should be used by any filter that runs for a long time.
Python filters should use the print function to output the result to Axis.

This example program filters a file and adds a W axis to match the Z axis. It depends on there being a space between each axis
word to work.

#! /usr/bin/env python
import sys
def main (argv) :

openfile = open(argv[0], 'r’)
file_in = openfile.readlines()
openfile.close()

file_out = []
for line in file_in:
print line
if line.find('z") != -1:
words = line.rstrip(’\n’)

http://wiki.linuxcnc.org/

Integrator Manual V2.7.0-pre3, 2015-02-19 22 /348

words = words.split (' ')
newword = "'
for i in words:
if i[0] == "'Z":
newword = W'+ 1[1:]

if len (newword) > 0O:
words.append (newword)
newline = ' ’.join (words)
file_out.append(newline)

else:

file_out.append(line)

for item in file_out:
print "%s" & item
if _ name_ == "_ main_ ":
main(sys.argv[l:])

4.2.4 [RS274NGC] Section

* PARAMETER_FILE = myfile.var - The file located in the same directory as the ini file which contains the parameters used by
the interpreter (saved between runs).

* ORIENT_OFFSET = 0 - A float value added to the R word parameter of an M19 Orient Spindle operation. Used to define an
arbitrary zero position regardless of encoder mount orientation.

* RS274NGC_STARTUP_CODE = G17 G20 G40 G49 G64 P0.001 G80 G90 G92 G94 G97 G98 - A string of NC codes that
the interpreter is initialized with. This is not a substitute for specifying modal g-codes at the top of each ngc file, because the
modal codes of machines differ, and may be changed by g-code interpreted earlier in the session.

e SUBROUTINE_PATH = ncsubroutines./tmp/testsubs:lathesubs:millsubs - Specifies a colon (:) separated list of up to 10 di-
rectories to be searched when single-file subroutines are specified in gcode. These directories are searched after searching
[DISPLAY]JPROGRAM_PREFIX (if it is specified) and before searching [WIZARD]JWIZARD_ROOT (if specified). The
paths are searched in the order that they are listed. The first matching subroutine file found in the search is used. Directo-
ries are specified relative to the current directory for the ini file or as absolute paths. The list must contain no intervening
whitespace.

e USER_M_PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated directories for user
defined functions. Directories are specified relative to the current directory for the ini file or as absolute paths. The list must
contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order is:
1. [DISPLAY]PROGRAM_PREFIX (if specified)
2. If [DISPLAY]PROGRAM_PREFIX is not specified, search the default location: nc_files
3. Then search each directory in the list [RS274ANGC]JUSER_M_PATH

The first executable M 1xx found in the search is used for each M 1xx.

e USER_DEFINED_FUNCTION_MAX_DIRS=5. The maximum number of directories defined at compile time.

Note
[WIZARD]WIZARD_ROQOT is a valid search path but the Wizard has not been fully implemented and the results of using it are
unpredictable.

Integrator Manual V2.7.0-pre3, 2015-02-19 23 /348

4.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values from this section to load
the motion controller. For more information on the motion controller see the Motion Section.

EMCMOT = motmod - the motion controller name is typically used here.
BASE_PERIOD = 50000 - the Base task period in nanoseconds.
SERVO_PERIOD = 1000000 - This is the "Servo" task period in nanoseconds.

TRAJ_PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

4.2.6 [TASK] Section

TASK = milltask - Specifies the name of the rask executable. The fask executable does various things, such as communicate
with the Uls over NML, communicate with the realtime motion planner over non-HAL shared memory, and interpret gcode.
Currently there is only one task executable that makes sense for 99.9% of users, milltask.

CYCLE_TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the polling interval when
waiting for motion to complete, when executing a pause instruction, and when accepting a command from a user interface.
There is usually no need to change this number.

4.2.7 [HAL] section

HALFILE = example.hal - Execute the file example.hal at start up. If HALFILE is specified multiple times, the files are
executed in the order they appear in the ini file. Almost all configurations will have at least one HALFILE, and stepper
systems typically have two such files, one which specifies the generic stepper configuration (core_stepper.hal) and one which
specifies the machine pin out (xxx_pinout.hal). HALFILES are found using a search. If the named file is found in the directory
containing the ini file, it is used. If the named file is not found in this ini file directory, a search is made using a system library
of halfiles.

HALFILE = texample.tcl [argl [arg2] ...]] - Execute the tcl file rexample.tcl at start up with argl, arg2, etc as ::argv list. Files
with a .tcl suffix are processed as above but use haltcl for processing See the section on HALTCL for more information.

HALFILE = LIB:sys_example.hal - Execute the system library file sys_example.hal at start up. Explicit use of the LIB: prefix
causes use of the system library HALFILE without searching the ini file directory.

HALFILE = LIB:sys_texample.tcl [argl [arg2 ...]] - Execute the system library file sys_texample.tcl at start up. Explicit use
of the LIB: prefix causes use of the system library HALFILE without searching the ini file directory.

HALFILE items specify files that loadrt Hal components and make signal connections between component pins. Common
mistakes are 1) omission of the addf statement needed to add a component’s function(s) to a thread, 2) incomplete signal
(net) specifiers. Omission of required addf statements is almost always an error. Signals usually include one or more input
connections and a single output (but both are not strictly required). A system library file is provided to make checks for these
conditions and report to stdout and in a popup gui:

HALFILE = LIB:halcheck.tcl [nopopup]

Note
The LIB:halcheck.tcl line should be the last [HAL]HALFILE. Specify the nopopup option to suppress the popup message and
allow immediate starting. Connections made using a POSTGUI_HALFILE are not checked.

Integrator Manual V2.7.0-pre3, 2015-02-19 24/ 348

* TWOPASS = ON - Use twopass processing for loading HAL components. With TWOPASS processing, [HALJHALFILE=
lines are processed in two passes. In the first pass (pass0), all HALFILES are read and multiple appearances of loadrt and
loadusr commands are accumulated. These accumulated load commands are executed at the end of pass0. This accumulation
allows load lines to be specified more than once for a given component (provided the names= names used are unique on each
use). In the second pass (passl), the HALFILES are reread and all commands except the previously executed load commands
are executed.

The TWOPASS item can be activated with any non-null string including the keywords verbose and nodelete. The verbose
keyword causes printing of details to stdout. The nodelete keyword preserves temporary files in /tmp. Example:

TWOPASS = nodelete verbose

See the section on TWOPASS for more information.

Some GUIs support halfiles that are processed after the GUI is started in order to connect hal pins that are created by the GUL
When using a postgui halfile with TWOPASS processing, include all loadrt items for components added by postgui halfiles in a
separate halfile that is processed before the GUI. The addf commands can also be included in the file. Example:

[HAL]
HALFILE = file_1.hal

HALFILE = file_n.hal
HALFILE = file_with_all_loads_for_postgui.hal

POSTGUI_HALFILE = the_postgui_file.hal

* HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple times, the commands
are executed in the order they appear in the ini file. HALCMD lines are executed after all HALFILE lines.

* SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending on the hardware drivers
used, this may make it possible to set outputs to defined values when LinuxCNC is exited normally. However, because there
is no guarantee this file will be executed (for instance, in the case of a computer crash) it is not a replacement for a proper
physical e-stop chain or other protections against software failure.

e POSTGUI_HALFILE = example2.hal - Execute example2.hal after the GUI has created its HAL pins. Some GUISs create hal
pins and support the use of a postgui halfile to use them. GUIs that support postgui halfiles include Touchy, Axis, Gscreen, and
Gmoccapy.

See section <<sec:pyvcp-with-axis,pyVCP with Axis>> Section for more information.

* HALUI = halui - adds the HAL user interface pins. For more information see the HAL User Interface chapter.

4.2.8 [HALUI] section

* MDI COMMAND = G53 GO X0 YO Z0 - An MDI command can be executed by using halui.mdi-command-00. Increment the
number for each command listed in the [HALUI] section.

4.2.9 [APPLICATIONS] Section

LinuxCNC can start other applications before the specified gui is started. The applications can be started after a specified delay
to allow for gui-dependent actions (like creating gui-specific hal pins).

* DELAY = value - seconds to wait beore starting other applications. A delay may be needed if an application has dependencies
on [HAL]JPOSTGUI_HALFILE actions or gui-created hal pins (default DELAY=0).

Integrator Manual V2.7.0-pre3, 2015-02-19 25/ 348

* APP = appname [argl [arg2 ...]] - Application to be started. This specification can be included multiple times. The appname
can be explicitly named as an absolute or tilde specified filename (first character is / or ~), a relative filename (first characters
of filename are ./), or as a file in the inifile directory. If no executable file is found using these names, then the user search
PATH is used to find the application.

Examples:

— Simulate inputs to hal pins for testing (using sim_pin — a simple gui to set inputs to parameters, unconnected pins, or signals
with no writers):

APP = sim_pin motion.probe-input halui.abort motion.analog-in-00

— Invoke halshow with a previuosly saved watchlist. Since linuxcnc sets the working directory to the directory for the inifile,
you can refer to files in that directory (example: my.halshow):

APP = halshow my.halshow

— Alternatively, a watchlist file identified with a full pathname could be specified:

APP = halshow ~/saved_shows/spindle.halshow

— Open halscope using a previously saved configuration:

APP = halscope -i my.halscope

4.2.10 [TRAJ] Section

Warning

The new Trajectory Planner (TP) is on by default.

If you have no TP settings in your [TRAJ] section - LinuxCNC defaults to:
ARC_BLEND_ENABLE = 1

ARC_BLEND_FALLBACK_ENABLE =0
ARC_BLEND_OPTIMIZATION_DEPTH = 50
ARC_BLEND_GAP_CYCLES =4

ARC_BLEND_RAMP_FREQ = 100

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

* ARC_BLEND_ENABLE = I - Turn on new TP. If set to 0 TP uses parabolic blending (1 segment look ahead.) Default value 1.

* ARC_BLEND_FALLBACK_ENABLE = 0 - Optionally fall back to parabolic blends if the estimated speed is faster. However,
this estimate is rough, and it seems that just disabling it gives better performance. Default value 0.
* ARC_BLEND_OPTIMIZATION_DEPTH = 50 - Look ahead depth in number of segments.

To expand on this a bit, you can choose this value somewhat arbitrarily. Here’s a formula to estimate how much depth you
need for a particular config:

#n=v_max /(2.0 * a_max * t_c) # where: # n = optimization depth # v_max = max axis velocity (UU / sec) # a_max = max
axis acceleration (UU / sec) # t_c = servo period (seconds)

So, a machine with a maximum axis velocity of 10 IPS, a max acceleration of 100 IPS"2, and a servo period of 0.001 sec would
need:

10/(2.0 * 100 * 0.001) = 50 segments to always reach maximum velocity along the fastest axis.

In practice, this number isn’t that important to tune, since the look ahead rarely needs the full depth unless you have lots of very
short segments. If during testing, you notice strange slowdowns and can’t figure out where they come from, first try increasing
this depth using the formula above.

Integrator Manual V2.7.0-pre3, 2015-02-19 26 /348

If you still see strange slowdowns, it may be because you have short segments in the program. If this is the case, try adding a
small tolerance for Naive CAM detection. A good rule of thumb is this:

min_length ~= v_req * t_c # where: # v_req = desired velocity in UU / sec # t_c = servo period (seconds)

If you want to travel along a path at 1 IPS = 60 IPM, and your servo period is 0.001 sec, then any segments shorter than
min_length will slow the path down. If you set Naive CAM tolerance to around this min length, overly short segments will
be combined together to eliminate this bottleneck. Of course, setting the tolerance too high means big path deviations, so you
have to play with it a bit to find a good value. I'd start at 1/2 of the min_length, then work up as needed.

* ARC_BLEND_GAP_CYCLES = 4 How short the previous segment must be before the trajectory planner consumes it.

Often, a circular arc blend will leave short line segments in between the blends. Since the geometry has to be circular, we
can’t blend over all of a line if the next one is a little shorter. Since the trajectory planner has to touch each segment at least
once, it means that very tiny segments will slow things down significantly. My fix to this way to "consume" the short segment
by making it a part of the blend arc. Since the line+blend is one segment, we don’t have to slow down to hit the very short
segment. Likely, you won’t need to touch this setting.

* ARC_BLEND_RAMP_FREQ = 20 - This is a cutoff frequency for using ramped velocity.

Ramped velocity in this case just means constant acceleration over the whole segment. This is less optimal than a trapezoidal
velocity profile, since the acceleration is not maximized. However, if the segment is short enough, there isn’t enough time to
accelerate much before we hit the next segment. Recall the short line segments from the previous example. Since they’re lines,
there’s no cornering acceleration, so we’re free to accelerate up to the requested speed. However, if this line is between two
arcs, then it will have to quickly decelerate again to be within the maximum speed of the next segment. This means that we
have a spike of acceleration, then a spike of deceleration, causing a large jerk, for very little performance gain. This setting is
a way to eliminate this jerk for short segments.

Basically, if a segment will complete in less time than 1 / ARC_BLEND_RAMP_FREQ, we don’t bother with a trapezoidal
velocity profile on that segment, and use constant acceleration. (Setting ARC_BLEND_RAMP_FREQ = 1000 is equivalent to
always using trapezoidal acceleration, if the servo loop is 1kHz).

You can characterize the worst-case loss of performance by comparing the velocity that a trapezoidal profile reaches vs. the
ramp:

v_ripple = a_max / (4.0 * f) # where: # v_ripple = average velocity "loss" due to ramping # a_max = max axis acceleration
f = cutoff frequency from INI

For the aforementioned machine, the ripple for a 20Hz cutoff frequency is 100 / (4 * 20) = 1.25 IPS. This seems high, but
keep in mind that it is only a worst-case estimate. In reality , the trapezoidal motion profile is limited by other factors, such
as normal acceleration or requested velocity, and so the actual performance loss should be much smaller. Increasing the cutoff
frequency can squeeze out more performance, but make the motion rougher due to acceleration discontinuities. A value in the
range 20Hz to 200Hz should be reasonable to start.

Finally, no amount of tweaking will speed up a toolpath with lots of small, tight corners, since you’re limited by cornering
acceleration.

* COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are valid. Only axes named
in COORDINATES are accepted in g-code. This has no effect on the mapping from G-code axis names (X- Y- Z-) to joint
numbers—for trivial kinematics, X is always joint 0, A is always joint 3, and U is always joint 6, and so on. It is permitted to
write an axis name twice (e.g., X Y Y Z for a gantry machine) but this has no effect.

e AXES = 3 - One more than the number of the highest joint number in the system. For an XYZ machine, the joints are numbered
0, 1 and 2; in this case AXES should be 3. For an XYUV machine using trivial kinematics, the V joint is numbered 7 and
therefore AXES should be 8. For a machine with nontrivial kinematics (e.g., scarakins) this will generally be the number of
controlled joints.

* JOINTS = 3 - (This config variable is used by the Axis GUI only, not by the trajectory planner in the motion controller.)
Specifies the number of joints (motors) in the system. For example, an XYZ machine with a single motor for each axis has 3
joints. A gantry machine with one motor on each of two of the axes, and two motors on the third axis, has 4 joints.

* HOME = 0 0 0 - Coordinates of the homed position of each axis. Again for a fourth axis you will need 0 0 0 0. This value is
only used for machines with nontrivial kinematics. On machines with trivial kinematics this value is ignored.

* LINEAR_UNITS = <units> - Specifies the machine units for linear axes. Possible choices are (in, inch, imperial, metric, mm).
This does not affect the linear units in NC code (the G20 and G21 words do this).

Integrator Manual V2.7.0-pre3, 2015-02-19 27 / 348

ANGULAR_UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are deg, degree (360 per
circle), rad, radian (2pi per circle), grad, or gon (400 per circle). This does not affect the angular units of NC code. In
RS274NGC, A-, B- and C- words are always expressed in degrees.

DEFAULT_VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per second. The value shown in
Axis equals machine units per minute.

DEFAULT_ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration used for "teleop" (Cartesian
space) jogs, in machine units per second per second.

MAX_VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, in machine units per second. The value
shown equals 300 units per minute.

MAX_ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis move, in machine units per
second per second.

POSITION_FILE = position.txt - If set to a non-empty value, the joint positions are stored between runs in this file. This allows
the machine to start with the same coordinates it had on shutdown. This assumes there was no movement of the machine while
powered off. If unset, joint positions are not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller
machines without home switches.

NO_FORCE_HOMING = I - The default behavior is for LinuxCNC to force the user to home the machine before any MDI
command or a program is run. Normally, only jogging is allowed before homing. Setting NO_FORCE_HOMING = 1 allows
the user to make MDI moves and run programs without homing the machine first. Interfaces without homing ability will need
to have this option set to 1.

() Warning
Using this will allow the machine to go beyond the soft limits while in operation. It is not generally desirable to allow
this.

4.2.11 [AXIS_<num>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components in the axis control module.
The axis section names begin numbering at 0, and run through the number of axes specified in the [TRAJ] AXES entry minus 1.

Typically (but not always):

AXIS_0=X
AXIS_1=Y
AXIS 2=7Z
AXIS_ 3=A
AXIS_ 4=B
AXIS_5=C
AXIS_6=U
AXIS_ 7=V
AXIS_8=W

TYPE = LINEAR - The type of axes, either LINEAR or ANGULAR.

WRAPPED_ROTARY = I - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999 degrees. Positive
Numbers will move the axis in a positive direction and negative numbers will move the axis in the negative direction.

Integrator Manual V2.7.0-pre3, 2015-02-19 28 /348

e LOCKING_INDEXER = I - When this is set to 1 a GO move for this axis will initiate an unlock with axis.N.unlock pin then
wait for the axis.N.is-unlocked pin then move the axis at the rapid rate for that axis. After the move the axis.N.unlock will be
false and motion will wait for axis.N.is-unlocked to go false. Moving with other axes is not allowed when moving a locked
rotary axis.

* UNITS = INCH - If specified, this setting overrides the related [TRAJ] UNITS setting. (e.g., [TRAJJLINEAR_UNITS if the
TYPE of this axis is LINEAR, [TRAJJANGULAR_UNITS if the TYPE of this axis is ANGULAR)

* MAX_VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.
* MAX_ACCELERATION = 20.0 - Maximum acceleration for this axis in machine units per second squared.

* BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to make up for small deficiencies
in the hardware used to drive an axis. If backlash is added to an axis and you are using steppers the STEPGEN_MAXACCEL
must be increased to 1.5 to 2 times the MAX_ACCELERATION for the axis.

* COMP_FILE = file.extension - A file holding compensation structure for the axis. The file could be named xscrew.comp,
for example, for the X axis. File names are case sensitive and can contain letters and/or numbers. The values are triplets
per line separated by a space. The first value is nominal (where it should be). The second and third values depend on the
setting of COMP_FILE_TYPE. Currently the limit inside LinuxCNC is for 256 triplets per axis. If COMP_FILE is specified,
BACKLASH is ignored. Compensation file values are in machine units.

* COMP_FILE TYPE =0or I -

— If 0: The second and third values specify the forward position (where the axis is while traveling forward) and the reverse
position (where the axis is while traveling reverse), positions which correspond to the nominal position.’

— If 1: The second and third values specify the forward trim (how far from nominal while traveling forward) and the reverse
trim (how far from nominal while traveling in reverse), positions which correspond to the nominal position.

Example triplet with COMP_FILE_TYPE = 0: 1.00 1.01 0.99 +
Example triplet with COMP_FILE_TYPE 1: 1.00 0.01 -0.01

e MIN_LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

e MAX_LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

* MIN_FERROR = 0.010 - This is the value in machine units by which the axis is permitted to deviate from commanded position
at very low speeds. If MIN_FERROR is smaller than FERROR, the two produce a ramp of error trip points. You could think
of this as a graph where one dimension is speed and the other is permitted following error. As speed increases the amount of
following error also increases toward the FERROR value.

* FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference between commanded
and sensed position exceeds this amount, the controller disables servo calculations, sets all the outputs to 0.0, and disables the
amplifiers. If MIN_FERROR is present in the .ini file, velocity-proportional following errors are used. Here, the maximum al-
lowable following error is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJIMAX_VELOCITY,
and proportionally smaller following errors for slower speeds. The maximum allowable following error will always be greater
than MIN_FERROR. This prevents small following errors for stationary axes from inadvertently aborting motion. Small fol-
lowing errors will always be present due to vibration, etc. The following polarity values determine how inputs are interpreted
and how outputs are applied. They can usually be set via trial-and-error since there are only two possibilities. The LinuxCNC
Servo Axis Calibration utility program (in the AXIS interface menu Machine/Calibration and in TkLinuxCNC it is under Set-
ting/Calibration) can be used to set these and more interactively and verify their results so that the proper values can be put in
the INI file with a minimum of trouble.

Integrator Manual V2.7.0-pre3, 2015-02-19 29/ 348

4.2.11.1 Homing

These parameters are Homing related, for a better explanation read the Homing Configuration Chapter.

e HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

* HOME_OFFSET = 0.0 - The axis position of the home switch or index pulse, in machine units. When the home point is found
during the homing process, this is the position that is assigned to that point. When sharing home and limit switches and using
a home sequence that will leave the home/limit switch in the toggled state the home offset can be used define the home switch
position to be other than 0 if your HOME position is desired to be 0.

* HOME_SEARCH_VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direction of travel. A value
of zero means assume that the current location is the home position for the machine. If your machine has no home switches
you will want to leave this value at zero.

e HOME_LATCH_VEL = 0.0 - Homing velocity in machine units per second to the home switch latch position. Sign denotes
direction of travel.

* HOME_FINAL_VEL = 0.0 - Velocity in machine units per second from home latch position to home position. If left at 0 or
not included in the axis rapid velocity is used. Must be a positive number.

* HOME_USE_INDEX = NO - If the encoder used for this axis has an index pulse, and the motion card has provision for this
signal you may set it to yes. When it is yes, it will affect the kind of home pattern used. Currently, you can’t home to index
with steppers unless you’re using stepgen in velocity mode and PID.

* HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch this should be set to
YES. When set to YES the limit switch for this axis is ignored when homing. You must configure your homing so that at the
end of your home move the home/limit switch is not in the toggled state you will get a limit switch error after the home move.

* HOME_IS_SHARED = <n> - If the home input is shared by more than one axis set <n> to 1 to prevent homing from starting
if the one of the shared switches is already closed. Set <n> to 0 to permit homing if a switch is closed.

* HOME_SEQUENCE = <n> - Used to define the "Home All" sequence. <n> starts at 0 and no numbers may be skipped. If left
out or set to -1 the joint will not be homed by the "Home All" function. More than one axis can be homed at the same time.

* VOLATILE HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is off or if E-Stop is on.
This is useful if your machine has home switches and does not have position feedback such as a step and direction driven
machine.

4.2.11.2 Servo

These parameters are relevant to axes controlled by servos.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a PID component and the assumption is that the output is volts.

* DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine units. This is often set to
a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict rules. Looser (larger) settings allow less servo
hunting at the expense of lower accuracy. Tighter (smaller) settings attempt higher accuracy at the expense of more servo
hunting. Is it really more accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Integrator Manual V2.7.0-pre3, 2015-02-19 30/ 348

Be careful about going below 1 encoder count, since you may create a condition where there is no place that your servo is happy.
This can go beyond hunting (slow) to nervous (rapid), and even to squealing which is easy to confuse with oscillation caused by
improper tuning. Better to be a count or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines = 4 pulselline 1revolution 4000 pulses 1 pulse

* BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is added to the output. In most cases
it should be left at zero. However, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like all other components of the
output.

e P = 50 - The proportional gain for the axis servo. This value multiplies the error between commanded and actual position in
machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the P gain are volts per
volts

machine unit, e.g., unit

* [= 0 - The integral gain for the axis servo. The value multiplies the cumulative error between commanded and actual position
in machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the I gain are volts
volts

per machine unit second, e.g., Unit second

* D = 0 - The derivative gain for the axis servo. The value multiplies the difference between the current and previous errors,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the D gain are volts per machine unit
volts

per second, e.g., UMt second

e FFO = 0 - The Oth order feed forward gain. This number is multiplied by the commanded position, resulting in a contribution
volts

to the computed voltage for the motor amplifier. The units on the FF0 gain are volts per machine unit, e.g., UMNIT

e FF1 = 0 - The 1st order feed forward gain. This number is multiplied by the change in commanded position per second,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF1 gain are volts per machine
volts

unit per second, e.g., UNit second

e FF2 = 0 - The 2nd order feed forward gain. This number is multiplied by the change in commanded position per second per
second, resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF2 gain are volts per
volts

. . p 3
machine unit per second per second, e.g., unit second

* OUTPUT_SCALE = 1.000 -

* OUTPUT_OFFSET = 0.000 - These two values are the scale and offset factors for the axis output to the motor amplifiers.
The second value (offset) is subtracted from the computed output (in volts), and divided by the first value (scale factor),
before being written to the D/A converters. The units on the scale value are in true volts per DAC output volts. The units on
the offset value are in volts. These can be used to linearize a DAC. Specifically, when writing outputs, the LinuxCNC first
converts the desired output in quasi-SI units to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

e output— offset

ra
scale

Integrator Manual V2.7.0-pre3, 2015-02-19 31/348

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.

mim

amplifier| volts |=(outpu |ser |~ offset| ser) secvolt

Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from the sensor readings. The
value for this offset is obtained by finding the value of your output which yields 0.0 for the actuator output. If the DAC is
linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the combined effects of amplifier
gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring the result.

2. Do a least-squares linear fit to get coefficients a, b such that

3. Note that we want raw output such that our measured result is identical to the commanded output. This means

a. command =a=raw+b
. rfaw={command—b)/a

4. As aresult, the a and b coefficients from the linear fit can be used as the scale and offset for the controller directly.

See the following table for an example of voltage measurements.

Table 4.1: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

* MAX_OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the motor amplifier, in
volts. The computed output value is clamped to this limit. The limit is applied before scaling to raw output units. The value is
applied symmetrically to both the plus and the minus side.

e INPUT_SCALE = 20000 - in Sample configs

e ENCODER_SCALE = 20000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one
machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of LINEAR_UNITS.
For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

Integrator Manual V2.7.0-pre3, 2015-02-19 32 /348

4.2.11.3 Stepper

These parameters are relevant to axes controlled by steppers.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a stepgen component.

* SCALE = 4000 - in Sample configs

e STEP_SCALE = 4000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one machine
unit as set in the [TRAIJ] section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
axis one machine unit will be equal to the setting of LINEAR_UNITS. For an angular axis one unit is equal to the setting in
ANGULAR_UNITS. For servo systems, this is the number of feedback pulses per machine unit. A second number, if specified,
is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired machine units of inch, we
have:

2steps 360 degree +10-7__ 4000 s1reps
1.8 degrees rev inch inch

inputscale=

e ENCODER_SCALE = 20000 (Optionally used in PNCconf built configs) - Specifies the number of pulses that corresponds to
a move of one machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of
LINEAR_UNITS. For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified,
is ignored. For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

o STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10% larger than the axis
MAX_ACCELERATION. This value improves the tuning of stepgen’s "position loop". If you have added backlash compen-
sation to an axis then this should be 1.5 to 2 times greater than MAX_ACCELERATION.

o STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as well. If specified, it should
also be 1% to 10% larger than the axis MAX_VELOCITY. Subsequent testing has shown that use of STEPGEN_MAXVEL
does not improve the tuning of stepgen’s position loop.

4.2.12 [EMCIOQO] Section

* EMCIO = io - Name of IO controller program

* CYCLE_TIME = 0.100 - The period, in seconds, at which EMCIO will run. Making it 0.0 or a negative number will tell
EMCIO not to sleep at all. There is usually no need to change this number.

e TOOL_TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

* TOOL_CHANGE_POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool change if three digits
are used. Specifies the XYZABC location when 6 digits are used. Specifies the XYZABCUVW location when 9 digits are
used. Tool Changes can be combined. For example if you combine the quill up with change position you can move the Z first
then the X and Y.

Integrator Manual V2.7.0-pre3, 2015-02-19 33/348

* TOOL_CHANGE_WITH_SPINDLE_ON = 1 - The spindle will be left on during the tool change when the value is 1. Useful
for lathes or machines where the material is in the spindle, not the tool.

* TOOL_CHANGE_QUILL_UP = 1 - The Z axis will be moved to machine zero prior to the tool change when the value is 1.
This is the same as issuing a GO G53 Z0.

* TOOL_CHANGE_AT_G30 = I - The machine is moved to reference point defined by parameters 5181-5186 for G30 if the
value is 1. For more information on G30 and Parameters see the G Code Manual.

* RANDOM_TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it came from. For
example, machines that exchange the tool in the active pocket with the tool in the spindle.

Integrator Manual V2.7.0-pre3, 2015-02-19 34 /348

Chapter 5

Homing Configuration

5.1 Overview

Homing seems simple enough - just move each joint to a known location, and set LinuxCNC’s internal variables accordingly.
However, different machines have different requirements, and homing is actually quite complicated.

5.2 Homing Sequence

There are four possible homing sequences defined by the sign of SEARCH_VEL and LATCH_VEL, along with the associated
configuration parameters as shown in the following table. Two basic conditions exist, SEARCH_VEL and LATCH_VEL are
the same sign or they are opposite signs. For a more detailed description of what each configuration parameter does, see the
following section.

Integrator Manual V2.7.0-pre3, 2015-02-19

35/348

SEARCHVEL = POSITIVE
LATCHWEL = NEGATIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.00¢

— HOME SWITCH RELEASES
HOME SWITCH TRIPS

— OWEREHDOT
e

< £ SEARCH FOR HOME SWITCH (SEARCHVEL)

s - FINAL DETECTION OF SWITCH [LATCHVEL)

fa:

1.000

G0 TO HOME POSITION [MAXVEL)

3000

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.000 — HOME SWITCH RELEASES

e HOME SWITCH TRIFS

@ £== SEARCH FOR HOME SWITCH [SEARCHVEL}

BACK OFF OF HOME SWITCH [SEARCHVEL)

== FIMAL DETECTION OF SWITCH (LATCHVEL)

bt
TH

1.000

G0 TO HOME POSITION [MAXWVEL)

3.000

SEARCHVEL = POSITIVE
LATCHVEL = NEGATIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HOME = 1000 —— HOME SWITCH RELEASES
- T <
/P/—I-IEM[SWITCH TRIFS

£== SEARCH FOR HOME SWITCH (SEARCHVEL)

FINAL DETECTION OF SWITCH AND
NOEX PULSE [LATCHYEL)

GO TO HOME POSITION [MAXVEL)
I |

“
.
3000 SNNDEX PULSES

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HUME = 1000 — HOME SWITLH RELEASES
—— HOME SWITCH TRIPS
/

4 L":-— SEARCH FOR HOME SWITCH [SEARCHYEL)
-t © BACK OFF DF HOME SWITCH ISEARCHVEL)
: 4 oy FIMAL DETECTION OF SWITCH ANO
= MOEX PULSE [LATCHYELD

1.00¢

G0 TO HOME FOSITION [MAXVEL)

‘-"‘—n___ |\
3000 TIwupew pULSES

Figure 5.1: Homing Sequences

Integrator Manual V2.7.0-pre3, 2015-02-19 36 /348

5.3 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [AXIS] section of the inifile.

Homing Type SEARCH_VEL LATCH_VEL USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES

Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

5.3.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch; the search stage of homing
is skipped.

If HOME_SEARCH_VEL is non-zero, then LinuxCNC assumes that there is a home switch. It begins by checking whether the
home switch is already tripped. If tripped it backs off the switch at HOME_SEARCH_VEL. The direction of the back-off is
opposite the sign of HOME_SEARCH_VEL. Then it searches for the home switch by moving in the direction specified by the
sign of HOME_SEARCH_VEL, at a speed determined by its absolute value. When the home switch is detected, the joint will
stop as fast as possible, but there will always be some overshoot. The amount of overshoot depends on the speed. If it is too high,
the joint might overshoot enough to hit a limit switch or crash into the end of travel. On the other hand, if HOME_SEARCH_VEL
is too low, homing can take a long time.

5.3.2 HOME_LATCH_VEL

This variable has units of machine-units per second.

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination of the home switch (if
present) and index pulse location (if present). It will usually be slower than the search velocity to maximize accuracy. If
HOME_SEARCH_VEL and HOME_LATCH_VEL have the same sign, then the latch phase is done while moving in the same
direction as the search phase. (In that case, LinuxCNC first backs off the switch, before moving towards it again at the latch
velocity.) If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while moving in
the opposite direction from the search phase. That means LinuxCNC will latch the first pulse after it moves off the switch. If
HOME_SEARCH_VEL is zero (meaning there is no home switch), and this parameter is nonzero, LinuxCNC goes ahead to the
index pulse search. If HOME_SEARCH_VEL is non-zero and this parameter is zero, it is an error and the homing operation will
fail. The default value is zero.

5.3.3 HOME_FINAL_VEL

This variable has units of machine-units per second.

It specifies the speed that LinuxCNC uses when it makes its move from HOME_OFFSET to the HOME position. If the
HOME_FINAL_VEL is missing from the ini file, then the maximum joint speed is used to make this move. The value must
be a positive number.

5.3.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether LinuxCNC will ignore
the limit switch input for this axis while homing. Setting this to YES will not ignore limit inputs for other axes. If you do not have

Integrator Manual V2.7.0-pre3, 2015-02-19 37 /348

a separate home switch set this to YES and case connect the limit switch signal to the home switch input in HAL. LinuxCNC
will ignore the limit switch input for this axis while homing. To use only one input for all homing and limits you will have to
block the limit signals of the axes not homing in HAL and home one axis at a time.

5.3.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME_USE_INDEX = YES), LinuxCNC will latch on the
rising edge of the index pulse. If false, LinuxCNC will latch on either the rising or falling edge of the home switch (depending
on the signs of HOME_SEARCH_VEL and HOME_LATCH_VEL). The default value is NO.

5.3.6 HOME_OFFSET

Contains the location of the home switch or index pulse, in joint coordinates. It can also be treated as the distance between the
point where the switch or index pulse is latched and the zero point of the joint. After detecting the index pulse, LinuxCNC sets
the joint coordinate of the current point to HOME_OFFSET. The default value is zero.

5.3.7 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the index pulse, and setting the
coordinate of that point to HOME_OFFSET, LinuxCNC makes a move to HOME as the final step of the homing process. The
default value is zero. Note that even if this parameter is the same as HOME_OFFSET, the joint will slightly overshoot the latched
position as it stops. Therefore there will always be a small move at this time (unless HOME_SEARCH_VEL is zero, and the
entire search/latch stage was skipped). This final move will be made at the joint’s maximum velocity. Since the joint is now
homed, there should be no risk of crashing the machine, and a rapid move is the quickest way to finish the homing sequence. !

5.3.8 HOME_IS_SHARED

If there is not a separate home switch input for this axis, but a number of momentary switches wired to the same pin, set this
value to 1 to prevent homing from starting if one of the shared switches is already closed. Set this value to O to permit homing
even if the switch is already closed.

5.3.9 HOME_SEQUENCE

Used to define a multi-axis homing sequence HOME ALL and enforce homing order (e.g., Z may not be homed if X is not
yet homed). An axis may be homed after all axes with a lower HOME_SEQUENCE have already been homed and are at the
HOME_OFFSET. If two axes have the same HOME_SEQUENCE, they may be homed at the same time. If HOME_SEQUENCE
is -1 or not specified then this joint will not be homed by the HOME ALL sequence. HOME_SEQUENCE numbers start with O
and there may be no unused numbers.

5.3.10 VOLATILE_HOME

If this setting is true, this axis becomes unhomed whenever the machine transitions into the OFF state. This is appropriate for
any axis that does not maintain position when the axis drive is off. Some stepper drives, especially microstep drives, may need
this.

5.3.11 LOCKING_INDEXER

If this axis is a locking rotary indexer, it will unlock before homing, and lock afterward.

! The distinction between home_offset and home is that home_offset first establishes the scale location on the machine by applying the home_offset value to
the location where home was found, and then home says where the joint should move to on that scale.

Integrator Manual V2.7.0-pre3, 2015-02-19 38 /348

5.3.12 Immediate Homing

If an axis does not have home switches or does not have a logical home position like a rotary axis and you want that axis to home
at the current position when the "Home All" button is pressed in Axis the following ini entries for that axis are needed.

1. SEARCH_VEL =0

2. LATCH_VEL =0

3. USE_INDEX = NO

4. HOME_SEQUENCE =0

Integrator Manual V2.7.0-pre3, 2015-02-19 39/348

Chapter 6

Lathe Configuration

6.1 Default Plane

When LinuxCNC'’s interpreter was first written, it was designed for mills. That is why the default plane is XY (G17). A normal
lathe only uses the XZ plane (G18). To change the default plane place the following line in the .ini file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G138

The above can be overwritten in a g code program so always set important things in the preamble of the g code file.

6.2 INI Settings

The following .ini settings are needed for lathe mode in Axis in addition to or replacing normal settings in the .ini file. Gmoccapy
uses also the mentioned settings, but does offer additional settings, check the gmoccapy Section for details.

[DISPLAY]
DISPLAY = axis
LATHE =1

[TRAJ]

AXES = 3
COORDINATES = X Z
[AXIS_0]

[AXIS_2]

Integrator Manual V2.7.0-pre3, 2015-02-19 40/ 348

Chapter 7

HALTCL Files

The halcmd language excels in specifiying components and connections but offers no computational capabilities. As a result, ini
files are limited in the clarity and brevity that is possible with higher level languages.

The haltcl facility provides a means to use tcl scripting and its features for computation, looping, branching, procedures, etc. in
ini files. To use this functionality, you use the tcl language and the extension .tcl for halfiles.

The .tcl extension is understood by the main script (linuxcnc) that processes ini files. Haltcl files are identified in the the HAL
section of ini files (just like .hal files).

Example

[HAL]
HALFILE conventional_file.hal
HALFILE = tcl_based file.tcl

With appropriate care, .hal and .tcl files can be intermixed.

7.1 Compatibility

The halcmd language used in .hal files has a simple syntax that is actually a subset of the more powerful general-purpose tcl
scripting language.

7.2 Haltcl Commands

Haltcl files use the tcl scripting language augmented with the specific commands of the LinuxCNC hardware abstraction layer
(HAL). The hal-specific commands are.

addf, alias,

delf, delsig,

getp, gets

ptype,

stype,

help,

linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,

save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Integrator Manual V2.7.0-pre3, 2015-02-19 41 /348

Two special cases occur for the gets and list commands due to conflicts with tcl builtin commands. For haltcl, these commands
must be preceded with the keyword hal.

halcmd haltcl

gets hal gets
list hal list

7.3 Haltcl Inifile variables

Inifile variables are accessible by both halemd and haltcl but with differing syntax.
LinuxCNC ini files use SECTION and ITEM specifiers to identify configuration items.

[SECTION_A]
ITEM1 = value_1
ITEM2 = value_2

[SECTION_B]
The ini file values are accessible by text substition in .hal files using the form.
[SECTION]ITEM

The same ini file values are accessible in .tcl files using the form of a tcl global array variable.
$::SECTION (ITEM)

For example, an ini file item like:

[AXIS_0]

MAX_ VELOCITY = 4

is expressed as [AXIS_0]MAX_VELOCITY in .hal files for halemd and as $::AXIS_0(MAX_VELOCITY) in .tcl files for haltcl

7.4 Converting .hal files to .tcl files

Existing .hal files can be converted to .tcl files by hand editing to adapt to the differences mentioned above. The process can be
automated with scripts that convert using these substitutions.

[SECTION]ITEM ———> $::SECTION (ITEM)
gets —-——> hal gets
list -—=> hal list

7.5 Haltcl Notes

In haltcl, the value argument for the sets and sefp commands is implicitly treated as an expression in the tcl language.
Example

set gain to convert deg/sec to units/min for AXIS_O0 radius
setp scale.0.gain 6.28/360.0%x$::AXIS_0(radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:

Integrator Manual V2.7.0-pre3, 2015-02-19 42/ 348

setp scale.0.gain "6.28 / 360.0 * $::AXIS_O0(radius) = 60.0"

In other contexts, such as loadrt, you must explicitly use the tcl expr command ([expr { }]) for computational expressions.
Example

loadrt motion base_period=[expr {500000000/$::TRAJ (MAX_PULSE_RATE) }]

7.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint that is "a bit higher" than the
one used by the motion planner. So, when using halemd files, we force inifiles to have a manually calculated value.

[AXIS_O0]
MAXACCEL = 10.0
STEPGEN_MAXACCEL = 10.5

With haltcl, you can use tcl commands to do the computation and eliminate the STEPGEN_MAXACCEL inifile item altogether.
setp stepgen.0.maxaccel $::AXIS_0 (MAXACCEL)=x1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use "core_sim.hal" or "core_sim9.hal"
hal files. These differ because of the requirement to connect more or fewer axes. The following haltcl code would work for any
combination of axes in a trivkins machine.

Create position, velocity and acceleration signals for each axis
set ddt O
foreach axis {X Y Z A B C U V W} axno {0 1 2 345 6 7 8} {
’list pin’ returns an empty list if the pin doesn’t exist
if {[hal list pin axis.$axno.motor-pos-cmd] == {}} {
continue
}
net ${axis}pos axis.S$axno.motor-pos—-cmd => axis.S$axno.motor-pos-fb \
=> ddt.$ddt.in
net ${axis}vel <= ddt.S$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.$ddt.out
incr ddt
}
puts [show sig xvel]
puts [show sig xacc]

7.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a tcl interpreter. This capability
is useful for testing and for standalone hal applications.

Example

$ halrun -T haltclfile.tcl

7.8 Haltcl Distribution Examples (sim)

The configs/sim/axis/simtcl directory includes an ini file that uses a .tcl file to demonstrate a haltcl configuration in conjunction
with the usage of twopass processing. The example shows the use of tcl procedures, looping, the use of comments, and output to
the terminal.

Integrator Manual V2.7.0-pre3, 2015-02-19 43 /348

Chapter 8

Core Components

See also the man pages motion(9).

8.1 Motion

These pins and parameters are created by the realtime motmod module. This module provides a HAL interface for LinuxCNC’s
motion planner. Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited stream of joint
positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio. The default is 4 each.

Pin names starting with axis are actually joint values, but the pins and parameters are still called axis.N. They are read and
updated by the motion-controller function.

Motion is loaded with the motmod command. A kins should be loaded before motion.

loadrt motmod [base_period_nsec=period] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=[0-9] ([num_dio=1-64] num_aio=1-16])]

* base_period_nsec = 50000 - the Base task period in nanoseconds. This is the fastest thread in the machine.

Note

On servo-based systems, there is generally no reason for base_period_nsec to be smaller than servo_period_nsec. On
machines with software step generation, the base_period _nsec determines the maximum number of steps per second. In the
absence of long step length and step space requirements, the absolute maximum step rate is one step per base_period_nsec.
Thus, the base _period_nsec shown above gives an absolute maximum step rate of 20,000 steps per second. 50,000 ns (50
us) is a fairly conservative value. The smallest usable value is related to the Latency Test result, the necessary step length,
and the processor speed. Choosing a base_period_nsec that is too low can lead to the "Unexpected real time delay" message,
lockups, or spontaneous reboots.

* servo_period_nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be rounded to an integer multiple
of base_period_nsec. This period is used even on systems based on stepper motors.

This is the rate at which new motor positions are computed, following error is checked, PID output values are updated, and so
on. Most systems will not need to change this value. It is the update rate of the low level motion planner.

* traj_period_nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value will be rounded to an
integer multiple of servo_period_nsec. Except for machines with unusual kinematics (e.g., hexapods) there is no reason to
make this value larger than servo_period_nsec.

Integrator Manual V2.7.0-pre3, 2015-02-19 44 / 348

8.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by using the num_dio option
when loading motmod.

If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by using the num_aio option
when loading motmod.

8.1.2 Pins

These pins, parameters, and functions are created by the realtime motmod module.

* motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P , the commanded velocity is multiplied by this
value. This effect is multiplicative with the NML-level feed override value and motion.feed-hold.

* motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M66.

* motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled by M67 or M68.
* motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a soft limit

* motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop mode

* motion.current-vel - (float, out) The current tool velocity in user units per second.

* motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M62-65.

* motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by the M62-65.

* motion.distance-to-go - (float,out) The distance remaining in the current move.

* motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the machine off state, and a message
is displayed for the operator. For normal motion, drive this bit TRUE.

* motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

* motion.feed-inhibit - (bit, in) When this bit is TRUE, the feed rate is set to 0. This will be delayed during spindle synch moves
till the end of the move.

* motion.in-position - (bit, out) TRUE if the machine is in position.
* motion.motion-enabled - (bit, out) TRUE when in machine on state.
* motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

* motion.probe-input - (bit, in) G38.x uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

* motion.program-line - (s32, out) The current program line while executing. Zero if not running or between lines while single
stepping.

* motion.requested-vel - (float, out) The current requested velocity in user units per second from the F=n setting in the G Code
file. No feed overrides or any other adjustments are applied to this pin.

* motion.spindle-at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions: before the first
feed move after each spindle start or speed change; before the start of every chain of spindle-synchronized moves; and if in
CSS mode, at every rapid to feed transition. This input can be used to ensure that the spindle is up to speed before starting a cut,
or that a lathe spindle in CSS mode has slowed down after a large to small facing pass before starting the next pass at the large
diameter. Many VFDs have an at speed output. Otherwise, it is easy to generate this signal with the HAL near component, by
comparing requested and actual spindle speeds.

* motion.spindle-brake - (bit, out) TRUE when the spindle brake should be applied.

Integrator Manual V2.7.0-pre3, 2015-02-19 45/ 348

* motion.spindle-forward - (bit, out) TRUE when the spindle should rotate forward.

* motion.spindle-index-enable - (bit, I/O) For correct operation of spindle synchronized moves, this pin must be hooked to the
index-enable pin of the spindle encoder.

* motion.spindle-inhibit - (bit, in) When this bit is TRUE, the spindle speed is set to 0.
* motion.spindle-on - (bit, out) TRUE when spindle should rotate.
* motion.spindle-reverse - (bit, out) TRUE when the spindle should rotate backward

* motion.spindle-revs - (float, in) For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder. The spindle encoder position should be scaled such that spindle-revs increases by 1.0 for each
rotation of the spindle in the clockwise (M3) direction.

* motion.spindle-speed-in - (float, in) Feedback of actual spindle speed in rotations per second. This is used by feed-per-
revolution motion (G95). If your spindle encoder driver does not have a velocity output, you can generate a suitable one by
sending the spindle position through a ddf component. If you do not have a spindle encoder, you can loop back motion.spindle-
speed-out-rps.

* motion.spindle-speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for spindle forward (M3),
negative for spindle reverse (M4).

* motion.spindle-speed-out-abs - (float, out) Commanded spindle speed in rotations per minute. This will always be a positive
number.

* motion.spindle-speed-out-rps - (float, out) Commanded spindle speed in rotations per second. Positive for spindle forward
(M3), negative for spindle reverse (M4).

* motion.spindle-speed-out-rps-abs - (float, out) Commanded spindle speed in rotations per second. This will always be a
positive number.

* motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated mode

* motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect; it could come from the tool
table (G43 active), or it could come from the gcode (G43.1 active)

* motion.spindle-orient-angle - (float,out) Desired spindle orientation for M19. Value of the M19 R word parameter
plus the value of the [RS274NGC]JORIENT_OFFSET ini parameter.

* motion.spindle-orient-mode - (s32,0out) Desired spindle rotation mode M19. Default 0.

* motion.spindle-orient - (out,bit) Indicates start of spindle orient cycle. Set by M19. Cleared by any of M3,M4,MS5.
If spindle-orient-fault is not zero during spindle-orient true, the M19 command fails with an error message.

* motion.spindle—-is-oriented - (in, bit) Acknowledge pin for spindle-orient. Completes orient cycle. If spindle-orient
was true when spindle-is-oriented was asserted, the spindle-orient pin is cleared and the spindle-locked pin is asserted. Also,
the spindle-brake pin is asserted.

* motion.spindle-orient-fault - (s32, in) Fault code input for orient cycle. Any value other than zero will cause the
orient cycle to abort.

* motion.spindle-lock - (bit, out) Spindle orient complete pin. Cleared by any of M3,M4,M5.

8.1.2.1 HAL pin usage for M19 orient spindle

Conceptually the spindle is in one of the following modes:

* rotation mode (the default)
* searching for desired orientation mode

* orienation complete mode.

Integrator Manual V2.7.0-pre3, 2015-02-19 46/ 348

When an M19 is executed, the spindle changes to searching for desired orientation , and the spindle-orient HAL pin is
asserted. The desired target position is specified by the spindle-orient-angle and spindle-orient-fwd pins and
driven by the M19 R and P parameters.

The HAL support logic is expected to react to spindle-orient by moving the spindle to the desired position. When this is
complete, the HAL logic is expected to acknowledge this by asserting the spindle-is—oriented pin.

Motion then acknowledges this by deasserting the spindle-orient pin and asserts the spindle-locked pin to indicate
orientation complete mode. It also raises the spindle-brake pin. The spindle now is in orientation complete mode.

If, during spindle-orient being true, and spindle-is—-oriented not yet asserted the spindle-orient-fault
pin has a value other than zero, the M19 command is aborted, a message including the fault code is displayed, and the motion
queue is flushed. The spindle reverts to rotation mode.

Also, any of the M3,M4 or M5 commands cancel either searching for desired orientation or orientation complete mode. This is
indicated by deasserting both the spindle-orient and spindle-locked pins.

The spindle-orient-mode pin reflects the M19 P word and shall be interpreted as follows:

* 0: rotate clockwise or counterclockwise for smallest angular movement
 1: always rotate clockwise

* 2: always rotate counterclockwise

It can be used with the orient HAL component which provides a PID command value based on spindle encoder positon,
spindle-orient-angle and spindle-orient-mode.

8.1.3 Parameters
Many of these parameters serve as debugging aids, and are subject to change or removal at any time.

e motion-command-handler.time - (s32, RO)

e motion-command-handler.tmax - (s32, RW)

e motion-controller.time - (s32, RO)

e motion-controller.tmax - (s32, RW)

* motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.

* motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.

» motion.debug-float-0 - (float, RO) This is used for debugging purposes.
* motion.debug-float-1 - (float, RO) This is used for debugging purposes.
* motion.debug-float-2 - (float, RO) This is used for debugging purposes.
* motion.debug-float-3 - (float, RO) This is used for debugging purposes.
* motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.

* motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

* motion.servo.last-period - (132, RO) The number of CPU cycles between invocations of the servo thread. Typically, this
number divided by the CPU speed gives the time in seconds, and can be used to determine whether the realtime motion
controller is meeting its timing constraints

e motion.servo.last-period-ns - (float, RO)

* motion.servo.overruns - (u32, RW) By noting large differences between successive values of motion.servo.last-period , the
motion controller can determine that there has probably been a failure to meet its timing constraints. Each time such a failure
is detected, this value is incremented.

Integrator Manual V2.7.0-pre3, 2015-02-19 47 / 348

8.1.4 Functions
Generally, these functions are both added to the servo-thread in the order shown.

* motion-command-handler - Processes motion commands coming from user space

e motion-controller - Runs the LinuxCNC motion controller

8.2 Axis (Joints)

These pins and parameters are created by the realtime motmod module. These are actually joint values, but the pins and parame-
ters are still called axis.N.' They are read and updated by the motion-controller function.

8.2.1 Pins

e axis.N.active - (bit, out)

* axis.N.amp-enable-out - (bit, out) TRUE if the amplifier for this joint should be enabled

* axis.N.amp-fault-in - (bit, in) Should be driven TRUE if an external fault is detected with the amplifier for this joint
e axis.N.backlash-corr - (float, out)

e axis.N.backlash-filt - (float, out)

* axis.N.backlash-vel - (float, out)

* axis.N.coarse-pos-cmd - (float, out)

e axis.N.error - (bit, out)

e axis.N.f-error - (float, out)

* axis.N.f-error-lim - (float, out)

* axis.N.f-errored - (bit, out)

* axis.N.faulted - (bit, out)

* axis.N.free-pos-cmd - (float, out)

* axis.N.free-tp-enable - (bit, out)

* axis.N.free-vel-lim - (float, out)

* axis.N.home-sw-in - (bit, in) Should be driven TRUE if the home switch for this joint is closed.
e axis.N.homed - (bit, out)

* axis.N.homing - (bit, out) TRUE if the joint is currently homing

* axis.N.in-position - (bit, out)

e axis.N.index-enable - (bit, 1/0)

* axis.N.jog-counts - (s32, in) Connect to the counts pin of an external encoder to use a physical jog wheel.

* axis.N.jog-enable - (bit, in) When TRUE (and in manual mode), any change in jog-counts will result in motion. When false,
Jjog-counts is ignored.

* axis.N.jog-scale - (float, in) Sets the distance moved for each count on jog-counts, in machine units.

UIn trivial kinematics machines, there is a one-to-one correspondence between joints and axes.

Integrator Manual V2.7.0-pre3, 2015-02-19 48 / 348

* axis.N.jog-vel-mode - (bit, in) When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog-scale units for each count, regardless of how long that might take. When TRUE, the wheel operates in velocity mode -
motion stops when the wheel stops, even if that means the commanded motion is not completed.

* axis.N.joint-pos-cmd - (float, out) The joint (as opposed to motor) commanded position. There may be an offset between the
joint and motor positions—for example, the homing process sets this offset.

* axis.N.joint-pos-fb - (float, out) The joint (as opposed to motor) feedback position.

* axis.N.joint-vel-cmd - (float, out)

* axis.N.kb-jog-active - (bit, out)

* axis.N.motor-pos-cmd - (float, out) The commanded position for this joint.

* axis.N.motor-pos-fb - (float, in) The actual position for this joint.

* axis.N.neg-hard-limit - (bit, out)

* axis.N.pos-lim-sw-in - (bit, in) Should be driven TRUE if the positive limit switch for this joint is closed.
* axis.N.pos-hard-limit - (bit, out)

* axis.N.neg-lim-sw-in - (bit, in) Should be driven TRUE if the negative limit switch for this joint is closed.

* axis.N.wheel-jog-active - (bit, out)

8.2.2 Parameters

* axis.N.home-state - Reflects the step of homing currently taking place.

8.3 iocontrol

iocontrol - accepts NML I/O commands, interacts with HAL in userspace.

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more i/0, consider using
the realtime synchronized i/o provided by motion instead.

8.3.1 Pins

* iocontrol.0.coolant-flood - (bit, out) TRUE when flood coolant is requested.

* iocontrol.0.coolant-mist - (bit, out) TRUE when mist coolant is requested.

* iocontrol.0.emc-enable-in - (bit, in) Should be driven FALSE when an external E-Stop condition exists.
* jocontrol.0.lube - (bit, out) TRUE when lube is commanded.

* iocontrol.0.lube_level - (bit, in) Should be driven TRUE when lube level is high enough.

* iocontrol.0.tool-change - (bit, out) TRUE when a tool change is requested.

* iocontrol.0.tool-changed - (bit, in) Should be driven TRUE when a tool change is completed.

¢ jocontrol.0.tool-number - (s32, out) The current tool number.

* iocontrol.0.tool-prep-number - (s32, out) The number of the next tool, from the RS274NGC T-word.
* iocontrol.0.tool-prepare - (bit, out) TRUE when a tool prepare is requested.

* iocontrol.0.tool-prepared - (bit, in) Should be driven TRUE when a tool prepare is completed.

* iocontrol.0.user-enable-out - (bit, out) FALSE when an internal E-Stop condition exists.

* iocontrol.0.user-request-enable - (bit, out) TRUE when the user has requested that E-Stop be cleared.

Integrator Manual V2.7.0-pre3, 2015-02-19 49 /348

8.4 ini settings

A number of ini settings are made available as hal input pins.

8.4.1 Pins

* ini.n.min_limit - (float, in) [AXIS_n]MIN_LIMIT

* ini.n.max_limit - (float, in) [AXIS_n]MAX_LIMIT

* ini.n.ferror - (float, in) [AXIS_n]FERROR

* ini.n.min_ferror - (float, in) [AXIS_n]MIN_FERROR

* ini.n.max_velocity - (float, in) [AXIS_n]MAX_VELOCITY

e ini.n.max_acceleration - (float, in) [AXIS_n]MAX_ACCELERATION
e ini.n.backlash - (float, in) [AXIS_n]BACKLASH

Note

The per-axis min_limit and max_limit pins are honored continuously after homing. The per-axis ferror and min_ferror pins are
honored when the machine is on and not in position. The per-axis max_velocity and max_acceleration pins are sampled when
the machine is on and the motion_state is free (homing or jogging) but are not sampled when in a program is running (auto
mode) or in mdi mode. Consequently, changing the pin values when a program is running will not have effect until the program
is stopped and the motion_state is again free.

* ini.traj_arc_blend_enable - (bit, in) [TRAJJARC_BLEND_ENABLE

* ini.traj_arc_blend_fallback_enable - (bit, in) [TRAJJARC_BLEND_FALLBACK_ENABLE

* ini.traj_arc_blend_gap_cycles - (float, in) [TRAJJARC_BLEND_GAP_CYCLES

* ini.traj_arc_blend_optimization_depth - (float, in) [TRAJJARC_BLEND_OPTIMIZATION_DEPTH
* ini.traj_arc_blend_ramp_freq - (float, in) [TRAJJARC_BLEND_RAMP_FREQ

Note
The traj_arc_blend pins are sampled continuously but changing pin values while a program is running may not have immediate
effect due to queueing of commands.

* ini.traj_default_acceleration - (float, in) [TRAJ]IDEFAULT_ACCELERATION
* ini.traj_default_velocity - (float, in) [TRAJ]DEFAULT_VELOCITY
* ini.traj_max_acceleration - (float, in) [TRAJIMAX_ACCELERATION

Integrator Manual V2.7.0-pre3, 2015-02-19 50/ 348

Chapter 9

Stepper Configuration

9.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See the Getting Started Guide.

This chapter describes some of the more common settings for manually setting up a stepper based system. Because of the various
possibilities of configuring LinuxCNC, it is very hard to document them all, and keep this document relatively short.

The most common LinuxCNC usage is for stepper based systems. These systems are using stepper motors with drives that accept
step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the motors), yet the system
needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on the sample config released along with LinuxCNC. The config is called stepper, and usually it is
found in /etc/emc2/sample-configs/stepper.

9.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for step-and-direction output. The
maximum requested step rate is the product of an axis” MAX_VELOCITY and its INPUT_SCALE. If the requested step rate is
not attainable, following errors will occur, particularly during fast jogs and GO moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step is possible for each
BASE_PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will cause the machine to become
unresponsive or even lock up), the INPUT_SCALE (if you can select different step sizes on your stepper driver, change pulley
ratios, or leadscrew pitch), or the MAX_VELOCITY and STEPGEN_MAXVEL.

If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then consider using hard-
ware step generation (such as with the LinuxCNC-supported Universal Stepper Controller, Mesa cards, and others.)

9.3 Pinout

One of the major flaws in LinuxCNC was that you couldn’t specify the pinout without recompiling the source code. LinuxCNC
is far more flexible, and now (thanks to the Hardware Abstraction Layer) you can easily specify which signal goes where. See
the HAL manual for more detailed information on HAL.

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside the HAL.

Integrator Manual V2.7.0-pre3, 2015-02-19

51/348

Note

We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:

signals:
pins:

Xstep,

Xdir & Xen
parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your .ini file you are using either standard_pinout.hal or xylotex_pinout.hal. These are
two files that instruct the HAL how to link the various signals & pins. Further on we’ll investigate the standard_pinout.hal.

9.3.1

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers

standard_pinout.hal

using a parport for I/O

#

first load the parport driver
loadrt hal_parport cfg="0x0378"

#

next connect the parport functions to threads

read inputs first
addf parport.0.read base-thread 1
write outputs last

addf parport.O0.write base-thread -1

#

finally connect physical pins to the signals
.pin-03-out
.pin-02-out
.pin-05-out
.pin-04-out
.pin-07-out
.pin-06-out

net
net
net
net
net
net

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared

net tool-change-loop iocontrol.0.tool-change iocontrol.0O.tool-changed

connect

Xstep =>
Xdir =>
Ystep =>
Ydir =>
Zstep =>
Zzdir =>

parport.
parport.
parport.
parport.
parport.
parport.

0

O O O O O

"spindle on" motion controller pin to a physical pin

net spindle-on motion.spindle-on

#H#

You might use something like
the Xen signal is defined in

i

net Xen => parport.0.pin-0l-out

i

If you want active low for this pin,

idid

setp parport.0.pin-0Ol-out-invert 1

##H#

=> parport.0.pin-09-out

this to enable chopper drives when machine ON
core_stepper.hal

invert it like this:

Integrator Manual V2.7.0-pre3, 2015-02-19

527348

A sample home switch on the X axis (axis 0). make a signal,

link the incoming parport pin to the signal, then link the signal
to LinuxCNC’s axis 0 home switch input pin

#H#4#

net Xhome parport.0.pin-10-in => axis.0.home-sw-in

#H4#

##4# Shared home switches all on one parallel port pin?

that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the ini file. See the
user manual!

#H#4#

net homeswitches <= parport.0.pin-10-in
net homeswitches => axis.0O.home-sw—in

net homeswitches => axis.l.home-sw—in

net homeswitches => axis.2.home-sw-in

#H#
Sample separate limit switches on the X axis (axis 0)
###

net X-neg-limit parport.0.pin-11-in => axis.O.neg-lim-sw-in
net X-pos—-limit parport.0.pin-12-in => axis.O.pos-lim-sw-in

###

Just like the shared home switches example, you can wire together

limit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this.

44

net Xlimits parport.0.pin-13-in => axis.0.neg-lim-sw—-in axis.O.pos-lim-sw-in

The lines starting with # are comments, and their only purpose is to guide the reader through the file.

9.3.2 Overview

There are a couple of operations that get executed when the standard_pinout.hal gets executed/interpreted:

* The Parport driver gets loaded (see the Parport section of the HAL Manual for details)
* The read & write functions of the parport driver get assigned to the base thread !

* The step & direction signals for axes X,Y,Z get linked to pins on the parport

Further I/O signals get connected (estop loopback, toolchanger loopback)

* A spindle-on signal gets defined and linked to a parport pin

9.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and locate the parts you want to

change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to do is to change the number in

the parport.0.pin-XX-out name:

! the fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds

Integrator Manual V2.7.0-pre3, 2015-02-19 53/348

net Xstep parport.0.pin-03-out
net Xdir parport.0.pin-02-out

can be changed to:

net Xstep parport.0.pin-02-out
net Xdir parport.0.pin-03-out

or basically any other out pin you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

9.3.4 Changing polarity of a signal
If external hardware expects an “active low” signal, set the corresponding -invert parameter. For instance, to invert the spindle
control signal:

setp parport.0.pin-09-invert TRUE

9.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value

net spindle-on motion.spindle-on => pwmgen.0.enable

net spindle-pwm pwmgen.O.pwm => parport.0.pin-09-out

setp pwmgen.0O.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10% PWM gives 180 RPM, etc.
If there is a minimum PWM required to get the spindle to turn, follow the example in the nist-lathe sample configuration to use
a scale component.

9.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the motors. For this reason
there are already defined signals called Xen, Yen, Zen.

To connect them use the following example:

net Xen parport.0.pin-08-out

You can either have one single pin that enables all drives; or several, depending on the setup you have. Note, however, that
usually when one axis faults, all the other drives will be disabled as well, so having only one enable signal / pin for all drives is a
common practice.

9.3.7 External ESTOP button

As you can see in the standard_pinout.hal file by default the stepper configuration assumes no external ESTOP button. 2

To add a simple external button you need to replace the line:

2 An extensive explanation of hooking up ESTOP circuitry is explained in the wiki.linuxcnc.org and elsewhere in the Integrator Manual

Integrator Manual V2.7.0-pre3, 2015-02-19 54 /348

net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

with
net estop-loop parport.0.pin-01-in iocontrol.0.emc-enable-in
This assumes an ESTOP switch connected to pin 01 on the parport. As long as the switch will stay pushed®, LinuxCNC will be

in the ESTOP state. When the external button gets released LinuxCNC will immediately switch to the ESTOP-RESET state, and
all you need to do is switch to Machine On and you’ll be able to continue your work with LinuxCNC.

3 make sure you use a maintained switch for ESTOP.

Integrator Manual V2.7.0-pre3, 2015-02-19 55/348

Chapter 10

Basic HAL Reference

10.1 HAL Commands

More detailed information can be found in the man page for halemd: run man halcmd in a terminal window.

To see the HAL configuration and check the status of pins and parameters use the HAL Configuration window on the Machine
menu in AXIS. To watch a pin status open the Watch tab and click on each pin you wish to watch and it will be added to the
watch window.

Integrator Manual V2.7.0-pre3, 2015-02-19 56 /348

- HAILL Configuration BiEE
Tree View
Components SHOW | waATCH
Fins
axis Component Pins:
axisui Owner Type Dirc Value Name
hal_manualtoolchange 6 hit IN FALSE parport. 0. pin-0l-out <{==
incontrol estop-out
. 6 hit IN FALSE parport. 0. pin-02-out <{== xstep
motion 6 hit IN FALSE parport. 0. pin-03-out <{== =dir
parport 6 hit IN FALSE parport. 0. pin-04-out <== ystep
0 6 hit IN FALSE parport. 0. pin-05-out <{== wydir
pywrmgen & bit 1IN FALSE parport. 0 pin-06-out <== =zstep
stepgen & bit 1IN FALSE parport. 0. pin-07-out <== =zdir
E— Parameters 6 hit IN FALSE parport. 0. pin-08-out <{== astep
- 6 hit IN FALSE parport. 0. pin-09-out <{== adir
b= Slg"a!s 6 hit OUT TRUE parport. 0. pin-10-in
&— Functions & hit OUT FALSE parport. 0. pin-10-in-not
E— Threads & bit OUT TRUE parport. 0. pin-11-in
6 hit OUT FALSE parport. 0. pin-11-in-not
6 hit OUT TRUE parport. 0. pin-12-in
6 hit OUT FALSE parport. 0. pin-12-in-not
6 hit OUT TRUE parport. 0. pin-13-in
6 hit OUT FALSE parport. 0. pin-13-in-not
6 hit IN FALSE parport. 0. pin-14-out <{==
spindle-cw
6 hit OUT TRUE parport. 0. pin-15-in
6 hit OUT FALSE parport. 0. pin-15-in-not
6 hit IN FALSE parport. 0. pin-16-oukt <{==
spindle-puwm
Test HAL command : Execute
Commands may be tested here but they will NOT be sawed

Figure 10.1: HAL Configuration Window

10.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be added to a thread to be
updated at the rate of the thread. You cannot load a user space component into the real time space.

The syntax and an example:

loadrt <component> <options>

loadrt mux4 count=1

10.1.2 addf

The command addf adds a real time component function to a thread. You have to add a function from a HAL real time component
to a thread to get the function to update at the rate of the thread.
If you used the Stepper Config Wizard to generate your config you will have two threads.

* base-thread (the high-speed thread): this thread handles items that need a fast response, like making step pulses, and reading
and writing the parallel port.

Integrator Manual V2.7.0-pre3, 2015-02-19 57 /348

* servo-thread (the slow-speed thread): this thread handles items that can tolerate a slower response, like the motion controller,
ClassicLadder, and the motion command handler.

The syntax and an example:

addf <component> <thread>

addf mux4 servo-thread

10.1.3 loadusr

The command loadusr loads a user space HAL component. User space programs are their own separate processes, which
optionally talk to other HAL components via pins and parameters. You cannot load real time components into user space.

Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have the same name as the
first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only applies if the component
has a name option.

-W to wait for the program to exit
-i to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

The syntax and examples:

loadusr <component> <options>
loadusr halui

loadusr -Wn spindle gs2_vfd -n spindle

In English it means loadusr wait for name spindle component gs2_vfd name spindle.

10.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not exist net creates the new
signal. This replaces the need to use the command newsig. The optional direction arrows <=, => and <=> make it easier to
follow the logic when reading a net command line and are not used by the net command. The direction arrows must be separated
by a space from the pin names.

Syntax and Example:

net signal-name pin-name <optional arrow> <optional second pin-name>

net home-x axis.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, axis.0.home-sw-in is a Direction IN pin, <= is the optional direction arrow, and
parport.0.pin-11-in is a Direction OUT pin. This may seem confusing but the in and out labels for a parallel port pin indicates
the physical way the pin works not how it is handled in HAL.

A pin can be connected to a signal if it obeys the following rules:

Integrator Manual V2.7.0-pre3, 2015-02-19 58 /348

* An IN pin can always be connected to a signal
* An IO pin can be connected unless there’s an OUT pin on the signal

* An OUT pin can be connected only if there are no other OUT or IO pins on the signal

The same signal-name can be used in multiple net commands to connect additional pins, as long as the rules above are obeyed.

Signal
Source

Dir
Qut

Signal

Dir Dir
+ In In +

Signal Signal
Reader Reader

Figure 10.2: Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers, parport.0.pin-02-out and parport.0.pin-
08-out. Basically the value of stepgen.0.out is sent to the signal xStep and that value is then sent to parport.0.pin-02-out and
parport.0.pin-08-out.

signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal again to send the value to
another reader. To do this just use the signal with the readers on another line.

net xStep => parport.0.pin-02-out

I/0O pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

10.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of the pin or parameter. It is an
error if the data types do not match.

Integrator Manual V2.7.0-pre3, 2015-02-19 59/348

Some components have parameters that need to be set before use. Parameters can be set before use or while running as needed.
You cannot use setp on a pin that is connected to a signal.

The syntax and an example:

setp <pin/parameter—-name> <value>

setp parport.0.pin-08-out TRUE

10.1.6 sets

The command sets sets the value of a signal.
The syntax and an example:

sets <signal—-name> <value>
net mysignal and2.0.in0 pyvcp.my-led

sets mysignal 1
It is an error if:

* The signal-name does not exist
* If the signal already has a writer

* If value is not the correct type for the signal

10.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin prior running the command,
nothing happens. The unlinkp command is useful for trouble shooting.

The syntax and an example:

unlinkp <pin-name>

unlinkp parport.0.pin-02-out

10.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new configuration should use the net
command. These commands are included so older configurations will still work.

10.1.8.1 linksp

The command linksp creates a connection between a signal and one pin.
The syntax and an example:
linksp <signal-name> <pin-name>

linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.

Integrator Manual V2.7.0-pre3, 2015-02-19 60 /348

10.1.8.2 linkps

The command linkps creates a connection between one pin and one signal. It is the same as linksp but the arguments are reversed.
The syntax and an example:

linkps <pin-name> <signal-name>

linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.

10.1.8.3 newsig

the command newsig creates a new HAL signal by the name <signame> and the data type of <type>. Type must be bit, s32, u32
or float. Error if <signame> all ready exists.

The syntax and an example:

newsig <signame> <type>

newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

10.2 HAL Data

10.2.1 Bit

A bit value is an on or off.

* bit values = true or 1 and false or O (True, TRUE, true are all valid)

10.2.2 Float

A float is a floating point number. In other words the decimal point can move as needed.

* float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.
For more information on floating point numbers see:

http://en.wikipedia.org/wiki/Floating_point

10.2.3 s32

An 532 number is a whole number that can have a negative or positive value.

* 532 values = integer numbers -2147483648 to 2147483647

10.2.4 u32

A u32 number is a whole number that is positive only.

* u32 values = integer numbers 0 to 4294967295

http://en.wikipedia.org/wiki/Floating_point

Integrator Manual V2.7.0-pre3, 2015-02-19 61/348

10.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in your config directory.

* my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if you used the Stepper Config
Wizard.

* custom.hal This file is loaded next and before the GUI loads. This is where you put your custom HAL commands that you
want loaded before the GUI is loaded.

* custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL commands that you want
loaded after the GUI is loaded. Any HAL commands that use py VCP widgets need to be placed here.

10.4 HAL Components

Two parameters are automatically added to each HAL component when it is created. These parameters allow you to scope the
execution time of a component.

.time
.tmax
Time is the number of CPU cycles it took to execute the function.

Tmax is the maximum number of CPU cycles it took to execute the function. Tmax is a read/write parameter so the user can set
it to O to get rid of the first time initialization on the function’s execution time.

10.5 Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states what the output is for any
given input. Typically these are bit manipulators and follow electrical logic gate truth tables.

10.5.1 and2

The and2 component is a two input and gate. The truth table below shows the output based on each combination of input.
Syntax

and2 [count=N] | [names=namel[,name2...]]

Functions
and2.n
Pins

and2.N.in0O (bit, in)
and2.N.inl (bit, in)
and2.N.out (bit, out)

Truth Table
in0 inl out
False False False
True False False
False True False
True True True

Integrator Manual V2.7.0-pre3, 2015-02-19

62 /348

10.5.2 not

The not component is a bit inverter.

Syntax

not [count=n] |

Functions

not.all
not.n

Pins

not.n.in (bit,
not.n.out (bit,

in)
out)

[names=namel [, name2...]]

Truth Table
in out
True False
False True
10.5.3 or2

The or2 component is a two input OR gate.

Syntax

or2[count=n] | [names=namel[,name2...]]

Functions
or2.n
Pins

or2.n.in0 (bit,
or2.n.inl (bit,
or2.n.out (bit,

in)
in)
out)

Truth Table
in0 inl out
True False True
True True True
False True True
False False False
10.5.4 xor2

The xor2 component is a two input XOR (exclusive OR)gate.

Syntax

xor2 [count=n] |

Functions

[names=namel [, name2...]]

Integrator Manual V2.7.0-pre3, 2015-02-19 63 /348

X0or2.n
Pins

xor2.n.in0 (bit, in)
xor2.n.inl (bit, in)
xor2.n.out (bit, out)

Truth Table
in0 inl out
True False True
True True False
False True True
False False False

10.5.5 Logic Examples

An and2 example connecting two inputs to one output.

loadrt and2 count=l

addf and2.0 servo-thread

net my-siginl and2.0.in0 <= parport.0.pin-11-in
net my-sigin2 and2.0.inl <= parport.0.pin-12-in

net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and?2 is loaded into real time space and added to the servo thread. Next pin 11 of the parallel
port is connected to the in0 bit of the and gate. Next pin 12 is connected to the inl bit of the and gate. Last we connect the and2
out bit to the parallel port pin 14. So following the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be
on.

10.6 Conversion Components

10.6.1 weighted_sum

The weighted_sum converts a group of bits to an integer. The conversion is the sum of the weights of the bits that are on plus
any offset. The weight of the m-th bit is 2°m. This is similar to a binary coded decimal but with more options. The hold bit stops
processing the input changes so the sum will not change.

The following syntax is used to load the weighted_sum component.

loadrt weighted_sum wsum_sizes=sizel[,size,...]

Creates weighted sum groups each with the given number of input bits (size).
To update the weighted_sum you need to attach process_wsums to a thread.

addf process_wsums servo—-thread

This updates the weighted_sum component.

In the following example clipped from the HAL Configuration window in Axis the bits 0 and 2 are true and there is no offset.
The weight of 0 is 1 and the weight of 2 is 4 so the sum is 5.

weighted_sum

Integrator Manual V2.7.0-pre3, 2015-02-19

64 /348

Component Pins:

Owner
10
10
10
10
10
10
10
10
10
10
10

Type
bit
s32
bit
s32
bit
s32
bit
s32
bit
s32
s32

Dir
In
I/0
In
I/0
In
I/0
In
I/0
In
I/0
Oout

Value
TRUE

FALSE

TRUE

FALSE

FALSE

Name

wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.

O O O O O O O o o o o

.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.hold
.offset
.sum

[CSERCVEN \ VRV i N e @)

.in
.weight
o L
.weight
.in
.weight
.in
.weight

Integrator Manual V2.7.0-pre3, 2015-02-19 65 /348

Chapter 11

Extending LinuxCNC

11.1 Introduction: Extending the RS274NGC Interpreter by Remapping Codes

11.1.1 A Definition: Remapping Codes
By remapping codes we mean one of the following:

1. define the semantics of new - that is, currently unallocated - M- or G-codes

2. redefine the semantics of a - currently limited - set of existing codes.

11.1.2 Why would you want to extend the RS274NGC Interpreter?

The set of codes (M,G,T,S,F) currently understood by the RS274NGC interpreter is fixed and cannot be extended by configuration
options.

In particular, some of these codes implement a fixed sequence of steps to be executed. While some of these, like M6, can be
moderately configured by activating or skipping some of these steps through ini file options, overall the behavior is fairly rigid.
So - if your are happy with this situation, then this manual section is not for you.

In many cases, this means that supporting a non out of the box configuration or machine is either cumbersome or impossible, or
requires resorting to changes at the C/C+\+ language level. The latter is unpopular for good reasons - changing internals requires
in-depth understanding of interpreter internals, and moreover brings its own set of support issues. While it is conceivable that
certain patches might make their way into the main LinuxCNC distribution, the result of this approach is a hodge-podge of
special-case solutions.

A good example for this deficiency is tool change support in LinuxCNC: while random tool changers are well supported, it is
next to impossible to reasonably define a configuration for a manual-tool change machine with, for example, an automatic tool
length offset switch being visited after a tool change, and offsets set accordingly. Also, while a patch for a very specific rack tool
changer exists, it has not found its way back into the main code base.

However, many of these things may be fixed by using an O-word procedure instead of a built in code - whenever the - insufficient
- built in code is to be executed, call the O-word procedure instead. While possible, it is cumbersome - it requires source-editing
of NGC programs, replacing all calls to the deficient code by a an O-word procedure call.

In it’s simplest form a remapped code isn’t much more than a spontaneous call to an O-word procedure. This happens behind the
scenes - the procedure is visible at the configuration level, but not at the NGC program level.

Generally, the behavior of a remapped code may be defined in the following ways:

* you define a O-word subroutine which implements the desired behavior

* alternatively, you may employ a Python function which extends the interpreter’s behavior.

Integrator Manual V2.7.0-pre3, 2015-02-19 66 /348

11.1.2.1 How to glue things together

M- and G-codes, and O-words subroutine calls have some fairly different syntax.
O-word procedures, for example, take positional parameters with a specific syntax like so:

o<test> call [1.234] [4.65]

whereas M- or G-codes typically take required or optional word parameters. For instance, G76 (threading) requires the P,Z,1,J
and K words, and optionally takes the R,Q,H, E and L words.

So itisn’t simply enough to say whenever you encounter code X, please call procedure Y - at least some checking and conversion
of parameters needs to happen. This calls for some glue code between the new code, and its corresponding NGC procedure to
execute before passing control to the NGC procedure.

This glue code is impossible to write as an O-word procedure itself since the RS274NGC language lacks the introspective
capabilities and access into interpreter internal data structures to achieve the required effect. Doing the glue code in - again -
C/C+\+ would be an inflexible and therefore unsatisfactory solution.

11.1.2.2 How Embedded Python fits in

To make a simple situation easy and a complex situation solvable, the glue issue is addressed as follows:

« for simple situations, a built-in glue procedure (argspec) covers most common parameter passing requirements
* for remapping T,M6,M61,S,F there is some standard Python glue which should cover most situations, see Standard Glue

* for more complex situations, one can write your own Python glue to implement new behavior.

Embedded Python functions in the Interpreter started out as glue code, but turned out very useful well beyond that. Users familiar
with Python will likely find it easier to write remapped codes, glue, O-word procedures etc in pure Python, without resorting to
the somewhat cumbersome RS274NGC language at all.

11.1.2.3 A Word on Embedded Python

Many people are familiar with extending the Python interpreter by C/C++ modules, and this is heavily used in LinuxCNC
to access Task, HAL and and Interpreter internals from Python scripts. Extending Python basically means: your Python script
executes as it is in the driver seat, and may access non-Python code by importing and using extension modules written in C/C+\+.
Examples for this are the LinuxCNC hal, gcode and emc modules.

Embedded Python is a bit different and and less commonly known: The main program is written in C/C++ and may use Python
like a subroutine. This is powerful extension mechanism and the basis for the scripting extensions found in many successful
software packages. Embedded Python code may access C/C+\+ variables and functions through a similar extension module
method.

11.2 Getting started

Defining a code involves the following steps:

* pick a code - either use an unallocated code, or redefine an existing code
* deciding how parameters are handled
¢ decide if and how results are handled

* decide about the execution sequencing.

Integrator Manual V2.7.0-pre3, 2015-02-19 67 /348

11.2.1 Picking a code

Note that currently only a few existing codes may be redefined, whereas there are many free codes which might be made available
by remapping. When developing a redefined existing code, it might be a good idea to start with an unallocated G- or M-code so
both the existing and new behavior can be exercised. When done, redefine the existing code to use your remapping setup.

* the current set of unused M-codes open to user definition can be found here,
¢ unallocated G-codes are listed here.

* Existing codes which may be remapped are listed here.

11.2.2 Parameter handling

Let’s assume the new code will be defined by an NGC procedure, and needs some parameters, some of which might be required,
others might be optional. We have the following options to feed values to the procedure:

1. extracting words from the current block and pass them to the procedure as parameters (like X22 .34 or P47)
2. referring to ini file variables

3. referring to global variables (like #2200 =47.11 or #<_global_param> =315.2

The first method is preferred for parameters of dynamic nature, , like positions. You need to define which words on the current
block have any meaning for your new code, and specify how that is passed to the NGC procedure. Any easy way is to use the
argspec statement. A custom prolog might provide better error messages.

Using to ini file variables is most useful for referring to setup information for your machine, for instance a fixed position like a
tool-length sensor position. The advantage of this method is that the parameters are fixed for your configuration regardless which
NGC file you're currently executing.

Referring to global variables is always possible, but they are easily overlooked.

Note there’s a limited supply of words which may be used as parameters, so one might need to fall back to the second and third
methods if many parameters are needed.

11.2.3 Handling results
Your new code might succeed or fail, for instance if passed an invalid parameter combination. Or you might choose to just
execute the procedure and disregard results, in which case there isn’t much work to do.

Epilog handlers help in processing results of remap procedures - see the reference section.

11.2.4 Execution sequencing

Executable G-code words are classified into modal groups, which also defines their relative execution behavior.

If a G-code block contains several executable words on a line, these words are executed in a predefined order of execution, not
in the order they appear in block.

When you define a new executable code, the interpreter does not yet know where your code fits into this scheme. For this reason,
you need to choose an appropriate modal group for your code to execute in.

Integrator Manual V2.7.0-pre3, 2015-02-19 68 /348

11.2.5 An minimal example remapped code
To give you an idea how the pieces fit together, let’s explore a fairly minimal but complete remapped code definition. We choose
an unallocated M-code and add the following option to the ini file:

[RS274NGC]
REMAP=M400 modalgroup=10 argspec=Pg ngc=myprocedure

In a nutshell, this means:

* The M400 code takes a required parameter P and an optional parameter Q. Other words in the current block are ignored with
respect to the M4 00 code. If the P word is not present, fail execution with an error.

e when an M4 00 code is encountered, execute myprocedure .ngc along the other modal group 10 M-codes as per order of
execution.

* the value of P, and Q are available in the procedure as local named parameters. The may be referred to as #<P> and #<Q>.
The procedure may test whether the O word was present with the EXISTS built in function.

The file myprocedure.ngc is expected to exists in the [DISPLAY]NC_FILES or [RS274NGC]SUBROUTINE_PATH
directory.

A detailed discussion of REMAP parameters is found in the reference section below.

11.3 Configuring Remapping

11.3.1 The REMAP statement

To remap a code, define it using the REMAP option in RS2 74NG section of your ini file. Use one REMAP line per remapped code.

The syntax of the REMAP is:

REMAP=<code> <options>
where <code> may be one of T,M6,M61,S,F (existing codes) or any of the unallocated M-codes or G-codes.

It is an error to omit the <code> parameter.

The options of the REMAP statement are separated by whitespace. The options are keyword-value pairs and currently are:

modalgroup=<modal group>

G-codes
the only currently supported modal group is 1, which is also the default value if no group is given. Group 1 means
execute alongside other G-codes.

M-codes
currently supported modal groups are: 5,6,7,8,9,10. If no modalgroup is give, it defaults to 10 (execute after all other
words in the block).

T,S,F
for these the modal group is fixed and any modalgroup= option is ignored.

argspec=<argspec>
See description of the argspec parameter options. Optional.

ngc=<ngc_basename>
Basename of an O-word subroutine file name. Do not specify an .ngc extension. Searched for in the directories specified
in the directory specified in [DISPLAY]PROGRAM_PREFIX, then in [RS274NGC] SUBROUTINE_PATH. Mutually
exclusive with python=. It is an error to omit both ngc= and python=.

Integrator Manual V2.7.0-pre3, 2015-02-19 69 /348

python=<Python function name>
Instead of calling an ngc O-word procedure call a Python function. The function is expected to be defined in the module
_basename . oword module. Mutually exclusive with ngc=.

prolog=<Python function name>
Before executing an ngc procedure, call this Python function. The function is expected to be defined in the module_bas
ename . remap module. Optional.

epilog=<Python function name>
After executing an ngc procedure, call this Python function. The function is expected to be defined in the module_base
name . remap module. Optional.

The python, prolog and epilog options require the Python Interpreter plugin to be configured, and appropriate Python
functions to be defined there so they can be referred to with these options.

The syntax for defining a new code, and redefining an existing code is identical.

11.3.2 Useful REMAP option combinations

Note that while many combinations of argspec options are possible, not all of them make sense. The following combinations are
useful idioms:

argspec=<words> ngc=<procname> modalgroup=<group>
The recommended way to call an NGC procedure with a standard argspec parameter conversion. Used if argspec is good
enough. Note it’s not good enough for remapping the Tx and M6/M61 tool change codes.

prolog=<pythonprolog> ngc=<procname> epilog=<pythonepilog> modalgroup=<group>
Call a Python prolog function to take any preliminary steps, then call the NGC procedure. When done, call the Python
epilog function to do any cleanup or result extraction work which cannot be handled in G-code. The most flexible way of
remapping a code to an NGC procedure, since almost all of the Interpreter internal variables, and some internal functions
may be accessed from the prolog and epilog handlers. Also, a longer rope to hang yourselves.

python=<pythonfunction> modalgroup=<group>
Directly call to a Python function without any argument conversion. The most powerful way of remapping a code and
going straight to Python. Use this if you don’t need an NGC procedure, or NGC is just getting in your way.

argspec=<words> python=<pythonfunction> modalgroup=<group>
Convert the argspec words and pass them to a Python function as keyword argument dictionary. Use it when you’re too
lazy to investigate words passed on the block yourself.

Note that if all you want to achieve is to call some Python code from G-code, there is the somewhat easier way of calling Python
functions like O-word procedures.

11.3.3 The argspec parameter

The argument specification (keyword argspec) describes required and optional words to be passed to an ngc procedure, as well
as optional preconditions for that code to execute.

An argspec consists of 0 or more characters of the class [@A-KMNP-Za-kmnp-z">] . It can by empty (like argspec=).

An empty argspec, or no argspec argument at all implies the remapped code does not receive any parameters from the block. It
will ignore any extra parameters present.

Note that RS274NGC rules still apply - for instance you may use axis words (eg X,Y,Z) only in the context of a G-code.

ABCDEFGHIJKMPQRSTUVWXYZ
Defines a required word parameter: an uppercase letter specifies that the corresponding word must be present in the current
block. The word's value will be passed as a local named parameter with a corresponding name. If the @ character is present
in the argspec, it will be passed as positional parameter, see below.

Integrator Manual V2.7.0-pre3, 2015-02-19 70/ 348

abcdefghi jkmpgrstuvwxyz
Defines an optional word parameter: a lowercase letter specifies that the corresponding word may be present in the current
block. If the word is present, the word’s value will be passed as a local named parameter. If the @ character is present in
the argspec, it will be passed as positional parameter, see below.

The @ (at-sign) tells argspec to pass words as positional parameters, in the order defined following the @ option. Note that
when using positional parameter passing, a procedure cannot tell whether a word was present or not, see example below.

Tip
this helps with packaging existing NGC procedures as remapped codes. Existing procedures do expect positional parameters.
With the @ option, you can avoid rewriting them to refer to local named parameters.

The ~ (caret) character specifies that the current spindle speed must be greater than zero (spindle running), otherwise the
code fails with an appropriate error message.

The > (greater-than) character specifies that the current feed must be greater than zero, otherwise the code fails with an
appropriate error message.

The n (greater-than) character specifies to pass the current line number in the “n*local named parameter.

By default, parameters are passed as local named parameter to an NGC procedure. These local parameters appear as already set
when the procedure starts executing, which is different from existing semantics (local variables start out with value 0.0 and need
to be explicitly assigned a value).

Optional word parameters may be tested for presence by the EXISTS (#<word>) idiom.

11.3.3.1 Example for named parameter passing to NGC procedures

Assume the code is defined as
REMAP=M400 modalgroup=10 argspec=Pqg ngc=m400
and m400 . ngc looks as follows:

o<m400> sub
(P is required since it’s uppercase in the argspec)
(debug, P word=#<P>)
(the g argspec 1is optional since its lowercase in the argspec. Use as follows:)
0100 if [EXISTS[#<g>]1]
(debug, Q word set: #<g>)
0100 endif
o<m400> endsub
M2

e executing M4 00 will fail with the message user—-defined M400:missing:P
e executing M400 P123 will display P word=123.000000

e executing M400 P123 Q456 will display P word=123.000000 and Q word set:456.000000

Integrator Manual V2.7.0-pre3, 2015-02-19 71/348

11.3.3.2 Example for positional parameter passing to NGC procedures

Assume the code is defined as
REMAP=M410 modalgroup=10 argspec=0@PQr ngc=m41l0
and m410 . ngc looks as follows:

o<m410> sub

(debug, [11=#1 [2]1=#2 [3]1=%#3)
o<m410> endsub

M2

e executing M410 P10 will displaym410.ngc:[1]=10.000000 [2]=0.000000

e executingM410 P10 Q20 will displaym410.ngc: [1]=10.000000 [2]=20.000000

NB: you lose the capability to distinguish more than one optional parameter word, and you cannot tell whether an optional
parameter was present but had the value 0, or was not present at all.

11.3.3.3 Simple example for named parameter passing to a Python function

It’s possible to define new codes without any NGC procedure. Here’s a simple first example, a more complex one can be found
in the next section.

Assume the code is defined as
REMAP=G88.6 modalgroup=1 argspec=XYZp python=g886

This instructs the interpreter to execute the Python function g886 in the module_basename . remap module which might
look like so:

from interpreter import INTERP_OK
from emccanon import MESSAGE

def g886(self, xxwords):
for key in words:
MESSAGE ("word ’'%s’ = $f" % (key, wordslkey]))
if words.has_key('p’):
MESSAGE ("the P word was present")
MESSAGE ("comment on this line: "%s’" % (self.blocks[self.remap_level].comment))
return INTERP_OK

Try this with out with: g88.6 x1 y2 z3 g88.6 x1 y2 z3 p33 (a comment here)

You’ll notice the gradual introduction of the embedded Python environment - see here for details. Note that with Python remap-
ping functions, it make no sense to have Python prolog or epilog functions since it’s executing a Python function in the first
place.

11.3.3.4 Advanced example: Remapped codes in pure Python

The interpreter and emccanon modules expose most of the Interpreter and some Canon internals, so many things which
so far required coding in C/C+\+ can be now be done in Python.

The following example is based on the nc_files/involute.py script - but canned as a G-code with some parameter
extraction and checking. It also demonstrates calling the interpreter recursively (see self.execute ()).

Assuming a definition like so (NB: this does not use argspec):
REMAP=G88.1 modalgroup=1 py=involute

The involute function in python/remap.py listed below does all word extraction from the current block directly. Note
that interpreter errors can be translated to Python exceptions. Remember this is readahead time - execution time errors cannot be
trapped this way.

Integrator Manual V2.7.0-pre3, 2015-02-19

727348

import sys
import traceback
from math import sin, cos

from interpreter import =

from emccanon import MESSAGE

from util import lineno, call_pydevd

raises InterpreterException if execute ()
throw_exceptions = 1

or read() fails

def involute (self, x*words):

""" remap function with raw access to Interpreter internals """

if self.debugmask & 0x20000000: call_pydevd()

if equal (self.feed_rate,0.0):
return "feedrate > 0 required"

if equal (self.speed, 0.0):
return "spindle speed > 0 required"
plunge = 0.1 # if Z word was given,

inspect controlling block for relevant words

c = self.blocks[self.remap_level]
x0 = c.x_number if c.x_flag else O
y0 = c.y_number if c.y_flag else 0
a = c.p_number if c.p_flag else 10
old_z = self.current_z

if self.debugmask & 0x10000000:
print "x0=%f y0=%f a=%f old_z=%f" % (x0,y0,a,o0ld_z)
try:
#self.execute ("G3456")
self.execute ("G21",lineno())
self.execute ("G64 P0.001", lineno())
self.execute ("GO X%f Y$Ef" & (x0,y0),lineno())

if c.z_flag:
feed = self.feed_rate
self.execute ("F%f Gl Z%f" % (feed x plunge,

self.execute ("F$Sf" % (feed),lineno())

for i in range(100) :
t = 1i/10.
x = x0 + a * (cos(t) + t % sin(t))
y = yv0 + a x (sin(t) - t * cos(t))
self.execute ("Gl X%f

Y$SE" % (x,y),lineno())
if c.z_flag: # retract to starting height
self.execute ("GO Z%f" % (old_z),lineno())

except InterpreterException,e:

roar [
5 S

- %s" % (e.line_number,e.line_text,

no
c

msg =
return msg

return INTERP_OK

USER2 debug flag

plunge - with reduced feed

would raise InterpreterException

c.z_number), lineno())

e.error_message)

The examples described so far can be found in configs/sim/axis/remap/getting-started with complete working configurations.

Integrator Manual V2.7.0-pre3, 2015-02-19 73 /348

11.4 Upgrading an existing configuration for remapping

The minimal prerequisites for using REMAP statements are as follows:

¢ the Python plug in must be activated by specifying a [PYTHON] TOPLEVEL=<path-to-toplevel-script> in the ini
file.

* the toplevel script needs to import the remap module, which can be initially empty, but the import needs to be in place.

* The Python interpreter needs to find the remap.py module above, so the path to the directory where your Python modules live
needs to be added with [PYTHON]PATH_APPEND=<path-to-your-local-Python-directory>

* Recommended: import the stdglue handlers in the remap module. In this case Python also needs to find stdglue.py
- we just copy it from the distribution so you can make local changes as needed. Depending on your installation the path to
stdglue.py might vary.

Assuming your configuration lives under /home /user/xxx and the ini file is /home /user/xxx/xxx.1ini, execute the
following commands.

cd /home/user/xxx

mkdir python

cd python

cp /usr/share/linuxcnc/ncfiles/remap_lib/python-stdglue/stdglue.py .
echo ’'from stdglue import =’ >remap.py

echo ’import remap’ >toplevel.py

Ur W A W

Now edit /home/user/xxx/xxx.1ini and add the following:

[PYTHON]
TOPLEVEL=/home/user/xxx/python/toplevel.py
PATH_APPEND=/home/user/xxx/python

Now verify that LinuxCNC comes up with no error messages - from a terminal window execute:

$ cd /home/user/xxx
$ linuxcnc xxXxX.ini

11.5 Remapping tool change-related codes: T, M6, M61

11.5.1 Overview

If you are unfamiliar with LinuxCNC internals, first read the How tool change currently works section (dire but necessary).
Note than when remapping an existing code, we completely disable this codes’ built in functionality of the interpreter.

So our remapped code will need to do a bit more than just generating some commands to move the machine as we like - it will
also need to replicate those steps from this sequence which are needed to keep the interpreter and task happy.

However, this does not affect the processing of tool change-related commands in task and iocontrol. This means when we execute
step 6b this will still cause iocontrol to do its thing.

Decisions, decisions:

* Do we want to use an O-word procedure or do it all in Python code?

¢ Is the iocontrol HAL sequence (tool-prepare/tool-prepared and tool-change/tool-changed pins) good enough or do we need
a different kind of HAL interaction for our tool changer (for example: more HAL pins involved with a different interaction
sequence)?

Integrator Manual V2.7.0-pre3, 2015-02-19 74 /348

Depending on the answer, we have four different scenarios:

* When using an O-word procedure, we need prolog and epilog functions
* if using all Python code and no O-word procedure, a Python function is enough
* when using the iocontrol pins, our O-word procedure or Python code will contain mostly moves

* when we need a more complex interaction than offered by iocontrol, we need to completely define our own interaction, using
motion.digitalx and motion.analogx pins, and essentially ignore the iocontrol pins by looping them.

Note

If you hate O-word procedures and love Python, you're free to do it all in Python, in which case you would just have a python=
<function> spec in the REMAP statement. But assuming most folks would be interested in using O-word procedures
because they are more familiar with that, we’ll do that as the first example.

So the overall approach for our first example will be:

1. we’d like to do as much as possible with G-code in an O-word procedure for flexibility. That includes all HAL interaction
which would normally be handled by iocontrol - because we rather would want to do clever things with moves, probes,
HAL pin I/O and so forth.

2. we’ll try to minimize Python code to the extent needed to keep the interpreter happy, and cause task to actually do anything.
That will go into the prolog and epilog Python functions.

11.5.2 Understanding the role of iocontrol with remapped tool change codes

Iocontrol provides two HAL interaction sequences we might or might not use:

* when the NML message queued by a SELECT_POCKET() canon command is executed, this triggers the "raise tool-prepare
and wait for tool-prepared to become high" HAL sequence in iocontrol, besides setting the XXXX pins

* when the NML message queued by the CHANGE_TOOL() canon command is executed, this triggers the "raise tool-change
and wait for tool-changed to become high" HAL sequence in iocontrol, besides setting the XXXX pins

What you need to decide is whether the existing iocontrol HAL sequences are sufficient to drive your changer. Maybe you need
a different interaction sequence - for instance more HAL pins, or maybe a more complex interaction. Depending on the answer,
we might continue to use the existing iocontrol HAL sequences, or define our own ones.

For the sake of documentation, we’ll disable these iocontrol sequences, and roll our own - the result will look and feel like the
existing interaction, but now we have complete control over them because they are executed in our own O-word procedure.

So what we’ll do is use some motion.digital-* and motion.analog-x« pins, and the associated M62 .. M68 commands
to do our own HAL interaction in our O-word procedure, and those will effectively replace the iocontrol tool-prepare/tool-
prepared and tool-change/tool-changed sequences. So we’ll define our pins replacing existing iocontrol pins functionally, and
go ahead and make the iocontrol interactions a loop. We’ll use the following correspondence in our example:

Tocontrol pin correspondence in the examples

iocontrol.0 pin motion pin
tool-prepare digital-out-00
tool-prepared digital-in-00
tool-change digital-out-01
tool-changed digital-in-01
tool-prep-number analog-out-00
tool-prep-pocket analog-out-01

tool-number analog-out-02

Integrator Manual V2.7.0-pre3, 2015-02-19 75/ 348

Let us assume you want to redefine the M6 command, and replace it by an O-word procedure, but other than that things should
continue to work.

So what our O-word procedure would do is to replace the steps outlined here. Looking through these steps you’ll find that NGC
code can be used for most of them, but not all. So the stuff NGC cant handle will be done in Python prolog and epilog functions.

11.5.3 Specifying the M6 replacement

To convey the idea, we just replace the built in M6 semantics with our own. Once that works, you may go ahead and place any
actions you see fit into the O-word procedure.

Going through the steps, we find:

—_

. check for T command already executed - execute in Python prolog
check for cutter compensation being active - execute in Python prolog
stop the spindle if needed - can be done in NGC

quill up - can be done in NGC

A

if TOOL_CHANGE_AT_G30 was set:

a. move the A, B and C indexers if applicable - can be done in NGC

b. generate rapid move to the G30 position - can be done in NGC

6. send a CHANGE_TOOL Canon command to task - execute in Python epilog

7. set the numberer parameters 5400-5413 according to the new tool - execute in Python epilog

e}

. signal to task to stop calling the interpreter for readahead until tool change complete - execute in Python epilog

So we need a prolog, and an epilog. Lets assume our ini file incantation of the M6 remap looks as follows:

REMAP=M6 modalgroup=6 prolog=change_prolog ngc=change epilog=change_epilog

So the prolog covering steps 1 and 2 would look like so - we decide to pass a few variables to the remap procedure which can be
inspected and changed there, or used in a message. Those are: tool_in_spindle, selected_tool (tool numbers) and
their respective pockets current_pocket and selected_pocket:

def change_prolog(self, =*xwords):
try:
if self.selected_pocket < 0:
return "M6: no tool prepared"

if self.cutter_comp_side:
return "Cannot change tools with cutter radius compensation on"

self.params["tool_in_spindle"] = self.current_tool
self.params["selected_tool"] = self.selected_tool
self.params["current_pocket"] = self.current_pocket
self.params["selected_pocket"] = self.selected_pocket

return INTERP_OK
except Exception, e:
return "M6/change_prolog: %$s" % (e)

You will find that most prolog functions look very similar: first test that all preconditions for executing the code hold, then
prepare the environment - inject variables and/or do any preparatory processing steps which cannot easily be done in NGC code;
then hand off to the NGC procedure by returning INTERP_OK.

Our first iteration of the O-word procedure is unexciting - just verify we got parameters right, and signal success by returning a
positive value; steps 3-5 would eventually be covered here (see here for the variables referring to ini file settings):

Integrator Manual V2.7.0-pre3, 2015-02-19 76 /348

O<change> sub
(debug, change: current_tool=#<current_tool>)
(debug, change: selected_pocket=#<selected_pocket>)

’

; insert any g-code which you see fit here, eg:

; GO #<_ini[setupltc_x> #<_ini[setupltc_y> #<_ini[setupltc_z>
7

O<change> endsub [1]

m2

Assuming success of change . ngc, we need to mop up steps 6-8:

def change_epilog(self, =xxwords):
try:

if self.return_value > 0.0:
commit change
self.selected_pocket = int(self.params["selected_pocket"])
emccanon.CHANGE_TOOL (self.selected_pocket)
cause a sync ()
self.tool_change_flag = True
self.set_tool_parameters ()
return INTERP_OK

else:
return "M6 aborted (return code %.1f)" % (self.return_value)

except Exception, e:
return "M6/change_epilog: %$s" % (e)

This replacement M6 is compatible with the built in code, except steps 3-5 need to be filled in with your NGC code.

Again, most epilogs have a common scheme: first, determine whether things went right in the remap procedure, then do any
commit and cleanup actions which cant be done in NGC code.

11.5.4 Configuring iocontrol with a remapped M6

Note that the sequence of operations has changed: we do everything required in the O-word procedure - including any HAL pin
setting/reading to get a changer going, and to acknowledge a tool change - likely with motion.digital—+ and motion-
analog-+ IO pins. When we finally execute the CHANGE_TOOL () command, all movements and HAL interactions are
already completed.

Normally only now iocontrol would do its thing as outlined here. However, we don’t need the HAL pin wiggling anymore - all
iocontrol is left to do is to accept we’re done with prepare and change.

This means that the corresponding iocontrol pins have no function any more. Therefore, we configure iocontrol to immediately
acknowledge a change by configuring like so:

loop change signals when remapping M6
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

If you for some reason want to remap Tx (prepare), the corresponding iocontrol pins need to be looped as well.

11.5.5 Writing the change and prepare O-word procedures

The standard prologs and epilogs found in ncfiles/remap_lib/python-stdglue/stdglue.py pass a few exposed
parameters to the remap procedure.

An exposed parameter is a named local variable visible in a remap procedure which corresponds to interpreter-internal variable
which is relevant for the current remap. Exposed parameters are set up in the respective prolog, and inspected in the epilog. They
can be changed in the remap procedure and the change will be picked up in the epilog. The exposed parameters for remappable
built in codes are:

Integrator Manual V2.7.0-pre3, 2015-02-19 77 /348

e T (prepare_prolog): #<tool>, #<pocket>

* M6 (change_prolog): #<tool_in_spindle>, #<selected_tool>, #<current_pocket>, #<selected_pock
et>

e M61 (settool_prolog): #<tool>, #<pocket>
* S (setspeed_prolog): #<speed>

* F (setfeed_prolog): #<feed>

If you have specific needs for extra parameters to be made visible, that can simply be added to the prolog - practically all of the
interpreter internals are visible to Python.

11.5.6 Making minimal changes to the built in codes, including M6

Remember that normally remapping a code completely disables all internal processing for that code.

However, in some situations it might be sufficient to add a few codes around the existing M6 built in implementation, like a tool
length probe, but other than that retain the behavior of the built in M6.

Since this might be a common scenario, the built in behavior of remapped codes has been made available within the remap
procedure. The interpreter detects that you are referring to a remapped code within the procedure which is supposed to redefine
its behavior. In this case, the built in behavior is used - this currently is enabled for the set: M6, M61,T, S, F). Note that otherwise
referring to a code within its own remap procedure would be a error - a remapping recursion.

Slightly twisting a built in would look like so (in the case of M6):

REMAP=M6 modalgroup=6 ngc=mychange

o<mychange> sub

M6 (use built in M6 behavior)

(.. move to tool length switch, probe and set tool length..)
o<mychange> endsub

m2

(:) Caution
when redefining a built in code, do not specify any leading zeroes in G- or M-codes - for example, say REMAP=M1
. ., Not REMAP=MO01

See the configs/sim/axis/remap/extend-builtins directory for a complete configuration which is the recom-
mended starting point for own work when extending built in codes.

11.5.7 Specifying the T (prepare) replacement
If you’re confident with the default implementation, you wouldn’t need to do this. But remapping is also a way to work around
deficiencies in the current implementation, for instance to not block until the "tool-prepared” pin is set.

What you could do, for instance, is: - in a remapped T, just set the equivalent of the "tool-prepare” pin, but not wait for "tool-
prepared” here - in the corresponding remapped M6, wait for the "tool-prepared" at the very beginning of the O-word procedure.

Again, the iocontrol tool-prepare/tool-prepared pins would be unused and replaced by motion. « pins, so those would pins
must be looped:

loop prepare signals when remapping T
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared

Integrator Manual V2.7.0-pre3, 2015-02-19 78 /348

So, here’s the setup for a remapped T:

REMAP=T prolog=prepare_prolog epilog=prepare_epilog ngc=prepare

def prepare_prolog(self, xxwords) :
try:
cblock = self.blocks[self.remap_level]
if not cblock.t_flag:
return "T requires a tool number"

tool = cblock.t_number
if tool:

(status, pocket) = self.find_tool_pocket (tool)

if status != INTERP_OK:

return "T%d: pocket not found" % (tool)

else:

pocket = -1 # this is a TO - tool unload
these variables will be visible in the ngc oword sub
as #<tool> and #<pocket> local variables, and can be
modified there - the epilog will retrieve the changed
values
self.params["tool"] = tool
self.params["pocket"] = pocket

return INTERP_OK
except Exception, e:

)

return "T%d/prepare_prolog: %s" % (int (words[’t’]), e)

The minimal ngc prepare procedure again looks like so:

o<prepare> sub
; returning a positive value to commit:
o<prepare> endsub [1]

m2
And the epilog:
def prepare_epilog(self, xxwords):
try:
if self.return_value > O:
self.selected_tool = int (self.params["tool"])
self.selected_pocket = int (self.params|["pocket"])
emccanon.SELECT_POCKET (self.selected_pocket, self.selected_tool)
return INTERP_OK
else:

return "T%d: aborted (return code %.1f)" % (int(self.params["tool"]),self.
return_value)

except Exception, e:
return "T%d/prepare_epilog: %s" % (tool,e)

prepare_prolog and prepare_epilog are part of the standard glue provided by nc_files/remap_lib/python-stdglue/stdglue.py. This
module is intended to cover most standard remapping situations in a common way.

11.5.8 Error handling: dealing with abort

The built in tool change procedure has some precautions for dealing with a program abort (e.g. hitting Escape in Axis during
a change). Your remapped function has none of this, therefore some explicit cleanup might be needed if a remapped code is
aborted. In particular, a remap procedure might establish modal settings which are undesirable to have active after an abort.

Integrator Manual V2.7.0-pre3, 2015-02-19 79/348

For instance, if your remap procedure has motion codes (G0,G1,G38..) and the remap is aborted, then the last modal code will
remain active. However, you very likely want to have any modal motion canceled when the remap is aborted.

The way to do this is by using the [RS274NGC] ON_ABORT_COMMAND feature. This ini option specifies a O-word procedure
call which is executed if task for some reason aborts program execution.

[RS274NGC]
ON_ABORT_COMMAND=0 <on_abort> call

The suggested on_abort procedure would look like so (adapt to your needs):

o<on_abort> sub

G54 (origin offsets are set to the default)
Gl7 (select XY plane)

G90 (absolute)

G94 (feed mode: units/minute)

(
(
(
(
M48 (set feed and speed overrides)
(
(
(
(

G40 (cutter compensation off)
M5 spindle off)

G80 (cancel modal motion)

M9 mist and coolant off)

o<on_abort> endsub
m2

Caution
Never use an M2 in a O-word subroutine, including this one. It will cause hard-to-find errors. For instance, using an
M2 in a subroutine will not end the subroutine properly and will leave the subroutine NGC file open, not your main
program.

Make sure on_abort.ngc is along the interpreter search path (recommended location: SUBROUTINE_PATH so as not to
clutter your NC_FILES directory with internal procedures). on_abort receives a single parameter indicating the cause for
calling the abort procedure, which might be used for conditional cleanup.

Statements in that procedure typically would assure that post-abort any state has been cleaned up, like HAL pins properly reset.
For an example, see configs/sim/axis/remap/rack-toolchange.

Note that terminating a remapped code by returning INTERP_ERROR from the epilog (see previous section) will also cause the
on_abort procedure to be called.

11.5.9 Error handling: failing a remapped code NGC procedure

If you determine in your handler procedure that some error condition occurred, do not use M2 to end your handler - see above:

If displaying an operator error message and stopping the current program is good enough, use the (abort, <message>)
feature to terminate the handler with an error message. Note that you can substitute numbered, named, ini and HAL parameters
in the text like in this example (see also tests/interp/abort-hot-comment /test.ngc):

0100 if [..] (some error condition)
(abort, Bad Things! pd42=#42 g=#<g> ini=#<_ini[a]x> pin=#<_hal [component.pin])
0100 endif

NB: ini and HAL variable expansion need explicit enabling with FEATURE.

If more fine grained recovery action is needed, use the idiom laid out in the previous example:

* define an epilog function, even if it’s just to signal an error condition

Integrator Manual V2.7.0-pre3, 2015-02-19 80/348

* pass a negative value from the handler to signal the error

* inspect the return value in the epilog function.

* take any recovery action needed

e return the error message string from the handler, which will set the interpreter error message and abort the program (pretty

much like (abort, message=

This error message will be displayed in the Ul, and returning INTERP_ERROR will cause this error handled like any other
runtime error.

Note that both (abort, msg) and returning INTERP_ERROR from an epilog will cause any ON_ABORT handler to be
called as well if defined (see previous section).

11.6 Remapping other existing codes: S, M0, M1, M60

11.6.1 Automatic gear selection be remapping S (set spindle speed)

A potential use for a remapped S code would be automatic gear selection depending on speed. In the remap procedure one would
test for the desired speed attainable given the current gear setting, and change gears appropriately if not.

11.6.2 Adjusting the behavior of M0, M1, M60

A use case for remapping MO/M1 would be to customize the behavior of the existing code. For instance, it could be desirable
to turn off the spindle, mist and flood during an MO or M1 program pause, and turn these settings back on when the program is
resumed.

For a complete example doing just that, see configs/sim/axis/remap/extend-builtins/, which adapts M1 as laid out above.

11.7 Creating new G-code cycles

A G-code cycle as used here is meant to behave as follows:

* On first invocation, the associated words are collected and the G-code cycle is executed.

* If subsequent lines just continue parameter words applicable to this code, but no new G-code, the previous G code is re-executed
with the parameters changed accordingly.

An example: Assume you have G84 . 3 defined as remapped G code cycle with the following ini segment (see here for a detailed
description of cycle_prologand cycle_epilog):

[RS274NGC]

A cycle with an oword procedure: G84.3 <X- Y- Z- Q- P—>

REMAP=G84 .3 argspec=xyzabcuvwpr prolog=cycle_prolog ngc=g843 epilog=cycle_epilog modalgroup <
=1

Executing the following lines:
17

1) g84.3 x1 y2 z3 rl
2) x3 y4 p2

3) x6 y7 z5

4)

g
(
(
(
(G80

causes the following (note R is sticky, and Z is sticky since the plane is XY):

Integrator Manual V2.7.0-pre3, 2015-02-19 81/348

1. g843.ngc is called with words x=1, y=2, z=3, r=1
2. g843.ngc is called with words x=3, y=4, z=3, p=2, r=1
3. g843.ngc is called with words x=6, y=7, z=3, r=1
4. The G84. 3 cycle is canceled.
Besides creating new cycles, this provides an easy method for repackaging existing G-codes which do not behave as cycles. For

instance, the G33.1 Rigid Tapping code does not behave as a cycle. With such a wrapper, a new code can be easily created
which uses G33. 1 but behaves as a cycle.

See configs/sim/axis/remap/cycle for a complete example of this feature. It contains two cycles, one with an NGC procedure like
above, and a cycle example using just Python.

11.8 Configuring Embedded Python

The Python plugin serves both the interpreter, and task if so configured, and hence has its own section PYTHON in the ini file.

11.8.1 Python plugin : ini file configuration
[PYTHON]

TOPLEVEL=<filename>
filename of the initial Python script to execute on startup. This script is responsible for setting up the package name
structure, see below.

PATH_PREPEND=<directory>
prepend this directory to PYTHON_PATH. A repeating group.

PATH_APPEND=<directory>
append this directory to PYTHON_PATH. A repeating group.

LOG_LEVEL=<integer>
log level of plugin-related actions. Increase this if you suspect problems. Can be very verbose.

RELOAD_ON_CHANGE=[0l1]
reload the TOPLEVEL script if the file was changed. Handy for debugging but currently incurs some runtime overhead.
Turn this off for production configurations.

PYTHON_TASK=[0l1]
Start the Python task plug in. Experimental. See xxx.

11.8.2 Executing Python statements from the interpreter
For ad-hoc execution of commands the Python hot comment has been added. Python output by default goes to stdout, so you
need to start LinuxCNC from a terminal window to see results. Example (eg. in the MDI window):

;py,print 2%3

Note that the interpreter instance is available here as sel£, so you could also run:

;py,print self.tool_table[0].toolno

The emcStatus structure is accessible, too:

;py, from emctask import =
;PY,print emcstat.io.aux.estop

Integrator Manual V2.7.0-pre3, 2015-02-19 82 /348

11.9 Programming Embedded Python in the RS274NGC Interpreter

11.9.1 The Python plugin namespace

The namespace is expected to be laid out as follows:

oword
Any callables in this module are candidates for Python O-word procedures. Note that the Python oword module is
checked before testing for a NGC procedure with the same name - in effect names in oword will hide NGC files of the

same basename.

remap
Python callables referenced in an argspec prolog,epilog or python option are expected to be found here.

namedparams
Python funtcions int this module extend or redefine the namespace of predefined named parameters, see adding predefined

parameters.

task
Task-related callables are expected here.

11.9.2 The Interpreter as seen from Python

The interpreter is an existing C++ class (Inferp) defined in src/emc/rs274ngc. Conceptually all oword.<function> and
remap . <function> Python calls are methods of this Interp class, although there is no explicit Python definition of this class
(it’s a Boost. Python wrapper instance) and hence receive the as the first parameter self which can be used to access internals.

11.9.3 TheInterpreter __init__ and _ delete__ functions

If the TOPLEVEL module defines a function __init__, it will be called once the interpreter is fully configured (ini file read,
and state synchronized with the world model).

If the TOPLEVEL module defines a function __delete__, it will be called once before the interpreter is shutdown and after
the persistent parameters have been saved to the PARAMETER_FILE.

Note_ at this time, the __delete__ handler does not work for interpreter instances created by importing the gcode module.
If you need an equivalent functionality there (which is quite unlikely), please consider the Python atexit module.

this would be defined in the TOPLEVEL module

def _ _init__ (self):

add any one-time initialization here

if self.task:
this is the milltask instance of interp
pass

else:
this is a non-milltask instance of interp
pass

def _ delete_ (self):
add any cleanup/state saving actions here
if self.task: # as above
pass
else:
pass

Integrator Manual V2.7.0-pre3, 2015-02-19 83 /348

This function may be used to initialize any Python-side attributes which might be needed later, for instance in remap or oword
functions, and save or restore state beyond what PARAMETER_F ILE provides.

If there are setup or cleanup actions which are to happen only in the milltask Interpreter instance (as opposed to the interpreter
instance which sits in the gcode Python module and serves preview/progress display purposes but nothing else), this can be
tested for by evaluating self.task.

Anexampleuseof __init_ and __delete__ can be found in configs/sim/axis/remap/cycle/python/toplevel.py initialising
attributes needed to handle cycles in ncfiles/remap_lib/python-stdglue/stdglue.py (and imported into configs/sim/axis/remap/cy-
cle/python/remap.py).

11.9.4 Calling conventions: NGC to Python

Python code is called from NGC in the following situations:

* during normal program execution:

— when an O-word call like O<proc> call is executed and the name oword.proc is defined and callable
— when a comment like ; py, <Python statement> is executed

* during execution of a remapped code: any prolog=, python= and epilog= handlers.

11.9.4.1 Calling O-word Python subroutines

Arguments:

self
the interpreter instance

*args
the list of actual positional parameters. Since the number of actual parameters may vary, it is best to use this style of
declaration:

this would be defined in the oword module
def mysub(self, xargs):
print "number of parameters passed:", len(args)
for a in args:
print a

11.9.4.2 Return values of O-word Python subroutines

Just as NGC procedures may return values, so do O-word Python subroutines. They are expected to either:

e return no value (no return statement or the value None)
¢ afloat or int value
* astring, this means this is an error message, abort the program. Works like (abort, msg).

Any other return value type will raise a Python exception.

In a calling NGC environment, the following predefined named parameters are available:

#<_value>
value returned by the last procedure called. Initialized to 0.0 on startup. Exposed in Interp as self.return_value
(float).

#<_value_returned>
indicates the last procedure called did return” or " endsub with an explicit value. 1.0 if true. Set to 0.0 on each
call. Exposed in Interp was self.value_returned (int).

See also tests/interp/value-returned for an example.

Integrator Manual V2.7.0-pre3, 2015-02-19 84 /348

11.9.4.3 Calling conventions for prolog= and epilog= subroutines

Arguments are:

self
the interpreter instance

words
keyword parameter dictionary. If an argspec was present, words are collected from the current block accordingly and
passed in the dictionary for convenience (the words could as well be retrieved directly from the calling block, but this
requires more knowledge of interpreter internals). If no argspec was passed, or only optional values were specified and
none of these was present in the calling block, this dict is empty. Word names are converted to lowercase.

Example call:

def minimal_prolog(self, xxwords): # in remap module
print len (words)," words passed"
for w in words:
print "%s: %$s" % (w, words([w])
if words[’p’] < 78: # NB: could raise an exception if p were optional
return "failing miserably"
return INTERP_OK

Return values:

INTERP_OK
return this on success. You need to import this from interpreter.

"a message text"
returning a string from a handler means this is an error message, abort the program. Works like (abort, msg).

11.9.4.4 Calling conventions for python= subroutines

Arguments are:

self
the interpreter instance

words
keyword parameter dictionary. the same kwargs dictionary as prologs and epilogs (see above).

The minimum python= function example:

def useless (self, *+words) : # in remap module
return INTERP_OK

Return values:

INTERP_OK
return this on success

"a message text"
returning a string from a handler means this is an error message, abort the program. Works like (abort, msg).

If the handler needs to execute a queuebuster operation (tool change, probe, HAL pin reading) it is supposed to suspend execution
with the following statement:

yield INTERP_EXECUTE_FINISH
This signals task to stop read ahead, execute all queued operations, execute the queue-buster operation, synchronize in-
terpreter state with machine state, and th en signal the interpreter to continue. At this point the function is resumed at the
statement following the yield .. statement.

Integrator Manual V2.7.0-pre3, 2015-02-19 85/348

11.9.4.5 Dealing with queue-buster: Probe, Tool change and waiting for a HAL pin

Queue busters interrupt a procedure at the point where such an operation is called, hence the procedure needs to be restarted after
the interpreter synch(). When this happens the procedure needs to know if it is restarted, and where to continue. The Python
generator method is used to deal with procedure restart.

This demonstrates call continuation with a single point-of-restart:

def read_pin(self, xargs) :
wait 5secs for digital-input 00 to go high
emccanon.WAIT(0,1,2,5.0)
cede control after executing the queue buster:
yield INTERP_EXECUTE_FINISH
post-sync () execution resumes here:
pin_status = emccanon.GET_EXTERNAL_DIGITAL_INPUT (0,0);
print "pin status=",pin_status

Warning
The yield feature is fragile. The following restrictions apply to the usage of yield INTERP_EXECUTE_FINISH:

* Python code executing a yield INTERP_EXECUTE_FINISH must be part of a remap procedure. Yield does not work in a
Python oword procedure.

* A Python remap subroutine containing yield INTERP_EXECUTE_FINISH statement may not return a value, as with normal
Python yield statements.

* Code following a yield may not recursively call the interpreter, like with self.execute("<mdi command>"). This is an architec-
tural restriction of the interpreter and is not fixable without a major redesign.

11.9.5 Calling conventions: Python to NGC

NGC code is executed from Python when:

¢ the method self.execute (K<NGC code>[,<line number>]) isexecuted

* during execution of a remapped code, if a prolog= function is defined, the NGC procedure given in ngc= is executed
immediately thereafter.

The prolog handler does not call the handler, but it prepares its call environment, for instance by setting up predefined local
parameters.

11.9.5.1 Inserting parameters in a prolog, and retrieving them in an epilog
Conceptually a prolog and an epilog execute at the same call level like the O-word procedure, that is: after the subroutine call is
set up, and before the subroutine endsub or return.

This means that any local variable created in a prolog will be a local variable in the O-word procedure, and any local variables
created in the O-word procedure are still accessible when the epilog executes.

The self.params array handles reading and setting numbered and named parameters. If a named parameter begins with _
(underscore), it is assumed to be a global parameter; if not, it is local to the calling procedure. Also, numbered parameters in the
range 1..30 are treated like local variables; their original values are restored on return/endsub from an O-word procedure.

Here is an example remapped code demonstrating insertion and extraction of parameters into/from the O-word procedure:

Integrator Manual V2.7.0-pre3, 2015-02-19 86 /348

REMAP=m300 prolog=insert_param ngc=testparam epilog=retrieve_param modalgroup=10

def insert_param(self, =**words): # in the remap module
print "insert_param call level=",self.call_ level
self.params["myname"] = 123
self.params[1l] = 345
self.params([2] = 678

return INTERP_OK

def retrieve_param(self, xxwords):
print "retrieve_param call level=",self.call_level
print "#1=", self.params[1l]
print "#2=", self.params[2]
try:
print "result=", self.params["result"]
except Exception,e:
return "testparam forgot to assign #<result>"
return INTERP_OK

o<testparam> sub

(debug, call_level=#<_call_level> myname=#<myname>)
; try commenting out the next line and run again
#<result> = [#<myname> x 3]

#1 = [#1 = 5]

#2 = [#2 = 3]

o<testparam> endsub

m2

self.params () returns a list of all variable names currently defined. Since myname is local, it goes away after the epilog
finishes.

11.9.5.2 Calling the interpreter from Python

You can recursively call the interpreter from Python code as follows:

self.execute (KNGC code>[,<line number>])

Examples:

self.execute ("Gl X%f YSE" % (x,V¥))
self.execute ("O <myprocedure> call", currentline)

You might want to test for the return value being < INTERP_MIN_ERROR. If you're using lots of execute() statements, it’s
probably easier to trap InterpreterException as per below.

Caution

The parameter insertion/retrieval method described in the previous section does not work in this case. It is good
enough for just executing simple NGC commands or a procedure call and advanced introspection into the procedure,
and passing of local named parameters is not needed. The recursive call feature is fragile.

11.9.5.3 Interpreter Exception during execute()

if interpreter.throw_exceptions is nonzero (default 1), and self.execute() returns an error, the exception Interpre
terException is raised. InterpreterException has the following attributes:

Integrator Manual V2.7.0-pre3, 2015-02-19 87 /348

line_number
where the error occured

line_text
the NGC statement causing the error

error_message
the interpreter’s error message
Errors can be trapped in the following Pythonic way:
import interpreter
interpreter.throw_exceptions = 1
try:
self.execute ("G3456") # raise InterpreterException

except InterpreterException,e:
msg = "%d: '%s’ - %$s" % (e.line_number,e.line_text, e.error_message)
return msg # replace builtin error message

11.9.5.4 Canon

The canon layer is practically all free functions. Example:

import emccanon
def example (self, xargs) :

emccanon.STRAIGHT_TRAVERSE (line, x0,vy0,20,0,0,0, 0,0)

0,0,0,0,
emccanon.STRAIGHT_FEED (line,x1,vy1,21,0,0,0,0,0,0)
return INTERP_OK

The actual canon functions are declared in src/emc/nml_intf/canon.hh and implemented in src/emc/task/emcc
anon.cc. The implementation of the Python functions can be found in src/emc/rs274ncg/canonmodule. cc.

11.9.6 Built in modules
The following modules are built in:

interpreter
exposes internals of the Interp class. See src/emc/rs274ngc/interpmodule. cc, and the tests/remap/int

rospect regression test.

emccanon
exposes most calls of src/emc/task/emccanon.cc.

emctask
exposes the emcStatus class instance. See src/emc/task/taskmodule. cc. Not present when using the gcode

module used for user interfaces - only present in the milltask instance of the interpreter.

11.10 Adding Predefined Named Parameters

The interpreter comes with a set of predefined named parameters for accessing internal state from the NGC language level. These
parameters are read-only and global, and hence cannot be assigned to.

Additional parameters may be added by defining a function in the namedparams module. The name of the function defines the
name of the new predefined named parameter, which now can be referenced in arbitrary expressions.

To add or redefine a named parameter:

Integrator Manual V2.7.0-pre3, 2015-02-19 88/348

* add a namedparams module so it can be found by the interpreter

* define new parameters by functions (see below). These functions receive self (the interpreter instance) as parameter and so
can access aribtrary state. Arbitrary Python capabilities can be used to return a value.

* import that module from the TOPLEVEL script

namedparams.py
trivial example
def _pi(self):
return 3.1415926535

#<circumference> = [2 * #<radius> * #<_pi>]

Functions in namedparams . py are expected to return a float or int value. If a string is returned, this sets the interpreter error
message and aborts execution.

Only functions with a leading underscore are added as parameters, since this is the RS274NGC convention for globals.

It is possible to redefine an existing predefined parameter by adding a Python function of the same name to the namedparams
module. In this case, a warning is generated during startup.

While the above example isnt terribly useful, note that pretty much all of the interpreter internal state is accessible from Python,
so arbitrary predicates may be defined this way. For a slightly more advanced example, see tests/remap/predefined-
named-params.

11.11 Standard Glue routines

Since many remapping tasks are very similar, I've started collecting working prolog and epilog routines in a single Python
module. These can currently be found in ncfiles/remap_lib/python-stdglue/stdglue.py and provide the following routines:

11.11.1 T: prepare_prolog and prepare_epilog

These wrap a NGC procedure for Tx Tool Prepare.

11.11.1.1 Actions of prepare_prolog

The following parameters are made visible to the NGC procedure:

* #<tool> - the parameter of the T word

* #<pocket> - the corresponding pocket

If tool number zero is requested (meaning Tool unload), the corresponding pocket is passed as -1.

It is an error if:

* no tool number is given as T parameter

« the tool cannot be found in the tool table.

Note that unless you set the [EMCIO] RANDOM_TOOLCHANGER=1 parameter, tool and pocket number are identical, and the
pocket number from the tool table is ignored. This is currently a restriction.

Integrator Manual V2.7.0-pre3, 2015-02-19 89/348

11.11.1.2 Actions of prepare_epilog

* The NGC procedure is expected to return a positive value, otherwise and error message containing the return value is given
and the interpreter aborts.

* In case the NGC procedure executed the T command (which then refers to the built in T behavior), no further action is taken.
This can be used for instance to minimally adjust the built in behavior be preceding or following it with some other statements.

* Otherwise, the #<tool> and #<pocket> parameters are extracted from the subroutine’s parameter space. This means that
the NGC procedure could change these values, and the epilog takes the changed values in account.

¢ then, the Canon command SELECT_POCKET (#<pocket>, #<tool>) is executed.

11.11.2 M6: change_prolog and change_epilog

These wrap a NGC procedure for M6 Tool Change.

11.11.2.1 Actions of change_prolog

* The following three steps are applicable only if the iocontrol-v2 component is used:

— If parameter 5600 (fault indicator) is greater than zero, this indicates a Toolchanger fault, which is handled as follows:
— if parameter 5601 (error code) is negative, this indicates a hard fault and the prolog aborts with an error message.

— if parameter 5601 (error code) is greater equal zero, this indicates a soft fault. An informational message is displayed and
the prolog continues.

* If there was no preceding T command which caused a pocket to be selected, the prolog aborts with an error message.

* If cutter radius compensation is on, the prolog aborts with an error message.
Then, the following parameters are exported to the NGC procedure:

* #<tool_in_spindle> : the tool number of the currently loaded tool
e #<selected_tool>: the tool number selected

* #<selected_pocket> : the selected tool’s pocket number

11.11.2.2 Actions of change_epilog

* The NGC procedure is expected to return a positive value, otherwise and error message containing the return value is given
and the interpreter aborts.

o If parameter 5600 (fault indicator) is greater than zero, this indicates a Toolchanger fault, which is handled as follows (iocon
trol-v2-only):

— if parameter 5601 (error code) is negative, this indicates a hard fault and the epilog aborts with an error message.

— if parameter 5601 (error code) is greater equal zero, this indicates a soft fault. An informational message is displayed and
the epilog continues.

* In case the NGC procedure executed the M6 command (which then refers to the built in M6 behavior), no further action is
taken. This can be used for instance to minimally adjust the built in behavior be preceding or following it with some other
statements.

e Otherwise, the #<selected_pocket> parameter is extracted from the subroutine’s parameter space, and used to set the
interpreter’s current_pocket variable. Again, the procedure could change this value, and the epilog takes the changed
value in account.

e then, the Canon command CHANGE_ TOOL (#<selected_pocket>) is executed.

* The new tool parameters (offsets, diameter etc) are set.

Integrator Manual V2.7.0-pre3, 2015-02-19 90/ 348

11.11.3 G code Cycles: cycle_prologand cycle _epilog

These wrap a NGC procedure so it can act as a cycle, meaning the motion code is retained after finishing execution. If the next
line just contains parameter words (e.g. new X,Y values), the code is executed again with the new parameter words merged into
the set of the paramters given in the first invocation.

These routines are designed to work in conjunction with an argspec=<words> parameter. While this is easy to use, in a realistic
scenario you would avoid argspec and do a more thorough investigation of the block manually in order to give better error
messages.

The suggested argspec is as follows:

REMAP=G<somecode> argspec=xyzabcuvwgplr prolog=cycle_prolog ngc=<ngc procedure> epilog= <
cycle_epilog modalgroup=1

This will permit cycle_prolog to determine the compatibility of any axis words give in the block, see below.

11.11.3.1 Actions of cycle_prolog

* Determine whether the words passed in from the current block fulfill the conditions outlined under Canned Cycle Errors.

— export the axis words as <x>, #<y> etc; fail if axis words from different groups (XYZ) (UVW) are used together, or any of
(ABC) is given.

export L- as #<1>; default to 1 if not given.

export P- as #<p>; fail if p less than 0.

export R- as #<r>; fail if r not given, or less equal 0 if given.

fail if feed rate is zero, or inverse time feed or cutter compensation is on.
* Determine whether this is the first invocation of a cycle G code, if so:

— Add the words passed in (as per argspec) into a set of sticky parameters, which is retained across several invocations.
* If not (a continuation line with new parameters):

— merge the words passed in into the existing set of sticky parameters.

* export the set of sticky parameters to the NGC procedure.

11.11.3.2 Actions of cycle_epilog

* Determine if the current code was in fact a cycle, if so:

— retain the current motion mode so a continuation line without a motion code will execute the same motion code.

11.11.4 S (Set Speed) : setspeed_prolog and setspeed_epilog

TBD

11.11.5 F (Set Feed) : setfeed prologand setfeed epilog

TBD

11.11.6 M61 Set tool number : settool_prologand settool_epilog

TBD

Integrator Manual V2.7.0-pre3, 2015-02-19 91/348

11.12 Remapped code execution

11.12.1 NGC procedure call environment during remaps
Normally, an O-word procedure is called with positional parameters. This scheme is very limiting in particular in the presence

of optional parameters. Therefore, the calling convention has been extended to use something remotely similar to the Python
keyword arguments model.

see LINKTO gcode/main Subroutines: sub, endsub, return, call.

11.12.2 Nested remapped codes

Remapped codes may be nested just like procedure calls - that is, a remapped code whose NGC procedure refers to some other
remapped code will execute properly.

The maximum nesting level remaps is currently 10.
11.12.3 Sequence number during remaps

Sequence numbers are propagated and restored like with O-word calls. See tests/remap/nested-remaps/word for the
regression test, which shows sequence number tracking during nested remaps three levels deep.

11.12.4 Debugging flags

The following flags are relevant for remapping and Python - related execution:

EMC_DEBUG_OWORD 0x00002000 traces execution of O-word subroutines
EMC_DEBUG_REMAP 0x00004000 traces execution of remap-related code
EMC_DEBUG_PYTHON 0x00008000 <calls to the Python plug in
EMC_DEBUG_NAMEDPARAM 0x00010000 trace named parameter access
EMC_DEBUG_PYTHON_TASK 0x00040000 trace the task Python plug in
EMC_DEBUG_USER1 0x10000000 wuser-defined - not interpreted by LinuxCNC
EMC_DEBUG_USER2 0x20000000 wuser-defined - not interpreted by LinuxCNC

or these flags into the [EMC]DEBUG variable as needed. For a current list of debug flags see src/emc/nml_intf/debugflags.h.

11.12.5 Debugging Embedded Python code

Debugging of embedded Python code is harder than debugging normal Python scripts, and only a limited supply of debuggers
exists. A working open-source based solution is to use the Eclipse IDE, and the PydDev Eclipse plug in and its remote debugging
feature.

To use this approach:

* install Eclipse via the the Ubuntu Software Center (choose first selection)
* install the PyDev plug in from the Pydev Update Site

* setup the LinuxCNC source tree as an Eclipse project

* start the Pydev Debug Server in Eclipse

* make sure the embedded Python code can find the pydevd. py module which comes with that plug in - it’s buried somewhere
deep under the Eclipse install directory. Set the the pydevd variable in util. py to reflect this directory location.

* import pydevd in your Python module - see example util.py and remap.py

http://www.eclipse.org
http://www.pydev.org
http://pydev.org/manual_adv_remote_debugger.html
http://pydev.org/manual_adv_remote_debugger.html
http://pydev.org/updates

Integrator Manual V2.7.0-pre3, 2015-02-19 92 /348

* call pydevd.settrace () in your module at some point to connect to the Eclipse Python debug server - here you can set
breakpoints in your code, inspect variables, step etc as usual.

Caution
pydevd.settrace () will block execution if Eclipse and the Pydev debug server have not been started.

To cover the last two steps: the o<pydevd> procedure helps to get into the debugger from MDI mode. See also the call_py
devd function in util.py and its usage in remap . involute to set a breakpoint.

Here’s a screen-shot of Eclipse/PyDevd debugging the involute procedure from above:

File Edit Source Refactoring Navigate Search Project Pydev Run Window Help

| ra- gl |m®» @|s0a &&s 9|8 H e o o [$pebug| ”
#5 Debug £ s] B k= i 3 ¥ T O 8 Breakpoints 22 . & Exp '-a] R# YW EEER N TTO
< # Debug Server [Python Server] A involute [remap.py:27]
< ¢ MainThread - pid27841_seql
s Debug Server
No details to display for the current selection.

[remap &2 = 8| g outline [N=Variables 2 £ B v = EIW

22-def involute(self, userdata, **words): = | Name Value

23 """ remap function with raw access to Interpreter internals " b © Globals Global variables

24 b oc Block: <interpreter.Block object at 0x9fb6

25 if self.debugmask & 0x20000000: call pydevd() * plunge float: 0.1

26 - < o self Interp: <interpreter.Interp object at Oxb77
827 if equal(self.feed rate,0.0): L * AA axis_offset float: 0.0

28 self.set_errormsg("feedrate > 0 required") * AA_current (i 7EE O

29 return INTERP_ERROR * AA_origin offset float: 0.0

30 - = BB_axis_offset float: 0.0

31 if equal(self.speed,0.0): * BB_cumrent float: 0.0

32 self.set errormsg("spindle speed > @ required") * BB _origin_offset float: 0.0

33 return INTERP_ERROR L * CC_axis_offset float: 0.0

34 = CC_cumrent float: 0.0

35 plunge =0.1 = CC_origin_offset float: 0.0

36 « a_axis_wrapped int: 0

37 = a_indexer int: 0

38 ¢ = self.blocks[self. remap levell P @ active_g_codes ActiveGrodesArray: <interpreter.ActiveGec
» 39 X0 = c.X number if c.x flaa else 0 b @ active_m_codes ActiveMcodesArray: <interpreter.ActiveMt
40 ye = c.y_number if c.y_ﬂ.ag else 0 P @ active_settings ActiveSettingsArmay: <interpreter.ActiveSe
41 a = c.p_number if c.p_flag else 10 + arc_not_allowed bool: False H
42 old z = self.current z e — Bl
A2 & =

e [

¥ Tasks |[2 Problems | (3 Executables| El Console 5% ~ = Ex &E & &8 | Byriv T8
Debug Server

Debug Server at port: 5678 %

-

SSSSS—___———.—~——~—.~~———8—8————————O7

5 Writable Insert 39:1 J

See the Python code in configs/sim/axis/remap/getting-started/python for details.

11.13 Axis Preview and Remapped code execution

For complete preview of a remapped code’s tool path some precautions need to be taken. To understand what is going on, let’s
review the preview and execution process (this covers the Axis case, but others are similar):

First, note that there are two independent interpreter instances involved:

* one instance in the milltask program, which executes a program when you hit the Start button, and actually makes the machine
move

Integrator Manual V2.7.0-pre3, 2015-02-19 93 /348

 asecond instance in the user interface whose primary purpose is to generate the tool path preview. This one executes a program
once it is loaded, but it doesn’t actually cause machine movements.

Now assume that your remap procedure contains a G38 probe operation, for example as part of a tool change with automatic tool
length touch off. If the probe fails, that would clearly be an error, so you’d display a message and abort the program.

Now, what about preview of this procedure? At preview time, of course it’s not known whether the probe succeeds or fails -
but you would likely want to see what the maximum depth of the probe is, and assume it succeeds and continues execution to
preview further movements. Also, there is no point in displaying a probe failed message and aborting during preview.

The way to address this issue is to test in your procedure whether it executes in preview or execution mode. This can be
checked for by testing the #<_task> predefined named parameter - it will be 1 during actual execution and O during preview.
See configs/sim/axis/remap/manual-toolchange-with-tool-length-switch/nc_subroutines/manual_change.ngc for a complete us-
age example.

Within Embedded Python, the task instance can be checked for by testing self-task - this will be 1 in the milltask instance, and O
in the preview instance(s).

11.14 Remappable Codes

11.14.1 Existing codes which can be remapped
The current set of existing codes open to redefinition is:

e Tx (Prepare)

* M6 (Change tool)

¢ M61 (Set tool number)

* MO (pause a running program temporarily)

* M1 (pause a running program temporarily if the optional stop switch is on)

* M60 (exchange pallet shuttles and then pause a running program temporarily)
* S (set spindle speed)

¢ F (set feed)

Note that the use of M61 currently requires the use of iocontrol-v2.

11.14.2 Currently unallocated G-codes:

These codes are currently undefined in the current implementation of LinuxCNC and may be used to define new G-codes:
FIXTHIS too verbose

G0.1 G0.2 G0.3 G0.4 GO.5 GO0.6 GO.7 GO.8 G0.9 G1.1 G1.2 G1.3 G1.4 G1.5G1.6 G1.7 G1.8 G1.9 G2.1 G2.2 G2.3 G2.4 G2.5
G2.6 G2.7 G2.8 G2.9 G3.1 G3.2 G3.3 G3.4 G3.5 G3.6 G3.7 G3.8 G3.9 G4.1 G4.2 G4.3 G4.4 G4.5 G4.6 G4.7 G4.8 G4.9 G54
G5.5 G5.6 G5.7 G5.8 G5.9 G6 G6.1 G6.2 G6.3 G6.4 G6.5 G6.6 G6.7 G6.8 G6.9 G7.1 G7.2 G7.3 G7.4 G7.5 G7.6 G7.7 G7.8
G7.9 G8.1 G8.2 G8.3 G8.4 G8.5 G8.6 G8.7 G8.8 G8.9 GI G9.1 G9.2 G9.3 G9.4 G9.5 G9.6 G9.7 G9.8 G9.9 G10.1 G10.2 G10.3
G10.4 G10.5 G10.6 G10.7 G10.8 G10.9 G11 G11.1 G11.2 G11.3 G11.4 G11.5 G11.6 G11.7 G11.8 G11.9 G12 G12.1 G12.2
G12.3 G12.4 G12.5 G12.6 G12.7 G12.8 G12.9 G13 G13.1 G13.2 G13.3 G13.4 G13.5 G13.6 G13.7 G13.8 G13.9 G14 G14.1
G14.2 G14.3 G144 G14.5 G14.6 G14.7 G14.8 G14.9 G15 G15.1 G15.2 G15.3 G15.4 G15.5 G15.6 G15.7 G15.8 G15.9 G16
G16.1 G16.2 G16.3 G16.4 G16.5 G16.6 G16.7 G16.8 G16.9 G17.2G17.3 G17.4 G17.5 G17.6 G17.7 G17.8 G17.9 G18.2 G18.3
G18.4 G18.5 G18.6 G18.7 G18.8 G18.9 G19.2 G19.3 G19.4 G19.5 G19.6 G19.7 G19.8 G19.9 G20.1 G20.2 G20.3 G20.4 G20.5
G20.6 G20.7 G20.8 G20.9 G21.1 G21.2 G21.3 G21.4 G21.5 G21.6 G21.7 G21.8 G21.9 G22 G22.1 G22.2 G22.3 G22.4 G22.5
G22.6 G22.7 G22.8 G22.9 G23 G23.1 G23.2 G23.3 G23.4 G23.5 G23.6 G23.7 G23.8 G23.9 G24 G24.1 G24.2 G24.3 G244

Integrator Manual V2.7.0-pre3, 2015-02-19 94 /348

G24.5 G24.6 G24.7 G24.8 G24.9 G25 G25.1 G25.2 G25.3 G25.4 G25.5 G25.6 G25.7 G25.8 G25.9 G26 G26.1 G26.2 G26.3
G26.4 G26.5 G26.6 G26.7 G26.8 G26.9 G27 G27.1 G27.2 G27.3 G27.4 G27.5 G27.6 G27.7 G27.8 G27.9 G28.2 G28.3 G28.4
G28.5 G28.6 G28.7 G28.8 G28.9 G29 G29.1 G29.2 G29.3 G29.4 G29.5 G29.6 G29.7 G29.8 G29.9 G30.2 G30.3 G30.4 G30.5
G30.6 G30.7 G30.8 G30.9 G31 G31.1 G31.2 G31.3 G31.4 G31.5 G31.6 G31.7 G31.8 G31.9 G32 G32.1 G32.2 G32.3 G324
G32.5 G32.6 G32.7 G32.8 G32.9 G33.2 G33.3 G33.4 G33.5 G33.6 G33.7 G33.8 G33.9 G34 G34.1 G34.2 G34.3 G34.4 G34.5
G34.6 G34.7 G34.8 G34.9 G35 G35.1 G35.2 G35.3 G35.4 G35.5 G35.6 G35.7 G35.8 G35.9 G36 G36.1 G36.2 G36.3 G36.4
G36.5 G36.6 G36.7 G36.8 G36.9 G37 G37.1 G37.2 G37.3 G37.4 G37.5 G37.6 G37.7 G37.8 G37.9 G38 G38.1 G38.6 G38.7
G38.8 G38.9 G39 G39.1 G39.2 G39.3 G39.4 G39.5 G39.6 G39.7 G39.8 G39.9 G40.1 G40.2 G40.3 G40.4 G40.5 G40.6 G40.7
G40.8 G40.9 G41.2 G41.3 G41.4 G41.5 G41.6 G41.7 G41.8 G41.9 G42.2 G42.3 G42.4 G42.5 G42.6 G42.7 G42.8 G42.9 G43.2
G43.3 G43.4 G43.5 G43.6 G43.7 G43.8 G43.9 G44 G44.1 G44.2 G44.3 G44.4 G44.5 G44.6 G44.7 G44.8 G44.9 G45 G45.1
G45.2 G45.3 G45.4 G45.5 G45.6 G45.7 G45.8 G45.9 G46 G46.1 G46.2 G46.3 G46.4 G46.5 G46.6 G46.7 G46.8 G46.9 G47
G47.1 G47.2 G47.3 G47.4 G47.5 G47.6 G47.7 G47.8 G47.9 G48 G48.1 G48.2 G48.3 G48.4 G48.5 G48.6 G48.7 G48.8 G48.9
G49.1 G49.2 G49.3 G49.4 G49.5 G49.6 G49.7 G49.8 G49.9 G50 G50.1 G50.2 G50.3 G50.4 G50.5 G50.6 G50.7 G50.8 G50.9
G51 G51.1 G51.2 G51.3 G51.4 G51.5 G51.6 G51.7 G51.8 G51.9 G52 G52.1 G52.2 G52.3 G52.4 G52.5 G52.6 G52.7 G52.8
G52.9 G53.1 G53.2 G53.3 G53.4 G53.5 G53.6 G53.7 G53.8 G53.9 G54.1 G54.2 G54.3 G54.4 G54.5 G54.6 G54.7 G54.8 G54.9
G55.1 G55.2 G55.3 G55.4 G55.5 G55.6 G55.7 G55.8 G55.9 G56.1 G56.2 G56.3 G56.4 G56.5 G56.6 G56.7 G56.8 G56.9 G57.1
G57.2 G57.3 G57.4 G57.5 G57.6 G57.7 G57.8 G57.9 G58.1 G58.2 G58.3 G58.4 G58.5 G58.6 G58.7 G58.8 G58.9 G59.4 G59.5
G59.6 G59.7 G59.8 G59.9 G60 G60.1 G60.2 G60.3 G60.4 G60.5 G60.6 G60.7 G60.8 G60.9 G61.2 G61.3 G61.4 G61.5 G61.6
G61.7 G61.8 G61.9 G62 G62.1 G62.2 G62.3 G62.4 G62.5 G62.6 G62.7 G62.8 G62.9 G63 G63.1 G63.2 G63.3 G63.4 G63.5
G63.6 G63.7 G63.8 G63.9 G64.1 G64.2 G64.3 G64.4 G64.5 G64.6 G64.7 G64.8 G64.9 G65 G65.1 G65.2 G65.3 G65.4 G65.5
G65.6 G65.7 G65.8 G65.9 G66 G66.1 G66.2 G66.3 G66.4 G66.5 G66.6 G66.7 G66.8 G66.9 G67 G67.1 G67.2 G67.3 G67.4
G67.5 G67.6 G67.7 G67.8 G67.9 G68 G68.1 G68.2 G68.3 G68.4 G68.5 G68.6 G68.7 G68.8 G68.9 G69 G69.1 G69.2 G69.3
G69.4 G69.5 G69.6 G69.7 G69.8 G69.9 G70 G70.1 G70.2 G70.3 G70.4 G70.5 G70.6 G70.7 G70.8 G70.9 G71 G71.1 G71.2
G71.3 G71.4 G71.5 G71.6 G71.7 G71.8 G71.9 G72 G72.1 G72.2 G72.3 G72.4 G72.5 G72.6 G72.7 G72.8 G72.9 G73.1 G73.2
G73.3 G73.4 G73.5 G73.6 G73.7 G73.8 G73.9 G74 G74.1 G74.2 G74.3 G74.4 G74.5 G74.6 G74.7 G74.8 G74.9 G75 G75.1
G75.2 G753 G75.4 G75.5 G75.6 G75.7 G75.8 G75.9 G76.1 G76.2 G76.3 G76.4 G76.5 G76.6 G76.7 G76.8 G76.9 G77 G77.1
G772 G71.3 G774 G77.5 G77.6 G77.7 G77.8 G77.9 G78 G78.1 G78.2 G78.3 G78.4 G78.5 G78.6 G78.7 G78.8 G78.9 G79
G79.1 G79.2 G79.3 G79.4 G79.5 G79.6 G79.7 G79.8 G79.9 G80.1 G80.2 G80.3 G80.4 G80.5 G80.6 G80.7 G80.8 G80.9 G81.1
G81.2 G81.3 G81.4 G81.5 G81.6 G81.7 G81.8 G81.9 G82.1 G82.2 G82.3 G82.4 G82.5 G82.6 GB2.7 G82.8 G82.9 G&3.1 G83.2
G83.3 G83.4 G83.5 G83.6 G83.7 G83.8 G83.9 G84.1 G84.2 G84.3 G84.4 G84.5 G84.6 G84.7 G84.8 G84.9 G85.1 G85.2 G85.3
G85.4 G85.5 G85.6 G85.7 G85.8 G85.9 G86.1 G&6.2 G86.3 G86.4 G86.5 G86.6 G86.7 G86.8 G86.9 G87.1 G&7.2 G&7.3 G87.4
G87.5 G87.6 G87.7 G&7.8 G&7.9 G88.1 G88.2 G88.3 G88.4 G88.5 G88.6 G88.7 G88.8 G8&8.9 G&9.1 G8Y.2 G89.3 G89.4 GBI.5
G89.6 G89.7 G89.8 G89.9 G90.2 G90.3 G90.4 G90.5 G90.6 G90.7 G90.8 G90.9 G91.2 G91.3 G91.4 G91.5 G91.6 G91.7 G91.8
G91.9 G92.4 G92.5 G92.6 G92.7 G92.8 G92.9 G93.1 G93.2 G93.3 G93.4 G93.5 G93.6 G93.7 G93.8 G93.9 G94.1 GY4.2 G94.3
G94.4 G94.5 G94.6 G94.7 G94.8 G94.9 G95.1 G95.2 G95.3 G95.4 G95.5 G95.6 G95.7 G95.8 G95.9 G96.1 G96.2 G96.3 G96.4
G96.5 G96.6 G96.7 G96.8 G96.9 G97.1 G97.2 G97.3 G97.4 G97.5 G97.6 G97.7 G97.8 G97.9 G98.1 G98.2 G98.3 G98.4 GI98.5
(G98.6 G98.7 G98.8 G98.9 G99.1 G99.2 G99.3 G99.4 G99.5 G99.6 G99.7 G99.8 G99.9

11.14.3 Currently unallocated M-codes:

These codes are currently undefined in the current implementation of LinuxCNC and may be used to define new M-codes:

M10

M11 M12 M13 M14 M15 Mle6 M17 M18 M19 M20

M21 M22 M23 M24 M25 M26 M27 M28 M29 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40
M41 M42 M43 M44 M45 M46 M47 M54 M55 M56 M57 M58 M59 M74 M75 M76 M77 M78 M79 M80
M81 M82 M83 M84 M85 M86 M87 M88 M89 M90

M91 M92 M93 M94 MS5 M96 MO97 M98 M99

All codes between M1 99 and M999.

11.14.4 readahead time and execution time

foo

Integrator Manual V2.7.0-pre3, 2015-02-19 95/348

11.14.5 plugin/pickle hack

foo

11.14.6 Module, methods, classes, etc reference

foo

11.15 Introduction: Extending Task Execution

foo

11.15.1 Why would you want to change Task Execution?

foo

11.15.2 A diagram: task, interp, iocontrol, Ul (??)

foo

11.16 Models of Task execution

foo

11.16.1 Traditional iocontrol/iocontrolv2 execution

foo

11.16.2 Redefining 10 procedures

foo

11.16.3 Execution-time Python procedures

foo

11.17 A short survey of LinuxCNC program execution

To understand remapping of codes it might be helpful to survey the execution of task and interpreter as far as it relates to
remapping.

Integrator Manual V2.7.0-pre3, 2015-02-19 96 /348

11.17.1 Interpreter state

Conceptually, the interpreter’s state consist of variables which fall into the following categories:

1. configuration information (typically from INI file)
2. the World model - a representation of actual machine state
3. modal state and settings

4. interpreter execution state

(3) refers to state which is carried over between executing individual NGC codes - for instance, once the spindle is turned on and
the speed is set, it remains at this setting until turned off. The same goes for many codes, like feed, units, motion modes (feed or
rapid) and so forth.

(4) holds information about the block currently executed, whether we are in a subroutine, interpreter variables etc.

Most of this state is aggregated in a - fairly unsystematic - structure _setup (see interp_internals.hh).

11.17.2 Task and Interpreter interaction, Queuing and Read-Ahead

The task part of LinuxCNC is responsible for coordinating actual machine commands - movement, HAL interactions and so
forth. It does not by itself handle the RS274NGC language. To do so, task calls upon the interpreter to parse and execute the next
command - either from MDI or the current file.

The interpreter execution generates canonical machine operations, which actually move something. These are, however, not
immediately executed but put on a queue. The actual execution of these codes happens in the task part of LinuxCNC: canon
commands are pulled off that interpreter queue, and executed resulting in actual machine movements.

This means that typically the interpreter is far ahead of the actual execution of commands - the parsing of the program might well
be finished before any noticeable movement starts. This behavior is called read-ahead.

11.17.3 Predicting the machine position
To compute canonical machine operations in advance during read ahead, the interpreter must be able to predict the machine
position after each line of Gcode, and that is not always possible.

Let’s look at a simple example program which does relative moves (G91), and assume the machine starts at x=0,y=0,z=0. Relative
moves imply that the outcome of the next move relies on the position of the previous one:

N10 G91

N20 GO X10 Y-5 Z20
N30 Gl Y20 Z-5
N40 GO Zz30

N50 M2

Here the interpreter can clearly predict machine positions for each line:
After N20: x=10 y=-5 z=20; after N30: x=10 y=15 z=15; after N40: x=10 y=15 z=45

and so can parse the whole program and generate canonical operations well in advance.

11.17.4 Queue-busters break position prediction

However, complete read ahead is only possible when the interpreter can predict the position impact for every line in the program
in advance. Let’s look at a modified example:

Integrator Manual V2.7.0-pre3, 2015-02-19 97 /348

N10 G91

N20 GO X10 Y-5 Zz20

N30 G38.3 Z-10

N40 0100 if [#5070 EQ 0]
N50 Gl Y20 z-5

N60 0100 else

N70 GO z30

N80 0100 endif

N90 G1 z10

N95 M2

To pre-compute the move in N90, the interpreter would need to know where the machine is after line N80 - and that depends on
whether the probe command succeeded or not, which is not known until it’s actually executed.

So, some operations are incompatible with further read-ahead. These are called queue busters, and they are:

* reading a HAL pin’s value with M66: value of HAL pin not predictable
* loading a new tool with M6: tool geometry not predictable

* executing a probe with G38.x: final position and success/failure not predictable

11.17.5 How queue-busters are dealt with

Whenever the interpreter encounters a queue-buster, it needs to stop read ahead and wait until the relevant result is available. The
way this works is:

* when such a code is encountered, the interpreter returns a special return code to task INTERP_EXECUTE_FINISH).

* this return code signals to task to stop read ahead for now, execute all queued canonical commands built up so far (including the
last one, which is the queue buster), and then synchronize the interpreter state with the world model. Technically, this means
updating internal variables to reflect HAL pin values, reload tool geometries after an M6, and convey results of a probe.

* The interpreter’s synch() method is called by task and does just that - read all the world model actual values which are relevant
for further execution.

* at this point, task goes ahead and calls the interpreter for more read ahead - until either the program ends or another queue-buster
is encountered.

11.17.6 Word order and execution order

One or several words may be present on an NGC block if they are compatible (some are mutually exclusive and must be on
different lines). The execution model however prescribes a strict ordering of execution of codes, regardless of their appearance
on the source line (G-Code Order of Execution).

11.17.7 Parsing

Once a line is read (in either MDI mode, or from the current NGC file), it is parsed and flags and parameters are set in a struct
block (struct _setup, member block1). This struct holds all information about the current source line, but independent of different
ordering of codes on the current line: as long as several codes are compatible, any source ordering will result in the same variables
set in the struct block. Right after parsing, all codes on a block are checked for compatibility.

Integrator Manual V2.7.0-pre3, 2015-02-19 98 /348

11.17.8 Execution

After successful parsing the block is executed by execute_block(), and here the different items are handled according to execution
order.

If a "queue buster" is found, a corresponding flag is set in the interpreter state (toolchange_flag, input_flag, probe_flag) and the
interpreter returns an INTERP_EXECUTE_FINISH return value, signaling stop readahead for now, and resynch to the caller
(task). If no queue busters are found after all items are executed, INTERP_OK is returned, signalling that read-ahead may
continue.

When read ahead continues after the synch, task starts executing interpreter read() operations again. During the next read
operation, the above mentioned flags are checked and corresponding variables are set (because the a synch() was just executed,
the values are now current). This means that the next command already executes in the properly set variable context.

11.17.9 Procedure execution

O-word procedures complicate handling of queue busters a bit. A queue buster might be found somewhere in a nested procedure,
resulting in a semi-finished procedure call when INTERP_EXECUTE_FINISH is returned. Task makes sure to synchronize the
world model, and continue parsing and execution as long as there is still a procedure executing (call_level > 0).

11.17.10 How tool change currently works

The actions happening in LinuxCNC are a bit involved, but it’s necessary to get the overall idea what currently happens before
you set out to adapt those workings to your own needs.

Note that remapping an existing code completely disables all internal processing for that code. That means that beyond your
desired behavior - probably described through an NGC Oword or Python procedure, you need to replicate those internal actions
of the interpreter which together result in a complete replacement of the existing code. The prolog and epilog code is the place
to do this.

11.17.10.1 How tool information is communicated

Several processes are inferested in tool information: task and its interpreter, as well as the user interface. Also, the halui process.

Tool information is held in the emcStatus structure, which is shared by all parties. One of its fields is the foolTable array, which
holds the description as loaded from the tool table file (tool number, diameter, frontangle, backangle and orientation for lathe,
tool offset information).

The authoritative source and only process actually serting tool information in this structure is the iocontrol process. All others
processes just consult this structure. The interpreter holds actually a local copy of the tool table.

For the curious, the current emcStatus structure can be accessed by Python statements. The interpreter’s perception of the tool
currently loaded for instance is accessed by:

;py, from interpreter import =
;py,print this.tool_table[0]

To see fields in the global emcStatus structure, try this:

;py, from emctask import =

;Py,print emcstat.io.tool.pocketPrepped
;py,print emcstat.io.tool.toolInSpindle
;Py,print emcstat.io.tool.toolTable[0]

You need to have LinuxCNC started from a terminal window to see the results.

Integrator Manual V2.7.0-pre3, 2015-02-19 99 /348

11.17.11 How Tx (Prepare Tool) works

11.17.11.1 Interpreter action on a Tx command

All the interpreter does is evaluate the toolnumber paramter, looks up its corresponding pocket, remembers it in the selecte
d_pocket variable for later, and queues a canon command (SELECT_POCKET). See Interp::convert_tool_select in src/em-
c/rs274/interp_execute.cc.

11.17.11.2 Task action on SELECT_POCKET

When task gets around to handle a SELECT_POCKET, it sends a EMC_TOOL_PREPARE message to the iocontrol process,
which handles most tool-related actions in LinuxCNC.

In the current implementation, task actually waits for iocontrol to complete the changer positioning operation, which is not
necessary IMO - it defeats the idea that changer preparation and code execution can proceed in parallel.

11.17.11.3 locontrol action on EMC_TOOL_PREPARE

When iocontrol sees the select pocket command, it does the related HAL pin wiggling - it sets the "tool-prep-number” pin to
indicate which tool is next, raises the "tool-prepare" pin, and waits for the "tool-prepared" pin to go high.

When the changer responds by asserting "tool-prepared”, it considers the prepare phase to be completed and signals task to
continue. (again, this wait istn strictly necessary IMO)

11.17.11.4 Building the prolog and epilog for Tx

See the Python functions prepare_prolog and prepare_epilogin configs/sim/axis/remap/toolchange/
python/toolchange.py.

11.17.12 How M6 (Change tool) works

You need to understand this fully before you can adapt it. It is very relevant to writing a prolog and epilog handler for a remapped
M6. Remapping an existing codes means you disable the internal steps taken normally, and replicate them as far as needed for
your own purposes.

Even if you are not familiar with C, I suggest you look at the Interp::convert_tool_change code in src/emc/rs274/interp_convert.cc.

11.17.12.1 Interpreter action on a M6 command

When the interpreter sees an M6, it:

1. checks whether a T command has already been executed (test settings->selected_pocket to be >= 0) and fail with Need
tool prepared -Txx- for toolchange message if not.

2. check for cutter compensation being active, and fail with Cannot change tools with cutter radius compensation on if so.
3. stop the spindle except if the "TOOL_CHANGE_WITH_SPINDLE_ON" ini option is set.

4. generate a rapid Z up move if if the "TOOL_CHANGE_QUILL_UP" ini option is set.

5. if TOOL_CHANGE_AT_G30 was set:

a. move the A, B and C indexers if applicable

b. generate rapid move to the G30 position

6. execute a CHANGE_TOOL canon command,with the selected pocket as parameter. CHANGE_TOOL will:

Integrator Manual V2.7.0-pre3, 2015-02-19 100/ 348

a. generate a rapid move to TOOL_CHANGE_POSITION if so set in ini
b. enqueue an EMC_TOOL_LOAD NML message to task.

7. set the numberer parameters 5400-5413 according to the new tool

8. signal to task to stop calling the interpreter for readahead by returning INTERP_EXECUTE_FINISH since M6 is a queue
buster.

11.17.12.2 What task does when it sees a CHANGE_TOOL command

Again, not much more than passing the buck to iocontrol by sending it an EMC_TOOL_LOAD message, and waiting until
iocontrol has done its thing.

11.17.12.3 locontrol action on EMC_TOOL_LOAD

1. it asserts the "tool-change" pin
2. it waits for the "tool-changed" pin to become active

3. when that has happened:

a. deassert "tool-change"
b. set "tool-prep-number” and "tool-prep-pocket” pins to zero

c. execute the load_tool() function with the pocket as parameter.

The last step actually sets the tooltable entries in the emcStatus structure. The actual action taken depends on whether the
RANDOM_TOOLCHANGER ini option was set, but at the end of the process foolTable[0] reflects the tool currently in the
spindle.

When that has happened:

1. iocontrol signals task to go ahead
2. task tells the interpreter to execute a synch() operation, to see what has changed

3. the interpreter synch() pulls all information from the world model needed, among it the changed tool table.

From there on, the interpreter has complete knowledge of the world model and continues with read ahead.

11.17.12.4 Building the prolog and epilog for M6

See the Python functions change_prolog and change_epiloginconfigs/sim/axis/remap/toolchange/pyt
hon/toolchange.py.

11.17.13 How M61 (Change tool number) works

M61 requires a non-negative ~Q parameter (tool number). If zero, this means unload tool, else set current tool number to Q.

11.17.13.1 Building the replacement for M61

An example Python redefinition for M61 can be found in the set_tool_number function in configs/sim/axis/
remap/toolchange/python/toolchange.py.

Integrator Manual V2.7.0-pre3, 2015-02-19 101 /348

11.18 Optional Interpreter features: ini file configuration

There are some interpreter features in this branch which are experimental, and not backwards compatible, which is why they
need to be enabled explicitly. They are specified as follows:

[RS274NGC]
FEATURES = <feature mask>

Mask bits are:

Retain G43:1 (experimental)
When set, you can turn on G43 after loading the first tool, and then not worry about it through the program. When you
finally unload the last tool, G43 mode is canceled. This is experimental as it changes the operation of legal ngc program,
but it could be argued that those programs are buggy or likely to be not what the author intended.

add n_args parameter:2
A called subroutine can determine the number of actual positional parameters passed by inspecting the #<n_args>
parameter.

enable #<_ini[section]name> read only variables:4
if set, the interpreter will fetch read-only values from the ini file through this special variable syntax.

enable #<_hal[Hal item]> read only variables:8
if set, the interpreter will fetch read-only values from HAL file through this special variable syntax.

preserve case in O-word names within comments:16
if set, enables reading of mixed-case HAL items in structured comments like (debug, #<_hal[MixedCaseltem]). Really a
kludge which should go away.

11.19 Named parameters and inifile variables

To access ini file values from G-code, use the following named parameter syntax:

#<_ini[section]name>

For example, if the ini file looks like so:

[SETUP]
XPOS = 3.145
YPOS = 2.718

you may refer to the O-word named parameters #<_ini [setup] xpos> and #<_ini [setup]ypos> within G-code.
EXISTS can be used to test for presence of a given ini file variable:

0100 if [EXISTS[#<_ini[setup]xpos>]]

(debug, [setup]lxpos exists: #<_ini[setup]xpos>)
0100 else

(debug, [setup]xpos does not exist)
0100 endif

The value is read from the inifile once, and cached in the interpreter. These parameters are read-only - assigning a value will
cause a runtime error. The names are not case sensitive - they are converted to uppercase before consulting the ini file.

Permanent setup information is usually stored in the ini file. While ini variables can be easily accessed from the shell, Python
and C code, so far there was no way to refer to ini file variables from G-code. This release enables such access. The feature
was motivated by the need to replace ini variables which are currently used in the hard-coded tool change process, like the
[EMCIO] TOOL_CHANGE_POSITION parameter.

Integrator Manual V2.7.0-pre3, 2015-02-19 102/ 348

(:) Caution
this section doesn’t really belong here but since it comes with the same branch, here it rests for now until its clear this
will be merged. It should go into the gcode/overview Named Parameters section.

11.20 Named parameters and HAL items

The variables are read during read-ahead and should not be used for run time evaluation of current position or other execution
time variables.

To read arbitrary HAL pins, signals and parameters from G-code, use the following named parameter syntax:

#<_hal[hal_name]>

where hal_name may be a pin, parameter or signal name.
Example:

(debug, #<_hal[motion-controller.time]>)

Access of HAL items is read-only. Currently, only all-lowercase HAL names can be accessed this way.
EXISTS can be used to test for the presence of a given HAL item:

0100 if [EXISTS[#<_hal[motion—-controller.time]>]]

(debug, [motion-controller.time] exists: #<_hal[motion-controller.time]>)
0100 else

(debug, [motion-controller.time] does not exist)
0100 endif

This feature was motivated by the desire for stronger coupling between user interface components like G1adeVCP and PyVCP
to act as parameter source for driving NGC file behavior. The alternative - going through the M6x pins and wiring them - has a
limited, non-mmemonic namespace and is unnecessary cumbersome just as a Ul/Interpreter communications mechanism.

Note
The values are are only updated when the G code is not running.

(:) Caution
this section doesn’t really belong here but since it comes with the same branch, here it rests for now until its clear this
will be merged. It should go into the gcode/overview Named Parameters section.

11.21 Status

1. the RELOAD_ON_CHANGE feature is fairly broken. Restart after changing a Python file.

2. M61 (remapped or not) is broken in iocontrol and requires iocontrol-v2 to actually work.

Integrator Manual V2.7.0-pre3, 2015-02-19 103/ 348

11.22 Build notes - Lucid (10.04)

For the interpreter & task Python plug ins, this is required:

apt—-get install libboost-pythonl.40-dev

When compiling you might notice that interpmodule.cc takes very long to compile, which is normal - the extensive use of C++
templates makes the compiler breathe heavily.

If you want to play with the configs/sim/axis/remap/iocontrol-removed example, you need to install as follows:

apt-get unixODBC-dev libsgliteodbc sglite3
git clone https://code.google.com/p/pyodbc/
sudo python setup.py build install

If you’d want to try how the Firefox SQlite manager plugin looks & feels as a tool table editor, try this:

1. read http://code.google.com/p/sqlite-manager/

2. download the zip file SQLiteManager 0.7.7 as XULRunner App or whatever is the latest from http://code.google.com/p/-
sqlite-manager/downloads/list

3. create a directory under your home directory, eg ~/sqlite-manager

4. unzip the zp file from 1) into this directory

try running firefox with this plug in and the tooltable.sqlite file in this directory like so:

‘firefox —app <homdir>/sglite-manager/application.ini —-f tooltable.sglite’

firefox should come up with the sglite manager extension and having this database <+
opened

1. adapt the following command line with appropriate paths in the ini file:

TOOL_EDITOR=firefox —app /home/mah/sglite-manager/application.ini -f /home/mah/emc2-dev/
configs/sim/remap/iocontrol-removed/tooltable.sglite

11.23 Build notes - Hardy (8.04)

Building and running on Hardy is possible. run tests works fine too, so the remapping framework per se is ok.

However running the examples is quite limited as of now:

The Git version included in 8.04 is too old to pull https://code.google.com/p/pyodbc/ so the iocontrol-removed demo cant be run.
The python-gtkglextl dependency is missing for reasons I dont understand.

Even if python-gtkglextl is installed, the startup of the manualtoolchange and racktoolchange demos fails due to gladevcp startup
issues.

Note that has nothing to to with the new code but rather the very old platform trying to run gladevcp.

http://code.google.com/p/sqlite-manager/
http://code.google.com/p/sqlite-manager/downloads/list
http://code.google.com/p/sqlite-manager/downloads/list
https://code.google.com/p/pyodbc/

Integrator Manual V2.7.0-pre3, 2015-02-19 104 / 348

11.24 Workarounds

The workaround mentioned below was necessary up to commit d21a488a9e82dd85aal17207b80e3d930afeff202 . References
to DISPLAY_LD_PRELOAD and TASK_LD_PRELOAD have been removed from the ini files under configs/sim/axis/remap
because they are not needed anymore.

Configure now tests whether a workaround is required, and automatically does the right thing if needed.

Michael Haberler 4/2011

if you get a segfault like described
here: https://bugs.launchpad.net/ubuntu/+source/mesa/+bug/259219
or here: https://www.libavg.de/wiki/LinuxInstallIssues#glibc_invalid_pointer

#
#
#
#
#
#
specify a workaround with:

[DISPLAY]

DISPLAY_LD_PRELOAD = /usr/lib/libstdc++.s0.6
and

[TASK]

TASK_LD_PRELOAD = /usr/lib/libstdc++.s0.6

#

#

#

#

D

this is actually a bug in libgll-mesa-dri and it looks
it has been fixed in mesa - 7.10.1-0Oubuntu?2
unfortunately for now this workaround is needed
ISPLAY_LD_PRELOAD = /usr/lib/libstdc++.s0.6

11.25 Changes

¢ the method to return error messages and fail used to be self.set_errormsg(text) followed by return INTERP_ERROR. This has
been replaced by merely returning a string from a Python handler or oword subroutine. This sets the error message and aborts
the program. Previously there was no clean way to abort a Python oword subroutine.

Integrator Manual V2.7.0-pre3, 2015-02-19 105/ 348

Chapter 12

Moveoff Component

The moveoff Hal component is a Hal-only method for implementing offsets. See the manpage (man moveoff) for the IMPOR-
TANT limitations and warnings.

Sim configurations that demonstrate the component and a gui (moveoff_gui) are located in:

* configs/sim/axis/moveoff (axis-ui)

* configs/sim/touchy/ngcgui (touchy-ui)

12.1 Modifying an existing configuration

An existing configuration can be modified to use moveoff_gui as follows:

1. Make inifile entries for HALUI and LIB:hookup_moveoff.tcl. The entry for hookup_moveoff.tcl should follow HALFILES
that connect the pins for axis.N.motor-pos-cmd, axis.N.motor-pos-fb, and components connected to these pins (pids and
encoders typically).

[HAL]
HALUI = halui

HALFILE = LIB:hookup_moveoff.tcl

1. Add inifile entries for the per-axis settings for each axis in use (If an entry is not defined, the corresponding entry from
the [AXIS_n} section will be used, if no entry is found, then the moveoff component default is usedINOT RECOM-
MENDED)):

[MOVEOFF_n]
MAX_LIMIT =
MIN_LIMIT =
MAX_VELOCITY =
MAX_ACCELERATION =

1. Add inifile entries for moveoff component settings (omit to use moveoff defaults):

[MOVEOFF]

EPSILON =

WAYPOINT SAMPLE_SECS =
WAYPOINT THRESHOLD =

Integrator Manual V2.7.0-pre3, 2015-02-19 106/ 348

1. Add inifile entries to start the gui:

[APPLICATIONS]

Note: a delay may be required if there are [HAL]POSTGUI_HALFILE dependencies
DELAY = 0

APP = moveoff_gui optionl option2

For details on available Options, Use:

$ moveoff_ gui --help

Usage:
moveoff_gui [Options}

Options:
[-=—help | -2 | —— -h] (This text)
[-mode [onpause | always]] (default: onpause)
(onpause: show gui when program paused)
(always: show gui always)
[-axes axisnames] (default: xyz (no spaces))
(letters from set of: x y z a b c u v w)
(example: —-axes z)
(example: —axes xz)
(example: —-axes xyz)
[-inc incrementvalue] (default: 0.001 0.01 0.10 1.0)
(specify one per -inc (up to 4))
(example: —-inc 0.001 -inc 0.01 -inc 0.1)
[-size integer] (default: 14
(Overall gui popup size is based on font size)
[-loc center|+x+y] (default: center)
(example: —-loc +10+200)
[—autoresume] (default: not used)
(resume program when move-enable deasserted)
[-delay delay_secs] (default: 5 (resume delay))
Options for special cases:
[-noentry] (default: not used)
(don’t create entry widgets)
[-no_resume_inhibit] (default: not used)

(do not use a resume—inhibit-pin)
[-no_pause_requirement] (default: not used)
(no check for halui.program.is-paused)

The moveoff_gui will provide a display and and control for enabling offsetting if the pin mv.move-enable is NOT connected
when moveoff_gui is started.

If the mv.move-enable pin is connected when moveoff_gui is started, the gui will provide a display but no controls. This mode
supports Hal connections for a jog wheel or other methods of controlling the enable and offset input pins (mv.move-enable,
mv.offset-M, mv.backtrack-enable).

If the halfile LIB:hookup_moveoff.tcl is used to load and connect the moveoff component, the mv.move-enable pin is not con-
nected and local controls provided by moveoff_gui will be used. To enable external controls, subsequent halfiles should connect
the mv.move-enable pin. For example, the configs/sim/* demo configurations use a simple halfile to connect the mv.move-
enable,mv.offset-in-M, and mv.bactrack-enable pins to signals:

[HAL]
HALUI = halui

HALFILE LIB:hookup_moveoff.tcl
HALFILE = LIB:moveoff_ external.hal

Integrator Manual V2.7.0-pre3, 2015-02-19 107 / 348

Part 111

GUI

Integrator Manual V2.7.0-pre3, 2015-02-19 108 /348

Chapter 13

Python Virtual Control Panel

13.1 Introduction

Python Virtual Control Panel The PyVCP (Python Virtual Control Panel) is designed to give the integrator the ability to
customize the AXIS interface with buttons and indicators to do special tasks.

Hardware machine control panels can use up a lot of I/O pins and can be expensive. That is where Virtual Control Panels have
the advantage as well as it cost nothing to build a PyVCP.

Virtual Control Panels can be used for testing or monitoring things to temporarily replace real I/O devices while debugging ladder
logic, or to simulate a physical panel before you build it and wire it to an I/O board.

The following graphic displays many of the PyVCP widgets.

Integrator Manual V2.7.0-pre3, 2015-02-19 109 /348

Meet the widgets:

A LED indicates a HAL_BIT: {{f) 30

A Scale controls a HAL_FLOAT... I—
A Button controls a HAL_BIT... Button |

0.0

and so does a checkbox _| | which can be indicated with a Bar...

0.0

or a Number +0.0000

This is a hbox. Widgets are packed horizontally:

@ 58 0.0 ..
Buttoni I—I |
0.0 100.0

These are a vhoxes within a hbox. This demonstrates box nesting and vertical packing:
Button2 |

- 0.0
Button2 | +0000 0.0 100.0

+0.000 o0
3u|; +0.000 0.0 100.0

0.0

+0 000 0.0 100.0

0.0

"

Button3 | 0.0 100.0
Button4 |
Buttond |

13.2 Panel Construction

The layout of a PyVCP panel is specified with an XML file that contains widget tags between <pyvcp> and </pyvcp>. For
example:

<pyvcp>
<label text="This is a LED indicator"/>
<led/>

</pyvcp>

This is a LED indicator

If you place this text in a file called tiny.xml, and run

halrun -I loadusr pyvcp -c mypanel tiny.xml

Integrator Manual V2.7.0-pre3, 2015-02-19 110/ 348

PyVCP will create the panel for you, which includes two widgets, a Label with the text This is a LED indicator, and a LED, used
for displaying the state of a HAL BIT signal. It will also create a HAL component named mypanel (all widgets in this panel are
connected to pins that start with mypanel.). Since no <halpin> tag was present inside the <led> tag, PyVCP will automatically
name the HAL pin for the LED widget mypanel.led.0

For a list of widgets and their tags and options, see the widget reference below.
Once you have created your panel, connecting HAL signals to and from the PyVCP pins is done with the halcmd:

net <signal-name> <pin-name> <opt-direction> <opt-pin-name>signal-name

If you are new to HAL, the HAL basics chapter in the Integrator Manual is a good place to start.

13.3 Security

Parts of PyVCP files are evaluated as Python code, and can take any action available to Python programs. Only use PyVCP .xml
files from a source that you trust.

13.4 AXIS

Since AXIS uses the same GUI toolkit (Tkinter) as PyVCP, it is possible to include a PyVCP panel on the right side of the normal
AXIS user interface. A typical example is explained below.

Place your PyVCP XML file describing the panel in the same directory where your .ini file is. Say we we want to display the
current spindle speed using a Bar widget. Place the following in a file called spindle.xml:

<pyvcp>
<label>
<text>"Spindle speed:"</text>
</label>
<bar>
<halpin>"spindle-speed"</halpin>
<max_>5000</max_>
</bar>
</pyvcp>

Here we’ve made a panel with a Label and a Bar widget, specified that the HAL pin connected to the Bar should be named
spindle-speed, and set the maximum value of the bar to 5000 (see widget reference below for all options). To make AXIS aware
of this file, and call it at start up, we need to specify the following in the [DISPLAY] section of the .ini file:

PYVCP = spindle.xml

To make our widget actually display the spindle-speed it needs to be hooked up to the appropriate HAL signal. A .hal file that
will be run once AXIS and PyVCP have started can be specified in the [HAL] section of the .ini file:

POSTGUI_HALFILE = spindle_to_pyvcp.hal

This change will run the HAL commands specified in spindle_to_pyvcp.hal. In our example the contents could look like this:

net spindle-rpm-filtered => pyvcp.spindle-speed

assuming that a signal called spindle-rpm-filtered already exists. Note that when running together with AXIS, all PyVCP widget
HAL pins have names that start with pyvep..

Integrator Manual V2.7.0-pre3, 2015-02-19 111/348

|[_ axis-lathe.m = AX] 1) AC-HAL-51M-L_2 :lj:ll
Elle Machine Wiew Help
) b | [IL Spindle speec:
O oF byl =% pingle sp
Manual Contral [F3] | MOl [F5) Praview | pRO |:| 7735 |

00 000

. At Speed

AElg: "X CZ
+ ||Continuaus =

Home All Touch O

Spindle: swop |G

+

Fieed Ovarrida 100%
Spindle Overnde 100°%
Jog Spead &1 indmin

e Velocily 200 indmin

L AXIS "splach g-code™)

| Mot intended for actial Billing)
#1=_1 (5H)

a2=,00 (CUT)

#3=, 00015 (SCALE)

a4=gi0 (FEED)

(P

{Character: "E') HI

Fad

On Mo tool Posdion: Relalive Actual

This is what the newly created PyVCP panel should look like in AXIS. The sim/lathe configuration is already configured this
way.

13.5 Stand Alone

This section describes how PyVCP panels can be displayed on their own with or without LinuxCNC’s machine controller.
To load a stand alone PyVCP panel with LinuxCNC use these commands:

loadusr -Wn mypanel pyvcp —-g WxH+X+Y -c mypanel <path/>panel_file.xml

You would use this if you wanted a floating panel or a panel with a GUI other than AXIS.

e -Wn panelname - makes HAL wait for the component panelname to finish loading (become ready in HAL speak) before
processing more HAL commands. This is important because PyVCP panels export HAL pins, and other HAL components will
need them present to connect to them. Note the capital W and lowercase n. If you use the -Wn option you must use the -c
option to name the panel.

* pyvep < -g> < -c> panel.xml - builds the panel with the optional geometry and/or panelname from the xml panel file. The
panel.xml can be any name that ends in .xml. The .xml file is the file that describes how to build the panel. You must add the
path name if the panel is not in the directory that the HAL script is in.

* -g <WxH><+X+Y> - specifies the geometry to be used when constructing the panel. The syntax is Width x Height + X Anchor
+ Y Anchor. You can set the size or position or both. The anchor point is the upper left corner of the panel. An example is -g
250x500+800+0 This sets the panel at 250 pixels wide, 500 pixels tall, and anchors it at X800 YO.

* -c panelname - tells PyVCP what to call the component and also the title of the window. The panelname can be any name
without spaces.

Integrator Manual V2.7.0-pre3, 2015-02-19 112 /348

To load a stand alone PyVCP panel without LinuxCNC use this command:

loadusr —-Wn mypanel pyvcp —-g 250x500+800+0 -c mypanel mypanel.xml

The minimum command to load a pyvcp panel is:

loadusr pyvcp mypanel.xml

You would use this if you want a panel without LinuxCNC’s machine controller such as for testing or a standalone DRO.

The loadusr command is used when you also load a component that will stop HAL from closing until it’s done. If you loaded a
panel and then loaded Classic Ladder using loadusr -w classicladder, CL would hold HAL open (and the panel) until you closed
CL. The -Wn above means wait for the component -Wn "name"” to become ready. (name can be any name. Note the capital W
and lowercase n.) The -c tells PyVCP to build a panel with the name panelname using the info in panel_file_name.xml. The
name panel_file_name.xml can be any name but must end in .xml - it is the file that describes how to build the panel. You must
add the path name if the panel is not in the directory that the HAL script is in.

An optional command to use if you want the panel to stop HAL from continuing commands / shutting down. After loading any
other components you want the last HAL command to be:

waituser panelname

This tells HAL to wait for component panelname to close before continuing HAL commands. This is usually set as the last
command so that HAL shuts down when the panel is closed.

13.6 Widgets

HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be float, s32 or u32. For more
information on HAL data types see the HAL manual. The PyVCP widget can either display the value of the signal with an
indicator widget, or modify the signal value with a control widget. Thus there are four classes of PyVCP widgets that you can
connect to a HAL signal. A fifth class of helper widgets allow you to organize and label your panel.

1. Widgets for indicating bit signals: led, rectled

2. Widgets for controlling bit signals: button, checkbutton, radiobutton
3. Widgets for indicating number signals: number, s32, u32, bar, meter
4. Widgets for controlling number signals: spinbox, scale, jogwheel

5. Helper widgets: hbox, vbox, table, label, labelframe

13.6.1 Syntax

Each widget is described briefly, followed by the markup used, and a screen shot. All tags inside the main widget tag are optional.

13.6.2 General Notes

At the present time, both a tag-based and an attribute-based syntax are supported. For instance, the following XML fragments
are treated identically:

<led halpin="my-led"/>

and

<led><halpin>"my-led"</halpin></led>

When the attribute-based syntax is used, the following rules are used to turn the attributes value into a Python value:

Integrator Manual V2.7.0-pre3, 2015-02-19 113/ 348

"

1. If the first character of the attribute is one of the following, it is evaluated as a Python expression: {([
2. If the string is accepted by int(), the value is treated as an integer
3. If the string is accepted by float(), the value is treated as floating-point

4. Otherwise, the string is accepted as a string.

When the tag-based syntax is used, the text within the tag is always evaluated as a Python expression.

The examples below show a mix of formats.

13.6.2.1 Comments

To add a comment use the xml syntax for a comment.

<!-- My Comment -->

13.6.2.2 Editing the XML file

Edit the XML file with a text editor. In most cases you can right click on the file and select open with text editor or similar.

13.6.2.3 Colors

Colors can be specified using the X11 rgb colors by name gray75 or hex #0000ff. A complete list is located here http://sedition.com/-
perl/rgb.html.

Common Colors (colors with numbers indicate shades of that color)

* white

* black

* blue and bluel - 4

* cyan and cyanl - 4

» green and greenl - 4

* yellow and yellowl - 4
* red and redl - 4

* purple and purplel - 4
* gray and grayO - 100

13.6.2.4 HAL Pins

HAL pins provide a means to connect the widget to something. Once you create a HAL pin for your widget you can connect it to
another HAL pin with a nef command in a .hal file. For more information on the net command see the HAL Commands section
of the HAL manual.

http://sedition.com/perl/rgb.html
http://sedition.com/perl/rgb.html

Integrator Manual V2.7.0-pre3, 2015-02-19 114 /348

13.6.3 Label

A label is a piece of text on your panel.
The label has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.

<label>
<text>"This is a Label:"</text>
 ("Helvetica",20)
<disable>False</disable>
</label>

The above code produced this example.

(O EEe Sl EEN
This is a Label:

13.6.4 Multi_Label

An extention of the text label.

Selectable text label, can display up to 6 label legends when associated bit pin is activated
Attach each legend pin to a signal and get a descriptive label when the signal is TRUE.

If more than one legend pin is TRUE, the highest numbered TRUE legend will be displayed.

<multilabel>
<legends>["Labell" "Label2" "Label3" "Label4" "Labelb5" "Label6"]</legends>
 ("Helvetica",20)
<disable>False</disable>

</multilabel>

13.6.5 LEDs

A LED is used to indicate the status of a bit halpin. The LED color will be on_color when the halpin is true, and off_color
otherwise.

* <halpin> - sets the name of the pin, default is led.n, where n is an integer

e <size> - sets the size of the led, default is 20

* <on_color> - sets the color of the LED when the pin is true. default is green
* <off_color> - sets the color of the LED when the pin is false. default is red
* <disable_pin> - when true adds a disable pin to the led.

» <disabled_color> - sets the color of the LED when the pin is disabled.

Integrator Manual V2.7.0-pre3, 2015-02-19 115/348

13.6.5.1 Round LED

<led>
<halpin>"my-led"</halpin>
<size>50</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>

The above code produced this example.

13.6.5.2 Rectangle LED

This is a variant of the led widget.

<vbox>
<relief>RIDGE</relief>
<bd>6</bd>
<rectled>
<halpin>"my-led"</halpin>
<height>"50"</height>
<width>"100"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</rectled>
</vbox>

The above code produced this example. Also showing a vertical box with relief.

ar i)

13.6.6 Buttons

A button is used to control a BIT pin. The pin will be set True when the button is pressed and held down, and will be set False
when the button is released. Buttons can use the following formatting options

* <padx>n</padx> - where n is the amount of extra horizontal extra space
* <pady>n</pady> - where n is the amount of extra vertical extra space
* <activebackground>"color"</activebackground> - the cursor over color

* <bg>"color"</bg> - the color of the button

Integrator Manual V2.7.0-pre3, 2015-02-19 116/ 348

13.6.6.1 Text Button

A text button controls a bit halpin. The halpin is false until the button is pressed then it is true. The button is a momentary button.
The text button has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.

<button>
<halpin>"ok-button"</halpin>
<text>"OK"</text>

</button>

<button>
<halpin>"abort-button"</halpin>
<text>"Abort"</text>

</button

The above code produced this example.

oK

fhort

13.6.6.2 Checkbutton

A checkbutton controls a bit halpin. The halpin will be set True when the button is checked, and false when the button is
unchecked. The checkbutton is a toggle type button. The Checkbuttons may be set initially as TRUE or FALSE the initval field
A pin called changepin is also created automatically, which can toggle the Checkbutton via HAL, if the value linked is changed,
to update the display remotely

<checkbutton>
<halpin>"coolant-chkbtn"</halpin>
<text>"Coolant"</text>
<initval>1l</initval>

</checkbutton>

<checkbutton>
<halpin>"chip-chkbtn"</halpin>
<text>"Chips "</text>
<initval>0</initval>

</checkbutton>

The above code produced this example. The coolant checkbutton is checked. Notice the extra spaces in the Chips text to keep
the checkbuttons aligned.

COENES)
® Coolant
_| Chips

13.6.6.3 Radiobutton

A radiobutton will set one of the halpins true. The other pins are set false. The initval field may be set to choose the default
selection when the panel displays. Only one radio button may be set to TRUE (1) or only the highest number pin set TRUE will
have that value.

Integrator Manual V2.7.0-pre3, 2015-02-19 117/ 348

<radiobutton>
<choices>["one", "two", "three"]</choices>
<halpin>"my-radio"</halpin>
<initval>0</initval>

</radiobutton>

The above code produced this example.

' ra %

4 one

L twro

~ three

Note that the HAL pins in the example above will me named my-radio.one, my-radio.two, and my-radio.three. In the image
above, one is the selected value.

13.6.7 Number Displays
Number displays can use the following formatting options

¢ ("Font Name",n) where n is the font size

* <width>n</width> where n is the overall width of the space used

* <justify>pos</justify> where pos is LEFT, CENTER, or RIGHT (doesn’t work)
* <padx>n</padx> where n is the amount of extra horizontal extra space

* <pady>n</pady> where n is the amount of extra vertical extra space

13.6.7.1 Number

The number widget displays the value of a float signal.

<number>
<halpin>"my-number"</halpin>
 ("Helvetica",24)
<format>"+4.4f"</format>
</number>

The above code produced this example.

[t))
+12.3406

* - is a Tkinter font type and size specification. One font that will show up to at least size 200 is courier 10 pitch, so for
areally big Number widget you could specify:

 ("courier 10 pitch",100)

* <format> - is a C-style format specified that determines how the number is displayed.

Integrator Manual V2.7.0-pre3, 2015-02-19 118 /348

13.6.7.2 s32 Number

The s32 number widget displays the value of a s32 number. The syntax is the same as number except the name which is <s32>.
Make sure the width is wide enough to cover the largest number you expect to use.

<s32>
<halpin>"my-number"</halpin>
 ("Helvetica",24)
<format>"6d"</format>
<width>6</width>

</s32>

The above code produced this example.

CE0ED
123456

13.6.7.3 u32 Number

The u32 number widget displays the value of a u32 number. The syntax is the same as number except the name which is <u32>.

13.6.7.4 Bar

A bar widget displays the value of a FLOAT signal both graphically using a bar display and numerically. The colour of the bar
can be set as one colour throughout its range (default using fillcolor) or set to change colour dependent upon the value of the
halpin (rangel, range2 range3 must all be set, if you only want 2 ranges, set 2 of them to the same colour)

<bar>
<halpin>"my-bar"</halpin>
<min_>0</min_>
<max_>150</max_>
<bgcolor>"grey"</bgcolor>
<fillcolor>"red"</fillcolor>
<rangel>0,100, "green"</rangel>
<range2>101, 135, "orange"</rangel>
<range3>136, 150, "red"</rangel>
</bar>

The above code produced this example.

0 123

13.6.7.5 Meter

Meter displays the value of a FLOAT signal using a traditional dial indicator.

Integrator Manual V2.7.0-pre3, 2015-02-19 119/ 348

<meter>
<halpin>"mymeter"</halpin>
<text>"Battery"</text>
<subtext>"Volts"</subtext>
<size>250</size>
<min_>0</min_>
<max_>15.5</max_>
<majorscale>1</majorscale>
<minorscale>0.2</minorscale>
<regionl>(14.5,15.5,"yellow")</regionl>
<region2>(12,14.5,"green")</region2>
<region3> (0,12, "red")</region3>
</meter>

The above code produced this example.

13.6.8 Number Inputs

13.6.8.1 Spinbox

Spinbox controls a FLOAT pin. You increase or decrease the value of the pin by either pressing on the arrows, or pointing at the
spinbox and rolling your mouse-wheel. If the param_pin field is set TRUE(1), a pin will be created that can be used to set the
spinbox to an initial value and to remotely alter its value without HID input

<spinbox>
<halpin>"my-spinbox"</halpin>
<min_>-12</min_>
<max_>33</max_>
<initval>0</initval>
<resolution>0.1</resolution>
<format>"2.3f"</format>
 ("Arial", 30)

Integrator Manual V2.7.0-pre3, 2015-02-19 120 /348

<param_pin>1</param_pin>
</spinbox>

The above code produced this example.

13.6.8.2 Scale

Scale controls a float or a s32 pin. You increase or decrease the value of the pin be either dragging the slider, or pointing at the
scale and rolling your mouse-wheel. The halpin will have both -f and -i added to it to form the float and s32 pins. Width is the
width of the slider in vertical and the height of the slider in horizontal orientation. If the param_pin field is set TRUE(1), a pin
will be created that can be used to set the spinbox to an initial value and to remotely alter its value without HID input

<scale>
 ("Helvetica",16)
<width>"25"</width>
<halpin>"my-hscale"</halpin>
<resolution>0.1</resolution>
<orient>HORIZONTAL</orient>
<initval>-15</initval>
<min_>-33</min_>
<max_>26</max_>
<param_pin>1</param_pin>

</scale>

<scale>
 ("Helvetica",16)
<width>"50"</width>
<halpin>"my-vscale"</halpin>
<resolution>1</resolution>
<orient>VERTICAL</orient>
<min_>100</min_>
<max_>0</max_>
<param_pin>1</param_pin>

</scale>

The above code produced this example.

-15.0
1

100 —

Integrator Manual V2.7.0-pre3, 2015-02-19 121 /348

13.6.8.3 Dial

The Dial outputs a HAL float and reacts to both mouse wheel and dragging. Double left click to increase the resolution and
double right click to reduce the resolution by one digit. The output is capped by the min and max values. The <cpr> is how many
tick marks are on the outside of the ring (beware of high numbers). If the param_pin field is set TRUE(1), a pin will be created
that can be used to set the spinbox to an initial value and to remotely alter its value without HID input

<dial>
<size>200</size>
<cpr>100</cpr>
<min_>-15</min_>
<max_>15</max_>
<text>"Dial"</text>
<initval>0</initval>
<resolution>0.001</resolution>
<halpin>"anaout"</halpin>
<dialcolor>"yellow"</dialcolor>
<edgecolor>"green"</edgecolor>
<dotcolor>"black"</dotcolor>
<param_pin>1</param_pin>

</dial>

The above code produced this example.

13.6.8.4 Jogwheel

Jogwheel mimics a real jogwheel by outputting a FLOAT pin which counts up or down as the wheel is turned, either by dragging
in a circular motion, or by rolling the mouse-wheel.

<jogwheel>
<halpin>"my-wheel"</halpin>
<cpr>45</cpr>
<size>250</size>
</jogwheel>

The above code produced this example.

Integrator Manual V2.7.0-pre3, 2015-02-19 122/ 348

13.6.9 Images

Image displays use only .gif image format. All of the images must be the same size. The images must be in the same directory
as your ini file (or in the current directory if running from the command line with halrun/halemd).

13.6.9.1 Image Bit

The image_bit toggles between two images by setting the halpin to true or false.

<image name=’fwd’ file=’'fwd.gif’/>
<image name='rev’ file='rev.gif’/>
<vbox>
<image_bit halpin=’selectimage’ images=’'fwd rev’ />
</vbox>

This example was produced from the above code. Using the two image files fwd.gif and rev.gif. FWD is displayed when
selectimage is false and REV is displayed when selectimage is true.

r::] ﬁﬁjl!l[::]ﬁir::] ﬁﬁjl!l[::]w

FWD | REV

13.6.9.2 Image u32

The image_u32 is the same as image_bit except you have essentially an unlimited number of images and you select the image by
setting the halpin to a integer value with O for the first image in the images list and 1 for the second image etc.

Integrator Manual V2.7.0-pre3, 2015-02-19

123 /348

<image name=’stb’ file=’'stb.gif’/>
<image name=’'fwd’ file=’'fwd.gif’/>
<image name='rev’ file='rev.gif’/>
<vbox>

<image_u32 halpin=’selectimage’
</vbox>

The above code produced the following example by adding the stb.gif image.

images='stb fwd rev’/>

r::j ﬁﬁjl!ll[:]ﬁrﬁ:j ﬁﬁjlill[:]wr::j ﬁﬁjl!ll[:]ﬁ

Stand

oy | FWD

REV

Notice that the default is the min even though it is set higher than max unless there is a negative min.

13.6.10 Containers

Containers are widgets that contain other widgets. Containers are used to group other widgets.

13.6.10.1 Borders

Container borders are specified with two tags used together. The <relief> tag specifies the type of border and the <bd> specifies

the width of the border.

o <relief>type</relief> - Where type is FLAT, SUNKEN, RAISED, GROOVE, or RIDGE

e <bd>n</bd> - Where n is the width of the border.

<hbox>

<button>
<relief>FLAT</relief>
<text>"FLAT"</text>
<bd>3</bd>

</button>

<button>
<relief>SUNKEN</relief>
<text>"SUNKEN"</text>
<bd>3</bd>

</button>

<button>
<relief>RAISED</relief>
<text>"RAISED"</text>
<bd>3</bd>

</button>

<button>
<relief>GROOVE</relief>
<text>"GROOVE"</text>
<bd>3</bd>

</button>

<button>

<relief>RIDGE</relief>

Integrator Manual V2.7.0-pre3, 2015-02-19

124 /348

<text>"RIDGE"</text>
<bd>3</bd>
</button>
</hbox>

The above code produced this example.

borders

FLAT I SUNKEN RAISED I‘ GROOVE |

13.6.10.2 Hbox

Use an Hbox when you want to stack widgets horizontally next to each other.

<hbox>
<relief>RIDGE</relief>
<bd>6</bd>

<label><text>"a hbox:"</text></label>

<led></led>

<number></number>

<bar></bar>
</hbox>

The above code produced this example.

P | 0.0 |
a hbox: 0.0

0.0

100.10

Inside an Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand expand=""/> tags to choose how
items in the box behave when the window is re-sized. For details of how fill, anchor, and expand behave, refer to the Tk pack

manual page, pack(3tk). By default, fill="y", anchor="center", expand="yes".

13.6.10.3 Vbox

Use a Vbox when you want to stack widgets vertically on top of each other.

<vbox>
<relief>RIDGE</relief>
<bd>6</bd>

<label><text>"a vbox:"</text></label>

<led></led>

<number></number>

<bar></bar>
</vbox>

The above code produced this example.

Integrator Manual V2.7.0-pre3, 2015-02-19 125/348

— vbox SElEs

a vhox:
0.0
0.0
0.0 100.0

Inside a Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand expand=""/> tags to choose how
items in the box behave when the window is re-sized. For details of how fill, anchor, and expand behave, refer to the Tk pack
manual page, pack(3tk). By default, fill="x", anchor="center", expand="yes".

13.6.10.4 Labelframe

A labelframe is a frame with a groove and a label at the upper-left corner.

<labelframe text="Group Title">
 ("Helvetica",16)
<hbox>
<led/>
<led/>
</hbox>

</labelframe>

The above code produced this example.

Group Title—‘

13.6.10.5 Table

A table is a container that allows layout in a grid of rows and columns. Each row is started by a <tablerow/> tag. A contained
widget may span rows or columns through the use of the <tablespan rows= cols=/> tag. The sides of the cells to which the
contained widgets “stick” may be set through the use of the <tablesticky sticky=/> tag. A table expands on its flexible rows and
columns.

Example:

<table flexible_rows="[2]" flexible_columns="[1,4]">
<tablesticky sticky="new"/>
<tablerow/>
<label>
<text>" A (cell 1,1) "</text>
<relief>RIDGE</relief>
<bd>3</bd>
</label>
<label text="B (cell 1,2)"/>

Integrator Manual V2.7.0-pre3, 2015-02-19

126 /348

<tablespan columns="2"/>
<label text="C, D (cells 1,3 and 1,4)"/>
<tablerow/>
<label text="E (cell 2,1)"/>
<tablesticky sticky="nsew"/>
<tablespan rows="2"/>
<label text="'spans\n2 rows’"/>
<tablesticky sticky="new"/>
<label text="G (cell 2,3)"/>
<label text="H (cell 2,4)"/>
<tablerow/>
<label text="J (cell 3,1)"/>
<label text="K (cell 3,2)"/>
<u32 halpin="test"/>
</table>

The above code produced this example.

r

|

SEE)

I Acell1,1) B (cell1,2) C, D (cells1,3and1,4)

E(cell2Z1) spans G (cell 2,3) H (cell 2,4)
J(cell 3,1) Z2rows K (cell 3,2)

0

13.6.10.6 Tabs

A tabbed interface can save quite a bit of space.

<tabs>
<names> ["spindle", "green eggs"]</names>
</tabs>
<tabs>
<names>["Spindle", "Green Eggs", "Ham"]</names>
<vbox>
<label>
<text>"Spindle speed:"</text>
</label>
<bar>
<halpin>"spindle-speed"</halpin>
<max_>5000</max_>
</bar>
</vbox>
<vbox>
<label>
<text>" (this is the green eggs tab)"</text>
</label>
</vbox>
<vbox>
<label>
<text>" (this tab has nothing on it)"</text>
</label>
</vbox>
</tabs>

The above code produced this example showing each tab selected.

Integrator Manual V2.7.0-pre3, 2015-02-19 127 /348

m tabs ==z

 Spindle | Green Eggs | Ham |

Spindle speed:

0.0 2000

]
]
x|

| tabs

Spindle Green Eggs | Ham |

{this is the green eqggs tah)

' tabs RiEE

| Spindle | Green Egys Ham]

(this tab has nothing on it}

Integrator Manual V2.7.0-pre3, 2015-02-19 128 / 348

Chapter 14

PyVCP Examples

14.1 AXIS

To create a PyVCP panel to use with the AXIS interface that is attached to the right of AXIS you need to do the following basic
things.

* Create an .xml file that contains your panel description and put it in your config directory.

Add the PyVCP entry to the [DISPLAY] section of the ini file with your .xml file name.

Add the POSTGUI_HALFILE entry to the [HAL] section of the ini file with the name of your postgui HAL file name.

Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to LinuxCNC.

14.2 Floating

To create floating PyVCP panels that can be used with any interface you need to do the following basic things.

* Create an .xml file that contains your panel description and put it in your config directory.
* Add a loadusr line to your .hal file to load each panel.
* Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to LinuxCNC.

The following is an example of a loadusr command to load two PyVCP panels and name each one so the connection names in
HAL will be known.

loadusr —-Wn btnpanel pyvcp —-c btnpanel panell.xml
loadusr -Wn sppanel pyvcp -c sppanel panel2.xml

The -Wn makes HAL Wait for name to be loaded before proceeding. The pyvep -c makes PyVCP name the panel.
The HAL pins from panell.xml will be named btnpanel.<pin name>
The HAL pins from panel2.xml will be named sppanel.<pin name>

Make sure the loadusr line is before any nets that make use of the PyVCP pins.

Integrator Manual V2.7.0-pre3, 2015-02-19 129 /348

14.3 Jog Buttons

In this example we will create a PyVCP panel with jog buttons for X, Y, and Z. This configuration will be built upon a Stepconf
Wizard generated configuration. First we run the Stepconf Wizard and configure our machine, then on the Advanced Configura-
tion Options page we make a couple of selections to add a blank PyVCP panel as shown in the following figure. For this example
we named the configuration pyvcp_xyz on the Basic Machine Information page of the Stepconf Wizard.

EMGCSteEpperMillNComhguration

Advanced Configuration Options

Include Halul user interface component
Include custom PyWCP GUI panel
Pywvecp Options
@ Blank program:
() Spindle speed/tool position display Display
() XYZ buttons (uses Halul) asample
() Existing custom program panel
Allow connections to HAL
[] Include Classicladder PLC
PLC Options
MNumber of digital in pins: |1':' %|
Mumber of digital out pins: |'1';' §|
Murnber of analog (532) in pins: |1 §|
MNumber of analog (s32) out pins: |1 §|
Include modbus master support
¢ Blank |adder program
Estop ladder program
. @, Edit [adder
Serial modbus program 3, F it |adder
- program
Existing custorn program
¥ Allow connections to HAL

L:anr'u:::al ‘ ‘ & Back | [ﬂEurward]

Figure 14.1: XYZ Wizard Configuration

The Stepconf Wizard will create several files and place them in the linuxcnc/configs/pyvep_xyz directory. If you left the create
link checked you will have a link to those files on your desktop.

Integrator Manual V2.7.0-pre3, 2015-02-19 130/ 348

14.3.1 Create the Widgets

Open up the custompanel.xml file by right clicking on it and selecting open with text editor. Between the <pyvcp></pyvcp> tags
we will add the widgets for our panel.

Look in the PyVCP Widgets Reference section of the manual for more detailed information on each widget.
In your custompanel.xml file we will add the description of the widgets.

<pyvcp>
<labelframe text="Jog Buttons">
 ("Helvetica",16)

<!-— the X jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"x-plus"</halpin>
<text>"X+"</text>

</button>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"x-minus"</halpin>
<text>"X-"</text>

</button>

</hbox>

<!-— the Y jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"y-plus"</halpin>
<text>"Y+"</text>

</button>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"y-minus"</halpin>
<text>"Y-"</text>

</button>

</hbox>

<!-— the Z jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"z-plus"</halpin>
<text>"Z+"</text>

</button>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"z-minus"</halpin>

Integrator Manual V2.7.0-pre3, 2015-02-19 131/348

<text>"Z-"</text>
</button>
</hbox>

<!-— the jog speed slider ——>

<vbox>

<relief>RAISED</relief>

<bd>3</bd>

<label>
<text>"Jog Speed"</text>
 ("Helvetica",16)

</label>

<scale>
 ("Helvetica",14)
<halpin>"jog-speed"</halpin>
<resolution>1</resolution>
<orient>HORIZONTAL</orient>
<min_>0</min_>
<max_>80</max_>

</scale>

</vbox>

</labelframe>
</pyvcp>

After adding the above you now will have a PyVCP panel that looks like the following attached to the right side of AXIS. It looks
nice but it does not do anything until you connect the buttons to halui. If you get an error when you try and run scroll down to
the bottom of the pop up window and usually the error is a spelling or syntax error and it will be there.

-Jog Buttons——

X+ | X- |
LI

Y+

£+ /-

Jog Speed
0
R

Figure 14.2: Jog Buttons

Integrator Manual V2.7.0-pre3, 2015-02-19 132 /348

14.3.2 Make Connections

To make the connections needed open up your custom_postgui.hal file and add the following.

connect the X PyVCP buttons
net my-jogxminus halui.jog.0.minus <= pyvcp.x-minus
net my-jogxplus halui.jog.0.plus <= pyvcp.x-plus

connect the Y PyVCP buttons
net my-jogyminus halui.jog.l.minus <= pyvcp.y-minus
net my-jogyplus halui.jog.l.plus <= pyvcp.y-plus

connect the Z PyVCP buttons
net my-jogzminus halui.jog.2.minus <= pyvcp.z-minus
net my-jogzplus halui.jog.2.plus <= pyvcp.z-plus

connect the PyVCP jog speed slider
net my-jogspeed halui.jog-speed <= pyvcp.jog-speed-f

After resetting the E-Stop and putting it into jog mode and moving the jog speed slider in the PyVCP panel to a value greater
than zero the PyVCP jog buttons should work. You can not jog when running a g code file or while paused or while the MDI tab
is selected.

14.4 Port Tester

This example shows you how to make a simple parallel port tester using PyVCP and HAL.
First create the ptest.xml file with the following code to create the panel description.

<!-- Test panel for the parallel port cfg for out -->
<pyvcp>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>"btn0l1"</halpin>
<text>"Pin 01"</text>
</button>
<led>
<halpin>"led-01"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>"btn02"</halpin>
<text>"Pin 02"</text>
</button>
<led>
<halpin>"led-02"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>

Integrator Manual V2.7.0-pre3, 2015-02-19

133/348

<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>"Pin 10"</text>
 ("Helvetica",14)
</label>
<led>
<halpin>"led-10"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>"Pin 11"</text>
 ("Helvetica",14)
</label>
<led>
<halpin>"led-11"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
</pyvcp>

This will create the following floating panel which contains a couple of in pins and a couple of out pins.

To run the HAL commands that we need to get everything up and running we put the following in our ptest.hal file.

loadrt hal_parport cfg="0x378 out"

loadusr —-Wn ptest pyvcp —-c ptest ptest.xml
loadrt threads namel=porttest periodl=1000000

addf parport.0.read porttest
addf parport.0.write porttest

net pin0l ptest.btn0l parport.0.pin-0l-out ptest.led-01
net pin02 ptest.btn02 parport.0.pin-02-out ptest.led-02
net pinl0 parport.0.pin-10-in ptest.led-10
net pinll parport.0.pin-11-in ptest.led-11

start

Figure 14.3: Port Tester Panel

Integrator Manual V2.7.0-pre3, 2015-02-19

134 /348

To run the HAL file we use the following command from a terminal window.

~$ halrun -I -f ptest.hal

The following figure shows what a complete panel might look like.

To add the rest of the parallel port pins just modify the .xml and .hal files.

Portlest

pin 13 @

Pin 01 . Fin 02 .
Pin 03 . Fin 04 .
Pin 05 . Fin 06 .
Pin 07 . Fin 03 .
Pin 09 . Fin 14 .
Fin 16 . Fin 17 .

pin 15 @

Figure 14.4: Port Tester Complete

To show the pins after running the HAL script use the following command at the halemd prompt:

halcmd: show pin
Component Pins:

Owner Type Dir
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit IN
2 bit ouT
2 bit ouT
2 bit IN

Value
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

FALSE
TRUE

FALSE
TRUE

FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE

Name

parport.0.pin-01l-out <== pin0l
parport.0.pin-02-out <== pin02
parport.0.pin-03-out
parport.0.pin-04-out
parport.0.pin-05-out
parport.0.pin-06-out
parport.0.pin-07-out
parport.0.pin-08-out
parport.0.pin-09-out
parport.0.pin-10-in ==> pinl0
parport.0.pin-10-in-not
parport.0.pin-11-in ==> pinll
parport.0.pin-11-in-not
parport.0.pin-12-in
parport.0.pin-12-in-not
parport.0.pin-13-in
parport.0.pin-13-in-not
parport.0.pin-14-out
parport.0.pin-15-in
parport.0.pin-15-in-not
parport.0.pin-16-out

Integrator Manual V2.7.0-pre3, 2015-02-19

135/348

bit
bit
bit
bit
bit
bit
bit

B DD D DN

This will show you what pins are IN and what pins are OUT as well as any connections.

IN
ouT
ouT
IN
IN
IN
IN

FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

TRUE

parport.0.pin-17-out

ptest
ptest

ptest.
ptest.
.1led-10

ptest

ptest.

14.5 GS2 RPM Meter

led-01
led-02

led-11

.btn0l ==> pin01
.btn02 ==> pin02

<== pin01
<== pin02
<== pinl0
<== pinll

The following example uses the Automation Direct GS2 VDF driver and displays the RPM and other info in a PyVCP panel.

This example is based on the GS2 example in the Hardware Examples section this manual.

14.5.1 The Panel

To create the panel we add the following to the .xml file.

<pyvcp>
<!-— the RPM meter —-—>
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<meter>

<halpin>"spindle_rpm"</halpin>

<text>"Spindle"</text>
<subtext>"RPM"</subtext>
<size>200</size>
<min_>0</min_>

<max_>3000</max_>
<majorscale>500</majorscale>
<minorscale>100</minorscale>
<regionl>0,10,"yellow"</regionl>

</meter>
</hbox>

<!-—— the On Led —-—>

<hbox>

<relief>RAISED</relief>

<bd>3</bd>
<vbox>

<relief>RAISED</relief>

<bd>2</bd>
<label>

<text>"On"</text>

 ("Helvetica",18)
</label>
<width>5</width>
<hbox>
<label width="2"/> <!-- used to center the led —-—>
<rectled>

<halpin>"on-led"</halpin>
<height>"30"</height>

<width>"30"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>

Integrator Manual V2.7.0-pre3, 2015-02-19 136/ 348

</rectled>
</hbox>
</vbox>

<!-— the FWD Led —--—>
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>"FWD"</text>
 ("Helvetica",18)

<width>5</width>
</label>
<label width="2"/>
<rectled>

<halpin>"fwd-led"</halpin>
<height>"30"</height>
<width>"30"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</rectled>
</vbox>

<!-— the REV Led —-——>
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>"REV"</text>
 ("Helvetica",18)

<width>5</width>
</label>
<label width="2"/>
<rectled>

<halpin>"rev-led"</halpin>
<height>"30"</height>
<width>"30"</width>
<on_color>"red"</on_color>
<off_color>"green"</off_color>
</rectled>
</vbox>
</hbox>
</pyvcp>

The above gives us a PyVCP panel that looks like the following.

Integrator Manual V2.7.0-pre3, 2015-02-19 137 /348
B SRS NGOL = ARIS press d CUSIIEAD O G52 fia izt
Eile Maching View Help

Manual Contral [F3] | Moa 5] Freview | pRO
Axla: = X C ¥ 2
- | +||Cantinuous +

Home Axis Touch 41

Spindle: sop [

Feed DOvarmda: 100%
Spindle Overnda 100 %
Jog Speed 5.6 in/min

Pz Walociy G0 nidmin |

Qe ofl bifEine=z2NXXPEHE »

Spindle
p—— 4 !

Sl
ST I

On | FWD | REV
H B B

{ RIS “splash gcode™)

{ Kot internded For actual milling 3
¥l=,1 [5H)

2=, 00 (CUT)

B3=, 0003 {SCALED

#4=E0 (FEET)

Ca0

(Character: 'E')
Goo 7wl

[ali] Mo tool Posilion: Relative Actual

Figure 14.5: GS2 Panel

14.5.2 The Connections

To make it work we add the following code to the custom_postgui.hal file.

display the rpm based on freqg * rpm per hz

loadrt mult2

addf mult2.0 servo-thread

setp mult2.0.inl 28.75

net cypher_speed mult2.0.in0 <= spindle-vfd.frequency-out
net speed_out pyvcp.spindle_rpm <= mult2.0.out

run led
net gs2-run => pyvcp.on-led

fwd led
net gs2-fwd => pyvcp.fwd-led

rev led
net running-rev spindle-vfd.spindle-rev => pyvcp.rev-led

Some of the lines might need some explanations. The fwd led line uses the signal created in the custom.hal file whereas the rev
led needs to use the spindle-rev bit. You can’t link the spindle-fwd bit twice so you use the signal that it was linked to.

Integrator Manual V2.7.0-pre3, 2015-02-19 138 /348

Chapter 15

Glade Virtual Control Panel

15.1 What is GladeVCP?
GladeVCP is an LinuxCNC component which adds the ability to add a new user interface panel to LinuxCNC user interfaces
like:

-Axis
—Touchy
—-Gscreen
—Gmoccapy

Unlike PyVCP, GladeVCP is not limited to displaying and setting HAL pins, as arbitrary actions can be executed in Python code
- in fact, a complete LinuxCNC user interface could be built with GladeVCP and Python.

GladeVCP uses the Glade WYSIWYG user interface editor, which makes it easy to create visually pleasing panels. It relies on
the PyGTK bindings to the rich GTK+ widget set, and in fact all of these may be used in a GladeVCP application - not just the
specialized widgets for interacting with HAL and LinuxCNC, which are documented here.

15.1.1 PyVCP versus GladeVCP at a glance

Both support the creation of panels with HAL widgets - user interface elements like LED’s, buttons, sliders etc whose values are
linked to a HAL pin, which in turn interfaces to the rest of LinuxCNC.

PyVCP:

» widget set: uses TkInter widgets
* user interface creation: "edit XML file / run result / evaluate looks" cycle
* no support for embedding user-defined event handling

* no LinuxCNC interaction beyond HAL pin I/O supported
GladeVCP:

» widget set: relies on the GTK+ widget set.
* user interface creation: uses the Glade WYSIWYG user interface editor
» any HAL pin change may be directed to call back into a user-defined Python event handler

* any GTK signal (key/button press, window, I/O, timer, network events) may be associated with user-defined handlers in Python

http://glade.gnome.org/
http://www.pygtk.org/
http://www.gtk.org/
http://www.gtk.org/
http://glade.gnome.org/

Integrator Manual V2.7.0-pre3, 2015-02-19 139/ 348

e direct LinuxCNC interaction: arbitrary command execution, like initiating MDI commands to call a G-code subroutine, plus
support for status change operations through Action Widgets

* several independent GladeVCP panels may be run in different tabs

* separation of user interface appearance and functionality: change appearance without touching any code

15.2 A Quick Tour with the Example Panel

GladeVCP panel windows may be run in three different setups:

* always visible integrated into Axis at the right side, exactly like PyVCP panels

* as a tab in Axis,Touchy, Gscreen, or Gmoccapy; in Axis this would create a third tab besides the Preview and DRO tabs which
must be raised explicitly

* as a standalone toplevel window, which can be iconifyed/deiconified independent of the main window.
Installed LinuxCNC If you’re using an installed version of LinuxCNC the examples shown below are in the configuration picker
in the Sample Configurations > apps > gladevcp branch.

Git Checkout The following instructions only apply if you’re using a git checkout. Open a terminal and change to the directory
created by git then issue the commands as shown.

Note
For the following commands to work on your git checkout you must first run make then run sudo make setuid then run .
./scripts/rip-environment. More information about a git checkout is on the linuxcnc wiki page.

Run the sample GladeVCP panel integrated into Axis like PyVCP as follows:

$ cd configs/sim/axis/gladevcp
$ linuxcnc gladevcp_panel.ini

Integrator Manual V2.7.0-pre3, 2015-02-19 140/ 348

. File Macking Yiew ==
QR S b /i e=mZRIXIYIEE = Spindle
Marazsl Control [F3] MDY [FS] T = e o al,
e Status i
:: - Pripaded tead: 0
=

Current tnol: 0
System: 0

Scabe walue: L0000

Spnbautton: 0,00
M Cormimand:

A v G |

EE®eO

Settings
At GeCodies

S0 GLT CAD G30 CS0 GRa G2 4D G5
ol COT GHL.1 GH HE MO K48 HE3 WD FD

o CheckEaRbon | L34 - raodmRon

0.0

LED 1 # radolmuttion
Fp] O ki 1040 %
g Spoeed: 16 inrean LED2
B Welodity T3 mrman toggie o rasdicbttcn
{ BXIS “splash g-code® Wai inierded for actual mlling 1 i
ht hawe 19 Touch Off the T azin Commands
& Eaterial an your sill]
. in that part } Gokn Gotn
: Lo se¢ That part) Excibe Crnnd
{ If 1he program 1% Eeo Big ar ssall for your sachire. change the scale &3) MacFerel | CUEENL SY55EMm :l..::vl:':i.l'lr\zl
LB LB E

L 1ank -.'.r-!."a'-l--!."!!.-"".ll"ll:.ll.'!ril-!"h"--'+||'-ulr;!|,L'.:‘.:"JI'.' E1f)
(tent: EMCI 4 AXIS)

=T i Lo Position: Relathen Sbaal

Run the same panel, but as a tab inside Axis:

S cd configs/sim/axis/gladevcp
$ linuxcnc gladevcp_tab.ini

Integrator Manual V2.7.0-pre3, 2015-02-19

141 /348

= Axis.nge - AXES 3.5 0-pro on CMC-MAL-SIM- AXIS

e Macking Y

QECf ruEin +=zFxx[E® b

Marvaal Control [F1] D4 [F35] |
Hiszery:

prisssgh]

Lris] i

|

Previen | DROD GladeVOF demo |

o

Status
. Frepaned tool: O
[Currerk took: @
O System: 4
B Scale value: 40.3000
[| Spinbutton: 40,00
O
Settings)
& checkbutton 058 :Iﬁm
LED | 03 O radiokeion
. —
1
Lot a0 12| 0 rachokasion
:m
Geto Gote
: Excute Oword
e G

ftent: EMCIAAXIS)

BXIS "splash g-cede® Mot iatendsd for actusl seliisg b

To run 1his code snywap yow sight Bawe by Tomih off the T axin)

depending on pour setug. &8 1T yeu had sese saterial is yowr mall...)
Bint jog the I aeis down & bit thes fomch ofd]

Alsn press the Tagyle Shep Lines wiih °/° o see that part)

If the progras 1% Sof Big o meall fer yeur sachine, ctange the scale &3)

ffant | susrssharesfonts/Snge type /T reefonl FresSeridBe 1Al talic, 1t h

[Pis ted

[Pesition. Rutative Artual

1L

To run this panel inside Touchy:

$ cd configs/sim/touchy/gladevcp
$ linuxcnc gladevcp_touchy.ini

Integrator Manual V2.7.0-pre3, 2015-02-19 142 / 348

|= b - lisl|
Relative Absolute DTG Hasduhas!
Er =0.4541 =X 00008 e Q. G20
i 0. 9000 *Ti 0. 0000] Q. o0 - r
b {1 . 3068 ef1 =0.0008 Ee a. b FO: 100%
T
1 (1] e
50: 1007
Nlalus
() Frogasrd tzad &
[] Chgrpre moait &
® R MV: 100
. Ly v B0
. e T]
|:| Jogging
EE L LT
et 2 | D ki
i & et RO 0.0l x
b=t RE=
i 0.001 Y
St ,’,ﬁ:h_ fanute et
00001 Z

Startup MDI Manual Auto Status Preferences | GladeVvCP demo

B]

Functionally these setups are identical - they only differ in screen real estate requirements and visibility. Since it is possible to
run several GladeVCP components in parallel (with different HAL component names), mixed setups are possible as well - for
instance a panel on the right hand side, and one or more tabs for less-frequently used parts of the interface.

15.2.1 Exploring the example panel

While running configs/sim/axis/gladevcp_panel.ini or configs/sim/axis/gladevcp_tab.ini, explore Show HAL Configuration - you
will find the gladevep HAL component and may observe their pin values while interacting with the widgets in the panel. The
HAL setup can be found in configs/axis/gladevcp/manual-example.hal.

The example panel has two frames at the bottom. The panel is configured so that resetting ESTOP activates the Settings frame
and turning the machine on enables the Commands frame at the bottom. The HAL widgets in the Settings frame are linked to
LEDs and labels in the Status frame, and to the current and prepared tool number - play with them to see the effect. Executing
the T<toolnumber> and M6 commands in the MDI window will change the current and prepared tool number fields.

The buttons in the Commands frame are MDI Action widgets - pressing them will execute an MDI command in the interpreter.
The third button Execute Oword subroutine is an advanced example - it takes several HAL pin values from the Settings frame, and
passes them as parameters to the Oword subroutine. The actual parameters received by the routine are displayed by (DEBUG,)
commands - see ../../nc_files/oword.ngc for the subroutine body.

To see how the panel is integrated into Axis, see the [DISPLAY]JGLADEVCP statement in configs/sim/axis/gladevcp/glade-
vep_panel.ini, the [DISPLAYJEMBED * statement in configs/sim/axis/gladevcp/gladevcp_tab.ini and [HAL]POSTGUI_HALFILE
statements in both configs/sim/axis/gladevcp/gladevep_tab.ini and configs/sim/axis/gladevcp/gladevep_panel.ini

15.2.2 Exploring the User Interface description

The user interface is created with the glade UI editor - to explore it, you need to have glade installed. To edit the user interface,
run the command

$ glade configs/axis/gladevcp/manual-example.ui

Integrator Manual V2.7.0-pre3, 2015-02-19 143/ 348

(The required glade program may be named glade-gtk2 on more recent systems.)

The center window shows the appearance of the UI. All user interface objects and support objects are found in the right top
window, where you can select a specific widget (or by clicking on it in the center window). The properties of the selected widget
are displayed, and can be changed, in the right bottom window.

To see how MDI commands are passed from the MDI Action widgets, explore the widgets listed under Actions in the top right
window, and in the right bottom window, under the General tab, the MDI command property.

15.2.3 Exploring the Python callback
See how a Python callback is integrated into the example:

* in glade, see the hit s label widget (a plain GTK+ widget)
* in the buttonl widget, look at the Signals tab, and find the signal pressed associated with the handler on_button_press

* in hitcounter.py, see the method on_button_press and see how it sets the label property in the hits object

The is just touching upon the concept - the callback mechanism will be handled in more detail in the GladeVCP Programming
section.

15.3 Creating and Integrating a Glade user interface

15.3.1 Prerequisite: Glade installation

To view or modify Glade Ul files, you need glade installed - it is not needed just to run a GladeVCP panel. If the glade command
is missing, install it with the command:

$ sudo apt—-get install glade

Verify the version number to be greater than 3.6.7:
$ glade —--version

glade3 3.6.7

(On recent systems, the required glade package is glade-gtk2)

15.3.2 Running Glade to create a new user interface

This section just outlines the initial LinuxCNC-specific steps. For more information and a tutorial on glade, see http://glade.gnome.org.
Some glade tips & tricks may also be found on youtube.

Either modify an existing UI component by running glade <file>.ui or start a new one by just running the glade com-
mand from the shell.

* If LinuxCNC was not installed from a package, the LinuxCNC shell environment needs to be set up with . <linuxcncdir>/
scripts/rip-environment, otherwise glade won’t find the LinuxCNC-specific widgets.

* When asked for unsaved Preferences, just accept the defaults and hit Close.

» From Toplevel (left pane), pick Window (first icon) as top level window, which by default will be named windowI. Do not
change this name - GladeVCP relies on it.

¢ In the left tab, scroll down and expand HAL Python and EMC Actions.

* add a container like a HAL_Box or a HAL_Table from HAL Python to the frame

http://glade.gnome.org
http://www.youtube.com

Integrator Manual V2.7.0-pre3, 2015-02-19 144 /348

* pick and place some elements like LED, button, etc. within a container

This will look like so:

= el TR

Eile Efit Wiew Projedis Help
= It - P ol T
w GRKSpUNCEView | |-
Asticns
» HAL Python @ — = Widgets
= e n] = : i oy 1
i W B = [} hal_tatie]
= (E 8- W Rl ledl u
s ® 0.0 we Fual labedl
el - J 1 B hal led?
wa m P A — |
ﬂ —_— ohjects =
kil oo HAL_HESCalE Progeesties - HAL_HS5cade [hal,..

= = B ity

)= General | Packing Commen | Sionads by
o BT Actioeg -

Mame: hal_Fescabe]
00 << H
Digits: i
P eed DD PO Draw Vabu: T
D i & Value
L Poesition: Top

Q@=«r - _l_'_m,__:“ LTS I=
m B0 : = —
=5 il E Lad o : = s J

Glade tends to write a lot of messages to the shell window, which mostly can be ignored. Select File—Save as, give it a name
like myui.ui and make sure it’s saved as GtkBuilder file (radio button left bottom corner in Save dialog). GladeVCP will also
process the older libglade format correctly but there is no point in using it. The convention for GtkBuilder file extension is .ui.

15.3.3 Testing a panel

You’re now ready to give it a try (while LinuxCNC, e.g. Axis is running) it with:

gladevcp myui.ui

GladeVCP creates a HAL component named like the basename of the UI file - myui in this case - unless overriden by the —c
<component name> option. If running Axis, just try Show HAL configuration and inspect its pins.

You might wonder why widgets contained a HAL_Hbox or HAL_Table appear greyed out (inactive). HAL containers have an
associated HAL pin which is off by default, which causes all contained widgets to render inactive. A common use case would be
to associate these container HAL pins with halui.machine.is-on or one of the halui.mode. signals, to assure some
widgets appear active only in a certain state.

To just activate a container, execute the HAL command setp gladevcp.<container-name> 1.

15.3.4 Preparing the HAL command file

The suggested way of linking HAL pins in a GladeVCP panel is to collect them in a separate file with extension .hal. This file
is passed via the POSTGUI_HALF ILE= option in the HAL section of your ini file.

Integrator Manual V2.7.0-pre3, 2015-02-19 145/ 348

(:) Caution
Do not add the GladeVCP HAL command file to the Axis [HAL]HALFILE= ini section, this will not have the desired
effect - see the following sections.

15.3.5 Integrating into Axis like PyVCP

Place the GladeVCP panel in the righthand side panel by specifying the following in the ini file:

[DISPLAY]
add GladeVCP panel where PyVCP used to live:
GLADEVCP= -u ./hitcounter.py ./manual-example.ui

[HAL]
HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ./manual-example.hal

[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../../nc_files/gladevcp_lib

The HAL component name of a GladeVCP application started with the GLADEVCP option is fixed: gladevcp. The command
line actually run by Axis in the above configuration is as follows:

halcmd loadusr -Wn gladevcp gladevcp -c¢ gladevcp —-x {XID} <arguments to GLADEVCP>

This means you may add arbitrary gladevcp options here, as long as they dont collide with the above command line options.

Note
The file specifiers like ./hitcounter.py, ./manual-example.ui, etc. indicate that the files are located in the same directory as the
ini file. You might have to copy them to you directory (alternatively, specify a correct absolute or relative path to the file(s))

Note

The [RS274NGC] SUBROUTINE_PATH= option is only set so the example panel will find the Oword subroutine (oword.ngc)
for the MDI Command widget. It might not be needed in your setup. The relative path specifier ../../nc_files/gladevcp_lib is
constructed to work with directories copied by the configuration picker and when using a run-in-place setup.

15.3.6 Integrating into Axis as a tab next to DRO and Preview

To do so, edit your .ini file and add to the DISPLAY and HAL sections of ini file as follows:

[DISPLAY]

add GladeVCP panel as a tab next to Preview/DRO:

EMBED_TAB_NAME=GladeVCP demo

EMBED_TAB_COMMAND=halcmd loadusr -Wn gladevcp gladevcp —-c gladevcp -x {XID} —-u ./gladevcp/
hitcounter.py ./gladevcp/manual-example.ui

[HAL]

HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ./gladevcp/manual-example.hal

[RS274NGC]

gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../../nc_files/gladevcp_lib

Integrator Manual V2.7.0-pre3, 2015-02-19 146/ 348

Note the halcmd loadusr way of starting the tab command - this assures that POSTGUI_HALFILE will only be run after the
HAL component is ready. In rare cases you might run a a command here which uses a tab but does not have an associated HAL
component. Such a command can be started without halcmd loadusr, and this signifies to Axis that it does not have to wait for a
HAL component since there is none.

When changing the component name in the above example, note that the names used in -Wn <component> and —c <comp
onent> must be identical.

Try it out by running Axis - there should be a new tab called GladeVCP demo near the DRO tab. Select that tab, you should see
the example panel nicely fit within Axis.

Note
Make sure the Ul file is the last option passed to GladeVCP in both the GLADEVCP= and EMBED_TAB_COMMAND= state-
ments.

15.3.7 Integrating into Touchy

To do add a GladeVCP tab to Touchy, edit your .ini file as follows:

[DISPLAY]

add GladeVCP panel as a tab

EMBED_TAB_NAME=GladeVCP demo

EMBED_TAB_COMMAND=gladevcp -c gladevcp -x {XID} -u ./hitcounter.py -H ./gladevcp-touchy.hal <«
./manual-example.ui

[RS274NGC]

gladevcp Demo specific Oword subs live here

SUBROUTINE_PATH = ../../nc_files/gladevcp_lib
Note

The file specifiers like ./hitcounter.py, ./manual-example.ui, etc. indicate that the files are located in the same directory as the
ini file. You might have to copy them to you directory (alternatively, specify a correct absolute or relative path to the file(s))

Note the following differences to the Axis tab setup:

* The HAL command file is slightly modified since Touchy does not use the halui components so its signals are not available and
some shortcuts have been taken.

* there is no POSTGUI_HALFILE= ini option, but passing the HAL command file on the EMBED_TAB_COMMAND-= line is
ok

e the halecmd loaduser -Wn . .. incantation is not needed.

15.4 GladeVCP command line options

See also man gladevcp . These are the gladevcp command line options:
Usage: gladevcp [options] myfile.ui
Options:

-h, --help
show this help message and exit

Integrator Manual V2.7.0-pre3, 2015-02-19 147 / 348

-c NAME
Set component name to NAME. Default is base name of U file
-d
Enable debug output
-g GEOMETRY
Set geometry WIDTHXHEIGHT+XOFFSET+YOFFSET. Values are in pixel units, XOFFSET/YOFFSET is referenced
from top left of screen. Use -g WIDTHxHEIGHT for just setting size or -g +XOFFSET+YOFFSET for just position
-H FILE
execute hal statements from FILE with halcmd after the component is set up and ready
-m MAXIMUM
force panel window to maximize. Together with the -g geometry option one can move the panel to a second monitor and
force it to use all of the screen
-t THEME
set gtk theme. Default is system theme. Different panels can have different themes. An example theme can be found in the
EMC Wiki.
-x XID
Re-parent GladeVCP into an existing window XID instead of creating a new top level window
-u FILE
Use File’s as additional user defined modules with handlers
-U USEROPT

pass USEROPTSs to Python modules

15.5 Understanding the gladeVCP startup process

The integration steps outlined above look a bit tricky, and they are. It does therefore help to understand the startup process of
LinuxCNC and how this relates to gladeVCP.

The normal LinuxCNC startup process does the following:

e the realtime environment is started

¢ all HAL components are loaded

the HAL components are linked together through the .hal cmd scripts
* task, iocontrol and eventually the user interface is started

* pre-gladeVCP the assumption was: by the time the Ul starts, all of HAL is loaded, plumbed and ready to go
The introduction of gladeVCP brought the following issue:

* gladeVCP panels need to be embedded in a master GUI window setup, e.g. Axis, or Touchy, Gscreen, or Gmoccapy (embedded
window or as an embedded tab)

* this requires the master GUI to run before the gladeVCP window can be hooked into the master GUI
* however gladeVCP is also a HAL component, and creates HAL pins of its own.

* as a consequence, all HAL plumbing involving gladeVCP HAL pins as source or destination must be run after the GUI has
been set up

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?GTK_Themes

Integrator Manual V2.7.0-pre3, 2015-02-19 148 / 348

This is the purpose of the POSTGUI_HALFILE. This ini option is inspected by the GUIs. If a GUI detects this option, it runs
the corresponding HAL file after any embedded gladVCP panel is set up. However, it does not check whether a gladeVCP panel
is actually used, in which case the HAL cmd file is just run normally. So if you do NOT start gladeVCP through GLADEVCP or
EMBED_TARB etc, but later in a separate shell window or some other mechanism, a HAL command file in POSTGUI_HALFILE
will be executed too early. Assuming gladeVCP pins are referenced herein, this will fail with an error message indicating that
the gladeVCP HAL component is not available.

So, in case you run gladeVCP from a separate shell window (i.e. not started by the GUI in an embedded fashion):

 you cannot rely on the POSTGUI_HALFILE ini option causing the HAL commands being run at the right point in time, so
comment that out in the ini file

* explicitly pass the HAL command file which refers to gladeVCP pins to gladeVCP with the -H <halcmd file> option (see
previous section).

15.6 HAL Widget reference

GladeVcp includes a collection of Gtk widgets with attached HAL pins called HAL Widgets, intended to control, display or
otherwise interact with the LinuxCNC HAL layer. They are intended to be used with the Glade user interface editor. With proper
installation, the HAL Widgets should show up in Glade’s HAL Python widget group. Many HAL specific fields in the Glade
General section have an associated mouse-over tool tip.

HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be "float", "s32" or "u32". For more
information on HAL data types see the HAL manual. The GladeVcp widgets can either display the value of the signal with an
indicator widget, or modify the signal value with a control widget. Thus there are four classes of GladeVcp widgets that you can
connect to a HAL signal. Another class of helper widgets allow you to organize and label your panel.

* Widgets for indicating "bit" signals: HAL_LED

* Widgets for controlling "bit" signals: HAL_Button HAL_RadioButton HAL_CheckButton

* Widgets for indicating "number" signals: HAL_Label, HAL_ProgressBar, HAL_HBar and HAL_VBar, HAL_Meter
* Widgets for controlling "number" signals: HAL_SpinButton, HAL_HScale and HAL_VScale, Jog Wheel
* Sensitive control widgets: State_Sensitive_Table HAL_Table and HAL_HBox

* Tool Path preview: HAL_Gremlin

* Widgets to show axis positions: DRO Widget, Combi DRO Widget

» Widgets for file handling: IconView File Selection

* Widgets for display/edit of all axes offsets: OffsetPage

* Widgets for display/edit of all tool offsets: Tooloffset editor

* Widget for Geode display and edit: HAL_Sourceview

» widget for MDI input and history display: MDI History

15.6.1 Widget and HAL pin naming

Most HAL widgets have a single associated HAL pin with the same HAL name as the widget (glade: General—Name).

Exceptions to this rule currently are.

* HAL_Spinbutton and HAL_ComboBox, which have two pins: a <widgetname>-f (float) and a <widgetname>-s (s32)
pin

* HAL_ ProgressBar, which has a <widgetname>-value input pin, and a <widgetname>-scale input pin.

Integrator Manual V2.7.0-pre3, 2015-02-19 149/ 348

15.6.2 Python attributes and methods of HAL Widgets

HAL widgets are instances of GtKWidgets and hence inherit the methods, properties and signals of the applicable GtkWid-
get class. For instance, to figure out which GtkWidget-related methods, properties and signals a HAL_Button has, lookup the
description of GtkButton in the PyGtk Reference Manual.

An easy way to find out the inheritance relationship of a given HAL widget is as follows: run glade, place the widget in a window,
and select it; then choose the Signals tab in the Properties window. For example, selecting a HAL_LED widget, this will show
that a HAL_LED is derived from a GtkWidget, which in turn is derived from a GtkObject, and eventually a GObject.

HAL Widgets also have a few HAL-specific Python attributes:

hal_pin
the underlying HAL pin Python object in case the widget has a single pin type

hal_pin_s, hal_pin_f
the S32 and float pins of the HAL_Spinbutton and HAL_ComboBox widgets - note these widgets do not have a hal_pin
attribute!

hal_pin_scale
the float input pin of HAL_ProgressBar widget representing the maximum absolute value of input.

The are several HAL-specific methods of HAL Widgets, but the only relevant method is:

<halpin>.get()
Retrieve the value of the current HAL pin, where <halpin> is the applicable HAL pin name listed above.

15.6.3 Setting pin and widget values

As a general rule, if you need to set a HAL output widget’s value from Python code, do so by calling the underlying Gtk setter
(e.g. set_active (), set_value ()) - do not try to set the associated pin’s value by halcomp [pinname] =value
directly because the widget will not take notice of the change!.

It might be tempting to set HAL widget input pins programmatically. Note this defeats the purpose of an input pin in the first place
- it should be linked to, and react to signals generated by other HAL components. While there is currently no write protection
on writing to input pins in HAL Python, this doesn’t make sense. You might use setp pinname value in the associated halfile for
testing though.

It is perfectly OK to set an output HAL pin’s value with halcomp [pinname] =value provided this HAL pin is not associ-
ated with a widget, that is, has been created by the hal_glib.GPin (halcomp.newpin (<name>, <type>,<directi
on>) method (see GladeVCP Programming for an example).

15.6.4 The hal-pin-changed signal

Event-driven programming means that the Ul tells your code when "something happens" - through a callback, like when a button
was pressed. The output HAL widgets (those which display a HAL pin’s value) like LED, Bar, VBar, Meter etc, support the
hal-pin-changed signal which may cause a callback into your Python code when - well, a HAL pin changes its value. This means
there’s no more need for permanent polling of HAL pin changes in your code, the widgets do that in the background and let you
know.

Here is an example how to set a hal-pin—-changed signal for a HAL_LED in the Glade Ul editor:

http://www.pygtk.org/docs/pygtk/class-gtkbutton.html
http://www.pygtk.org/docs/pygtk

Integrator Manual V2.7.0-pre3, 2015-02-19 150/ 348

- B hal_tablel -
= hal_buttonl 1
= hal_spinbuttonl

= hal_togglebutton] o

1 HAL LED Properties - HAL,_LED [hal_led1]
General | Packing Commen | Signals f

Sagmal Handler User data
= HAL_LED
i hal-pin-changed on_led_pin_changed

The example in configs/apps/gladevcp/complex shows how this is handled in Python.

15.6.5 Buttons

This group of widgets are derived from various Gtk buttons and consists of HAL_Button, HAL_ToggleButton, HAL_RadioButton
and CheckButton widgets. All of them have a single output BIT pin named identical to the widget. Buttons have no additional
properties compared to their base Gtk classes.

HAL_Button: instantaneous action, does not retain state. Important signal: pressed

* HAL_ToggleButton, HAL_CheckButton: retains on/off state. Important signal: toggled

HAL_RadioButton: a one-of-many group. Important signal: toggled (per button).
* Important common methods: set_active (), get_active ()

* Important properties: label, image

@ chocolate

Excute Owo

checkbutton O strawberry subroutine

Check button: Radio buttons: Toggle button:

Tip
Defining radio button groups in Glade:

« decide on default active button

« in the other button’s General— Group select the default active button’s name in the Choose a Radio Button in this project
dialog.

See configs/apps/gladevcp/by-widget/ for a GladeVCP applications and Ul file for working with radio buttons.

Integrator Manual V2.7.0-pre3, 2015-02-19 151 /348

15.6.6 Scales

HAL_HScale and HAL_VScale are derived from the GtkHScale and GtkVScale respectively. They have one output FLOAT pin
with name equal to widget name. Scales have no additional properties.

To make a scale useful in Glade, add an Adjustment (General— Adjustment— New or existing adjustment) and edit the adjustment
object. It defines the default/min/max/increment values. Also, set adjustment Page size and Page increment to zero to avoid
warnings.

35.5

Example HAL_HScale:

15.6.7 SpinButton

HAL SpinButton is derived from GtkSpinButton and holds two pins:

<widgetname>-f
out FLOAT pin

<widgetname>-s
out S32 pin

To be useful, Spinbuttons need an adjustment value like scales, see above.

b B

Example SpinButton:

15.6.8 Hal_Dial

The hal_dial widget simulates a jogwheel or adjustment dial.

It can be operated with the mouse. You can just use the mouse wheel, while the mouse cursor is over the Hal_Dial widget,
or you hold the left mouse button and move the cursor in circular direction to increase or degrease the counts.

By double clicking the left or right button the scale factor can be increased or decreased.

¢ Counterclockwise = reduce counts
¢ Clockwise = increase counts
* Wheel up = increase counts

¢ Wheel down = reduce counts

left Double Click = x10 scale

Right Double Click = /10 scale

Hal_Dial exports it’s count value as hal pins:

<widgetname>
out S32 pin

<widgetname>-scaled
out FLOAT pin

Integrator Manual V2.7.0-pre3, 2015-02-19 152/ 348

<widgetname>-delta-scaled
out FLOAT pin

It has the following properties:

cpr
Sets the Counts per Revolution, allowed values are in the range from 25 to 360
default = 100

show_counts
Set this to False, if you want to hide the counts display in the middle of the widget.
default = True

label
Set the content of the label witch may be shown over the counts value.
If the label given is longer than 15 Characters, it will be cut to 15 Characters.
default = blank

center_color
This allows one to change the color of the wheel. It uses a GDK color string.
default = #bdefbdefbdef (gray)

count_type_shown
There are three counts available 0) Raw CPR counts 1) Scaled counts 2) Delta scaled counts.
default =1

* count is based on the CPR selected - it will count positive and negative. It is available as a S32 pin.

* Scaled-count is CPR count times the scale - it can be positive and negative.
If you change the scale the output will immediately reflect the change. It is available as a FLOAT pin.

* Delta-scaled-count is cpr count CHANGE, times scale.
If you change the scale, only the counts after that change will be scaled and then added to the current value.
It is available as a FLOAT pin.

scale_adjustable
Set this to False if you want to disallow scale changes by double clicking the widget.
If this is false the scale factor will not show on the widget.
default = True

scale
Set this to scale the counts.
default=1.0

Direct program control

There are ways to directly control the widget using Python.

Using goobject to set the above listed properties:
[widget name].set_property ("cpr", int (value))
widget name].set_property ("show_counts, True)
widget name].set_property ("center_color",gtk.gdk.Color (’ #bdefbdefbdef’))
widget name].set_property ('’ label’, ’'Test Dial 12345’")
widget name].set_property (’scale_adjustable’, True)
widget name].set_property (’scale’, 10.5)
widget name].set_property (’ count_type_shown’, 0)

4
4

[
[
[
[
[
[

Integrator Manual V2.7.0-pre3, 2015-02-19 153 /348

There are python methods:

[widget name] .get_value ()

Will return the counts value as a s32 integer
[widget name].get_scaled_value()

Will return the counts value as a float
[widget name].get_delta_scaled_value()

Will return the counts value as a float
[widget name].set_label ("string")

Sets the label content with "string"

There are two GObject signals emitted:
count_changed
emitted when the widget’s count changes eg. from being wheel scrolled.
scale_changed
emitted when the widget’s scale changes eg. from double clicking. +
connect to these like so:
[widget name].connect (' count_changed’, [count function name])
[widget name].connect (‘' scale_changed’, [scale function name]) +
The callback functions would use this pattern:
def [count function name] (widget, count,scale,delta_scale):
This will return: the widget, the current count, scale and delta scale of that <«

widget.

Example Hal_Dial:

15.6.9 Jog Wheel

The jogwheel widget simulates a real jogwheel.
It can be operated with the mouse. You can just use the mouse wheel, while the mouse cursor is over the JogWheel widget,

or you push the left mouse button and move the cursor in circular direction to increase or degrease the counts.

¢ Counterclockwise = reduce counts
¢ Clockwise = increase counts

* Wheel up = increase counts

Integrator Manual V2.7.0-pre3, 2015-02-19 154 / 348

¢ Wheel down = reduce counts

As moving the mouse the drag and drob way may be faster than the widget can update itself, you may loose counts turning to
fast. It is recommended to use the mouse wheel, and only for very rough movements the drag and drob way.

JogWheel exports it’s count value as hal pin:

<widgetname>-s
out S32 pin

It has the following properties:

size
Sets the size in pixel of the widget, allowed values are in the range of 100 to 500 default = 200

cpr
Sets the Counts per Revolution, allowed values are in the range from 25 to 100 default = 40

show_counts
Set this to False, if you want to hide the counts display in the middle of the widget.

label
Set the content of the label witch may be shown over the counts value. The purpose is to give the user an idea about the

usage of that jogwheel. If the label given is longer than 12 Characters, it will be cut to 12 Characters.

Direct program control

There a couple ways to directly control the widget using Python.

Using goobject to set the above listed properties:
[widget name].set_property("size", int (value))
[widget name] .set_property ("cpr", int (value))
[widget name] .set_property ("show_counts, True)

There are two python methods:
[widget name] .get_value ()
Will return the counts value as integer
[widget name].set_label ("string")
Sets the label content with "string"

Example JogWheel:

Integrator Manual V2.7.0-pre3, 2015-02-19

155/348

'T]" Jogwheel " =E®]

15.6.10 Label

HAL_Label is a simple widget based on GtkLabel which represents a HAL pin value in a user-defined format.

label_pin_type

The pin’s HAL type (0:S32, 1:float, 2:U32), see also the tooltip on 'General =HAL pin type ’(note this is different from

PyVCP which has three label widgets, one for each type).

text_template

Determines the text displayed - a Python format string to convert the pin value to text. Defaults to $ s (values are converted

by the str() function) but may contain any legit as an argument to Pythons format() method.

Example: Distance:%.03f will display the text and the pin value with 3 fractional digits padded with zeros for a

FLOAT pin.

15.6.11 Containers: HAL_HideTable HAL_ Table State_Sensitive_Table and HAL_HBox

These containers are meant to be used to sensitize (grey out) or hide their children.

Insensitived children will not respond to input.

HAL_HideTable has one HAL BIT input pin which controls if it’s child widgets are hidden or not.
If the pin is low then child widgets are visible which is the default state.

HAL_Table and HAL_Hbox have one HAL BIT input pin which controls if their child widgets are sensitive or not.

If the pin is low then child widgets are inactive which is the default state.
State_Sensitive_table responds to the state to linuxcnc’s interpreter.

optionally selectable to respond to must-be-all-homed,must-be-on and must-be-idle
You can combine them. It will always be insensitive at Estop.

* HAL_Hbox is depreceiated - use HAL_Table.
If current panels use it it won’t fail. You just won’t find it in the GLADE editor anymore.
Future vesions of gladeVCP may remove this widget completely and then you will need to update the panel.

Tip

If you find some part of your GladeVCP application is grayed out (insensitive), see whether a HAL_Table pin is unset or

unconnected.

Integrator Manual V2.7.0-pre3, 2015-02-19 156 / 348

15.6.12 LED

The hal_led simulates a real indicator LED.
It has a single input BIT pin which controls it’s state: ON or OFF.
LEDs have several properties which control their look and feel:

on_color
a String defining ON color of LED. May be any valid gtk.gdk.Color name. Not working on Ubuntu 8.04.

off color
String defining OFF color of LED. May be any valid gtk.gdk.Color name or special value dark. dark means that OFF

color will be set to 0.4 value of ON color. Not working on Ubuntu 8.04.

pick_color_on, pick_color_off
Colors for ON and OFF states may be represented as # RRRRGGGGBBBB strings. These are optional properties which have
precedence over on_color and off_color.

led_size
LED radius (for square - half of LED’s side)

led_shape
LED Shape. Valid values are 0 for round, 1 for oval and 2 for square shapes.

led_blink_rate
if set and LED is ON then it’s blinking. Blink period is equal to "led_blink_rate" specified in milliseconds.

create hal pin
select/deselect making of HAL pin to control LED. With no HAL pin created LED can be controlled with a python function.
As an input widget, LED also supports the hal-pin-changed signal. If you want to get a notification in your code
when the LED’s HAL pin was changed, then connect this signal to a handler, for example on_led_pin_changed and
provide the handler as follows:

def on_led_pin_changed(self,hal_led,data=None) :
print "on_led_pin_changed() - HAL pin value:",hal_led.hal_pin.get ()

This will be called at any edge of the signal and also during program start up to report the current value.

ECECEE:
® O

Example LEDs:

15.6.13 ProgressBar

Note
This widget might go away. Use the HAL_HBar and HAL_VBar widgets instead.

The HAL_ProgressBar is derived from gtk.ProgressBar and has two float HAL input pins:

<widgetname>
the current value to be displayed

<widgetname>-scale
the maximum absolute value of input

Integrator Manual V2.7.0-pre3, 2015-02-19 157 / 348

It has the following properties:

scale
value scale. set maximum absolute value of input. Same as setting the <widgetname>.scale pin. A float, range from
_224 to +2 24.

green_limit
green zone limit lower limit

yellow_limit
yellow zone limit lower limit

red_limit
red zone limit lower limit

text_template
Text template to display the current value of the <widgetname> pin. Python formatting may be used for dict {"val
ue":value}

Example HAL_ProgressBar:

15.6.14 ComboBox

HAL_ComboBox is derived from gtk.ComboBox. It enables choice of a value from a dropdown list.

It exports two HAL pins:

<widgetname>-f
the current value, type FLOAT

<widgetname>-s
the current value, type S32

It has the following property which can be set in Glade:

column
the column index, type S32, defaults to -1, range from -1..100 .

In default mode this widgets sets the pins to the index of the chosen list entry. So if your widget has three labels, it may only
assume values 0,1 and 2.

In column mode (column > -1), the value reported is chosen from the ListStore array as defined in Glade. So typically your
widget definition would have two columns in the ListStore , one with text displayed in the dropdown, and an int or float value to
use for that choice.

There’s an example in configs/apps/by-widget/combobox. {py,ui} which uses column mode to pick a float value
from the ListStore.

If you’re confused like me about how to edit ComboBox ListStores and CellRenderer, see http://www.youtube.com/watch?v=Z25_F-
rW2cLS8.

http://www.youtube.com/watch?v=Z5_F-rW2cL8
http://www.youtube.com/watch?v=Z5_F-rW2cL8

Integrator Manual V2.7.0-pre3, 2015-02-19 158 / 348

15.6.15 Bars

HAL Bar and VBar widgets for horizontal and vertical bars representing float values. They have one input FLOAT hal pin. Both
bars have the following properties:

invert
Swap min and max direction. An inverted HBar grows from right to left, an inverted VBar from top to bottom.

min, max
Minimum and maximum value of desired range. It is not an error condition if the current value is outside this range.

show limits
Used to select/deselect the limits text on bar.

zero
Zero point of range. If it’s inside of min/max range then the bar will grow from that value and not from the left (or right)
side of the widget. Useful to represent values that may be both positive or negative.

force_width, force_height
Forced width or height of widget. If not set then size will be deduced from packing or from fixed widget size and bar will
fill whole area.

text_template
Like in Label sets text format for min/max/current values. Can be used to turn off value display.

value
Sets the bar display to the value entered: used only for testing in GLADE editor. The vaue will be set from A HAL pin.

target value
Sets the target line to the value entered: used only for testing in GLADE editor. The value will can be set in a Python
function

target_width
Width of the line that marks the target value.

bg_color
Background (inactive) color of bar.

target_color
Color of the the target line.

z0_color, z1_color, z2_color
Colors of different value zones. Defaults are green, yellow and red. For description of zones see z+_border
properties.

z0_border, z1_border
Define up bounds of color zones. By default only one zone is enabled. If you want more then one zone set z0_border
and z1_border to desired values so zone 0 will fill from O to first border, zone 1 will fill from first to second border and
zone 2 — from last border to 1. Borders are set as fractions, values from O to 1.

EorEET oo ot

Horizontal bar: Vertical bar:

Integrator Manual V2.7.0-pre3, 2015-02-19 159 /348

15.6.16 Meter

HAL Meter is a widget similar to PyVCP meter - it represents a float value and has one input FLOAT hal pin. HAL Meter has
the following properties:

min, max
Minimum and maximum value of desired range. It is not an error condition if the current value is outside this range.

force_size
Forced diameter of widget. If not set then size will be deduced from packing or from fixed widget size and meter will fill
all available space with respect to aspect ratio.

text_template
Like in Label sets text format for current value. Can be used to turn off value display.

label
Large label above center of meter.

sublabel
Small label below center of meter.

bg_color
Background color of meter.

z0_color, z1_color, z2_color
Colors of different value zones. Defaults are green, yellow and red. For description of zones see z+_border
properties.

z0_border, z1_border
Define up bounds of color zones. By default only one zone is enabled. If you want more then one zone set z0_border
and z1_border to desired values so zone 0 will fill from min to first border, zone 1 will fill from first to second border
and zone 2 — from last border to max. Borders are set as values in range min-max.

20 30
10 40
0
Example HAL Meters: h— —
HAL_Graph

This widget is for plotting values over time.

15.6.17 Gremlin tool path preview for .ngc files

Gremlin is a plot preview widget similar to the Axis preview window. It assumes a running LinuxCNC environment like Axis or
Touchy. To connect to it, inspects the INI_FILE_NAME environment variable. Gremlin displays the current .ngc file - it does
monitor for changes and reloads the ngc file if the file name in Axis/Touchy changes. If you run it in a GladeVCP application

Integrator Manual V2.7.0-pre3, 2015-02-19 160/ 348

when LinuxCNC is not running, you might get a traceback because the Gremlin widget can’t find LinuxCNC status, like the
current file name.

Gremlin does not export any HAL pins. It has the following properties:

show tool speed
This displays the tool speed. Defaults true

show commanded
This selects the DRO to use commanded or actual values. Defaults true

use metric units
This selects the DRO to use metric or imperial units. Defaults true

show rapids
This tells the plotter to show the rapid moves. Defaults true

show DTG
This selects the DRO to display the distance-to-go value. Defaults true

show relative
This selects the DRO to show values relative to user system or machine cordinates. Defaults true

show live plot
This tells the plotter to draw or not. Defaults true

show limits
This tells the plotter to show the machine’s limits. Defaults true

show lathe radius
This selects the DRO to display the X axis in radius or diameter, if in lathe mode (selectable in the INI file with LATHE =
1). Defaults false

show extents
This tells the plotter to show the extents. Defaults true

show tool
This tells the plotter to draw the tool. Defaults true

show program
TODO

use joints mode
Used in non trivialkins machines (eg robots). Defaults false

grid size
Sets the size of the grid. which is only visible in the X, Y and Z view. Defaults to 0

use default mouse controls
This disables the default mouse controls. This is most useful when using a touchscreen as the default controls do not work
well. You can programically add controls using python and the handler file technique. Defaults to True

view
may be any of x, v, y2, z, z2, p (perspective) . Defaults to z view.

enable_dro
boolean; whether to draw a DRO on the plot or not. Defaults to True

mouse_btn_mode
integer; mouse button handling, leads to different functions of the button 0 = default: left rotate, middle move, right zoom
1 = left zoom, middle move, right rotate 2 = left move, middle rotate, right zoom 3 = left zoom, middle rotate, right move
4 = left move, middle zoom, right rotate 5 = left rotate, middle zoom, right move

Integrator Manual V2.7.0-pre3, 2015-02-19 161 /348

Direct program control
There a couple ways to directly control the widget using Python.

Using goobject to set the above listed properties:
[widget name].set_property (’'view’,’P’)

[widget name] .set_property('metric_units’,False)

[widget name].set_property (' use_default_controls’,False)

[widget name].set_property (’enable_dro’ False))

[widget name].set_property ('’ show_program’, False)

[widget name].set_property (’show_limits’, False)

[widget name] .set_property ('’ show_extents_option’, False)

[widget name]

[widget name]

[widget name]

[widget name]

[widget name]

[widget name]

(
(
(
(
(
(
.set_property (' show_live_plot’, False)
.set_property (' show_tool’, False)
.set_property (' show_lathe_radius’, True)
.set_property (' show_dtg’, True)
.set_property ('’ show_velocity’,False)

(

.set_property ('mouse_btn_mode’, 4)

There are python methods:
[widget name] .show_offsets = True

[widget name] .grid_size = .75

[widget name].select_fire (event.x,event.y)
[widget name].select_prime (event.x,event.y)
[widget name].start_continuous_zoom(event.y)
[widget name] .set_mouse_start (0,0)

[widget name] .gremlin.zoom_in ()

[widget name].gremlin.zoom_out ()

[widget name].get_zoom_distance ()

[] .set_zoom_distance (dist)

[].clear_live_plotter ()

[] .rotate_view (x,V)

[l.pan(x,v)

widget name
widget name
widget name
widget name

Hints

* If you set all the plotting options false but show_offsets true you get an offsets page instead of a graphics plot.
* If you get the zoom distance before changing the view then reset the zoom distance, it’s much more user friendly.

* if you select an element in the preview, the selected element will be used as rotation center point

Integrator Manual V2.7.0-pre3, 2015-02-19 162 /348

Example:

15.6.18 HAL_Offset
The HAL_Offset widget is used to display the offset of a single axis. It has the following properties:

Joint Number
Used to select which axis (technically which joint) is displayed. On a trivialkins machine (mill, lathe, router) axis vrs joint
number are:

0:X 1:¥ 2:Z2 3:A 4:B 5:C 6:U 7:V 8:W
Text template for metric units::
You can use python formatting to display the position with different <
precision.
Text template for imperial units::
You can use python formatting to display the position with different <«
precision.
Reference Type::
0:G5x l:tool 2:G92 3:Rotation around Z

15.6.19 DRO widget
The DRO widget is used to display the current axis position. It has the following properties:

Actual Position
select actual (feedback) position or commanded position.

Text template for metric units
You can use python formatting to display the position with different precision.

Text template for imperial units
You can use python formatting to display the position with different precision.

Reference Type
Absolute (machine origin), Relative (to current user coordinate origin - G5x) or Distance-to-go (relative to current user
coordinate origin)

Integrator Manual V2.7.0-pre3, 2015-02-19 163 /348

Joint Number
Used to select which axis (technically which joint) is displayed. On a trivialkins machine (mill, lathe, router) axis vrs joint
number are:

0:Xx 1:¥ 2:Z2 3:A 4:B 5:C 6:U 7:V 8:W

Display units
Used to toggle the display units between metric and imperial.

Hints

* If you want the display to be right justified, set the X align to 1.0

* If you want different colors or size or text change the attributes in the glade editor (eg scale is a good way to change the
size of the text)

* The background of the widget is actually see through - so if you place if over an image the DRO numbers will show on
top of it with no backgroud. There is a special technique to do this. See the animated function diagrams below.

* The DRO widget is a modified gtk label widget. As such much or what can be done to a gtk label can be done to DRO
widget.

Direct program control
There a couple ways to directly control the widget using Python.

Using goobject to set the above listed properties:
[widget name].set_property ("display_units_mm", True)
[widget name].set_property ("actual", True)
[widget name].set_property("mm_text_template","$f")
[widget name].set_property ("imperial_text_template","%f")
[widget name] .set_property ("Joint_number", 3)
[widget name].set_property("reference_type", 3)

There are two python methods:
[widget name].set_dro_inch()
[widget name].set_dro_metric()

15.6.20 Combi_DRO widget

The Combi_DRO widget is used to display the current , the relative axis position and the distance to go in one DRO.
By clicking on the DRO the Order of the DRO will toggle around.
In Relative Mode the actual coordinate system will be displayed.

It has the following properties:

joint_number
Used to select which axis (technically which joint) is displayed.
On a trivialkins machine (mill, lathe, router) axis vrs. joint number are:
0:X 1:Y 2:7Z etc

actual
select actual (feedback) or commanded position.

metric_units
Used to toggle the display units between metric and imperial.

auto_units
Units will toggle between metric and imperial according to the active gcode being G20 or G21

diameter
Whether to display position as diameter or radius, in diameter mode the DRO will display the joint value multiplied by 2

Integrator Manual V2.7.0-pre3, 2015-02-19

164 /348

mm_text_template

You can use python formatting to display the position with different precision.

default is "%10.3f"

imperial_text_template

You can use python formatting to display the position with different precision.

default is "%9.4f"

homed_color
The foreground color of the DRO numbers if the joint is homed
default is green

unhomed_color
The foreground color of the DRO numbers if the joint is not homed
default is red

abs_color
the background color of the DRO, if main DRO shows absolute coordinates
default is blue

rel_color
the background color of the DRO, if main DRO shows relative coordinates
default is black

dtg_color
the background color of the DRO, if main DRO shows distance to go
default is yellow

font_size

The font size of the big numbers, the small ones will be 2.5 times smaller, the value must be an integer in the range of 8 to

96,
default is 25

Direct program control

Using goobject to set the above listed properties:

[widget name].set_property (property,value)

There are several python methods to control the widget:

[widget name].set_to_inch(state)
sets the DRO to show imperial units
state = boolean (True or False)

[widget name].set_auto_units(state)

if True the DRO will change units according to active gcode (G20 / G21)

state = boolean (True or False)
Default is True

[widget name].set_to_diameter (state)

if True the DRO will show the diameter not the radius,

lathes
the DRO will display the axis value multiplied by 2
state = boolean (True or False)

Default is False

specially needed for

<_7

Integrator Manual V2.7.0-pre3, 2015-02-19 165/ 348

[widget name] .toggle_readout ()
toggles the order of the DRO in the widget

[widget name].change_axisletter (letter)
changes the automatically given axis letter
very useful to change an lathe DRO from X to R or D
letter = string

[widget name] .get_order ()
returns the order of the DRO in the widget mainly used to maintain them <=
consistent
the order will also be transmitted with the clicked signal
returns a list containing the order

[widget name].set_order (order)
sets the order of the DRO, mainly used to maintain them consistent
order = list object, must be one of

["Rel", "Absl', "DTG"]

["DTG", "Rel", "Absll]

["AbS", "D'I‘G", "Rel"]

= ["Rel", "AbS", "DTG"

Default]

[widget name] .get_position()
returns the position of the DRO as a list of floats
the order is independent of the order shown on the DRO
and will be given as [Absolute , relative , DTG]
Absolute = the machine coordinates, depends on the actual property
will give actual or commanded position

Relative = will be the coordinates of the actual coordinate system
DTG = the distance to go, will mostly be 0, as this function should not be <
used

while the machine is moving, because of time delays

The widget will emit the following signals:

clicked
This signal is emitted, when the user has clicked on the Combi_DRO widget,
it will send the following data:
widget = widget object = The widget object that sends the signal
The joint number of the DRO, where "0:X 1:Y 2:Z —

joint_number = integer
etc’
order = list object = the order of the DRO in that widget
the order may be used to set other Combi_DRO widgets to <+
the same order with [widget name].set_order (order)

units_changed
This signal is emitted, if the DRO units are changed, it will send the <+
following data:
widget = widget object = The widget object that sends the signal
metric_units = boolean = True if the DRO does display metric units, False in <+
case of imperial display

system_changed
This signal is emitted, if the DRO units are changed, it will send the <+

following data:

Integrator Manual V2.7.0-pre3, 2015-02-19 166/ 348

widget = widget object = The widget object that sends the signal
system string = The actual coordinate system. Will be one of
G54 G55 G56 G57 G58 G59 G59.1 G59.2 G59.3
or Rel if non has been selected at all, what will only <=
happen in Glade with no linuxcnc running

There are some information you can get through commands, witch may be of ineterst for you:

[widget name].system
The actual system, as mentioned in the system_changed signal

[widget name] .homed
True if the joint is homed

[widget name] .machine_units
0 if Imperial, 1 if Metric

Example, Three Combi_DRO in a window
X = Relative Mode

Y = Absolute Mode

Z = DTG Mode

combidro ==

Abs 36.087 DTG‘ 0.000

Y. -3.565

DTG 0.000 G54 -3.565

15.6.21 IconView (File selection) widget

This is touch screen friendly widget to select a file and to change directories.

The widget has the following properties:

icon_size
Sets the size of the displayed icon.
Allowed values are integers in the range from 12 to 96
default is 48

start_dir
Sets the directory to start in when the widget is shown first time,
must be a string, containing a valid directory path,
default is "/"

Integrator Manual V2.7.0-pre3, 2015-02-19 167 / 348

jump_to_dir
Sets the directory "jump to" directory, witch is selected by the corresponding button in the bottom button list, the Sth button
counting from the left,
must be a string, containing a valid directory path,
default is "~"

filetypes
Sets the file filter for the objects to be shown
Must be a string containing a comma separated list of extensions to be shown
Default is "ngc,py"

sortorder
Sets the sorting order of the displayed icon must be an integer value from O to 3, where
0 = ASCENDING (sorted according to file names)
1 = DESCENDING (sorted according to file names)
2 = FOLDERFIRST (show the folders first, then the files)
3 = FILEFIRST (show the files first, then the folders),
Default = 2 = FOLDERFIRST

Direct program control

Using goobject to set the above listed properties:

[widget name].set_property (property,Value)

There are python methods to control the widget:

[widget name].show_buttonbox (state)
if False the bottom button box will be hidden, this is helpful in custom <>
screens,
with special buttons layouts to not alter the layout of the GUI, good example
for that is gmoccapy
state = boolean (True or False)
Default is True

[widget name].show_filelabel (state)
if True the file label (between the IconView window and the bottom button box <+
will be shown.
Hiding this label may save place, but showing it is very useful for debugging <+
reasons,
state = boolean (True or False)
Default is True

[widget name].set_icon_size (iconsize)
sets the icon size
must be an integer in the range from 12 to 96
Default = 48

[widget name].set_directory(directory)
Allows to set an directory to be shown
directory = string (a valid file path)

[widget name].set_filetypes(filetypes)
sets the file filter to be used, only files with the given extensions will be <«
shown
filetypes = string containing a comma separated list of extensions
Default = "ngc,py"

Integrator Manual V2.7.0-pre3, 2015-02-19 168 /348

[widget name] .get_selected()
Returns the path of the selected file, or None if an directory has been <+
selected

[widget name].refresh_filelist ()
Refreshes the filelist, needed if you add a file without changing the <+
directory

If the button box has been hidden, you can reach the functions of this button through it’s clicked signals like so:

[widget name] .btn_home.emit ("clicked")

[widget name] .btn_jump_to.emit ("clicked")
[widget name] .btn_sel_prev.emit ("clicked")
[widget name] .btn_sel_next.emit ("clicked")
[widget name] .btn_get_selected.emit ("clicked")
[widget name] .btn_dir_up.emit ("clicked")

[]

widget name] .btn_exit.emit ("clicked")

The widget will emit the following signals:

selected
This signal is emitted, when the user selects an icon, it will return a string ¢
containing a
file path if a file has been selected, or None if an directory has been <
selected
exit
This signal is Emmit, when the exit button has been pressed to close the <>
IconView
mostly needed if the application is started as stand alone.

Example:

Integrator Manual V2.7.0-pre3, 2015-02-19

169 /348

icynview.py

gladevcp li - ngcgui_lib remap- 3D Chips.n 3dtest.ngc M102.c
b subroutines gc

0 R R O I ") B
arcspiral.ng b-index.ngc butterfly.ng cds.ngc comp- comp.ngc
c c gl.ngc

comp31l.n comp311_ cone.ngc daisy.ngc factorial.ng flowsnake.
gc 2.ngc C ngc

e
flowsnake. foam.ngc g20sub.ngc g76.ngc g881.ngc g881min.n

File Label

2 % « L 2 ¥ Y

15.6.22 Calculator widget

This is a simple calculator widget, that can be used for numerical input.
You can preset the display and retrieve the result or that preset value.
It has the following properties:

Is editable
This allows the entry display to be typed into from a keyboard.

Set Font
This allows you to set the font of the display.

Direct program control
There a couple ways to directly control the widget using Python.

Using goobject to set the above listed properties:
[widget name].set_property("is_editable", True)
[widget name].set_property("font", "sans 25")

There are python methods:
[widget name].set_value (2.5)
This presets the display and is recorded.
[widget name].set_font ("sans 25")
[widget name].set_editable (True)

Integrator Manual V2.7.0-pre3, 2015-02-19 170 /348

[widget name].get_value ()

Returns the calculated value - a float.
[widget name].set_editable (True)
[widget name] .get_preset_value ()

Returns the recorded wvalue: a float.

15.6.23 Tooleditor widget

This is a tooleditor widget for displaying and modifying a tool editor file.
It checks the current file once a second to see if linuxcnc updated it.
It has the following properties:

Hidden Columns
This will hide the given columns: The columns are designated (in order) as such:
s,t,p,X,y,Z,a,b,c,u,v,w,d,1,j,q,;
You can hide any number of columns including the select and comments

Direct program control
There a couple ways to directly control the widget using Python.

using goobject to set the above listed properties:
[widget name].set_properties(’hide_columns’,’uvwiijqg’)
This would hide the uvwij and g columns and show all others.

There are python methods:
[widget name].set_visible ("ijq",False)
Would hide ij and Q columns and leave the rest as they were.
[widget name].set_filename (path_to_file)
Sets and loads the tool file.
[widget name].reload(None)
Reloads the current toolfile

Solect Tool# focket % b £ Dlameter Comiments

2 0 1.4230 | -1.5670! 0.0000 0.0000 comment
T4 T 12345 | 0.0000] 0.4440 0.0000 comment
o lo 51234 | 0.0000] 0.0000 0.0000 comment
o o 123.0000| 0.0000] 0.0000 0.0000 tool1

i
i

B B
i
|
i

0 : ='I-5|.l;'i|]r'i][llir {}ﬂ-ﬂﬂﬂilﬂﬂ[}{]. 0.0000 drill

oot | fdd | Relosd

- - S—-

15.6.24 Offsetpage

The Offsetpage widget is used to display/edit the offsets of all the axes.
It has convience buttons for zeroing G92 and Rotation-Around-Z offsets.

Integrator Manual V2.7.0-pre3, 2015-02-19 171/ 348

It will only allow you to select the edit mode when the machine is on and idle.
You can directly edit the offsets in the table at this time. Unselect the edit
button to allow the OffsetPage to reflect changes.

It has the following properties:

Hidden Columns
A no-space list of columns to hide: The columns are designated (in order) as such:
xyzabcuvwt
You can hide any of the columns.

Hidden Rows
A no-space list of rows to hide: the rows are designated (in order) as such
0123456789abc
You can hide any of the rows.

Pango Font
Sets text font type and size

HighLight color
when editing this is the high light color

Active color
when OffsetPage detects an active user coordinate system it will use this
color for the text

Text template for metric units
You can use python formatting to display the position with different precision.

Text template for imperial units
You can use python formatting to display the position with different precision.

Direct program control
There a couple ways to directly control the widget using Python.

Using goobject to set the above listed properties:

[widget name].set_property ("highlight_color",gtk.gdk.Color ('blue’))

[widget name].set_property ("foreground_color",gtk.gdk.Color ('black’))

[widget name].set_property ("hide_columns", "xyzabcuvwt")

[widget name].set_property ("hide_rows","12345678%abc")

[widget name].set_property ("font","sans 25")

There are python methods to control the widget:

[widget name].set_filename("../../../configs/sim/gscreen/gscreen_custom/sim. <
var")

widget name

widget name

widget name

widget name

[.set_col_visible ("Yabuvw",False)
[

[

[

[widget name

[

[

[

[

.set_row_visible ("456789%abc",False)
.set_to_mm()
.set_to_inch()
.hide_button_box (True)
.set_font ("sans 20")
widget name].set_highlight_color ("violet")
widget name].set_foreground_color ("yellow")
widget name] .mark_active ("G55")
Allows you to directly set a row to highlight.
(eg in case you wish to use your own navigation controls. See Gmoccapy
[widget name].selection_mask = ("Tool","Rot","G5x")
These rows are NOT selectable in edit mode.
[widget name].set_names ([[’G54’,’'Default’], ["G55","Vicel"], ['Rot’,"Rotational <
"11)

widget name

Integrator Manual V2.7.0-pre3, 2015-02-19 172 /348
This allows you to set the text of the 'T’ column of each/any row.
This is a list of a list of offset-name/user-name pairs.
The default text is the same as the offset name.
[widget name].get_names ()
This returns a list of a list of row-keyword/user-name pairs.
The user name column is editable, so saving this list is user friendly.
see set_names above.
_Dﬂ':nt b ra A B L Wi Dffset Namie
Tool 0.0000 | 0.0000 0.0000] D.00DD| D.000D 0.0000 0.0000 0.0000 0.0000|Tel
5% 0.0000) 00000 0.0000) 0.0000; 0.0000 O0.0000) 0.0000, 0.0000, O0.0000 G5
Fat | 0.00| i | [| | Ratation af Z
G937 0.0000 | 00000 0.0000| 0.0000) 00000 O0.0000) 0.0000, 0.0000) 0.0000)G32
G54 0.0000 | 00000 00000 0.0000) 00000 0.0000| 0.0000 0.0000) 0.0000)G54
G35 00000 | Q0000 00000 0.0000) 00000 00000 000000 00000 0.0000|G55
56 0.0000 | 00000 00000 00000 00000 00000 000000 00000 00000 G56
G557 0.0000 | 00000 00000 0.0000) 00000 00000 000000 00000 00000 G57
G5B 0.0000 | ©0.0000 00000 00000 0.0000) 0.0000) 0.0000 00000 0.0000|GSS
G549 20,0000 | 00000 0.0000| 0.00001 00000 0.0000] 0.0000 000000 0.0000)G59
G391 0.0000 | 00000 000000 0.00000 0.0000 O0.0000] 0.00000 0.00000 0.0000)G59,1
G392 00000 | 00000 000000 000000 00000 000000 00000 000000 0.0000/GS9.2
G593 0.0000 | 00000 000000 000000 00000 0.0000 0.00000 000000 0.0000/G59.3

&

15.6.25 HAL_sourceview widget

This is for displaying and simple editing of Gcode.
It looks for .ngc highlight specs in ~/share/gtksourceview-2.0/language-specs/ The current running line will be highlighted.

With external python glue code:

*It can search for text, undo and redo changes.
*It can be used for program line selection.

Direct program control

There are python methods to control the widget:

[widget name].redo ()
redo one level of changes.
[widget name] .undo ()
undo one level of changes
[widget name].text_search(direction=True,mixed_case=True,text="G92")

Searches forward
Searches with mixed case
[widget name].set_line_number (linenumber)

(direction

Sets the line to high light.
[widget name].get_line_number ()

returns the currenly high lighted line.
[widget name].line_up ()

[widget name].line_down ()

o

= True)
(mixed_case

or back, +

=

| Cancel 0K

= True) or exact match

Uses the sourceview line numbers.

Moves the High lighted line up one line

Integrator Manual V2.7.0-pre3, 2015-02-19 173/ 348
Moves the High lighted line down one line
[widget name].load_file(’filename’)
loads a file. Using None (not a filename string) will reload the same <

program.
[widget name] .get_filename ()

AA H=laLdlE" — L.
iZ #<toolno==1
id #<rpm>=> = 1600

i4

1% N30G21

i6 N40G90

1¥ G64P1

i# |N50T#<toolno>M6
i% N60MS8

Z58 NT705#<rpm=>M3

#1 N90GOZ[#<zscale>*10.]

2+ NBOGOX[#<xscale>*53.]Y[#<yscale>*-56.128]
23 N100GlZ[#<zscale>*-25.372|F[#<fscale=>*100]
:3% N110G1lZ[#<zscale=*-27.372|F[#<fscale>*225]

K12 # verzla=® BER 17 #~7crzala=*_23T TIR]

15.6.26 MDI history

This is for displaying and entering MDI codes.
It will automatically grey out when MDI is not available.
Eg during Estop and program running.

15.6.27 Animated function diagrams: HAL widgets in a bitmap

“ ':' B »)

@f

For some applications it might be desirable to have background image - like a functional diagram - and position widgets at
appropriate places in that diagram. A good combination is setting a bitmap background image, like from a .png file, making the

gladevcp window fixed-size, and use the glade Fixed widget to position widgets on this image.

The code for the below example can be found in configs/apps/gladevcp/animated-backdrop:

Integrator Manual V2.7.0-pre3, 2015-02-19 174 /348

caircdraw

15.7 Action Widgets reference

GladeVcp includes a collection of "canned actions" called EMC Action Widgets for the Glade user interface editor. Other than
HAL widgets, which interact with HAL pins, EMC Actions interact with LinuxCNC and the G-code interpreter.

EMC Action Widgets are derived from the Gtk.Action widget. The Action widget in a nutshell:

* it is an object available in Glade
* it has no visual appearance by itself

* it’s purpose: associate a visible, sensitive Ul component like menu, toolbutton, button with a command. See these widget’s
General— Related Action property.

* the "canned action" will be executed when the associated UI component is triggered (button press, menu click..)

* it provides an easy way to execute commands without resorting to Python programming.

The appearance of EMC Actions in Glade is roughly as follows:

Integrator Manual V2.7.0-pre3, 2015-02-19 175/ 348

| v EMC Actions |

QO < <l pwm m @ 3
Q =<l > 3 m 5 |

Tooltip hovers provide a description.

15.7.1 EMC Action widgets

EMC Action widgets are one-shot type widgets. They implement a single action and are for use in simple buttons, menu entries
or radio/check groups.

15.7.2 EMC ToggleAction widgets

These are bi-modal widgets. They implement two actions or use a second (usually pressed) state to indicate that currently an
action is running. Toggle actions are aimed for use in ToggleButtons, ToggleToolButtons or toggling menu items. A simplex
example is the ESTOP toggle button.

Currently the following widgets are available:

* The ESTOP toggle sends ESTOP or ESTOP_RESET commands to LinuxCNC depending on it’s state.
* The ON/OFF toggle sends STATE_ON and STATE_OFF commands.
¢ Pause/Resume sends AUTO_PAUSE or AUTO_RESUME commands.

The following toggle actions have only one associated command and use the pressed state to indicate that the requested operation
is running:
* The Run toggle sends an AUTO_RUN command and waits in the pressed state until the interpreter is idle again.

* The Stop toggle is inactive until the interpreter enters the active state (is running G-code) and then allows user to send
AUTO_ABORT command.

* The MDI toggle sends given MDI command and waits for its completion in pressed inactive state.

15.7.3 The Action_MDI Toggle and Action_MDI widgets

These widgets provide a means to execute arbitrary MDI commands. The Action_MDI widget does not wait for command
completion as the Action_MDI Toggle does, which remains disabled until command complete.

15.7.4 A simple example: Execute MDI command on button press

configs/apps/gladevcp/mdi-command-example/whoareyou.ui is a Glade Ul file which conveys the basics:

Open it in Glade and study how it’s done. Start Axis, and then start this from a terminal window with gladevcp whoare
you.ui. See the hal_action_mdil Action and it’'s MDI command property - this just executes (MSG, "Hi, I'm an
EMC_Action_MDI") so there should be a message popup in Axis like so:

Integrator Manual V2.7.0-pre3, 2015-02-19 176/ 348

ing: . Contact: . ([ELUE@ZH?[E]@

probe contact

| :
"Hi, I'm an EMC_Action_MDI" @ﬂ

r
"Hi, I'm an EMC_Action_MDI" @ﬂ

You’ll notice that the button associated with the Action_MDI action is grayed out if the machine is off, in E-Stop or the interpreter
is running. It will automatically become active when the machine is turned on and out of E-Stop, and the program is idle.

15.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets

Optionally, MDI command strings may have parameters substituted before they are passed to the interpreter. Parameters currently
may be names of HAL pins in the GladeVCP component. This is how it works:

* assume you have a HAL SpinBox named speed, and you want to pass it’s current value as a parameter in an MDI command.
e The HAL SpinBox will have a float-type HAL pin named speed-f (see HalWidgets description).
* To substitute this value in the MDI command, insert the HAL pin name enclosed like so: $ {pin—-name}

* for the above HAL SpinBox, we could use (MSG, "The speed is:${speed-£f}") justto show what’s happening.

The example Ul file is configs/apps/gladevcp/mdi-command-example/speed.ui. Here’s what you get when
running it:

‘Chans @@[R=]
45.0 |£

. Pass speed as
"The speed is: 45.0" @ﬂ paramter in MDI
command

15.7.6 An advanced example: Feeding parameters to an O-word subroutine

It’s perfectly OK to call an O-word subroutine in an MDI command, and pass HAL pin values as actual parameters. An example
Ul fileis in configs/apps/gladevcp/mdi-command-example/owordsub.ui.

Place nc_files/gladevcp_lib/oword.ngc so Axis can find it, and run gladevcp owordsub.ui from a terminal
window. This looks like so:

Integrator Manual V2.7.0-pre3, 2015-02-19 177 / 348

= o) E)E)
16 B

oword spin=16.000000 ®E|] checkbutton

oword check=0.000000 @ﬂ | togglebutton |
oword toggle=1.000000 @ﬂ 805

|:|E|:|

oword scale=80.500000 ®5| run O-word
sub

15.7.7 Preparing for an MDI Action, and cleaning up afterwards

The LinuxCNC G-Code interpreter has a single global set of variables, like feed, spindle speed, relative/absolute mode and
others. If you use G code commands or O-word subs, some of these variables might get changed by the command or subroutine
- for example, a probing subroutine will very likely set the feed value quite low. With no further precautions, your previous feed
setting will be overwritten by the probing subroutine’s value.

To deal with this surprising and undesirable side effect of a given O-word subroutine or G-code statement executed with an Lin-
uxCNC ToggleAction_MDI, you might associate pre-MDI and post-MDI handlers with a given LinuxCNC ToggleAction_MDI.
These handlers are optional and provide a way to save any state before executing the MDI Action, and to restore it to previous
values afterwards. The signal names are mdi—-command-start and mdi-command-stop; the handler names can be set in
Glade like any other handler.

Here’s an example how a feed value might be saved and restored by such handlers (note that LinuxCNC command and status
channels are available as self.linuxcnc and self.stat through the EMC_ActionBase class:

def on_mdi_command_start (self, action, userdata=None) :
action.stat.poll ()
self.start_feed = action.stat.settings([1]

def on_mdi_command_stop(self, action, userdata=None) :
action.linuxcnc.mdi ('F%.1f’ % (self.start_feed))
while action.linuxcnc.wait_complete() == -1:
pass

Only the Action_MDI Toggle widget supports these signals.

Note
In a later release of LinuxCNC, the new M-codes M70-M72 are available which make it saving state before a subroutine call,
and restoring state on return much easier.

15.7.8 Using the LinuxCNC Stat object to deal with status changes

Many actions depend on LinuxCNC status - is it in manual, MDI or auto mode? is a program running, paused or idle? You
cannot start an MDI command while a G-code program is running, so this needs to be taken care of. Many LinuxCNC actions
take care of this themselves, and related buttons and menu entries are deactivated when the operation is currently impossible.

When using Python event handlers - which are at a lower level than Actions - one needs to take care of dealing with status
dependencies oneself. For this purpose, there’s the LinuxCNC Stat widget: to associate LinuxCNC status changes with event
handlers.

Integrator Manual V2.7.0-pre3, 2015-02-19 178 / 348

LinuxCNC Stat has no visible component - you just add it to your UI with Glade. Once added, you can associate handlers with
its following signals:

* state-related: emitted when E-Stop condition occurs, is reset, machine is turned on, or is turned off

— state-estop
— state—estop-reset
— state-on,

- state-off
* mode-related: emitted when LinuxCNC enters that particular mode

— mode-manual
— mode-mdi

- mode—auto
* interpreter-related: emitted when the G-code interpreter changes into that mode

— interp-run

— interp-idle

— interp-paused
— interp-reading
- interp-waiting
— file-loaded

— line-changed
* homing-related: emitted when linuxcnc is homed or not

— all-homed

— not—-all-homed

15.8 GladeVCP Programming

15.8.1 User Defined Actions

Most widget sets, and their associated user interface editors, support the concept of callbacks - functions in user-written code
which are executed when something happens in the Ul - events like mouse clicks, characters typed, mouse movement, timer
events, window hiding and exposure and so forth.

HAL output widgets typically map input-type events like a button press to a value change of the associated HAL pin by means
of such a - predefined - callback. Within PyVCBP, this is really the only type of event handling supported - doing something more
complex, like executing MDI commands to call a G-code subroutine, is not supported.

Within GladeVCP, HAL pin changes are just one type of the general class of events (called signals) in GTK+. Most widgets may
originate such signals, and the Glade editor supports associating such a signal with a Python method or function name.

If you decide to use user-defined actions, your job is to write a Python module whose class methods - or in the simple case, just
functions - can be referred to in Glade as event handlers. GladeVCP provides a way to import your module(s) at startup and will
automatically link your event handlers with the widget signals as set in the Glade UI description.

Integrator Manual V2.7.0-pre3, 2015-02-19 179/ 348

15.8.2 An example: adding custom user callbacks in Python

This is just a minimal example to convey the idea - details are laid out in the rest of this section.

GladeVCP can not only manipulate or display HAL pins, you can also write regular event handlers in Python. This could be
used, among others, to execute MDI commands. Here’s how you do it:

Write a Python module like so and save as e.g. handlers.py:

nhits = 0
def on_button_press (gtkobj,data=None) :
global nhits nhits += 1 gtkobj.set_label ("hits: %d" % nhits)

In Glade, define a button or HAL button, select the Signals tab, and in the GtkButton properties select the pressed line. Enter
on_button_press there, and save the Glade file.

Then add the option -u handlers.py to the gladevcp command line. If your event handlers are spread over several files, just add
multiple -u <pyfilename> options.

Now, pressing the button should change its label since it’s set in the callback function.

What the —u flag does: all Python functions in this file are collected and setup as potential callback handlers for your Gtk
widgets - they can be referenced from Glade Signals tabs. The callback handlers are called with the particular object instance as
parameter, like the GtkButton instance above, so you can apply any GtkButton method from there.

Or do some more useful stuff, like calling an MDI command!

15.8.3 HAL value change events

HAL input widgets, like a LED, automatically associate their HAL pin state (on/off) with the optical appearance of the widget
(LED lit/dark).

Beyond this builtin functionality, one may associate a change callback with any HAL pin, including those of predefined HAL
widgets. This fits nicely with the event-driven structure of a typical widget application: every activity, be it mouse click, key,
timer expired, or the change of a HAL pin’s value, generates a callback and is handled by the same orthogonal mechanism.

For user-defined HAL pins not associated with a particular HAL widget, the signal name is value-changed. See the Adding HAL
pins section below for details.

HAL widgets come with a pre-defined signal called hal-pin-changed. See the Hal Widgets section for details.

15.8.4 Programming model
The overall approach is as follows:

¢ design your UI with Glade, and set signal handlers where you want actions associated with a widget
* write a Python module which contains callable objects (see handler models below)

* pass your module’s path name to gladevcp with the -u <module> option

* gladevcp imports the module, inspects it for signal handlers and connects them to the widget tree

* the main event loop is run.

Integrator Manual V2.7.0-pre3, 2015-02-19 180/ 348

15.8.4.1 The simple handler model

For simple tasks it’s sufficient to define functions named after the Glade signal handlers. These will be called when the corre-
sponding event happens in the widget tree. Here’s a trivial example - it assumes that the pressed signal of a Gtk Button or HAL
Button is linked to a callback called on_button_press:

nhits = 0
def on_button_press (gtkobj,data=None) :
global nhits
nhits += 1
gtkobj.set_label ("hits: %d" % nhits)
Add this function to a Python file and run as follows:
gladevcp -u <myhandler>.py mygui.ui

Note communication between handlers has to go through global variables, which does not scale well and is positively un-
pythonic. This is why we came up with the class-based handler model.

15.8.4.2 The class-based handler model

The idea here is: handlers are linked to class methods. The underlying class(es) are instantiated and inspected during GladeVCP
startup and linked to the widget tree as signal handlers. So the task now is to write:

* one or more several class definition(s) with one or several methods, in one module or split over several modules,

* a function ger_handlers in each module which will return a list of class instances to GladeVCP - their method names will be
linked to signal handlers

Here is a minimum user-defined handler example module:

class MyCallbacks
def on_this_signal (self, obj,data=None) :
print "this_signal happened, obj=",obj

def get_handlers (halcomp,builder,useropts) :
return [MyCallbacks ()]

Now, on_this_signal will be available as signal handler to your widget tree.

15.8.4.3 The get_handlers protocol

If during module inspection GladeVCP finds a function get_handlers, it calls it as follows:

get_handlers (halcomp,builder, useropts)

the arguments are:

* halcomp - refers to the HAL component under construction

* builder - widget tree - result of reading the UI definition (either referring to a GtkBuilder or libglade-type object)

* useropts - a list of strings collected from the gladevep command line —U <useropt s> option

GladeVCP then inspects the list of class instances and retrieves their method names. Qualifying method names are connected to

the widget tree as signal handlers. Only method names which do not begin with an _ (underscore) are considered.

Note that regardless whether you’re using the libglade or the new GtkBuilder format for your Glade Ul, widgets can always
be referred to as builder.get_object (<widgetname>). Also, the complete list of widgets is available as builder.
get_objects () regardless of Ul format.

Integrator Manual V2.7.0-pre3, 2015-02-19 181 /348

15.8.5 Initialization sequence

It is important to know in which state of affairs your get_handlers () function is called so you know what is safe to do there

and what not. First, modules are imported and initialized in command line order. After successful import, get_handlers ()

is called in the following state:

* the widget tree is created, but not yet realized (no toplevel window. show () has been executed yet)

* the halcomp HAL component is set up and all HAL widget’s pins have already been added to it

* it is safe to add more HAL pins because halcomp.ready () has not yet been called at this point, so you may add your own
pins, for instance in the class __init__ () method.

Once all modules have been imported and method names extracted, the following steps happen:

* all qualifying method names will be connected to the widget tree with connect_signals () /signal_autoconnect ()
(depending on the type of UI imported - GtkBuilder vs the old libglade format).

* the HAL component is finalized with halcomp.ready()

* if a window ID was passed as argument, the widget tree is re-parented to run in this window, and Glade’s toplevel window1 is
abandoned (see FAQ)

 if a HAL command file was passed with —-H halfile, itis executed with halcmd

* the Gtk main loop is run.

So when your handler class is initialized, all widgets are existent but not yet realized (displayed on screen). And the HAL
component isn’t ready as well, so its unsafe to access pins values in your __init__ () method.

If you want to have a callback to execute at program start after it is safe to access HAL pins, then a connect a handler to the
realize signal of the top level window1 (which might be its only real purpose). At this point GladeVCP is done with all setup
tasks, the halfile has been run, and GladeVCP is about to enter the Gtk main loop.

15.8.6 Multiple callbacks with the same name

Within a class, method names must be unique. However, it is OK to have multiple class instances passed to GladeVCP by
get_handlers() with identically named methods. When the corresponding signal occurs, these methods will be called in definition
order - module by module, and within a module, in the order class instances are returned by get _handlers ().

15.8.7 The GladeVCP -U <useropts> flag

Instead of extending GladeVCP for any conceivable option which could potentially be useful for a handler class, you may use
the -U <useroption> flag (repeatedly if you wish). This flag collects a list of <useroption> strings. This list is passed to the
get_handlers() function (useropts argument). Your code is free to interpret these strings as you see fit. An possible usage would
be to pass them to the Python exec function in your get_handlers () as follows:

debug = 0
def get_handlers (halcomp,builder,useropts) :
global debug # assuming there’s a global var

for cmd in useropts:
exec cmd in globals ()

This way you can pass arbitrary Python statements to your module through the gladevcp -U option, for example:

)

gladevcp -U debug=42 -U "print ’'debug=%d’ % debug"

This should set debug to 2 and confirm that your module actually did it.

Integrator Manual V2.7.0-pre3, 2015-02-19 182 /348

15.8.8 Persistent variables in GladeVCP

A annoying aspect of GladeVCP in its earlier form and pyvcp is the fact that you may change values and HAL pins through text
entry, sliders, spin boxes, toggle buttons etc, but their settings are not saved and restored at the next run of LinuxCNC - they start
at the default value as set in the panel or widget definition.

GladeVCP has an easy-to-use mechanism to save and restore the state of HAL widgets, and program variables (in fact any
instance attribute of type int, float, bool or string).

This mechanism uses the popular .ini file format to save and reload persistent attributes.

15.8.8.1 Persistence, program versions and the sighature check

Imagine renaming, adding or deleting widgets in Glade: an .ini file lying around from a previous program version, or an entirely
different user interface, would be not be able to restore the state properly since variables and types might have changed.

GladeVCP detects this situation by a signature which depends on all object names and types which are saved and to be restored.
In the case of signature mismatch, a new .ini file with default settings is generated.

15.8.9 Using persistent variables

If you want any of Gtk widget state, HAL widgets output pin’s values and/or class attributes of your handler class to be retained
across invocations, proceed as follows:

e import the gladevcp.persistence module
* decide which instance attributes, and their default values you want to have retained, if any
* decide which widgets should have their state retained

* describe these decisions in your handler class’ init () method through a nested dictionary as follows:

def __init__ (self, halcomp,builder,useropts) :

self.halcomp = halcomp

self.builder = builder

self.useropts = useropts

self.defaults = {
the following names will be saved/restored as method attributes
the save/restore mechanism is strongly typed - the variables type will be derived <

from the type of the
initialization value. Currently supported types are: int, float, bool, string
IniFile.vars : { ’'nhits’” : 0, 'a’: 1.67, 'd’: True ,’c’ : "a string"},
to save/restore all widget’s state which might remotely make sense, add this:
IniFile.widgets : widget_defaults (builder.get_objects())
a sensible alternative might be to retain only all HAL output widgets’ state:
IniFile.widgets: widget_defaults (select_widgets (self.builder.get_objects(), <+
hal_only=True,output_only = True)),

Then associate an .ini file with this descriptor:

self.ini_filename = _ name_ + ’.ini’
self.ini = IniFile(self.ini_filename,self.defaults,self.builder)
self.ini.restore_state (self)

After restore_state (), self will have attributes set if as running the following:

self.nhits = 0
self.a = 1.67
self.d
self.c = "a string"

True

Integrator Manual V2.7.0-pre3, 2015-02-19 183 /348

Note that types are saved and preserved on restore. This example assumes that the ini file didn’t exist or had the default values
from self.defaults.

After this incantation, you can use the following IniFil methods:

ini.save_state(obj)
saves objs’s attributes as per IniFil.vars dictionary and the widget state as described in IniFile.widgets in self.defaults

ini.create_default_ini()
create a .ini file with default values

ini.restore_state(obj)
restore HAL out pins and obj’s attributes as saved/initialized to default as above

15.8.10 Saving the state on Gladvcp shutdown
To save the widget and/or variable state on exit, proceed as follows:

* select some interior widget (type is not important, for instance a table).

* in the Signals tab, select GtkObject. It should show a destroy signal in the first column.

add the handler name, e.g. on_destroy to the second column.

* add a Python handler like below:

import gtk

def on_destroy(self,obj,data=None) :
self.ini.save_state (self)

This will save state and shutdown GladeVCP properly, regardless whether the panel is embedded in Axis, or a standalone window.

Caution

@ Do not use windowl (the toplevel window) to connect a dest roy event. Due to the way a GladeVCP panel interacts
with Axis if a panel is embedded within Axis, window1 will not receive destroy events properly. However, since on
shutdown all widgets are destroyed, anyone will do. Recommended: use a second-level widget - for instance, if you
have a table container in your panel, use that.

Next time you start the GladeVCP application, the widgets should come up in the state when the application was closed.

Caution
@ The GtkWidget line has a similarly sounding destroy-event - dont use that to connect to the on_destroy handler, it
wont work - make sure you use the destroy event from the GtkObject line.

15.8.11 Saving state when Cirl-C is pressed

By default, the reaction of GladeVCP to a Ctrl-C event is to just exit - without saving state. To make sure that this case is
covered, add a handler call on_unix_signal which will be automatically be called on Ctrl-C (actuall on the SIGINT and
SIGTERM signals). Example

def on_unix_signal (self, signum, stack_frame) :
print "on_unix_signal(): signal %d received, saving state" % (signum)
self.ini.save_state(self)

Integrator Manual V2.7.0-pre3, 2015-02-19 184 / 348

15.8.12 Hand-editing .ini files

You can do that, but note that the values in self.defaults override your edits if there is a syntax or type error in your edit. The
error is detected, a console message will hint about that happened, and the bad inifile will be renamed to have the .BAD suffix.
Subsequent bad ini files overwrite earlier .BAD files.

15.8.13 Adding HAL pins

If you need HAL pins which are not associated with a specific HAL widget, add them as follows:

import hal _glib

in your handler class __init_ ():

self.example_trigger = hal glib.GPin (halcomp.newpin (' example-trigger’, hal.HAL_ BIT, hal. <«
HAL_IN))

To get a callback when this pin’s value changes, associate a value-change callback with this pin, add:

self.example_trigger.connect (' value-changed’, self._on_example_trigger_change)

and define a callback method (or function, in this case leave out the self parameter):

note ’'_’ - this method will not be visible to the widget tree
def _on_example_trigger_change (self,pin,userdata=None) :

o)

print "pin value changed to:" % (pin.get())

15.8.14 Adding timers

Since GladeVCP uses Gtk widgets which rely on the GObject base class, the full glib functionally is available. Here is an
example for a timer callback:

def _on_timer_tick(self,userdata=None) :
return True # to restart the timer; return False for on-shot

demonstrate a slow background timer - granularity is one second
for a faster timer (granularity 1 ms), use this:

glib.timeout_add (100, self._on_timer_tick,userdata) # 10Hz
glib.timeout_add_seconds (1, self._on_timer_tick)

15.8.15 Setting HAL widget properties programmatically

With glade, widget properties are typically set fixed while editing. You can, however, set widget properties at runtime, for
instance from ini file values, which would typically be done in the handler initialisation code. Setting properties from HAL pin
values is possible, too.

In the following example (assuming a HAL Meter widget called meter), the meter’s min value is set from an INI file parameter
at startup, and the max value is set via a HAL pin, which causese the widget’s scale to readjust dynamically:

import linuxcnc
import os
import hal
import hal_glib

class HandlerClass:

def _on_max_value_change (self,hal_pin,data=None) :

http://www.pygtk.org/pygtk2reference/gobject-functions.html

Integrator Manual V2.7.0-pre3, 2015-02-19 185/ 348

self.meter.max = float (hal_pin.get ())
self.meter.queue_draw() # force a widget redraw

def __init__ (self, halcomp,builder,useropts) :
self.builder = builder

hal pin with change callback.

When the pin’s value changes the callback is executed.

self.max_value = hal_glib.GPin (halcomp.newpin (' max-value’, hal.HAL_FLOAT, hal. ¢
HAL_IN))

self.max_value.connect (' value—-changed’, self._on_max_value_change)

inifile = linuxcnc.ini (os.getenv ("INI_FILE_NAME"))
mmin = float (inifile.find ("METER", "MIN") or 0.0)
self.meter = self.builder.get_object ('meter’)
self.meter.min = mmin

def get_handlers (halcomp,builder,useropts) :
return [HandlerClass (halcomp,builder,useropts)]

15.8.16 Examples, and rolling your own GladeVCP application

Visit linuxcnc_root_directory/configs/apps/gladevcp for running examples and starters for your own projects.

15.9 FAQ

1. I get an unexpected unmap event in my handler function right after startup. What’s this?

This is a consequence of your Glade Ul file having the window1 Visible property set to True, together with re-parenting
the GladeVCP window into Axis or touchy. The GladeVCP widget tree is created, including a top level window, and then
reparented into Axis, leaving that toplevel window laying around orphaned. To avoid having this useless empty window
hanging around, it is unmapped (made invisible), which is the cause of the unmap signal you get. Suggested fix: set
window 1.visible to False, and ignore an initial unmap event.

2. My GladeVCP program starts, but no window appears where I expect it to be?

The window Axis allocates for GladeVCP will obtain the natural size of all its child widgets combined. It’s the child
widget’s job to request a size (width and/or height). However, not all widgets do request a width greater than 0, for
instance the Graph widget in its current form. If there’s such a widget in your Glade file and it’s the one which defines the
layout you might want to set its width explicitly. Note that setting the window1 width and height properties in Glade does
not make sense because this window will be orphaned during re-parenting and hence its geometry will have no impact on
layout (see above). The general rule is: if you manually run a Ul file with gladevcp <uifile> and its window has reasonable
geometry, it should come up in Axis properly as well.

3. I'want a blinking LED, but it wont blink

I ticked the checkbutton to let it blink with 100msec interval. It wont blink, and I get a startup warning: Warning: value
"0" of type ‘gint’ is invalid or out of range for property ‘led-blink-rate’ of type ‘gint’? This seems to be a glade bug. Just
type over the blink rate field, and save again - this works for me.

4. My gladevcp panel in Axis doesnt save state when I close Axis, although I defined an on_destroy handler linked to the
window destroy signal

Very likely this handler is linked to windowl, which due to reparenting isnt usable for this purpose. Please link the
on_destroy handler to the destroy signal of an interior window. For instance, I have a notebook inside window1, and linked
on_destroy to the notebooks destroy signal, and that works fine. It doesnt work for window1.

Integrator Manual V2.7.0-pre3, 2015-02-19 186/ 348

5. I'want to set the background color or text of a HAL_Label widget depending on its HAL pin value

See the example in configs/apps/gladevcp/colored-label. Setting the background color of a GtkLabel widget (and HAL_Label
is derived from GtkLabel) is a bit tricky. The GtkLabel widget has no window object of its own for performance reasons,
and only window objects can have a background color. The solution is to enclose the Label in an EventBox container,
which has a window but is otherwise invisible - see the coloredlabel.ui file.

6. I defined a hal_spinbutton widget in glade, and set a default value property in the corresponding adjustment. It
comes up with zero?

this is due to a bug in the old Gtk version distributed with Ubuntu 8.04 and 10.04, and is likely to be the case for
all widgets using adjustment. The workaround mentione for instance in http://osdir.com/ml/gtk-app-devel-list/2010-04/-
msg00129.html does not reliably set the HAL pin value, it is better to set it explicitly in an on_realize signal handler
during widget creation. See the example in configs/apps/gladevcp/by-widget/spinbutton. {ui, py}.

15.10 Troubleshooting

* make sure you have the development version of LinuxCNC installed. You don’t need the axisrc file any more, this was
mentioned in the old GladeVcp wiki page.

* run GladeVCP or Axis from a terminal window. If you get Python errors, check whether there’s stilla /usr/1ib/python2.
6/dist-packages/hal. so file lying around besides the newer /usr/lib/python2.6/dist-packages/_hal.
so (note underscore); if yes, remove the hal . so file. It has been superseded by hal.py in the same directory and confuses the
import mechanism.

* if you’re using run-in-place, do a make clean to remove any accidentally left over hal.so file, then make.

* if you’re using HAL_table or HAL_HBox widgets, be aware they have an HAL pin associated with it which is off by default.
This pin controls whether these container’s children are active or not.

15.11 Implementation note: Key handling in Axis

We believe key handling works OK, but since it is new code, we’re telling about it you so you can watch out for problems; please
let us know of errors or odd behavior. This is the story:

Axis uses the Tklnter widget set. GladeVCP applications use Gtk widgets and run in a separate process context. They are hooked
into Axis with the Xembed protocol. This allows a child application like GladeVCP to properly fit in a parent’s window, and - in
theory - have integrated event handling.

However, this assumes that both parent and child application properly support the Xembed protocol, which Gtk does, but TkInter
doesn’t. A consequence of this is that certain keys would not be forwarded from a GladeVCP panel to Axis properly under all
circumstances. One of these situations was the case when an Entry, or SpinButton widget had focus: in this case, for instance an
Escape key would not have been forwarded to Axis and cause an abort as it should, with potentially disastrous consequences.

Therefore, key events in GladeVCP are explicitly handled, and selectively forwarded to Axis, to assure that such situations cannot
arise. For details, see the keyboard_forward () functionin 1ib/python/gladevcp/xembed.py.

15.12 Adding Custom Widgets

The LinuxCNC Wiki has information on adding custom widgets to GladeVCP. GladeVCP Custom Widgets

http://osdir.com/ml/gtk-app-devel-list/2010-04/msg00129.html
http://osdir.com/ml/gtk-app-devel-list/2010-04/msg00129.html
http://wiki.linuxcnc.org/cgi-bin/wiki.pl?GladeVCP_Custom_Widgets

Integrator Manual V2.7.0-pre3, 2015-02-19

187 /348

Chapter 16

HAL User Interface

16.1 Introduction

Halui is a HAL based user interface for LinuxCNC, it connects HAL pins to NML commands. Most of the functionality (buttons,

indicators etc.) that is provided by a traditional GUI (mini, Axis, etc.), is provided by HAL pins in Halui.

The easiest way to add halui is to add the following to the [HAL] section of the ini file.

HALUI = halui

An alternate way to invoke it is to include the following in your .hal file. Make sure you use the actual path to your ini file.

loadusr halui -ini /path/to/inifile.ini

16.2 Halui pin reference

ABORT
* halui.abort (bit, in) - pin to send an abort message (clears out most errors)
AXIS

* halui.axis.n.pos-commanded (float, out) - Commanded axis position in machine coordinates
* halui.axis.n.pos-feedback (float, out) - Feedback axis position in machine coordinates

* halui.axis.n.pos-relative (float, out) - Commanded axis position in relative coordinates
E-Stop

* halui.estop.activate (bit, in) - pin for requesting E-Stop
* halui.estop.is-activated (bit, out) - indicates E-stop reset

* halui.estop.reset (bit, in) - pin for requesting E-Stop reset
FEED OVERRIDE

* halui.feed-override.count-enable (bit, in) - must be true for counts or direct-value to work.

Integrator Manual V2.7.0-pre3, 2015-02-19 188 /348

* halui.feed-override.counts (s32, in) - counts * scale = FO percentage. Can be used with an encoder or direct-value.
* halui.feed-override.decrease (bit, in) - pin for decreasing the FO (-=scale)
* halui.feed-override.increase (bit, in) - pin for increasing the FO (+=scale)

* halui.feed-override.direct-value (bit, in) - false when using encoder to change counts, true when setting counts directly. The
count-enable pin must be true.

* halui.feed-override.scale (float, in) - pin for setting the scale for increase and decrease of feed-override.

* halui.feed-override.value (float, out) - current FO value
MisT

* halui.mist.is-on (bit, out) - indicates mist is on
* halui.mist.off (bit, in) - pin for requesting mist off

* halui.mist.on (bit, in) - pin for requesting mist on
FLooD

* halui.flood.is-on (bit, out) - indicates flood is on
* halui.flood.off (bit, in) - pin for requesting flood off

* halui.flood.on (bit, in) - pin for requesting flood on
HOMING

* halui.home-all (bit, in) - pin for requesting all axis to home. This pin will only be there if HOME_SEQUENCE is set in the ini
file.

Jog <n> is a number between 0 and 8 and selected.

* halui.jog-deadband (float, in) - deadband for analog jogging (smaller jogging speed requests are not performed)
* halui.jog-speed (float, in) - pin for setting jog speed for minus/plus jogging
* halui.jog.<n>.analog (float, in) - analog velocity input for jogging (useful with joysticks or other analog devices)

* halui.jog.<n>.increment (float,in) - pin for setting the jog increment for axis <n> when using increment-minus or increment-
plus to jog.

* halui.jog.<n>.increment-minus (bit, in) - pin for moving the <n> axis one increment in the minus direction for each off to on
transition.

* halui.jog.<n>.increment-plus (bit, in) - pin for moving the <n> axis one increment in the plus direction for each off to on
transition.

* halui.jog.<n>.minus (bit, in) - pin for jogging axis <n> in negative direction at the halui.jog.speed velocity
* halui.jog.<n>.plus (bit, in) - pin for jogging axis <n> in positive direction at the halui.jog.speed velocity

* halui.jog.selected.increment (float,in) - pin for setting the jog increment for the selected axis when using increment-minus or
incremet-plus to jog.

* halui.jog.selected.increment-minus (bit, in) - pin for moving the selected axis one increment in the minus direction for each off
to on transition.

* halui.jog.selected.increment-plus (bit, in) - pin for moving the selected axis one increment in the plus direction for each off to
on transition.

Integrator Manual V2.7.0-pre3, 2015-02-19 189/ 348

* halui.jog.selected.minus (bit, in) - pin for jogging the selected axis in negative direction at the halui.jog.speed velocity

* halui.jog.selected.plus (bit, in) - pin for jogging the selected axis in positive direction at the halui.jog.speed velocity
Joint <n> is a number between 0 and 8 and selected.

* halui.joint.<n>.has-fault (bit, out) - status pin telling the joint has a fault

* halui_joint.<n>.home (bit, in) - pin for homing the specific joint

* halui.joint.<n>.is-homed (bit, out) - status pin telling that the joint is homed

* halui.joint.<n>.is-selected bit (bit, out) - status pin a joint is selected* internal halui

* halui.joint.<n>.on-hard-max-limit (bit, out) - status pin telling joint <n> is on the positive hardware limit switch

* halui.joint. <n>.on-hard-min-limit (bit, out) - status pin telling joint <n> is on the negative hardware limit switch

* halui.joint. <n>.on-soft-max-limit (bit, out) - status pin telling joint <n> is at the positive software limit

* halui.joint.<n>.on-soft-min-limit (bit, out) - status pin telling joint <n> is at the negative software limit

* halui.joint.<n>.select (bit, in) - select joint (0..8) - internal halui

* halui.joint.<n>.unhome (bit, in) - unhomes this joint

* halui.joint.selected (132, out) - selected joint (0..8) - internal halui

* halui.joint.selected.has-fault (bit, out) - status pin telling that the joint <n> has a fault

* halui.joint.selected.home (bit, in) - pin for homing the selected joint

* halui.joint.selected.is-homed (bit, out) - status pin telling that the selected joint is homed

* halui.joint.selected.on-hard-max-limit (bit, out) - status pin telling that the selected joint is on the positive hardware limit
* halui.joint.selected.on-hard-min-limit (bit, out) - status pin telling that the selected joint is on the negative hardware limit
* halui.joint.selected.on-soft-max-limit (bit, out) - status pin telling that the selected joint is on the positive software limit

* halui.joint.selected.on-soft-min-limit (bit, out) - status pin telling that the selected joint is on the negative software limit

* halui.joint.selected.unhome (bit, in) - pin for unhoming the selected joint.

LUBE

* halui.lube.is-on (bit, out) - indicates lube is on
* halui.lube.off (bit, in) - pin for requesting lube off

* halui.lube.on (bit, in) - pin for requesting lube on
MACHINE

* halui.machine.is-on (bit, out) - indicates machine on
* halui.machine.off (bit, in) - pin for requesting machine off

* halui.machine.on (bit, in) - pin for requesting machine on

Max Velocity The maximum linear velocity can be adjusted from O to the MAX_VELOCITY that is set in the [TRAJ] section
of the ini file.

* halui.max-velocity.count-enable (bit, in) - must be true for counts or direct-value to work.

Integrator Manual V2.7.0-pre3, 2015-02-19 190/ 348

* halui.max-velocity.counts (s32, in) - counts * scale = MV percentage. Can be used with an encoder or direct-value.

* halui.max-velocity.direct-value (bit, in) - false when using encoder to change counts, true when setting counts directly. The
count-enable pin must be true.

* halui.max-velocity.decrease (bit, in) - pin for decreasing max velocity
* halui.max-velocity.increase (bit, in) - pin for increasing max velocity

* halui.max-velocity.scale (float, in) - the amount applied to the current maximum velocity with each transition from off to on of
the increase or decrease pin in machine units per second.

* halui.max-velocity.value (float, out) - is the maximum linear velocity in machine units per second.

MDI

Sometimes the user wants to add more complicated tasks to be performed by the activation of a HAL pin. This is possible using
the following MDI commands scheme:

e The MDI_COMMAND is added to the ini file in the [HALUI] section.

[HALUI]
MDI_COMMAND = GO X0

* When halui starts it will read the MDI_COMMAND fields in the ini, and export pins from 00 to the number of MDI_COMMAND’s
found in the ini up to a maximum of 64 commands.

* halui.mdi-command-<nn> (bit, in) - halui will try to send the MDI command defined in the ini. This will not always succeed,
depending on the operating mode LinuxCNC is in (e.g. while in AUTO halui can’t successfully send MDI commands). If the
command succeeds then it will place LinuxCNC in the MDI mode and then back to Manual mode.

JOINT SELECTION

* halui.joint.select (u32, in) - select joint (0..8) - internal halui
* halui.joint.selected (u32, out) - joint (0..8) selected* internal halui
* halui joint.x.select bit (bit, in) - pins for selecting a joint* internal halui

* halui.joint.x.is-selected bit (bit, out) - indicates joint selected* internal halui
MODE

* halui.mode.auto (bit, in) - pin for requesting auto mode

* halui.mode.is-auto (bit, out) - indicates auto mode is on

* halui.mode.is-joint (bit, out) - indicates joint by joint jog mode is on
* halui.mode.is-manual (bit, out) - indicates manual mode is on

e halui.mode.is-mdi (bit, out) - indicates mdi mode is on

* halui.mode.is-teleop (bit, out) - indicates coordinated jog mode is on
* halui.mode.joint (bit, in) - pin for requesting joint by joint jog mode
* halui.mode.manual (bit, in) - pin for requesting manual mode

* halui.mode.mdi (bit, in) - pin for requesting mdi mode

* halui.mode.teleop (bit, in) - pin for requesting coordinated jog mode

Integrator Manual V2.7.0-pre3, 2015-02-19 191 /348

PROGRAM

* halui.program.block-delete.is-on (bit, out) - status pin telling that block delete is on
* halui.program.block-delete.off (bit, in) - pin for requesting that block delete is off

* halui.program.block-delete.on (bit, in) - pin for requesting that block delete is on

* halui.program.is-idle (bit, out) - status pin telling that no program is running

* halui.program.is-paused (bit, out) - status pin telling that a program is paused

* halui.program.is-running (bit, out) - status pin telling that a program is running

* halui.program.optional-stop.is-on (bit, out) - status pin telling that the optional stop is on
* halui.program.optional-stop.off (bit, in) - pin requesting that the optional stop is off
* halui.program.optional-stop.on (bit, in) - pin requesting that the optional stop is on
* halui.program.pause (bit, in) - pin for pausing a program

* halui.program.resume (bit, in) - pin for resuming a paused program

* halui.program.run (bit, in) - pin for running a program

* halui.program.step (bit, in) - pin for stepping in a program

* halui.program.stop (bit, in) - pin for stopping a program
SPINDLE OVERRIDE

* halui.spindle-override.count-enable (bit, in) - must be true for counts or direct-value to work.
* halui.spindle-override.counts (s32, in) - counts * scale = SO percentage
* halui.spindle-override.decrease (bit, in) - pin for decreasing the SO (-=scale)

* halui.spindle-override.direct-value (bit, in) - false when using encoder to change counts, true when setting counts directly. The
count-enable pin must be true.

* halui.spindle-override.increase (bit, in) - pin for increasing the SO (+=scale)
* halui.spindle-override.scale (float, in) - pin for setting the scale on changing the SO

* halui.spindle-override.value (float, out) - current SO value
SPINDLE

* halui.spindle.brake-is-on (bit, out) - indicates brake is on

* halui.spindle.brake-off (bit, in) - pin for deactivating spindle/brake

* halui.spindle.brake-on (bit, in) - pin for activating spindle-brake

* halui.spindle.decrease (bit, in) - decreases spindle speed

* halui.spindle.forward (bit, in) - starts the spindle with CW motion

* halui.spindle.increase (bit, in)- increases spindle speed

* halui.spindle.is-on (bit, out) - indicates spindle is on (either direction)
* halui.spindle.reverse (bit, in)- starts the spindle with a CCW motion

* halui.spindle.runs-backward (bit, out) - indicates spindle is on, and in reverse

Integrator Manual V2.7.0-pre3, 2015-02-19 192 /348

* halui.spindle.runs-forward (bit, out) - indicates spindle is on, and in forward
* halui.spindle.start (bit, in) - starts the spindle

* halui.spindle.stop (bit, in) - stops the spindle
TooL

* halui.tool.length-offset (float, out) - indicates current applied tool-length-offset

e halui.tool.number (u32, out) - indicates current selected tool

Integrator Manual V2.7.0-pre3, 2015-02-19 193 /348

Chapter 17

Halui Examples

For any Halui examples to work you need to add the following line to the [HAL] section of the ini file.

HALUI = halui

17.1 Remote Start

To connect a remote program start button to LinuxCNC you use the halui.program.run pin and the halui.mode.
auto pin. You have to insure that it is OK to run first by using the halui.mode.is-auto pin. You do this with an and2
component. The following figure shows how this is done. When the Remote Run Button is pressed it is connected to both
halui.mode.auto and and2.0.1in0. If it is OK for auto mode the pin halui.mode.is—auto will be on. If both the
inputs to the and2 . 0 component are on the and2 . 0. out will be on and this will start the program.

Femote
Hun Btn

| halui.made, auta

and?.0.ind

halui.mode.is-auta andZ.0.in

andz.0ouf hialui.program.run

Figure 17.1: Remote Start Example

The hal commands needed to accomplish the above are:

Integrator Manual V2.7.0-pre3, 2015-02-19 194 / 348

net program-start-btn halui.mode.auto and2.0.in0 <= <your input pin>
net program-run-ok and2.0.inl <= halui.mode.is-auto
net remote-program-run halui.program.run <= and2.0.out

Notice on line one that there are two reader pins, this can also be split up to two lines like this:

net program-start-btn halui.mode.auto <= <your input pin>
net program-start-btn and2.0.in0

17.2 Pause & Resume

This example was developed to allow LinuxCNC to move a rotary axis on a signal from an external machine. The coordination
between the two systems will be provided by two Halui components:

* halui.program.is-paused

* halui.program.resume

In your customized hal file, add the following two lines that will be connected to your I/O to turn on the program pause or to
resume when the external system wants LinuxCNC to continue.

net ispaused halui.program.is paused => "your output pin"
net resume halui.program.resume <= "your input pin"

Your input and output pins are connected to the pins wired to the other controller. They may be parallel port pins or any other
I/O pins that you have access to.

This system works in the following way. When an MO is encountered in your G-code, the halui.program.is-paused
signal goes true. This turns on your output pin so that the external controller knows that LinuxCNC is paused.

To resume the LinuxCNC gcode program, when the external controller is ready it will make its output true. This will signal
LinuxCNC that it should resume executing Gcode.

Difficulties in timing

* The "resume" input return signal should not be longer than the time required to get the g-code running again.

* The "is-paused" output should no longer be active by the time the "resume" signal ends.

These timing problems could be avoided by using ClassicLadder to activate the "is-paused” output via a monostable timer to
deliver one narrow output pulse. The "resume" pulse could also be received via a monostable timer.

Integrator Manual V2.7.0-pre3, 2015-02-19 195/ 348

Part IV

Hardware Drivers

Integrator Manual V2.7.0-pre3, 2015-02-19 196/ 348

Chapter 18

Parallel Port Driver

18.1 Parport

Parport is a driver for the traditional PC parallel port. The port has a total of 17 physical pins. The original parallel port divided
those pins into three groups: data, control, and status. The data group consists of 8 output pins, the control group consists of 4
pins, and the status group consists of 5 input pins.

In the early 1990’s, the bidirectional parallel port was introduced, which allows the data group to be used for output or input.
The HAL driver supports the bidirectional port, and allows the user to set the data group as either input or output. If configured
as output, a port provides a total of 12 outputs and 5 inputs. If configured as input, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an external gate. On a board
with open collector control pins, the x mode allows a more flexible mode with 8 outputs, and 9 inputs. In other parallel ports, the
control group has push-pull drivers and cannot be used as an input.

HAL and Open Collectors

HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors (OC). If they are not, they
cannot be used as inputs, and attempting to drive them LOW from an external source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no device attached, HAL should read
the pin as TRUE. Next, insert a 470 ohm resistor from one of the control pins to GND. If the resulting voltage on the control pin
is close to 0V, and HAL now reads the pin as FALSE, then you have an OC port. If the resulting voltage is far from 0V, or HAL
does not read the pin as FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates (e.g., 74LS05).

On some machines, BIOS settings may affect whether x mode can be used. SPP mode is most likely to work.

No other combinations are supported, and a port cannot be changed from input to output once the driver is installed. The Parport
Block Diagram shows two block diagrams, one showing the driver when the data group is configured for output, and one showing
it configured for input. For x mode, refer to the pin listing of halcmd show pin for pin direction assignment.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are numbered starting at zero.

18.1.1 Installing

loadrt hal_parport cfg="<config-string>"

Using the Port Index I/0O addresses below 16 are treated as port indexes. This is the simplest way to install the parport driver
and cooperates with the Linux parport_pc driver if it is loaded. This will use the address Linux has detected for parport 0.

loadrt hal_parport cfg="0"

Integrator Manual V2.7.0-pre3, 2015-02-19 197 / 348

Using the Port Address The configure string consists of a hex port address, followed by an optional direction, repeated for each
port. The direction is in, out, or x and determines the direction of the physical pins 2 through 9, and whether to create input HAL
pins for the physical control pins. If the direction is not specified, the data group defaults to output. For example:

loadrt hal_parport cfg="0x278 0x378 in 0x20A0 out"

This example installs drivers for one port at 0x0278, with pins 2-9 as outputs (by default, since neither in nor out was specified),
one at 0x0378, with pins 2-9 as inputs, and one at 0x20A0, with pins 2-9 explicitly specified as outputs. Note that you must know
the base address of the parallel port to properly configure the driver. For ISA bus ports, this is usually not a problem, since the
port is almost always at a well known address, like 0278 or 0378 which is typically configured in the system BIOS. The address
for a PCI card is usually shown in Ispci -v in an I/O ports line, or in the kernel message log after executing sudo modprobe -a
parport_pc. There is no default address; if <config-string> does not contain at least one address, it is an error.

Port Address

For those who build their own hardware, one safeguard against shorting out an on-board parallel port - or even the whole
motherboard - is to use an add-on parallel port card. Even if you don’t need the extra layer of safety, a parport card is a good way
to add extra I/O lines with LinuxCNC.

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5V signals, and can come in a single or dual
ports.

To find the I/O addresses for these cards open a terminal window and use the list pci command:

lspci -v

Look for the entry with "Netmos" in it. Example of a 2-port card:

0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/O Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2POS (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/0 ports at b800 [size=8]

I/0 ports at bc00 [size=8]
I/0 ports at c000 [size=8]
I/0 ports at c400 [size=8]
I/0 ports at c800 [size=8]
I/0 ports at cc00 [size=16]

From experimentation, I’ve found the first port (the on-card port) uses the third address listed (c000), and the second port (the
one that attaches with a ribbon cable) uses the first address listed (b800).

You can then open an editor and put the addresses into the appropriate place in your .hal file.

loadrt hal_parport cfg="0x378 0xcO000"

You must also direct LinuxCNC to run the read and write functions for the second card. For example,

addf parport.l.read base-thread 1
addf parport.l.write base-thread -1

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their settings depending on which
slot you put them into, so if you like to ’get under the hood’ and re-arrange things, be sure to check these values before you start
LinuxCNC.

Integrator Manual V2.7.0-pre3, 2015-02-19 198 /348

parport.0 parport.0

configured as oupul configured asinpul

pn-131n

<
o<
<
%\@5\ ¢ pnitnmg s | B
oy [T100| Caep<
rmc——cammni = ==

dnzwi @
v, RS © -] |

@ ¢ __pnsn_]
o [by 5 R Ew]
T G 80| Camp<

pneml

e e I I @® Cnzmng |

LI_;, [D O/ [— ml—v[}

pn-od — D [— WD
Iml—jD n e D

IM>E)D e [

Figure 18.1: Parport Block Diagram

A il

EOEEEREERE)

(Q@@@@
\PEEEREEEORRE/

pin-1%-0u- warl

18.1.2 Pins

* parport.<p>.pin-<n>-out (bit) Drives a physical output pin.
* parport.<p>.pin-<n>-in (bit) Tracks a physical input pin.

* parport.<p>.pin-<n>-in-not (bit) Tracks a physical input pin, but inverted.

For each pin, <p> is the port number, and <n> is the physical pin number in the 25 pin D-shell connector.
For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin-14-out.

Pins 2 through 9 are part of the data group and are output pins if the port is defined as an output port. (Output is the default.) Pins
1, 14, 16, and 17 are outputs in all modes. These HAL pins control the state of the corresponding physical pins.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin-12-in and parport.0.pin-12-in-not.

Pins 10, 11, 12, 13, and 15 are always input pins. Pins 2 through 9 are input pins only if the port is defined as an input port. The
-in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The -in-not HAL pin is inverted — it is
FALSE if the physical pin is high. By connecting a signal to one or the other, the user can determine the state of the input. In x
mode, pins 1, 14, 16, and 17 are also input pins.

Integrator Manual V2.7.0-pre3, 2015-02-19 199/ 348

18.1.3 Parameters

* parport.<p>.pin-<n>-out-invert (bit) Inverts an output pin.
* parport.<p>.pin-<n>-out-reset (bit) (only for out pins) TRUE if this pin should be reset when the -reset function is executed.
* parport.<p>.reset-time’ (U32) The time (in nanoseconds) between a pin is set by write and reset by the reset function if it is

enabled.

The -invert parameter determines whether an output pin is active high or active low. If -invert is FALSE, setting the HAL -out
pin TRUE drives the physical pin high, and FALSE drives it low. If -invert is TRUE, then setting the HAL -out pin TRUE will
drive the physical pin low.

18.1.4 Functions

* parport.<p>.read (funct) Reads physical input pins of port <portnum> and updates HAL -in and -in-not pins.
* parport.read-all (funct) Reads physical input pins of all ports and updates HAL -in and -in-not pins.

* parport.<p>.write (funct) Reads HAL -out pins of port <p> and updates that port’s physical output pins.

* parport.write-all (funct) Reads HAL -out pins of all ports and updates all physical output pins.

* parport.<p>.reset (funct) Waits until reset-time has elapsed since the associated wrife, then resets pins to values indicated by
-out-invert and -out-invert settings. reset must be later in the same thread as write. ’If -reset is TRUE, then the reset function
will set the pin to the value of -out-invert. This can be used in conjunction with stepgen’s doublefreq to produce one step per
period. The stepgen stepspace for that pin must be set to 0 to enable doublefreq.

The individual functions are provided for situations where one port needs to be updated in a very fast thread, but other ports can
be updated in a slower thread to save CPU time. It is probably not a good idea to use both an -all function and an individual
function at the same time.

18.1.5 Common problems

If loading the module reports

insmod: error inserting ’/home/jepler/emc2/rtlib/hal_parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport_pc is not loaded' and that no other device in the system has claimed the I/O
ports.

If the module loads but does not appear to function, then the port address is incorrect.

18.1.6 Using DoubleStep

To setup DoubleStep on the parallel port you must add the function parport.n.reset after parport.n.write and configure stepspace
to 0 and the reset time wanted. So that step can be asserted on every period in HAL and then toggled off by parport after being
asserted for time specificed by parport.n.reset-time.

For example:

! In the LinuxCNC packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport_pc from being automatically loaded.

Integrator Manual V2.7.0-pre3, 2015-02-19

200/ 348

loadrt hal_parport cfg="0x378 out"
setp parport.0.reset-time 5000
loadrt stepgen step_type=0,0,0

addf
addf
addf
addf
addf
setp
setp

More information on DoubleStep can be found on the wiki.

parport
stepgen
parport
parport
stepgen

stepgen
stepgen

.0.read base-thread
.make-pulses base-thread
.0.write base-thread

.0.reset base—-thread
.capture-position servo-thread

.0.steplen 1
.0.stepspace 0

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?TweakingSoftwareStepGeneration

Integrator Manual V2.7.0-pre3, 2015-02-19 201/348

Chapter 19

AX5214H Driver

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an ISA bus, and resembles a pair
of 8255 chips. In fact it may be a pair of 8255 chips, but I'm not sure. If/when someone starts a driver for an 8255 they should
look at the ax5214 code, much of the work is already done.

19.1 Installing

loadrt hal_ax5214h cfg="<config-string>"

The config string consists of a hex port address, followed by an 8 character string of "I" and "O" which sets groups of pins as
inputs and outputs. The first two character set the direction of the first two 8 bit blocks of pins (0-7 and 8-15). The next two set
blocks of 4 pins (16-19 and 20-23). The pattern then repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4
bits (40-43 and 44-47). If more than one board is installed, the data for the second board follows the first. As an example, the
string "0x220 IIIOI100 0x300 OIOOIOIO" installs drivers for two boards. The first board is at address 0x220, and has 36 inputs
(0-19 and 24-39) and 12 outputs (20-23 and 40-47). The second board is at address 0x300, and has 20 inputs (8-15, 24-31, and
40-43) and 28 outputs (0-7. 16-23, 32-39, and 44-47). Up to 8 boards may be used in one system.

19.2 Pins

* (bit) ax5214.<boardnum>.out-<pinnum>— Drives a physical output pin.
* (bit) ax5214.<boardnum>.in-<pinnum>— Tracks a physical input pin.

* (bit) ax5214.<boardnum>.in-<pinnum>-not — Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel number (0 to 47).

Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will work correctly (TRUE means
output ON, or input energized). If the signals are being used directly without buffering or isolation the inversion needs to be
accounted for. The in- HAL pin is TRUE if the physical pin is low (OPTO-22 module energized), and FALSE if the physical pin
is high (OPTO-22 module off). The in-<pinnum>-not HAL pin is inverted —it is FALSE if the physical pin is low (OPTO-22
module energized). By connecting a signal to one or the other, the user can determine the state of the input.

19.3 Parameters

e (bit) ax5214.<boardnum>.out-<pinnum>-invert — Inverts an output pin.

Integrator Manual V2.7.0-pre3, 2015-02-19 202 /348

The -invert parameter determines whether an output pin is active high or active low. If -invert is FALSE, setting the HAL out-
pin TRUE drives the physical pin low, turning ON an attached OPTO-22 module, and FALSE drives it high, turning OFF the
OPTO-22 module. If -invert is TRUE, then setting the HAL out- pin TRUE will drive the physical pin high and turn the module
OFF.

19.4 Functions

* (funct) ax5214.<boardnum>.read — Reads all digital inputs on one board.

* (funct) ax5214.<boardnum>.write — Writes all digital outputs on one board.

Integrator Manual V2.7.0-pre3, 2015-02-19 203 /348

Chapter 20

GS2 VFD Driver

This is a userspace HAL program for the GS2 series of VFD’s at Automation Direct.
This component is loaded using the halcmd "loadusr" command:

loadusr -Wn spindle-vfd gs2_vfd -n spindle-vfd

The above command says: loadusr, wait for named to load, component gs2_vfd, named spindle-vfd

20.1 Command Line Options

* -b or --bits <n> (default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive
e -d or --device <path> (default /dev/ttyS0O) Set the name of the serial device node to use

* -g or --debug Turn on debugging messages. This will also set the verbose flag. Debug mode will cause all modbus messages
to be printed in hex on the terminal.

* -n or --name <string> (default gs2_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>, and
all pin and parameter names will begin with <string>.

* -p or --parity {even,odd,none} (default odd) Set serial parity to even, odd, or none.

* -ror --rate <n> (default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400, 57600, 115200

e -s or --stopbits { 1,2} (default 1) Set serial stop bits to 1 or 2
e -tor --target <n> (default 1) Set MODBUS target (slave) number. This must match the device number you set on the GS2.

* -v or --verbose Turn on debug messages.

Note
That if there are serial configuration errors, turning on verbose may result in a flood of timeout errors.

20.2 Pins

Where <n> is gs2_vfd or the name given during loading with the -n option.

* <n>.DC-bus-volts (float, out) The DC bus voltage of the VFD

Integrator Manual V2.7.0-pre3, 2015-02-19

204 / 348

e <n>.at-speed (bit, out) when drive is at commanded speed
e <n>.err-reset (bit, in) reset errors sent to VFD

e <n>.firmware-revision (s32, out) from the VFD

o <n>.frequency-command (float, out) from the VFD

* <n>.frequency-out (float, out) from the VFD

* <n>.is-stopped (bit, out) when the VFD reports 0 Hz output
» <n>.load-percentage (float, out) from the VFD

e <n>.motor-RPM (float, out) from the VFD

* <n>.output-current (float, out) from the VFD

* <n>.output-voltage (float, out) from the VFD

* <n>.power-factor (float, out) from the VFD

* <n>.scale-frequency (float, out) from the VFD

* <n>.speed-command (float, in) speed sent to VFD in RPM It is an error to send a speed faster than the Motor Max RPM as set

in the VFD

* <n>.spindle-fwd (bit, in) 1 for FWD and O for REV sent to VFD

e <n>.spindle-rev (bit, in) 1 for REV and 0 if off

* <n>.spindle-on (bit, in) 1 for ON and O for OFF sent to VFD
e <n>.status-1 (s32, out) Drive Status of the VFD (see the GS2 manual)

e <n>.status-2 (s32, out) Drive Status of the VFD (see the GS2 manual)

Note

The status value is a sum of all the bits that are on. So a 163 which means the drive is in the run mode is the sum of 3 (run) +

32 (freq set by serial) + 128 (operation set by serial).

20.3 Parameters

Where <n> is gs2_vfd or the name given during loading with the -n option.

e <n>.error-count (s32, RW)

e <n>.loop-time (float, RW) how often the modbus is polled (default 0.1)
* <n>.nameplate-HZ (float, RW) Nameplate Hz of motor (default 60)

e <n>.nameplate-RPM (float, RW) Nameplate RPM of motor (default 1730)

e <n>.retval (s32, RW) the return value of an error in HAL

e <n>.tolerance (s32, RW) speed tolerance (default 0.01)

For an example of using this component to drive a spindle see the GS2 Spindle example.

Integrator Manual V2.7.0-pre3, 2015-02-19 205/ 348

Chapter 21

Mesa HostMot2 Driver

21.1 Introduction

HostMot2 is an FPGA configuration developed by Mesa Electronics for their line of Anything I/0 motion control cards. The
firmware is open source, portable and flexible. It can be configured (at compile-time) with zero or more instances (an object
created at runtime) of each of several Modules: encoders (quadrature counters), PWM generators, and step/dir generators. The
firmware can be configured (at run-time) to connect each of these instances to pins on the I/O headers. I/O pins not driven by a
Module instance revert to general-purpose bi-directional digital I/O.

21.2 Firmware Binaries

50 Pin Header FPGA cards Several pre-compiled HostMot2 firmware binaries are available for the different Anything I/O
boards. (This list is incomplete, check the hostmot2-firmware distribution for up-to-date firmware lists.)

3x20 (144 I/O pins): using hm2_pci module

— 24-channel servo

— 16-channel servo plus 24 step/dir generators

5i22 (96 I/O pins): using hm2_pci module

— 16-channel servo

— 8-channel servo plus 24 step/dir generators

5120, 5i23, 4i65, 4168 (72 I/O pins): using hm2_pci module

— 12-channel servo
— 8-channel servo plus 4 step/dir generators

— 4-channel servo plus 8 step/dir generators

7143 (48 1/0O pins): using hm2_7i43 module

— 8-channel servo (8 PWM generators & 8 encoders)

— 4-channel servo plus 4 step/dir generators

DB25 FPGA cards The 5i25 Superport FPGA card is preprogrammed when purchased and does not need a firmware binary.

Integrator Manual V2.7.0-pre3, 2015-02-19 206/ 348

21.3 Installing Firmware

Depending on how you installed LinuxCNC you may have to open the Synaptic Package Manager from the System menu and
install the package for your Mesa card. The quickest way to find them is to do a search for hostmot2 in the Synaptic Package
Manager. Mark the firmware for installation, then apply.

21.4 Loading HostMot2

The LinuxCNC support for the HostMot2 firmware is split into a generic driver called hostmot2 and two low-level I/O drivers for
the Anything I/O boards. The low-level I/O drivers are hm2_7i43 and hm2_pci (for all the PCI- and PC-104/Plus-based Anything
I/0 boards). The hostmot2 driver must be loaded first, using a HAL command like this:

loadrt hostmot2

See the hostmot2(9) man page for details.

The hostmot2 driver by itself does nothing, it needs access to actual boards running the HostMot2 firmware. The low-level I/O
drivers provide this access. The low-level I/O drivers are loaded with commands like this:

loadrt hm2_pci config="firmware=hm2/5i20/SVST8_4.BIT
num_encoders=3 num_pwmgens=3 num_stepgens=1"

The config parameters are described in the hostmot2 man page.

21.5 Watchdog

The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it.
The watchdog must be petted by LinuxCNC periodically or it will bite. The hm2 write function (see below) pets the watchdog.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and become high-impedance
inputs (pulled high). The state of the HostMot2 firmware modules is not disturbed (except for the configuration of the I/O Pins).
Encoder instances keep counting quadrature pulses, and pwm- and step-generators keep generating signals (which are not relayed
to the motors, because the I/O Pins have become inputs).

Resetting the watchdog resets the I/O pins to the configuration chosen at load-time.

If the firmware includes a watchdog, the following HAL objects will be exported:

21.5.1 Pins:

* has_bit - (bit i/0) True if the watchdog has bit, False if the watchdog has not bit. If the watchdog has bit and the has_bit bit is
True, the user can reset it to False to resume operation.

21.5.2 Parameters:

* timeout_ns - (u32 read/write) Watchdog timeout, in nanoseconds. This is initialized to 5,000,000 (5 milliseconds) at module
load time. If more than this amount of time passes between calls to the hm2 write function, the watchdog will bite.

Integrator Manual V2.7.0-pre3, 2015-02-19 207 / 348

21.6 HostMot2 Functions

* hm2_<BoardType>.<BoardNum>.read - Read all inputs, update input HAL pins.
* hm2_<BoardType>.<BoardNum>.write - Write all outputs.

* hm2_<BoardType>.<BoardNum>.read_gpio - Read the GPIO input pins only. (This function is not available on the 7i43 due
to limitations of the EPP bus.)

* hm2_<BoardType>.<BoardNum>.write_gpio - Write the GPIO control registers and output pins only. (This function is not
available on the 7i43 due to limitations of the EPP bus.)

Note

The above read_gpio and write_gpio functions should not normally be needed, since the GPIO bits are read and written along
with everything else in the standard read and write functions above, which are normally run in the servo thread.

The read _gpio and write_gpio functions were provided in case some very fast (frequently updated) I/O is needed. These
functions should be run in the base thread. If you have need for this, please send an email and tell us about it, and what your
application is.

21.7 Pinouts

The hostmot2 driver does not have a particular pinout. The pinout comes from the firmware that the hostmot2 driver sends to
the Anything I/O board. Each firmware has different pinout, and the pinout depends on how many of the available encoders,
pwmgens, and stepgens are used. To get a pinout list for your configuration after loading LinuxCNC in the terminal window

type:

dmesg > hm2.txt

The resulting text file will contain lots of information as well as the pinout for the HostMot2 and any error and warning messages.
To reduce the clutter by clearing the message buffer before loading LinuxCNC type the following in the terminal window:

sudo dmesg -c

Now when you run LinuxCNC and then do a dmesg > hm2.txt in the terminal only the info from the time you loaded LinuxCNC
will be in your file along with your pinout. The file will be in the current directory of the terminal window. Each line will contain
the card name, the card number, the I/O Pin number, the connector and pin, and the usage. From this printout you will know the
physical connections to your card based on your configuration.

An example of a 5i20 configuration:

[HOSTMOT2]

DRIVER=hm2_pci

BOARD=5120

CONFIG="firmware=hm2/5120/SVST8_4.BIT num_encoders=1 num_pwmgens=1 num_stepgens=3"

The above configuration produced this printout.

[1141.053386] hm2/hm2_5120.0: 72 I/O Pins used:

[1141.053394] hm2/hm2_5i20.0: IO Pin 000 (P2-01): IOPort

[1141.053397] hm2/hm2_5120.0: IO Pin 001 (P2-03): IOPort

[1141.053401] hm2/hm2_5120.0: IO Pin 002 (P2-05): Encoder #0, pin B (Input)

[1141.053405] hm2/hm2_5120.0: IO Pin 003 (P2-07): Encoder #0, pin A (Input)

[1141.053408] hm2/hm2_5i20.0: IO Pin 004 (P2-09): IOPort

[1141.053411] hm2/hm2_5120.0: IO Pin 005 (P2-11): Encoder #0, pin Index (Input)

[1141.053415] hm2/hm2_5i20.0: IO Pin 006 (P2-13): IOPort

[1141.053418] hm2/hm2_5120.0: IO Pin 007 (P2-15): PWMGen #0, pin OutO (PWM or Up) (Output)
[1141.053422] hm2/hm2_5120.0: IO Pin 008 (P2-17): IOPort

Integrator Manual V2.7.0-pre3, 2015-02-19 208 /348

[1141.053425] hm2/hm2_5120.0: IO Pin 009 (P2-19): PWMGen #0, pin Outl (Dir or Down) (<>
Output)
[1141.053429] hm2/hm2_5120.0: IO Pin 010 (P2-21): IOPort

1141.053811] hm2/hm2_5i20.0: registered
1141.053815] hm2_5i20.0: initialized AnyIO board at 0000:02:02.0

[1141.053432] hm2/hm2_5120.0: IO Pin 011 (P2-23): PWMGen #0, pin Not-Enable (Output)
<snip>...

[1141.053589] hm2/hm2_5120.0: IO Pin 060 (P4-25): StepGen #2, pin Step (Output)

[1141.053593] hm2/hm2_5i20.0: IO Pin 061 (P4-27) StepGen #2, pin Direction (Output)
[1141.053597] hm2/hm2_5i20.0: IO Pin 062 (P4-29) StepGen #2, pin (unused) (Output)
[1141.053601] hm2/hm2_5120.0: IO Pin 063 (P4-31): StepGen #2, pin (unused) (Output)
[1141.053605] hm2/hm2_5i20.0: IO Pin 064 (P4-33) StepGen #2, pin (unused) (Output)
[1141.053609] hm2/hm2_5i120.0: IO Pin 065 (P4-35) StepGen #2, pin (unused) (Output)
[1141.053613] hm2/hm2_5120.0: IO Pin 066 (P4-37): IOPort

[1141.053616] hm2/hm2_5i20.0: IO Pin 067 (P4-39): IOPort

[1141.053619] hm2/hm2_5i120.0: IO Pin 068 (P4-41) IOPort

[1141.053621] hm2/hm2_5120.0: IO Pin 069 (P4-43): IOPort

[1141.053624] hm2/hm2_5i120.0: IO Pin 070 (P4-45): IOPort

[1141.053627] hm2/hm2_5i120.0: IO Pin 071 (P4-47) IOPort

[

[

Note
That the I/O Pin nnn will correspond to the pin number shown on the HAL Configuration screen for GPIOs. Some of the
Stepgen, Encoder and PWMGen will also show up as GPIOs in the HAL Configuration screen.

21.8 PIN Files

The default pinout is described in a .PIN file (human-readable text). When you install a firmware package the .PIN files are
installed in

/usr/share/doc/hostmot2-firmware—-<board>/

21.9 Firmware

The selected firmware (.BIT file) and configuration is uploaded from the PC motherboard to the Mesa mothercard on LinuxCNC
startup. If you are using Run In Place, you must still install a hostmot2-firmware-<board> package. There is more information
about firmware and configuration in the Configurations section.

21.10 HAL Pins

The HAL pins for each configuration can be seen by opening up Show HAL Configuration from the Machine menu. All the HAL
pins and parameters can be found there. The following figure is of the 5120 configuration used above.

Integrator Manual V2.7.0-pre3, 2015-02-19 209 /348

HAL Configuration

[T sSHOW | waTCH

Component Pins:

Dwner & Dir
= oUT]
bit I/0
float O0UT
=32 OUT 0
bit IN
float OUT 0

Name
hm2 _5120.0. encoder.
hm2 5120 0. encoder,

] . count
0
hm2 5i20. 0. encoder.
0
0
0

index-enabls
-position
- rawcounts
rezset

velocity

encoder
gpio
psrmgen
slepygen
wralchdog

oControl

motion

E Paramelers

axis

hmZ_Si20

1]

encoder
gpio
in_error
pet_watchidog
pysmigen
el

hm2_5i20. 0. encoder.
hm2 5120 0. encoder.
hme_S120. 0. encoder,

==l el] =]) -

read_gpio

slepgen

waltchdog

Wrrite

wirite gpio
f— motion-command-handl
f— motion-coniroller

Test HAL command : |

Commands may be tested here but they will WOT be sawed

i
F

Figure 21.1: 5120 HAL Pins

21.11 Configurations

The Hostmot2 firmware is available in several versions, depending on what you are trying to accomplish. You can get a reminder
of what a particular firmware is for by looking at the name. Let’s look at a couple of examples.

In the 7i43 (two ports), SV8 (Servo 8) would be for having 8 servos or fewer, using the classic 7133 4-axis (per port) servo board.
So 8 servos would use up all 48 signals in the two ports. But if you only needed 3 servos, you could say num_encoders=3 and
num_pwmgens=3 and recover 5 servos at 6 signals each, thus gaining 30 bits of GPIO.

Or, in the 5i22 (four ports), SVST8_24 (Servo 8, Stepper 24) would be for having 8 servos or fewer (7i33 x2 again), and 24
steppers or fewer (7i47 x2). This would use up all four ports. If you only needed 4 servos you could say num_encoders=4 and
num_pwmgens=4 and recover 1 port (and save a 7i33). And if you only needed 12 steppers you could say num_stepgens=12 and
free up one port (and save a 7i47). So in this way we can save two ports (48 bits) for GPIO.

Here are tables of the firmwares available in the official packages. There may be additional firmwares available at the Mesanet.com
website that have not yet made it into the LinuxCNC official firmware packages, so check there too.

3x20 (6-port various) Default Configurations (The 3x20 comes in 1M, 1.5M, and 2M gate versions. So far, all firmware is
available in all gate sizes.)

Firmware Encoder PWMGen StepGen GPIO
Sv24 24 24 0 0
SVSTI16_24 16 16 24 0

Integrator Manual V2.7.0-pre3, 2015-02-19 210/ 348

5i22 (4-port PCI) Default Configurations (The 5122 comes in 1M and 1.5M gate versions. So far, all firmware is available in all
gate sizes.)

Firmware Encoder PWM StepGen GPIO
SVie6 16 16 0 0
SVST2_4_7147 4 2 4 72
SVSTS_8 8 8 8 0
SVST8_24 8 8 24 0

5123 (3-port PCI) Default Configurations (The 5i23 has 400k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_8 2 2 8 (tbld) 12
SVST2_4_7147 4 2 4 48
SV12_2X7148_72 | 12 12 0 24
SVI2IM_2X7148_72 12 (+IM) 12 0 12
SVST4_8 4 4 8 (tbl5) 0
SVST8_4 8 8 4 (tblS5) 0
SVST8_4IM2 8 (+IM) 8 4 8
SVST8_8IM2 8 (+IM) 8 8 0
SVTP6_7139 6 0 (6 BLDC) 0 0

5120 (3-port PCI) Default Configurations (The 5i20 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_8 2 2 8 (tbl5) 12
SVST2_4_7147 4 2 4 48
SVI2_2X7148_72 | 12 12 0 24
SVI2IM_2X7148_72 12 (+IM) 12 0 12
SVSTS_4 8 8 4 (tbl5)

SVST8_4IM2 8 (+IM) 8 4 8

4i68 (3-port PC/104) Default Configurations (The 4168 has 400k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST2_4_7147 4 2 4 48
SVST4_8 4 4 8 0
SVST8_4 8 8 4 0
SVST8_4IM2 8 (+IM) 8 4 8
SVST8_8IM?2 8 (+IM) 8 8 0

4165 (3-port PC/104) Default Configurations (The 4165 has 200k gates.)

Firmware Encoder PWM StepGen GPIO
SV12 12 12 0 0
SVST8_4 8 8 4 0
SVST8_4IM2 8 (+IM) 8 4 8

7143 (2-port parallel) 400k gate versions, Default Configurations

Integrator Manual V2.7.0-pre3, 2015-02-19 211/348

Firmware Encoder PWM StepGen GPIO
SVv8 8 8 0 0
SVST4_4 4 4 4 (tblS5) 0
SVST4_6 4 4 6 (tbl3) 0
SVST4_12 4 4 12 0
SVST2_4_7147 4 2 4 24
7143 (2-port parallel) 200k gate versions, Default Configurations

Firmware Encoder PWM StepGen GPIO
SV8 8 8 0 0
SVST4_4 4 4 4 (tbl5) 0
SVST4_6 4 4 6 (tbl3) 0
SVST2_4_7147 4 2 4 24

Even though several cards may have the same named .BIT file you cannot use a .BIT file that is not for that card. Different cards
have different clock frequencies so make sure you load the proper .BIT file for your card. Custom hm2 firmwares can be created
for special applications and you may see some custom hm2 firmwares in the directories with the default ones.

When you load the board-driver (hm2_pci or hm2_7i43), you can tell it to disable instances of the three primary modules
(pwmgen, stepgen, and encoder) by setting the count lower. Any I/O pins belonging to disabled module instances become
GPIOs.

21.12 GPIO

General Purpose I/0O pins on the board which are not used by a module instance are exported to HAL as full GPIO pins. Full GPIO
pins can be configured at run-time to be inputs, outputs, or open drains, and have a HAL interface that exposes this flexibility.
I/0O pins that are owned by an active module instance are constrained by the requirements of the owning module, and have a
restricted HAL interface.

GPIOs have names like hm2_<BoardType>.<BoardNum>.gpio.<IONum>. IONum. is a three-digit number. The mapping from
IONum to connector and pin-on-that-connector is written to the syslog when the driver loads, and it’s documented in Mesa’s
manual for the Anything I/O boards.

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the Canonical Device Interface
(part of the HAL General Reference document).

GPIO pins default to input.

21.12.1 Pins

* in - (Bit, Out) Normal state of the hardware input pin. Both full GPIO pins and I/O pins used as inputs by active module
instances have this pin.

* in_not - (Bit, Out) Inverted state of the hardware input pin. Both full GPIO pins and I/O pins used as inputs by active module
instances have this pin.

* out - (Bit, In) Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins have this pin.

21.12.2 Parameters

* invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this parameter is true, the
output value of the GPIO will be the inverse of the value on the outr HAL pin. Only full GPIO pins and I/O pins used as outputs
by active module instances have this parameter. To invert an active module pin you have to invert the GPIO pin not the module
pin.

Integrator Manual V2.7.0-pre3, 2015-02-19 212 /348

* is_opendrain - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this parameter is false, the
GPIO behaves as a normal output pin: the I/O pin on the connector is driven to the value specified by the out HAL pin (possibly
inverted), and the value of the in and in_not HAL pins is undefined. If this parameter is true, the GPIO behaves as an open-drain
pin. Writing 0 to the out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-impedance
state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value; the resulting
value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O pins used as outputs by active module
instances have this parameter.

* is_output - (Bit, RW) If set to 0, the GPIO is an input. The I/O pin is put in a high-impedance state (weakly pulled high), to be
driven by other devices. The logic value on the I/O pin is available in the in and in_not HAL pins. Writes to the out HAL pin
have no effect. If this parameter is set to 1, the GPIO is an output; its behavior then depends on the is_opendrain parameter.
Only full GPIO pins have this parameter.

21.13 StepGen

Stepgens have names like hm2_<BoardType>.<BoardNum>.stepgen.<Instance>.. Instance is a two-digit number that corre-
sponds to the HostMot2 stepgen instance number. There are num_stepgens instances, starting with 00.

Each stepgen allocates 2-6 I/O pins (selected at firmware compile time), but currently only uses two: Step and Direction outputs.!

The stepgen representation is modeled on the stepgen software component. Stepgen default is active high step output (high
during step time low during step space). To invert a StepGen output pin you invert the corresponding GPIO pin that is being used
by StepGen. To find the GPIO pin being used for the StepGen output run dmesg as shown above.

Each stepgen instance has the following pins and parameters:

21.13.1 Pins

* control-type - (Bit, In) Switches between position control mode (0) and velocity control mode (1). Defaults to position control

0).
* counts - (s32, Out) Feedback position in counts (number of steps).
* enable - (Bit, In) Enables output steps. When false, no steps are generated.
* position-cmd - (Float, In) Target position of stepper motion, in user-defined position units.
* position-fb - (Float, Out) Feedback position in user-defined position units (counts / position_scale).

* velocity-cmd - (Float, In) Target velocity of stepper motion, in user-defined position units per second. This pin is only used
when the stepgen is in velocity control mode (control-type=1).

* velocity-fb - (Float, Out) Feedback velocity in user-defined position units per second.

21.13.2 Parameters

* dirhold - (u32, RW) Minimum duration of stable Direction signal after a step ends, in nanoseconds.
* dirsetup - (032, RW) Minimum duration of stable Direction signal before a step begins, in nanoseconds.

* maxaccel - (Float, RW) Maximum acceleration, in position units per second per second. If set to 0, the driver will not limit its
acceleration.

* maxvel - (Float, RW) Maximum speed, in position units per second. If set to 0, the driver will choose the maximum velocity
based on the values of steplen and stepspace (at the time that maxvel was set to 0).

* position-scale - (Float, RW) Converts from counts to position units. position = counts / position_scale

! At present, the firmware supports multi-phase stepper outputs, but the driver doesn’t. Interested volunteers are solicited.

Integrator Manual V2.7.0-pre3, 2015-02-19 213 /348

o step_type - (u32, RW) Output format, like the step_type modparam to the software stegen(9) component. 0 = Step/Dir, 1 =
Up/Down, 2 = Quadrature. In Quadrature mode (step_type=2), the stepgen outputs one complete Gray cycle (00 -> 01 -> 11
-> 10 -> 00) for each szep it takes.

* steplen - (u32, RW) Duration of the step signal, in nanoseconds.

* stepspace - (u32, RW) Minimum interval between step signals, in nanoseconds.

21.13.3 Output Parameters

The Step and Direction pins of each StepGen have two additional parameters. To find which I/O pin belongs to which step and
direction output run dmesg as described above.

* invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this parameter is true, the
output value of the GPIO will be the inverse of the value on the our HAL pin.

* is_opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: the I/O pin on the connector
is driven to the value specified by the out HAL pin (possibly inverted). If this parameter is true, the GPIO behaves as an
open-drain pin. Writing O to the out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-
impedance state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O pins used as outputs by
active module instances have this parameter.

21.14 PWMGen

PWDMgens have names like him2_<BoardType>.<BoardNum>.pwmgen.<lInstance>.. Instance is a two-digit number that corre-
sponds to the HostMot2 pwmgen instance number. There are num_pwmgens instances, starting with 00.

In HM2, each pwmgen uses three output I/O pins: Not-Enable, Out0, and Outl. To invert a PWMGen output pin you invert the
corresponding GPIO pin that is being used by PWMGen. To find the GPIO pin being used for the PWMGen output run dmesg
as shown above.

The function of the OutO and Outl I/O pins varies with output-type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen instance has the following pins
and parameters:

21.14.1 Pins

* enable - (Bit, In) If true, the pwmgen will set its Not-Enable pin false and output its pulses. If enable is false, pwmgen will set
its Not-Enable pin true and not output any signals.

* value - (Float, In) The current pwmgen command value, in arbitrary units.

21.14.2 Parameters

* output-type - (s32, RW) This emulates the output_type load-time argument to the software pwmgen component. This parameter
may be changed at runtime, but most of the time you probably want to set it at startup and then leave it alone. Accepted values
are 1 (PWM on Out0 and Direction on Outl), 2 (Up on OutO and Down on Outl), 3 (PDM mode, PDM on Out0O and Dir on
Outl), and 4 (Direction on OutO and PWM on Outl, for locked antiphase).

* scale - (Float, RW) Scaling factor to convert value from arbitrary units to duty cycle: dc = value / scale. Duty cycle has an
effective range of -1.0 to +1.0 inclusive, anything outside that range gets clipped.

Integrator Manual V2.7.0-pre3, 2015-02-19 214 /348

* pdm_frequency - (u32, RW) This specifies the PDM frequency, in Hz, of all the pwmgen instances running in PDM mode
(mode 3). This is the pulse slot frequency; the frequency at which the pdm generator in the Anything I/O board chooses
whether to emit a pulse or a space. Each pulse (and space) in the PDM pulse train has a duration of 1/pdm_frequency seconds.
For example, setting the pdm_frequency to 2e6 (2 MHz) and the duty cycle to 50% results in a | MHz square wave, identical to
a 1 MHz PWM signal with 50% duty cycle. The effective range of this parameter is from about 1525 Hz up to just under 100
MHz. Note that the max frequency is determined by the ClockHigh frequency of the Anything I/O board; the 5i20 and 7143
both have a 100 MHz clock, resulting in a 100 Mhz max PDM frequency. Other boards may have different clocks, resulting
in different max PDM frequencies. If the user attempts to set the frequency too high, it will be clipped to the max supported
frequency of the board.

* pwm_frequency - (032, RW) This specifies the PWM frequency, in Hz, of all the pwmgen instances running in the PWM modes
(modes 1 and 2). This is the frequency of the variable-duty-cycle wave. Its effective range is from 1 Hz up to 193 KHz. Note
that the max frequency is determined by the ClockHigh frequency of the Anything I/O board; the 5i20 and 7i43 both have a
100 MHz clock, resulting in a 193 KHz max PWM frequency. Other boards may have different clocks, resulting in different
max PWM frequencies. If the user attempts to set the frequency too high, it will be clipped to the max supported frequency of
the board. Frequencies below about 5 Hz are not terribly accurate, but above 5 Hz they’re pretty close.

21.14.3 Output Parameters

The output pins of each PWMGen have two additional parameters. To find which I/O pin belongs to which output run dmesg as
described above.

* invert_output - (Bit, RW) This parameter only has an effect if the is_output parameter is true. If this parameter is true, the
output value of the GPIO will be the inverse of the value on the outr HAL pin.

* is_opendrain - (Bit, RW) If this parameter is false, the GPIO behaves as a normal output pin: the I/O pin on the connector
is driven to the value specified by the out HAL pin (possibly inverted). If this parameter is true, the GPIO behaves as an
open-drain pin. Writing O to the out HAL pin drives the I/O pin low, writing 1 to the out HAL pin puts the I/O pin in a high-
impedance state. In this high-impedance state the I/O pin floats (weakly pulled high), and other devices can drive the value;
the resulting value on the I/O pin is available on the in and in_not pins. Only full GPIO pins and I/O pins used as outputs by
active module instances have this parameter.

21.15 Encoder

Encoders have names like hm2_<BoardType>.<BoardNum>.encoder.<Instance>.. Instance is a two-digit number that corre-
sponds to the HostMot2 encoder instance number. There are num_encoders instances, starting with 00.

Each encoder uses three or four input I/O pins, depending on how the firmware was compiled. Three-pin encoders use A, B, and
Index (sometimes also known as Z). Four-pin encoders use A, B, Index, and Index-mask.

The hm?2 encoder representation is similar to the one described by the Canonical Device Interface (in the HAL General Reference
document), and to the software encoder component. Each encoder instance has the following pins and parameters:

21.15.1 Pins

* count - (s32, Out) Number of encoder counts since the previous reset.

* index-enable - (Bit, I/O) When this pin is set to True, the count (and therefore also position) are reset to zero on the next Index
(Phase-Z) pulse. At the same time, index-enable is reset to zero to indicate that the pulse has occurred.

* position - (Float, Out) Encoder position in position units (count / scale).
* rawcounts - (s32, Out) Total number of encoder counts since the start, not adjusted for index or reset.

* reset - (Bit, In) When this pin is TRUE, the count and position pins are set to 0. (The value of the velocity pin is not affected
by this.) The driver does not reset this pin to FALSE after resetting the count to 0, that is the user’s job.

* velocity - (Float, Out) Estimated encoder velocity in position units per second.

Integrator Manual V2.7.0-pre3, 2015-02-19 215/348

21.15.2 Parameters

* counter-mode - (Bit, RW) Set to False (the default) for Quadrature. Set to True for Up/Down or for single input on Phase A.
Can be used for a frequency to velocity converter with a single input on Phase A when set to true.

* filter - (Bit, RW) If set to True (the default), the quadrature counter needs 15 clocks to register a change on any of the three
input lines (any pulse shorter than this is rejected as noise). If set to False, the quadrature counter needs only 3 clocks to register
a change. The encoder sample clock runs at 33 MHz on the PCI Anything I/O cards and 50 MHz on the 7i43.

* index-invert - (Bit, RW) If set to True, the rising edge of the Index input pin triggers the Index event (if index-enable is True).
If set to False, the falling edge triggers.

* index-mask - (Bit, RW) If set to True, the Index input pin only has an effect if the Index-Mask input pin is True (or False,
depending on the index-mask-invert pin below).

¢ index-mask-invert - (Bit, RW) If set to True, Index-Mask must be False for Index to have an effect. If set to False, the Index-
Mask pin must be True.

¢ scale - (Float, RW) Converts from count units to position units. A quadrature encoder will normally have 4 counts per pulse
so a 100 PPR encoder would be 400 counts per revolution. In .counter-mode a 100 PPR encoder would have 100 counts per
revelution as it only uses the rising edge of A and direction is B.

* vel-timeout - (Float, RW) When the encoder is moving slower than one pulse for each time that the driver reads the count
from the FPGA (in the hm2_read() function), the velocity is harder to estimate. The driver can wait several iterations for the
next pulse to arrive, all the while reporting the upper bound of the encoder velocity, which can be accurately guessed. This
parameter specifies how long to wait for the next pulse, before reporting the encoder stopped. This parameter is in seconds.

21.16 5i25 Configuration

21.16.1 Firmware

The 5i25 firmware comes preloaded for the daughter card it is purchased with. So the firmware=xxx.BIT is not part of the
hm2_pci configuration string when using a 5i25.

21.16.2 Configuration

Example configurations of the 5i25/7176 and 5i25/7i77 cards are included in the Configuration Selector.
If you like to roll your own configuration the following examples show how to load the drivers in the HAL file.

5i25 + 7i76 Card

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2_pci config="num_encoders=1 num_stepgens=5 sserial_port_0=0XXX"

5i25 + 7i77 Card

load the generic driver
loadrt hostmot2

load the PCI driver and configure
loadrt hm2_pci config="num_encoders=6 num_pwmgens=6 sserial_port_0=0XXX"

Integrator Manual V2.7.0-pre3, 2015-02-19 216/348

21.16.3 SSERIAL Configuration

The sserial_port_0=0XXX configuration string sets some options for the smart serial daughter card. These options are specific
for each daughter card. See the Mesa manual for more information on the exact usuage.

21.16.4 7i77 Limits

The minlimit and maxlimit are bounds on the pin value (in this case the analog out value) fullscalemax is the scale factor.
These are by default set to the analog in or analog range (most likely in volts).

So for example on the 7177 +-10V analog outputs, the default values are:

minlimit -10 maxlimit +10 maxfullscale 10

If you wanted to say scale the analog out of a channel to IPS for a velocity mode servo (say 24 IPS max) you could set the limits
like this:

minlimit -24 maxlimit +24 maxfullscale 24

If you wanted to scale the analog out of a channel to RPM for a 0 to 6000 RPM spindle with 0-10V control you could set the
limits like this:

minlimit 0 maxlimit 6000 maxfullscale 6000 (this would prevent unwanted negative output voltages from being set)

21.17 Example Configurations

Several example configurations for Mesa hardware are included with LinuxCNC. The configurations are located in the hm2-servo
and hm2-stepper sections of the Configuration Selector. Typically you will need the board installed for the configuration you
pick to load. The examples are a good place to start and will save you time. Just pick the proper example from the LinuxCNC
Configuration Selector and save a copy to your computer so you can edit it. To see the exact pins and parameters that your
configuration gave you, open the Show HAL Configuration window from the Machine menu, or do dmesg as outlined above.

Integrator Manual V2.7.0-pre3, 2015-02-19 217/ 348

Chapter 22

Motenc Driver

Vital Systems Motenc-100 and Motenc-LITE

The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The Motenc-100 provides 8 quadra-
ture encoder counters, 8 analog inputs, 8 analog outputs, 64 (68?) digital inputs, and 32 digital outputs. The Motenc-LITE has
only 4 encoder counters, 32 digital inputs and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver
automatically identifies the installed board and exports the appropriate HAL objects.

Installing:

loadrt hal_motenc

During loading (or attempted loading) the driver prints some useful debugging messages to the kernel log, which can be viewed
with dmesg.

Up to 4 boards may be used in one system.

22.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming conventions the first board
should always have an ID of zero. However this driver sets the ID based on a pair of jumpers on the board, so it may be non-zero
even if there is only one board.

* (532) motenc.<board>.enc-<channel>-count - Encoder position, in counts.
* (float) motenc.<board>.enc-<channel>-position - Encoder position, in user units.
* (bit) motenc.<board>.enc-<channel>-index - Current status of index pulse input.

* (bit) motenc.<board>.enc-<channel>-idx-latch - Driver sets this pin true when it latches an index pulse (enabled by latch-
index). Cleared by clearing latch-index.

* (bit) motenc.<board>.enc-<channel>-latch-index - If this pin is true, the driver will reset the counter on the next index pulse.

* (bit) motenc.<board>.enc-<channel>-reset-count - If this pin is true, the counter will immediately be reset to zero, and the
pin will be cleared.

* (float) motenc.<board>.dac-<channel>-value - Analog output value for DAC (in user units, see -gain and -offset)
* (float) motenc.<board>.adc-<channel>-value - Analog input value read by ADC (in user units, see -gain and -offset)
* (bit) motenc.<board>.in-<channel> - State of digital input pin, see canonical digital input.

* (bit) motenc.<board>.in-<channel>-not - Inverted state of digital input pin, see canonical digital input.

Integrator Manual V2.7.0-pre3, 2015-02-19 218/348

* (bit) motenc.<board>.out-<channel> - Value to be written to digital output, seen canonical digital output.
* (bit) motenc.<board>.estop-in - Dedicated estop input, more details needed.
* (bit) motenc.<board>.estop-in-not - Inverted state of dedicated estop input.

* (bit) motenc.<board>.watchdog-reset - Bidirectional, - Set TRUE to reset watchdog once, is automatically cleared.

22.2 Parameters

* (float) motenc.<board>.enc-<channel>-scale - The number of counts / user unit (to convert from counts to units).
* (float) motenc.<board>.dac-<channel>-offset - Sets the DAC offset.

* (float) motenc.<board>.dac-<channel>-gain - Sets the DAC gain (scaling).

* (float) motenc.<board>.adc-<channel>-offset - Sets the ADC offset.

* (float) motenc.<board>.adc-<channel>-gain - Sets the ADC gain (scaling).

* (bit) motenc.<board>.out-<channel>-invert - Inverts a digital output, see canonical digital output.

* (u32) motenc.<board>.watchdog-control - Configures the watchdog. The value may be a bitwise OR of the following values:

Bit # Value Meaning
0 1 Timeout is 16ms if set, 8ms if unset
1 2
2 4 Watchdog is enabled
3 8
4 16 Watchdog is automatically reset by DAC writes (the HAL dac-write function)

Typically, the useful values are O (watchdog disabled) or 20 (8ms watchdog enabled, cleared by dac-write).

* (u32) motenc.<board>.led-view - Maps some of the I/O to onboard LEDs.

22.3 Functions

* (funct) motenc.<board>.encoder-read - Reads all encoder counters.

* (funct) motenc.<board>.adc-read - Reads the analog-to-digital converters.
* (funct) motenc.<board>.digital-in-read - Reads digital inputs.

* (funct) motenc.<board>.dac-write - Writes the voltages to the DACs.

* (funct) motenc.<board>.digital-out-write - Writes digital outputs.

* (funct) motenc.<board>.misc-update - Updates misc stuff.

Integrator Manual V2.7.0-pre3, 2015-02-19 219/348

Chapter 23

Opto22 Driver

PCI AC5 ADAPTER CARD / HAL DRIVER

23.1 The Adapter Card

This is a card made by Opto22 for adapting the PCI port to solid state relay racks such as their standard or G4 series. It has 2
ports that can control up to 24 points each and has 4 on board LEDs. The ports use 50 pin connectors the same as Mesa boards.
Any relay racks/breakout boards thats work with Mesa Cards should work with this card with the understanding any encoder
counters, PWM, etc., would have to be done in software. The AC5 does not have any smart logic on board, it is just an adapter.

See the manufacturer’s website for more info:
http://www.opto22.com/site/pr_details.aspx ?cid=4&item=PCI-AC5

I would like to thank Opto22 for releasing info in their manual, easing the writing of this driver!

23.2 The Driver

This driver is for the PCI ACS5 card and will not work with the ISA AC5 card. The HAL driver is a realtime module. It will
support 4 cards as is (more cards are possible with a change in the source code). Load the basic driver like so:

loadrt opto_ach

This will load the driver which will search for max 4 boards. It will set I/O of each board’s 2 ports to a default setting. The
default configuration is for 12 inputs then 12 outputs. The pin name numbers correspond to the position on the relay rack. For
example the pin names for the default I/O setting of port 0 would be:

* opto_ac5.0.port0.in-00 - They would be numbered from 00 to 11

* opto_ac5.0.port0.out-12 - They would be numbered 12 to 23 port 1 would be the same.

23.3 Pins

* opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER] OUT bit -

* opto_ac5.[BOARDNUMBER].port| PORTNUMBER].in-[PINNUMBER|-not OUT bit - Connect a HAL bit signal to this pin to
read an I/O point from the card. The PINNUMBER represents the position in the relay rack. Eg. PINNUMBER 0 is position 0
in a Opto22 relay rack and would be pin 47 on the 50 pin header connector. The -not pin is inverted so that LOW gives TRUE
and HIGH gives FALSE.

http://www.opto22.com/site/pr_details.aspx?cid=4&item=PCI-AC5

Integrator Manual V2.7.0-pre3, 2015-02-19 220/ 348

* opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER] IN bit - Connect a HAL bit signal to this pin to write
to an I/O point of the card. The PINNUMBER represents the position in the relay rack. Eg. PINNUMBER 23 is position 23 in
a Opto22 relay rack and would be pin 1 on the 50 pin header connector.

* opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit - Turns one of the 4 onboard LEDs on/off. LEDs are numbered O to 3.

BOARDNUMBER can be 0-3 PORTNUMBER can be 0 or 1. Port O is closest to the card bracket.

23.4 Parameters

* opto_ac5.[BOARDNUMBER].portf{ PORTNUMBER].out-[PINNUMBER J-invert W bit - When TRUE, invert the meaning of
the corresponding -out pin so that TRUE gives LOW and FALSE gives HIGH.

23.5 FUNCTIONS

* opto_ac5.0.digital-read - Add this to a thread to read all the input points.

* opto_ac5.0.digital-write - Add this to a thread to write all the output points and LEDs.

For example the pin names for the default I/O setting of port O would be:

opto_ac5.0.port0.in-00

They would be numbered from 00 to 11

opto_ac5.0.port0.out-12

They would be numbered 12 to 23 p