Developer Manual V2.6.11,
2015-11-01

Developer Manual V2.6.11, 2015-11-01

Developer Manual V2.6.11,

2015-11-01 i
Contents

1 Introduction 1

2 Code Notes 2

2.1 Intended audience e e e e e 2

2.2 0rganization oL e e e e e e e e e e 2

2.3 Termsand definitions e e e e e 2

2.4 Architecture OVEIVIEW ottt it ittt e e s e e e e e e e 3

2.5 Motion Controller Introduction e e e e 5

2.6 Block diagrams and Data Flow e 7

27 Commands e e e 8

27.1 ABORT . . . o e e 8

2711 Requirements it e e e e e e e e e e e e 8

2712 Results 8

272 FREE . . . o e 8

2721 Requirements i e e e e e e e e 9

2722 Results oL e 9

273 TELEOP 9

2.7.3.1 Requirements v i it e e e e e e e e e e 9

2732 Results e 9

274 COORD 9

2.7.4.1 ReqUiremMents v v v v i it e e e e e e e e e e e e e e 9

2742 Results e e 10

275 ENABLE 10

2.7.5.1 Requirements e e e e e e e 10

2752 Results e 10

2.7.6 DISABLE e 10

2.7.6.1 Requirements e e e e e e 10

2.7.62 Results e e 10

2.7.7 ENABLE_AMPLIFIER 10

2.7.7.1 Requirements e e e e e e 10

Developer Manual V2.6.11,

2015-11-01 i
2772 Results 10
2.7.8 DISABLE_AMPLIFIER 11
2.7.8.1 Requirements e e e e e 11
2782 Results e 11
2.7.9 ACTIVATE_JOINT e e e e e e e s s 11
2.7.9.1 Requirements i it e e e e e e e e e e e 11
2.7.9.2 Results e 11
2.7.10 DEACTIVATE_JOINT e e e e e e e e e e 11
2.7.10.1 Requirements ot i e e e e e e 11
27102 Results e e 11
2.7.11 ENABLE_WATCHDOG e e e e e e e s 11
27111 Requirements v v v it e e e e e e e e e e e e e 11
27112 Results . . . oo e e 12
2.7.12 DISABLE_WATCHDOG et e e e e e e 12
2.7.12.1 Requirements vt i e e e e e e e e 12
27122 Results e e 12
2.7.13 PAUSE . . o 12
2.7.13.1 Requirements o vt it e e e e e e e e e e 12
277132 Results oL e 12
2.7.14 RESUME e 12
2.7.14.1 Requirements vttt e e e e e e e e 12
27142 Results e 12
2715 STEP . . . o 12
2.7.15.1 Requirements v vt it e e e e e e e e e e e e e e 13
27152 Results 13
2.7.16 SCALE e e 13
2.7.16.1 Requirements il e e e e e 13
2.7.162 Resultso e e 13
2.7.17 OVERRIDE_LIMITS e e e s 13
2.7.17.1 Requirements v v v it i e e e e e e e e e e e e e e e 13
27.07.2 Results o o e e e 13
2.7.18 HOME e 13
2.7.18.1 Requirements e e e e 13
27182 Results e 13
2.7.19 JOG_CONT e 14
2.7.19.1 Requirements v v it e e e e e e e e e e e e e e 14
2.7.19.2 Results o L e e 14
2.7.20 JOG_INCR e 14

2.7.20.1 Requirements e e e e e e 14

Developer Manual V2.6.11,

2015-11-01 v

2.7.20.2 Results 14

2721 JOG_ABS . . e 14
27211 Requirementso v vttt e e e e e e e e 14

27212 Results o e e 15

2.7.22 SET_LINE 15
2723 SET_CIRCLE e e e e e e 15
2724 SET_TELEOP_VECTOR e e e s 15
2.7.25 PROBE 15
2726 CLEAR_PROBE_FLAG s e e e e e e s s 15
2727 SET_XIX . . . 0 o e e 15

2.8 Backlash and Screw Error Compensation L e e e e 15
2.9 Task controller (EMCTASK) e e e 16
2.10 IO controller (EMCIO) e 16
2.11 UserInterfaces e 16
2.12 libnml Introduction Lo e e e e e 16
2.13 LinkedList L L e e e 16
2.14 LinkedListNode e 16
2.15 SharedMemory e e e e e e e e e e 16
2.16 ShmBuffer. e 16
207 TIMET . . . o o e e e e e e e 17
2.18 Semaphore L L e 17
2.19 CMS . . e 17
2.20 Configuration file format 18
2.20.1 Bufferline L 18
2.20.2 Typespecificconfigs L 19
2203 Processline e 19
2.20.4 Configuration COMMENtS vt vt ittt e e e e e e e 20

221 NMLbaseclass i e e 20
2.21.1 NMLinternals e 21
2.21.1.1 NML consStruCtor vttt e e e e e e e e e e e e e 21

2.21.1.2 NMLread/Write oo o e e e 21

2.21.1.3 NMLmsg and NML relationships 21

2.22 Adding custom NML commands e e e 21
2.23 The Tool Table and Toolchanger e e e e e e e e 22
2.23.1 Toolchanger abstraction in LinuxCNC e 22
2.23.1.1 Nonrandom Toolchangers e 22

2.23.1.2 Random Toolchangers e 22

2232 TheTool Table e 22

2.23.3 Geodes affecting tools L 23

Developer Manual V2.6.11,

2015-11-01 v
22331 TXXX « v v v vt e e e e e e 23

22332 MO . .o 23

22333 GA43/GA3.1/GA9 . . . 24

22334 GIOLILIOLIT . . oo e e e e 24

22335 MOL . . L 25

2233.6 GA4U/GAL1/GA2/IGA2.1 .« . . o 25

22337 G40 . .o 25

2.23.4 Internal state variables 25
223401 IO .. 26

22342 INtEIP L. e e e e 26

3 NML Messages 28
3.1 EMCOPERATOR 28
3.1.1 EMC_OPERATOR_ERROR_TYPE e 28
3.1.2 EMC_OPERATOR_TEXT TYPE o e 28
3.1.3 EMC_OPERATOR_DISPLAY _TYPE e 28

3.2 EMCNULL, SET, DEBUG, & SYSTEM e 28
32.1 EMC_NULL_TYPE e e e 28
322 EMC_SET_DEBUG_TYPE e e 29
323 EMC_SYSTEM_CMD_TYPE 29

33 EMCAXIS . . o 29
33.1 EMC_AXIS_SET_AXIS_TYPE 29
332 EMC_AXIS_SET UNITS_TYPE e 29
333 EMC_AXIS_SET_GAINS_TYPE 29
334 EMC_AXIS_SET CYCLE TIME_TYPE 29
33,5 EMC_AXIS_SET INPUT_SCALE_TYPE e 30
33.6 EMC_AXIS_SET_OUTPUT_SCALE_TYPE o . 30
3.3.7 EMC_AXIS_SET_MIN_POSITION_LIMIT_TYPE 30

3.3.8 EMC_AXIS_SET_MAX POSITION_LIMIT_TYPE 30

339 EMC_AXIS_SET_MIN_OUTPUT_LIMIT_TYPE 30
3.3.10 EMC_AXIS_SET MAX OUTPUT_LIMIT_TYPE 30
33.11 EMC_AXIS_SET_FERROR_TYPE e 31
3.3.12 EMC_AXIS_SET_HOMING_VEL_TYPE 31
3.3.13 EMC_AXIS_SET HOME_TYPE e 31
3.3.14 EMC_AXIS_SET_HOME_OFFSET_TYPE 31
3.3.15 EMC_AXIS_SET MIN_FERROR_TYPE 31
3.3.16 EMC_AXIS_SET MAX VELOCITY_TYPE 32
33.17 EMC_AXIS_INIT_TYPE e 32
3.3.18 EMC_AXIS HALT TYPE e e 32

Developer Manual V2.6.11,

2015-11-01 vi
33.19 EMC_AXIS_ABORT_TYPE e 32
3320 EMC_AXIS_ENABLE_TYPE 32
3321 EMC_AXIS_DISABLE TYPE e 33
3322 EMC_AXIS_HOME_TYPE 33
3323 EMC_AXIS_JOG_TYPE 33
3324 EMC_AXIS_INCR_JOG_TYPE 33
3325 EMC_AXIS_ABS_JOG_TYPE 33
3326 EMC_AXIS_ACTIVATE _TYPE 34
3.3.27 EMC_AXIS_DEACTIVATE_TYPE e 34
3.3.28 EMC_AXIS_OVERRIDE_LIMITS_TYPE 34
3329 EMC_AXIS_SET_OUTPUT_TYPE e 34
3330 EMC_AXIS_LOAD_COMP_TYPE 34
3331 EMC_AXIS_ALTER_TYPE e 35
3.3.32 EMC_AXIS_SET_STEP_PARAMS_TYPE 35
3333 EMC_AXIS_STAT_TYPE e 35

34 EMCTRAT . .o 35
34.1 EMC_TRAJ_SET_AXES_TYPE e 35
342 EMC_TRAJ_SET_UNITS_TYPE 35
343 EMC_TRAJ_SET CYCLE TIME_TYPE 36
344 EMC_TRAJ_SET_MODE_TYPE 36
345 EMC_TRAJ_SET_VELOCITY_TYPE o . 36
346 EMC_TRAJ_SET_ACCELERATION_TYPE, 36
347 EMC_TRAJ_SET MAX_VELOCITY_TYPE 36
348 EMC_TRAJ_SET_MAX_ACCELERATION_TYPE 37
349 EMC_TRAJ_SET _SCALE_TYPE oo 37
3.4.10 EMC_TRAJ_SET_MOTION_ID_TYPE 37
34.11 EMC_TRAJ_INIT_TYPE s 37
3.4.12 EMC_TRAJ_HALT_TYPE 37
34.13 EMC_TRAJ_ENABLE TYPE e 38
3.4.14 EMC_TRAJ_DISABLE_TYPE 38
3.4.15 EMC_TRAJ_ABORT_TYPE 38
3.4.16 EMC_TRAJ_PAUSE_TYPE 38
34.17 EMC_TRAJ_STEP_TYPE e 38
3.4.18 EMC_TRAJ_RESUME_TYPE 39
34.19 EMC_TRAJ_DELAY_TYPE e 39
3.420 EMC_TRAJ_LINEAR_MOVE_TYPE 39
3421 EMC_TRAJ_CIRCULAR_MOVE_TYPE o o 39
3422 EMC_TRAJ_SET_TERM_COND_TYPE 39
3423 EMC_TRAJ_SET OFFSET_TYPE o e 40

Developer Manual V2.6.11,

2015-11-01 vii
3424 EMC_TRAJ_SET _ORIGIN_TYPE 40
3.425 EMC_TRAJ_SET_HOME TYPE 40
3426 EMC_TRAJ_SET PROBE_INDEX TYPE 40
3.427 EMC_TRAJ_SET_PROBE_POLARITY_TYPE 40
3.428 EMC_TRAJ_CLEAR_PROBE_TRIPPED FLAG_TYPE 41
3429 EMC_TRAJ_PROBE_TYPE. 41
3430 EMC_TRAJ_SET_TELEOP_ENABLE TYPE 41
3.431 EMC_TRAJ_SET_TELEOP_VECTOR_TYPE 41
3432 EMC_TRAJ_STAT_TYPE o e 41

3.5 EMCMOTIONo 42
3.5.1 EMC_MOTION_INIT_TYPE o e 42
352 EMC_MOTION_HALT_TYPE 42
353 EMC_MOTION_ABORT_TYPE e 42
354 EMC_MOTION_SET_AOUT_TYPE 42
355 EMC_MOTION_SET_DOUT_TYPE e 42
35.6 EMC_MOTION_STAT_TYPE 43
3.6 EMCTASK . . o o 43
3.6.1 EMC_TASK_INIT_TYPE 43
3.6.2 EMC_TASK HALT_TYPE e 43
3.63 EMC_TASK_ABORT_TYPE 43
3.64 EMC_TASK_SET MODE_TYPE e 43
3.6.5 EMC_TASK_SET_STATE TYPE 43
3.6.6 EMC_TASK PLAN_OPEN_TYPE 44
3.6.7 EMC_TASK PLAN_RUN_TYPE 44
3.6.8 EMC_TASK PLAN_READ_TYPE 44
3.69 EMC_TASK PLAN_EXECUTE_TYPE 44
3.6.10 EMC_TASK _PLAN_PAUSE TYPE 44
3.6.11 EMC_TASK PLAN_STEP_TYPE 44
3.6.12 EMC_TASK PLAN_RESUME TYPE 45
3.6.13 EMC_TASK PLAN_END_TYPE 45
3.6.14 EMC_TASK PLAN_CLOSE_TYPE e 45
3.6.15 EMC_TASK PLAN_INIT_TYPE 45
3.6.16 EMC_TASK PLAN_SYNCH_TYPE 45
3.6.17 EMC_TASK_STAT_TYPE s 45
377 EMCTOOL e 46
37.1 EMC_TOOL_INIT_TYPE 46
372 EMC_TOOL_HALT_TYPE e e 46
3773 EMC_TOOL_ABORT_TYPE 46
374 EMC_TOOL_PREPARE TYPE e 46

Developer Manual V2.6.11,

2015-11-01 vii
375 EMC_TOOL_LOAD_TYPE e 47
376 EMC_TOOL_UNLOAD_TYPE 47
3,77 EMC_TOOL_LOAD_TOOL_TABLE_TYPE 47
3778 EMC_TOOL_SET_OFFSET_TYPE 47
379 EMC_TOOL_STAT_TYPE s 47
3.8 EMCAUX . . . 48
3.8.1 EMC_AUX_INIT_TYPE e s 48
382 EMC_AUX _HALT_TYPE 48
383 EMC_AUX_ABORT_TYPE e 48
3.84 EMC_AUX _DIO_WRITE_TYPE 48
3.8.5 EMC_AUX_AIO_WRITE_TYPE e 48
3.8.6 EMC_AUX_ESTOP_ON_TYPE 48
3.8.7 EMC_AUX_ESTOP_OFF_TYPE e 49
3.8.8 EMC_AUX_STAT_TYPE 49
39 EMCSPINDLE e 49
39.1 EMC_SPINDLE_INIT_TYPE 49
39.2 EMC_SPINDLE HALT_TYPE o s 49
393 EMC_SPINDLE_ABORT_TYPE 49
394 EMC_SPINDLE ON_TYPE e 49
395 EMC_SPINDLE_OFF_TYPE 50
39.6 EMC_SPINDLE FORWARD_TYPE 50
397 EMC_SPINDLE_REVERSE TYPE. 50
39.8 EMC_SPINDLE STOP_TYPE e 50
399 EMC_SPINDLE_INCREASE_TYPE 50
39.10 EMC_SPINDLE DECREASE _TYPE o o 50
3.9.11 EMC_SPINDLE_CONSTANT_TYPE 51
3.9.12 EMC_SPINDLE BRAKE RELEASE TYPE 51
3.9.13 EMC_SPINDLE_BRAKE ENGAGE_TYPE 51
39.14 EMC_SPINDLE ENABLE _TYPE oo 51
3.9.15 EMC_SPINDLE_DISABLE_TYPE 51
3.9.16 EMC_SPINDLE _STAT_TYPE e 51
3.10 EMC COOLANT o 52
3.10.1 EMC_COOLANT_INIT_TYPE e 52
3.10.2 EMC_COOLANT_HALT_TYPE 52
3.103 EMC_COOLANT_ABORT_TYPE oo 52
3.104 EMC_COOLANT_MIST_ON_TYPE 52
3.10.5 EMC_COOLANT_MIST_OFF_TYPE o . 53
3.10.6 EMC_COOLANT_FLOOD_ON_TYPE. 53
3.10.7 EMC_COOLANT_FLOOD_OFF_TYPE oo 53

Developer Manual V2.6.11,

2015-11-01 ix
3.10.8 EMC_COOLANT_STAT_TYPE. s e e e 53
3.11 EMCLUBE e 53
3.11.1 EMC_LUBE_INIT_TYPE e e e 53
3.11.2 EMC_LUBE_HALT_TYPE s e e s e 54
3.11.3 EMC_LUBE_ABORT_TYPE s e e s 54
3.11.4 EMC_LUBE_ON_TYPE s e e 54
3.11.5 EMC_LUBE_OFF_TYPE e s e e s 54
3.11.6 EMC_LUBE_STAT _TYPE e e e e 55
3.12 EMC SET . . . 55
3.12.1 EMC_SET_DIO_INDEX_TYPE e 55
3.12.2 EMC_SET_AIO_INDEX_TYPE e 55
3.12.3 EMC_SET_POLARITY_TYPE s e 55
3.13 EMCIO . . o o e 55
3.13.1 EMC_IO_INIT_TYPE e e e s e e 55
3.13.2 EMC_IO_HALT_TYPE e e e 56
3.13.3 EMC_IO_ABORT_TYPE e 56
3.13.4 EMC_IO_SET_CYCLE_TIME_TYPE e 56
3.13.5 EMC_IO_STAT_TYPE e e e e e e 56
3.14 EMC INIT, HALT, & ABORT e e e e s e e s 56
3.14.1 EMC_INIT_TYPE e e e 56
3.142 EMC_HALT_TYPE s e e 57
3.143 EMC_ABORT_TYPE e 57
3.15 EMCLOG . . oo e 57
3.15.1 EMC_LOG_OPEN_TYPE s e 57
3.152 EMC_LOG_START_TYPE s e e s 57
3.153 EMC_LOG_STOP_TYPE s e e s 57
3.154 EMC_LOG_CLOSE_TYPE e e e e e e 58
316 EMC STAT .« o o o e e e 58
3.16.1 EMC_STAT_TYPE e e 58
Coding Style 59
4.1 Donoharm e e e e 59
42 Tab StOPs . . . o o e 59
4.3 Indentation e e e e 59
4.4 Placing Braces e e e e e 59
45 Naming e e e 60
4.6 Functions 60
477 Commenting o e e e e e e e e e e 60
4.8 Shell Scripts & Makefiles e e e e e 61
4.9 CH+Conventions vttt e e e e e e e e e e 61
4.10 Python coding standards L e 62
4.11 Comp coding standards L e e 62

Developer Manual V2.6.11,

2015-11-01 «

5 Contributing to LinuxCNC 63
5.1 Introduction e e e e e e 63

5.2 Communication among LinuxCNC developers 63

5.3 The LinuxCNC Source Forge project i e e e e 63

5.4 The git Revision Control System L e e e e 63
5.4.1 LinuxCNCofficial gittepo o e e e e e 63

542 LinuxCNCongithub e 64

54.3 Useof gitinthe LinuxCNC project ittt e et s 64

544 gittutorials L e e e e e e e e e 64

5.5 Overview of the process L e e e e e e 64

5.6 Signed-off-by policy L e 65

5.7 gitconfiguration e e e e e 65

5.8 Effectiveuse of @it L e e e e 65
5.8.1 Commit CONLENLS o o v it e e e e e e e e e e e e e e e e e e e 65

5.8.2 Write g200d COMMIt MESSAZES .« « « v v v v v e e e e e e e e e e e e e e e e e e 65

5.83 Committothe properbranch e e e 66

5.8.4 Use multiple commits to organize changes 66

5.8.5 Follow the style of the surroundingcode 66

5.8.6 Simplify complicated history before sharing with fellow developers 66

5.8.7 Make sure every commitbuilds L. L 66

5.8.8 Renamingfiles e 67

5.8.9 Prefer "rebase"o e 67

5.9 Other waystocontribute L. e e e 67

6 Glossary 68
7 Legal Section 73
7.1 Copyright Terms o e e 73
7.2 GNU Free Documentation License i i e e e 73

8 Index 77

Developer Manual V2.6.11,

2015-11-01 1/78

Chapter 1

Introduction

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2015 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

Developer Manual V2.6.11,

2015-11-01 5778

Chapter 2

Code Notes

2.1 Intended audience

This document is a collection of notes about the internals of LinuxCNC. It is primarily of interest to developers, however much
of the information here may also be of interest to system integrators and others who are simply curious about how LinuxCNC
works. Much of this information is now outdated and has never been reviewed for accuracy.

2.2 Organization

There will be a chapter for each of the major components of LinuxCNC, as well as chapter(s) covering how they work together.
This document is very much a work in progress, and its layout may change in the future.

2.3 Terms and definitions

* AXIS - An axis is one of the nine degrees of freedom that define a tool position in three-dimensional Cartesian space. Those
nine axes are referred to as X, Y, Z, A, B, C, U, V, and W. The linear orthagonal coordinates X, Y, and Z determine where the tip
of the tool is positioned. The angular coordinates A, B, and C determine the tool orientation. A second set of linear orthagonal
coordinates U, V, and W allows tool motion (typically for cutting actions) relative to the previously offset and rotated axes.
Unfortunately “axis” is also sometimes used to mean a degree of freedom of the machine itself, such as the saddle, table, or
quill of a Bridgeport type milling machine. On a Bridgeport this causes no confusion, since movement of the table directly
corresponds to movement along the X axis. However, the shoulder and elbow joints of a robot arm and the linear actuators
of a hexapod do not correspond to movement along any Cartesian axis, and in general it is important to make the distinction
between the Cartesian axes and the machine degrees of freedom. In this document, the latter will be called joints, not axes.
(The GUIs and some other parts of the code may not always follow this distinction, but the internals of the motion controller
do.)

* JOINT - A joint is one of the movable parts of the machine. Joints are distinct from axes, although the two terms are sometimes
(mis)used to mean the same thing. In LinuxCNC, a joint is a physical thing that can be moved, not a coordinate in space. For
example, the quill, knee, saddle, and table of a Bridgeport mill are all joints. The shoulder, elbow, and wrist of a robot arm
are joints, as are the linear actuators of a hexapod. Every joint has a motor or actuator of some type associated with it. Joints
do not necessarily correspond to the X, Y, and Z axes, although for machines with trivial kinematics that may be the case.
Even on those machines, joint position and axis position are fundamentally different things. In this document, the terms joint
and axis are used carefully to respect their distinct meanings. Unfortunately that isn’t necessarily true everywhere else. In
particular, GUIs for machines with trivial kinematics may gloss over or completely hide the distinction between joints and
axes. In addition, the ini file uses the term axis for data that would more accurately be described as joint data, such as input
and output scaling, etc.

* POSE - A pose is a fully specified position in 3-D Cartesian space. In the LinuxCNC motion controller, when we refer to a
pose we mean an EmcPose structure, containing three linear coordinates and three angular ones.

Developer Manual V2.6.11,

2015-11-01 3/78

2.4 Architecture overview

There are four components contained in the LinuxCNC Architecture: a motion controller (EMCMOT), a discrete 1O controller
(EMCIO), a task executor which coordinates them (EMCTASK) and several text-mode and graphical User Interfaces. Each of
them will be described in the current document, both from the design point of view and from the developers point of view (where
to find needed data, how to easily extend/modify things, etc.).

Developer Manual V2.6.11,

ENCODER MOTOR

REALTIME HARDWARE DEVICES

NON-REALTIME HARDWARE DEVICES

2015-11-01
4/78
i GUI |
NEDCIED
| EMCTASK |
| (ggbe;:é} SEQUENCING 5
| INTERPRETER Logic |
WL [0 Tsar e
NON-REALTIME
REALTIME |
I
I
|
T wesan womon o Lo T e A A i
! SeoaiTion. COMIANDS STATUS E M C M 0 T o E M C | 0 |
o : o |
Lo ! o !
. ! o |
o | FORWARD | INVERSE | ‘ LIMIT & HOME ‘ | . i !
b | kiEMATICS KINEMATICS. STATUS | \ | ! \
[S I DR R oy COORDINATING !
| oy CONTROLLER |
| - o | |
i _ o , \ |
| [‘ P / ; |
e Iiniuiaiieil Sl R : jTmTmm o Coo ! ! i
E 3 AXE T ATERPOLATOR|—© E E AMISN E E | E L&, ‘ E
L Lo A SPINDLE | AUXILIARY !
b I ! ! oo b GONTROLLER GONTROLLER !
[— | | o | | |
. — N =
Vo SERVO i | . | \ 1
b ! | o COOLANT |
(. HIT UHIT i ! [! CONTROLLER |
b | CONVERT | | CONVERT | ! | ! | I ! |
. | | N |
___ 4 | U | U |
5 e | | Pttt T |
| ENGODER oA M o '
! GOUNTER GONVERTEH| ‘ SWITCHES ‘ o |
| : Lo :
| POWER o !
| o |
| o !
: - - Lo :
: (T hY b :
! : — | ! |
!) (x. ZARN K "—_,f—“"l i : ! |
i ' Do :
! Pl |
| o !
: Do :

Developer Manual V2.6.11,

2015-11-01 5/78

LinuxCNC software architecture. At the coarsest level, LinuxCNC is a hierarchy of three controllers: the task level command
handler and program interpreter, the motion controller, and the discrete I/O controller. The discrete I/O controller is implemented
as a hierarchy of controllers, in this case for spindle, coolant, and auxiliary (e.g., estop, lube) subsystems. The task controller
coordinates the actions of the motion and discrete I/O controllers. Their actions are programmed in conventional numerical
control "G and M code" programs, which are interpreted by the task controller into NML messages and sent to either the motion
or discrete I/O controllers at the appropriate times.

2.5 Motion Controller Introduction

The motion controller receives commands from user space modules via a shared memory buffer, and executes those commands
in realtime. The status of the controller is made available to the user space modules through the same shared memory area. The
motion controller interacts with the motors and other hardware using the HAL (Hardware Abstraction Layer). This document
assumes that the reader has a basic understanding of the HAL, and uses terms like HAL pins, HAL signals, etc, without explaining
them. For more information about the HAL, see the HAL Manual. Another chapter of this document will eventually go into the
internals of the HAL itself, but in this chapter, we only use the HAL API as defined in src/hal/hal.h.

Developer Manual V2.6.11,

2015-11-01 6/78

T ' T .

SHARED MEMORY BUFFER NML | cMp | STAT | ERR

CARTESIAN MOTION

: POSITION COMMANDS STATUS EMCMOT EMCIO
. S R S

| TRAJECTORY ? !

- PLANNER !

P 1 !

Lo FORWARD INVERSE LIMIT & HOME !

ro KINEMATICS KINEMATICS STATUS !

Lo i L |

INTERPOLATOR |-a—

(]

Py
A =)

a *

PID ?
SERVO |

'

UNIT UNIT
CONVERT CONVERT

HARDWARE ABSTRACTION LAYER
j DEFINED IN "EXTINTF.H* AND IMPLEMENTED IN "EXT2222.C"

! ENCODER DIA DIGITAL DIGITAL 110 !
: COUNTER CONVERTER 110 ANALOG 1/0 !
5 i ! P !
! POWER ‘ ‘ LIMIT ‘ s f,/ !
| AVP SWITEHES SPINDLE DAIVE |] 5
5 ! / COOLANT |
e 1o T~ f s
| Iy . / L— | |) |
| [({ O - G (== TooL :
| \ :(7 CHANGER |
: ENCODER MOTO :

Developer Manual V2.6.11,

2015-11-01 7178

2.6 Block diagrams and Data Flow

The following figure is a block diagram of a joint controller. There is one joint controller per joint. The joint controllers work at
a lower level than the kinematics, a level where all joints are completely independent. All the data for a joint is in a single joint
structure. Some members of that structure are visible in the block diagram, such as coarse_pos, pos_cmd, and motor_pos_fb.

MINT CONTROLLER

_-—l
Fegdback ta f

Klnematlcs A mohar-pos-th

L
=8
g

motor-offsat

[free-poz-cnd [free mue barklash &
rajector FiMel wrror
free—vel-lim l—-— F"’"""nrllll camp
free made

£

|-—— feleap &]
Commands cublke Coard E‘lode o Outeat
Kinmﬂiu inherpalator t 1 Mmotor-pos—£md f HiL

hone—sw-In

Joint Controller Block Diagram The above figure shows five of the seven sets of position information that form the main data
flow through the motion controller. The seven forms of position data are as follows:

1. emcmotStatus->carte_pos_cmd - This is the desired position, in Cartesian coordinates. It is updated at the traj rate, not the
servo rate. In coord mode, it is determined by the traj planner. In teleop mode, it is determined by the traj planner? In free
mode, it is either copied from actualPos, or generated by applying forward kins to (2) or (3).

2. emcmotStatus->joints[n].coarse_pos - This is the desired position, in joint coordinates, but before interpolation. It is
updated at the traj rate, not the servo rate. In coord mode, it is generated by applying inverse kins to (1) In teleop mode, it
is generated by applying inverse kins to (1) In free mode, it is copied from (3), I think.

3. ’emcmotStatus->joints[n].pos_cmd - This is the desired position, in joint coords, after interpolation. A new set of these
coords is generated every servo period. In coord mode, it is generated from (2) by the interpolator. In teleop mode, it is
generated from (2) by the interpolator. In free mode, it is generated by the free mode traj planner.

4. emcmotStatus->joints[n].motor_pos_cmd - This is the desired position, in motor coords. Motor coords are generated by
adding backlash compensation, lead screw error compensation, and offset (for homing) to (3). It is generated the same way
regardless of the mode, and is the output to the PID loop or other position loop.

Developer Manual V2.6.11,

2015-11-01 8/78

5. emcmotStatus->joints[n].motor_pos_fb - This is the actual position, in motor coords. It is the input from encoders or other
feedback device (or from virtual encoders on open loop machines). It is "generated" by reading the feedback device.

6. emcmotStatus->joints[n].pos_fb - This is the actual position, in joint coordinates. It is generated by subtracting offset, lead
screw error compensation, and backlash compensation from (5). It is generated the same way regardless of the operating
mode.

7. emcmotStatus->carte_pos_fb - This is the actual position, in Cartesian coordinates. It is updated at the traj rate, not
the servo rate. Ideally, actualPos would always be calculated by applying forward kinematics to (6). However, forward
kinematics may not be available, or they may be unusable because one or more axes aren’t homed. In that case, the options
are: A) fake it by copying (1), or B) admit that we don’t really know the Cartesian coordinates, and simply don’t update
actualPos. Whatever approach is used, I can see no reason not to do it the same way regardless of the operating mode.
I would propose the following: If there are forward kins, use them, unless they don’t work because of unhomed axes or
other problems, in which case do (B). If no forward kins, do (A), since otherwise actualPos would never get updated.

2.7 Commands

This section simply lists all of the commands that can be sent to the motion module, along with detailed explanations of what
they do. The command names are defined in a large typedef enum in emc2/src/emc/motion/motion.h, called cmd_code_t. (Note
that in the code, each command name starts with EMCMOT _, which is omitted here.)

The commands are implemented by a large switch statement in the function emcmotCommandHandler(), which is called at the
servo rate. More on that function later.

There are approximately 44 commands - this list is still under construction.

2.7.1 ABORT

The ABORT command simply stops all motion. It can be issued at any time, and will always be accepted. It does not disable the
motion controller or change any state information, it simply cancels any motion that is currently in progress.!

2.7.1.1 Requirements

None. The command is always accepted and acted on immediately.

2.7.1.2 Results

In free mode, the free mode trajectory planners are disabled. That results in each joint stopping as fast as its accel (decel) limit
allows. The stop is not coordinated. In teleop mode, the commanded Cartesian velocity is set to zero. I don’t know exactly what
kind of stop results (coordinated, uncoordinated, etc), but will figure it out eventually. In coord mode, the coord mode trajectory
planner is told to abort the current move. Again, I don’t know the exact result of this, but will document it when I figure it out.

2.7.2 FREE

The FREE command puts the motion controller in free mode. Free mode means that each joint is independent of all the other
joints. Cartesian coordinates, poses, and kinematics are ignored when in free mode. In essence, each joint has its own simple
trajectory planner, and each joint completely ignores the other joints. Some commands (like JOG) only work in free mode. Other
commands, including anything that deals with Cartesian coordinates, do not work at all in free mode.

'Tt seems that the higher level code (TASK and above) also use ABORT to clear faults. Whenever there is a persistent fault (such as being outside the
hardware limit switches), the higher level code sends a constant stream of ABORTS to the motion controller trying to make the fault go away. Thousands of
’em. ... That means that the motion controller should avoid persistent faults. This needs to be looked into.

Developer Manual V2.6.11,

2015-11-01 9/78

2.7.2.1 Requirements

The command handler applies no requirements to the FREE command, it will always be accepted. However, if any joint is in
motion (GET_MOTION_INPOS_FLAG() == FALSE), then the command will be ignored. This behavior is controlled by code
that is now located in the function set_operating_mode() in control.c, that code needs to be cleaned up. I believe the command
should not be silently ignored, instead the command handler should determine whether it can be executed and return an error if
it cannot.

2.7.2.2 Results

If the machine is already in free mode, nothing. Otherwise, the machine is placed in free mode. Each joint’s free mode trajectory
planner is initialized to the current location of the joint, but the planners are not enabled and the joints are stationary.

2.7.3 TELEOP

The TELEOP command places the machine in teleoperating mode. In teleop mode, movement of the machine is based on
Cartesian coordinates using kinematics, rather than on individual joints as in free mode. However the trajectory planner per se
is not used, instead movement is controlled by a velocity vector. Movement in teleop mode is much like jogging, except that it
is done in Cartesian space instead of joint space. On a machine with trivial kinematics, there is little difference between teleop
mode and free mode, and GUIs for those machines might never even issue this command. However for non-trivial machines like
robots and hexapods, teleop mode is used for most user commanded jog type movements.

2.7.3.1 Requirements

The command handler will reject the TELEOP command with an error message if the kinematics cannot be activated because the
one or more axes have not been homed. In addition, if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), then
the command will be ignored (with no error message). This behavior is controlled by code that is now located in the function
set_operating_mode() in control.c. I believe the command should not be silently ignored, instead the command handler should
determine whether it can be executed and return an error if it cannot.

2.7.3.2 Results

If the machine is already in teleop mode, nothing. Otherwise the machine is placed in teleop mode. The kinematics code is
activated, interpolators are drained and flushed, and the Cartesian velocity commands are set to zero.

2.7.4 COORD

The COORD command places the machine in coordinated mode. In coord mode, movement of the machine is based on Cartesian
coordinates using kinematics, rather than on individual joints as in free mode. In addition, the main trajectory planner is used
to generate motion, based on queued LINE, CIRCLE, and/or PROBE commands. Coord mode is the mode that is used when
executing a G-code program.

2.7.4.1 Requirements

The command handler will reject the COORD command with an error message if the kinematics cannot be activated because the
one or more axes have not been homed. In addition, if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE), then
the command will be ignored (with no error message). This behavior is controlled by code that is now located in the function
set_operating_mode() in control.c. I believe the command should not be silently ignored, instead the command handler should
determine whether it can be executed and return an error if it cannot.

Developer Manual V2.6.11,

2015-11-01 10/ 78

2.7.4.2 Results

If the machine is already in coord mode, nothing. Otherwise, the machine is placed in coord mode. The kinematics code is
activated, interpolators are drained and flushed, and the trajectory planner queues are empty. The trajectory planner is active and
awaiting a LINE, CIRCLE, or PROBE command.

2.7.5 ENABLE

The ENABLE command enables the motion controller.

2.7.5.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.5.2 Results
If the controller is already enabled, nothing. If not, the controller is enabled. Queues and interpolators are flushed. Any movement

or homing operations are terminated. The amp-enable outputs associated with active joints are turned on. If forward kinematics
are not available, the machine is switched to free mode.

2.7.6 DISABLE

The DISABLE command disables the motion controller.

2.7.6.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.6.2 Results
If the controller is already disabled, nothing. If not, the controller is disabled. Queues and interpolators are flushed. Any

movement or homing operations are terminated. The amp-enable outputs associated with active joints are turned off. If forward
kinematics are not available, the machine is switched to free mode.

2.7.7 ENABLE_AMPLIFIER

The ENABLE_AMPLIFIER command turns on the amp enable output for a single output amplifier, without changing anything
else. Can be used to enable a spindle speed controller.

2.7.7.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.7.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually it will set the amp enable
HAL pin true.

Developer Manual V2.6.11,

2015-11-01 11,78

2.7.8 DISABLE_AMPLIFIER

The DISABLE_AMPLIFIER command turns off the amp enable output for a single amplifier, without changing anything else.
Again, useful for spindle speed controllers.

2.7.8.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.8.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually it will set the amp enable
HAL pin false.

2.7.9 ACTIVATE_JOINT

The ACTIVATE_JOINT command turns on all the calculations associated with a single joint, but does not change the joint’s amp
enable output pin.

2.7.9.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.9.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, however, any subsequent ENABLE or
DISABLE commands will modify the joint’s amp enable pin.

2.7.10 DEACTIVATE_JOINT

The DEACTIVATE_JOINT command turns off all the calculations associated with a single joint, but does not change the joint’s
amp enable output pin.

2.7.10.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.10.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, and subsequent ENABLE or DISABLE
commands will not modify the joint’s amp enable pin.

2.7.11 ENABLE_WATCHDOG

The ENABLE_WATCHDOG command enables a hardware based watchdog (if present).

2.7.11.1 Requirements

None. The command can be issued at any time, and will always be accepted.

Developer Manual V2.6.11,

2015-11-01 1278

2.7.11.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new watchdog interface may be
designed in the future.

2.7.12 DISABLE_WATCHDOG

The DISABLE_WATCHDOG command disables a hardware based watchdog (if present).

2.7.12.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.12.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new watchdog interface may be
designed in the future.

2.7.13 PAUSE

The PAUSE command stops the trajectory planner. It has no effect in free or teleop mode. At this point I don’t know if it pauses
all motion immediately, or if it completes the current move and then pauses before pulling another move from the queue.

2.7.13.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.13.2 Results

The trajectory planner pauses.

2.7.14 RESUME

The RESUME command restarts the trajectory planner if it is paused. It has no effect in free or teleop mode, or if the planner is
not paused.

2.7.141 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.14.2 Results

The trajectory planner resumes.

2.7.15 STEP

The STEP command restarts the trajectory planner if it is paused, and tells the planner to stop again when it reaches a specific
point. It has no effect in free or teleop mode. At this point I don’t know exactly how this works. I’ll add more documentation
here when I dig deeper into the trajectory planner.

Developer Manual V2.6.11,

2015-11-01 13/ 78

2.7.15.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.15.2 Results

The trajectory planner resumes, and later pauses when it reaches a specific point.

2.7.16 SCALE
The SCALE command scales all velocity limits and commands by a specified amount. It is used to implement feed rate override

and other similar functions. The scaling works in free, teleop, and coord modes, and affects everything, including homing
velocities, etc. However, individual joint velocity limits are unaffected.

2.7.16.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.7.16.2 Results

All velocity commands are scaled by the specified constant.

2.7.17 OVERRIDE_LIMITS
The OVERRIDE_LIMITS command prevents limits from tripping until the end of the next JOG command. It is normally used

to allow a machine to be jogged off of a limit switch after tripping. (The command can actually be used to override limits, or to
cancel a previous override.)

2.7.17.1 Requirements

None. The command can be issued at any time, and will always be accepted. (I think it should only work in free mode.)

2.7.17.2 Results

Limits on all joints are over-ridden until the end of the next JOG command. (This is currently broken... once an OVER-
RIDE_LIMITS command is received, limits are ignored until another OVERRIDE_LIMITS command re-enables them.)

2.7.18 HOME
The HOME command initiates a homing sequence on a specified joint. The actual homing sequence is determined by a number
of configuration parameters, and can range from simply setting the current position to zero, to a multi-stage search for a home

switch and index pulse, followed by a move to an arbitrary home location. For more information about the homing sequence, see
the homing section of the Integrator Manual.

2.7.18.1 Requirements

The command will be ignored silently unless the machine is in free mode.

2.7.18.2 Results

Any jog or other joint motion is aborted, and the homing sequence starts.

Developer Manual V2.6.11,

2015-11-01 1478

2.7.19 JOG_CONT

The JOG_CONT command initiates a continuous jog on a single joint. A continuous jog is generated by setting the free mode
trajectory planner’s target position to a point beyond the end of the joint’s range of travel. This ensures that the planner will move
constantly until it is stopped by either the joint limits or an ABORT command. Normally, a GUI sends a JOG_CONT command
when the user presses a jog button, and ABORT when the button is released.

2.7.19.1 Requirements

The command handler will reject the JOG_CONT command with an error message if machine is not in free mode, or if any joint
is in motion (GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command
if the joint is already at or beyond its limit and the commanded jog would make it worse.

2.7.19.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, with a target position beyond
the end of joint travel, and a velocity limit of emcmotCommand->vel. This starts the joint moving, and the move will continue
until stopped by an ABORT command or by hitting a limit. The free mode planner accelerates at the joint accel limit at the
beginning of the move, and will decelerate at the joint accel limit when it stops.

2.7.20 JOG_INCR

The JOG_INCR command initiates an incremental jog on a single joint. Incremental jogs are cumulative, in other words, issuing
two JOG_INCR commands that each ask for 0.100 inches of movement will result in 0.200 inches of travel, even if the second
command is issued before the first one finishes. Normally incremental jogs stop when they have traveled the desired distance,
however they also stop when they hit a limit, or on an ABORT command.

2.7.20.1 Requirements

The command handler will silently reject the JOG_INCR command if machine is not in free mode, or if any joint is in motion
(GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command if the joint
is already at or beyond its limit and the commanded jog would make it worse.

2.7.20.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the target position is increment-
ed/decremented by emcmotCommand->offset, and the velocity limit is set to emcmotCommand->vel. The free mode trajectory
planner will generate a smooth trapezoidal move from the present position to the target position. The planner can correctly handle
changes in the target position that happen while the move is in progress, so multiple JOG_INCR commands can be issued in
quick succession. The free mode planner accelerates at the joint accel limit at the beginning of the move, and will decelerate at
the joint accel limit to stop at the target position.

2.7.21 JOG_ABS

The JOG_ABS command initiates an absolute jog on a single joint. An absolute jog is a simple move to a specific location, in
joint coordinates. Normally absolute jogs stop when they reach the desired location, however they also stop when they hit a limit,
or on an ABORT command.

2.7.21.1 Requirements

The command handler will silently reject the JOG_ABS command if machine is not in free mode, or if any joint is in motion
(GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command if the joint
is already at or beyond its limit and the commanded jog would make it worse.

Developer Manual V2.6.11,

2015-11-01 15/ 78

2.7.21.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the target position is set to
emcmotCommand->offset, and the velocity limit is set to emcmotCommand->vel. The free mode trajectory planner will generate
a smooth trapezoidal move from the present position to the target position. The planner can correctly handle changes in the target
position that happen while the move is in progress. If multiple JOG_ABS commands are issued in quick succession, each new
command changes the target position and the machine goes to the final commanded position. The free mode planner accelerates
at the joint accel limit at the beginning of the move, and will decelerate at the joint accel limit to stop at the target position.

2.7.22 SET_LINE

The SET_LINE command adds a straight line to the trajectory planner queue.

(More later)

2.7.23 SET_CIRCLE

The SET_CIRCLE command adds a circular move to the trajectory planner queue.

(More later)

2.7.24 SET_TELEOP_VECTOR

The SET_TELEOP_VECTOR command instructs the motion controller to move along a specific vector in Cartesian space.

(More later)

2.7.25 PROBE

The PROBE command instructs the motion controller to move toward a specific point in Cartesian space, stopping and recording
its position if the probe input is triggered.

(More later)

2.7.26 CLEAR_PROBE_FLAG

The CLEAR_PROBE_FLAG command is used to reset the probe input in preparation for a PROBE command. (Question: why
shouldn’t the PROBE command automatically reset the input?)

(More later)

2.7.27 SET xix

There are approximately 15 SET_xxx commands, where xxx is the name of some configuration parameter. It is anticipated that
there will be several more SET commands as more parameters are added. I would like to find a cleaner way of setting and reading
configuration parameters. The existing methods require many lines of code to be added to multiple files each time a parameter is
added. Much of that code is identical or nearly identical for every parameter.

2.8 Backlash and Screw Error Compensation

Developer Manual V2.6.11,

2015-11-01 16/ 78

2.9 Task controller (EMCTASK)

2.10 10 controller (EMCIO)

2.11 User Interfaces

2.12 libnml Introduction

libnml is derived from the NIST rcslib without all the multi-platform support. Many of the wrappers around platform specific
code has been removed along with much of the code that is not required by LinuxCNC. It is hoped that sufficient compatibility
remains with rcslib so that applications can be implemented on non-Linux platforms and still be able to communicate with
LinuxCNC.

This chapter is not intended to be a definitive guide to using libnml (or rcslib), instead, it will eventually provide an overview of
each C++ class and their member functions. Initially, most of these notes will be random comments added as the code scrutinized
and modified.

2.13 LinkedList

Base class to maintain a linked list. This is one of the core building blocks used in passing NML messages and assorted internal
data structures.

2.14 LinkedListNode

Base class for producing a linked list - Purpose, to hold pointers to the previous and next nodes, pointer to the data, and the size
of the data.

No memory for data storage is allocated.

2.15 SharedMemory

Provides a block of shared memory along with a semaphore (inherited from the Semaphore class). Creation and destruction of
the semaphore is handled by the SharedMemory constructor and destructor.

2.16 ShmBuffer

Class for passing NML messages between local processes using a shared memory buffer. Much of internal workings are inherited
from the CMS class.

Developer Manual V2.6.11,

2015-11-01 1778

2.17 Timer

The Timer class provides a periodic timer limited only by the resolution of the system clock. If, for example, a process needs to
be run every 5 seconds regardless of the time taken to run the process, the following code snippet demonstrates how :

main ()
{
timer = new Timer (5.0); /* Initialize a timer with a 5 second loop */
while (0) {
/+* Do some process */
timer.wait () ; /* Wait till the next 5 second interval =/

}

delete timer;

2.18 Semaphore

The Semaphore class provides a method of mutual exclusions for accessing a shared resource. The function to get a semaphore
can either block until access is available, return after a timeout, or return immediately with or without gaining the semaphore.
The constructor will create a semaphore or attach to an existing one if the ID is already in use.

The Semaphore::destroy() must be called by the last process only.

2.19 CMS

At the heart of libnml is the CMS class, it contains most of the functions used by libnml and ultimately NML. Many of the
internal functions are overloaded to allow for specific hardware dependent methods of data passing. Ultimately, everything
revolves around a central block of memory (referred to as the message buffer or just buffer). This buffer may exist as a shared
memory block accessed by other CMS/NML processes, or a local and private buffer for data being transferred by network or
serial interfaces.

The buffer is dynamically allocated at run time to allow for greater flexibility of the CMS/NML sub-system. The buffer size must
be large enough to accommodate the largest message, a small amount for internal use and allow for the message to be encoded if
this option is chosen (encoded data will be covered later). The following figure is an internal view of the buffer space.

Developer Manual V2.6.11,

2015-11-01 18/ 78

Buffer Name [32 char]

CMS Header {
Read,
Message ID
Message Size

}

Data Space

CMS buffer The CMS base class is primarily responsible for creating the communications pathways and interfacing to the O.S.

2.20 Configuration file format

NML configuration consists of two types of line formats. One for Buffers, and a second for Processes that connect to the buffers.

2.20.1 Buffer line

The original NIST format of the buffer line is:

* B name type host size neut RPC# buffer# max_procs key [type specific configs]

* B -identifies this line as a Buffer configuration.

* name - is the identifier of the buffer.

* type - describes the buffer type - SHMEM, LOCMEM, FILEMEM, PHANTOM, or GLOBMEM.

* host - is either an IP address or host name for the NML server

* size - is the size of the buffer

* neut - a boolean to indicate if the data in the buffer is encoded in a machine independent format, or raw.
* RPC# - Obsolete - Place holder retained for backward compatibility only.

* buffer# - A unique ID number used if a server controls multiple buffers.

* max_procs - is the maximum processes allowed to connect to this buffer.

* key - is a numerical identifier for a shared memory buffer

Developer Manual V2.6.11,

2015-11-01 19/ 78

2.20.2 Type specific configs

The buffer type implies additional configuration options whilst the host operating system precludes certain combinations. In an
attempt to distill published documentation in to a coherent format, only the SHMEM buffer type will be covered.

mutex=o0s_sem - default mode for providing semaphore locking of the buffer memory.
mutex=none - Not used

mutex=no_interrupts - not applicable on a Linux system

mutex=no_switching - not applicable on a Linux system

mutex=mao split - Splits the buffer in to half (or more) and allows one process to access part of the buffer whilst a second
process is writing to another part.

TCP=(port number) - Specifies which network port to use.

UDP=(port number) - ditto

STCP=(port number) - ditto

serialPortDevName=(serial port) - Undocumented.

passwd=file_name.pwd - Adds a layer of security to the buffer by requiring each process to provide a password.
bsem - NIST documentation implies a key for a blocking semaphore, and if bsem=-1, blocking reads are prevented.
queue - Enables queued message passing.

ascii - Encode messages in a plain text format

disp - Encode messages in a format suitable for display (???)

xdr - Encode messages in External Data Representation. (see rpc/xdr.h for details).

diag - Enables diagnostics stored in the buffer (timings and byte counts ?)

2.20.3 Process line

The original NIST format of the process line is:

P name buffer type host ops server timeout master ¢c_num [type specific configs]

P - identifies this line as a Process configuration.

name - is the identifier of the process.

buffer - is one of the buffers defined elsewhere in the config file.

type - defines whether this process is local or remote relative to the buffer.

host - specifies where on the network this process is running.

ops - gives the process read only, write only, or read/write access to the buffer.
server - specifies if this process will running a server for this buffer.

timeout - sets the timeout characteristics for accesses to the buffer.

master - indicates if this process is responsible for creating and destroying the buffer.

c_num - an integer between zero and (max_procs -1)

Developer Manual V2.6.11,

2015-11-01 20 /78

2.20.4 Configuration Comments

Some of the configuration combinations are invalid, whilst others imply certain constraints. On a Linux system, GLOBMEM is
obsolete, whilst PHANTOM is only really useful in the testing stage of an application, likewise for FILEMEM. LOCMEM is of
little use for a multi-process application, and only offers limited performance advantages over SHMEM. This leaves SHMEM as
the only buffer type to use with LinuxCNC.

The neut option is only of use in a multi-processor system where different (and incompatible) architectures are sharing a block
of memory. The likelihood of seeing a system of this type outside of a museum or research establishment is remote and is only
relevant to GLOBMEM buffers.

The RPC number is documented as being obsolete and is retained only for compatibility reasons.

With a unique buffer name, having a numerical identity seems to be pointless. Need to review the code to identify the logic.
Likewise, the key field at first appears to be redundant, and it could be derived from the buffer name.

The purpose of limiting the number of processes allowed to connect to any one buffer is unclear from existing documentation and
from the original source code. Allowing unspecified multiple processes to connect to a buffer is no more difficult to implement.

The mutex types boil down to one of two, the default “os_sem” or “mao split”. Most of the NML messages are relatively short
and can be copied to or from the buffer with minimal delays, so split reads are not essential.

Data encoding is only relevant when transmitted to a remote process - Using TCP or UDP implies XDR encoding. Whilst ASCII
encoding may have some use in diagnostics or for passing data to an embedded system that does not implement NML.

UDP protocols have fewer checks on data and allows a percentage of packets to be dropped. TCP is more reliable, but is
marginally slower.

If LinuxCNC is to be connected to a network, one would hope that it is local and behind a firewall. About the only reason to
allow access to LinuxCNC via the Internet would be for remote diagnostics - This can be achieved far more securely using other
means, perhaps by a web interface.

The exact behavior when timeout is set to zero or a negative value is unclear from the NIST documents. Only INF and positive
values are mentioned. However, buried in the source code of rcslib, it is apparent that the following applies:

timeout > 0 Blocking access until the timeout interval is reached or access to the buffer is available.
timeout = 0 Access to the buffer is only possible if no other process is reading or writing at the time.

timeout < 0 or INF Access is blocked until the buffer is available.

2.21 NML base class

Expand on the lists and the relationship between NML, NMLmsg, and the lower level cms classes.
Not to be confused with NMLmsg, RCS_STAT_MSG, or RCS_CMD_MSG.

NML is responsible for parsing the config file, configuring the cms buffers and is the mechanism for routing messages to the
correct buffer(s). To do this, NML creates several lists for:

 cms buffers created or connected to.
* processes and the buffers they connect to

* along list of format functions for each message type

This last item is probably the nub of much of the malignment of libnml/rcslib and NML in general. Each message that is passed
via NML requires a certain amount of information to be attached in addition to the actual data. To do this, several formatting
functions are called in sequence to assemble fragments of the overall message. The format functions will include NML_TYPE,
MSG_TYPE, in addition to the data declared in derived NMLmsg classes. Changes to the order in which the formatting functions
are called and also the variables passed will break compatibility with rcslib if messed with - There are reasons for maintaining
reslib compatibility, and good reasons for messing with the code. The question is, which set of reasons are overriding?

Developer Manual V2.6.11,

2015-11-01 21 /78

2.21.1 NML internals

2.21.1.1 NML constructor

NML::NML\() parses the config file and stores it in a linked list to be passed to cms constructors in single lines. It is the function
of the NML constructor to call the relevant cms constructor for each buffer and maintain a list of the cms objects and the processes
associated with each buffer.

It is from the pointers stored in the lists that NML can interact with cms and why Doxygen fails to show the real relationships
involved.

Note

The config is stored in memory before passing a pointer to a specific line to the cms constructor. The cms constructor then
parses the line again to extract a couple of variables. .. It would make more sense to do ALL the parsing and save the variables
in a struct that is passed to the cms constructor - This would eliminate string handling and reduce duplicate code in cms....

2.21.1.2 NML read/write
Calls to NML::read and NML::write both perform similar tasks in so much as processing the message - The only real variation
is in the direction of data flow.

A call to the read function first gets data from the buffer, then calls format_output(), whilst a write function would call for-
mat_input() before passing the data to the buffer. It is in format_xxx() that the work of constructing or deconstructing the
message takes place. A list of assorted functions are called in turn to place various parts of the NML header (not to be confused
with the cms header) in the right order - The last function called is emcFormat() in emc.cc.

2.21.1.3 NMLmsg and NML relationships

NMLmsg is the base class from which all message classes are derived. Each message class must have a unique ID defined (and
passed to the constructor) and also an update(*cms) function. The update() will be called by the NML read/write functions when
the NML formatter is called - The pointer to the formatter will have been declared in the NML constructor at some point. By
virtue of the linked lists NML creates, it is able to select cms pointer that is passed to the formatter and therefor which buffer is
to be used.

2.22 Adding custom NML commands

LinuxCNC is pretty awesome, but some parts need some tweaking. As you know communication is done through NML channels,
the data sent through such a channel is one of the classes defined in emc.hh (implemented in emc.cc). If somebody needs a
message type that doesn’t exist, he should follow these steps to add a new one. (The Message I added in the example is called
EMC_IO_GENERIC (inherits EMC_IO_CMD_MSG (inherits RCS_CMD_MSGQG)))

1. add the definition of the EMC_IO_GENERIC class to emc2/src/emc/nml_intf/emc.hh
2. add the type define: #define EMC_IO_GENERIC_TYPE (NMLTYPE) 1605)

a. (I chose 1605, because it was available) to emc2/src/emc/nml_intf/emc.hh

3. add case EMC_IO_GENERIC_TYPE to emcFormat in emc2/src/emc/nml_intf/emc.cc
4. add case EMC_IO_GENERIC_TYPE to emc_symbol_lookup in emc2/src/emc/nml_intf/emc.cc
5. add EMC_IO_GENERIC::update function to emc2/src/emc/nml_intf/emc.cc

Recompile, and the new message should be there. The next part is to send such messages from somewhere, and receive them in
another place, and do some stuff with it.

Developer Manual V2.6.11,

2015-11-01 59 /78

2.23 The Tool Table and Toolchanger

LinuxCNC interfaces with toolchanger hardware, and has an internal toolchanger abstraction. LinuxCNC manages tool informa-
tion in a tool table file.

2.23.1 Toolchanger abstraction in LinuxCNC

LinuxCNC supports two kinds of toolchanger hardware, called nonrandom and random. The ini setting [EMCIO]JRANDOM_TOOLCH/
controls which of these kinds of hardware LinuxCNC thinks it’s connected to.

2.23.1.1 Nonrandom Toolchangers

Nonrandom toolchanger hardware puts each tool back in the pocket it was originally loaded from.
Examples of nonrandom toolchanger hardware are the "manual” toolchanger, lathe tool turrents, and rack toolchangers.

When configured for a nonrandom toolchanger, LinuxCNC does not change the pocket number in the tool table file as tools are
loaded and unloaded. Internal to LinuxCNC, on tool change the tool information is copied from the tool table’s source pocket to
pocket O (which represents the spindle), replacing whatever tool information was previously there.

Note
In LinuxCNC configured for nonrandom toolchanger, tool 0 (TO) has special meaning: "no tool". TO may not appear in the tool
table file, and changing to TO will result in LinuxCNC thinking it's got an empty spindle.

2.23.1.2 Random Toolchangers

Random toolchanger hardware swaps the tool in the spindle (if any) with the requested tool on tool change. Thus the pocket that
a tool resides in changes as it is swapped in and out of the spindle.

An example of random toolchanger hardware is a carousel toolchanger.

When configured for a random toolchanger, LinuxCNC swaps the pocket number of the old and the new tool in the tool table file
when tools are loaded. Internal to LinuxCNC, on tool change, the tool information is swapped between the tool table’s source
pocket and pocket 0 (which represents the spindle). So after a tool change, pocket 0 in the tool table has the tool information for
the new tool, and the pocket that the new tool came from has the tool information for the old tool (the tool that was in the spindle
before the tool change), if any.

Note

In LinuxCNC configured for random toolchanger, tool 0 (T0O) has no special meaning. It is treated exactly like any other tool in
the tool table. It is customary to use TO to represent "no tool" (ie, a tool with zero TLO), so that the spindle can be conveniently
emptied when needed.

2.23.2 The Tool Table

LinuxCNC keeps track of tools in a file called the fool table. The tool table records the following information for each tool:

tool number
An integer that uniquely identifies this tool. Tool numbers are handled differently by LinuxCNC when configured for
random and nonrandom toolchangers:

* When LinuxCNC is configured for a nonrandom toolchanger this number must be positive. TO gets special handling and
is not allowed to appear in the tool table.

Developer Manual V2.6.11,
2015-11-01 23778

* When LinuxCNC is configured for a random toolchanger this number must be non-negative. TO is allowed in the tool
table, and is usually used to represent "no tool", ie the empty pocket.

pocket number
An integer that identifies the pocket or slot in the toolchanger hardware where the tool resides. Pocket numbers are handled

differently by LinuxCNC when configured for random and nonrandom toolchangers:

* When LinuxCNC is configured for a nonrandom toolchanger, the pocket number in the tool file can be any positive
integer (pocket 0 is not allowed). LinuxCNC silently compactifies the pocket numbers when it loads the tool file,
so there may be a difference between the pocket numbers in the tool file and the internal pocket numbers used by
LinuxCNC-with-nonrandom-toolchanger.

* When LinuxCNC is configured for a random toolchanger, the pocket numbers in the tool file must be between 0 and 55,
inclusive. Pockets 1-55 are in the toolchanger, pocket O is the spindle.

diameter
Diameter of the tool, in machine units.

tool length offset
Tool length offset (also called TLO), in up to 9 axes, in machine units. Axes that don’t have a specified TLO get 0.

2.23.3 Gcodes affecting tools

The gcodes that use or affect tool information are:

2.23.3.1 Txxx

Tells the toolchanger hardware to prepare to switch to a specified tool xxx.
Handled by Interp: :convert_tool_select ().

1. The machine is asked to prepare to switch to the selected tool by calling the Canon function SELECT_POCKET () with
the pocket number of the requested tool.

a. (saicanon) No-op.

b. (emccanon) Builds an EMC_TOOL_PREPARE message with the requested pocket number and sends it to Task, which
sends it on to IO. IO gets the message and asks HAL to prepare the pocket by setting iocontrol.0.tool-prep-pocke
iocontrol.0.tool-prep—number,and iocontrol.0.tool-prepare. IO thenrepeatedly calls read_tool_
to poll the HAL pin iocontrol.0.tool-prepared, which signals from the toolchanger hardware, via HAL, to
IO that the requested tool prep is complete. When that pin goes True, IO sets emcioStatus.tool.pocketPrepped
to the requested tool’s pocket number.

2. Backininterp, settings->selected_pocket is assigned the pocket number of the requested tool xxx.

2.23.3.2 M6

Tells the toolchanger to switch to the currently selected tool (selected by the previous Txxx command).
Handled by Interp: :convert_tool_change ().
1. The machine is asked to change to the selected tool by calling the Canon function CHANGE_TOOL () with settings->select

a. (saicanon) Sets sai’s _active_slot to the passed-in pocket number. Tool information is copied from the selected
pocket of of the tool table (ie, from sai’s _tools[_active_slot]) to the spindle (aka sai’s _tools[0]).

Developer Manual V2.6.11,

2015-11-01 04 /78

b. (emccanon) Sends an EMC_TOOL_LOAD message to Task, which sends it to IO. IO sets emcioStatus.tool.toolInSy
to the tool number of the tool in the pocket identified by emcioStatus.tool.pocketPrepped (set by Txxx
aka SELECT_POCKET ()). It then requests that the toolchanger hardware perform a tool change, by setting the HAL
pin iocontrol.0.tool-change to True. Later, IO’s read_tool_inputs () will sense that the HAL pin
iocontrol.0.tool_changed has been set to True, indicating the toolchanger has completed the tool change.
When this happens, it calls 1load_tool () to update the machine state.

i. load_tool () with a nonrandom toolchanger config copies the tool information from the selected pocket to
the spindle (pocket 0).

il. load_tool () with a random toolchanger config swaps tool information between pocket O (the spindle) and
the selected pocket, then saves the tool table.

2. Back in interp, settings—>current_pocket is assigned the new tool from settings—>selected_pocket
(set by Txxx). The relevant numbered parameters (#5400-#5413) are updated with the new tool information from pocket
0 (spindle).

2.23.3.3 G43/G43.1/G49

Apply tool length offset. G43 uses the TLO of the currently loaded tool, or of a specified tool if the H-word is given in the block.
G43.1 gets TLO from axis-words in the block. G49 cancels the TLO (it uses O for the offset for all axes).

Handled by Interp: :convert_tool_length_offset ().

1. It starts by building an EmcPose containing the 9-axis offsets to use. For G43 . 1, these tool offsets come from axis words
in the current block. For G4 3 these offsets come from the current tool (the tool in pocket 0), or from the tool specified by
the H-word in the block. For G49, the offsets are all 0.

2. The offsets are passed to Canon’s USE_TOOL_LENGTH_OFFSET () function.

a. (saicanon) Records the TLO in _tool_offset.

b. (emccanon) Builds an EMC_TRAJ_SET_OFFSET message containing the offsets and sends it to Task. Task copies
the offsets to emcStatus—>task.toolOffset and sends them on to Motion via an EMCMOT_SET_OFFSET
command. Motion copies the offsets to emcmotStatus—->tool_offset, where it gets used to offset future
motions.

3. Backin interp, the offsets are recorded in settings—>tool_offset. The effective pocket is recorded in settings—->tool
though this value is never used.

2.23.3.4 G10L1/L10/L11

Modifies the tool table.

Handled by Interp: :convert_setup_tool ().

1. Picks the tool number out of the P-word in the block and finds the pocket for that tool:

a. With a nonrandom toolchanger config this is always the pocket number in the toolchanger (even when the tool is in
the spindle).

b. With a random toolchanger config, if the tool is currently loaded it uses pocket O (pocket 0 means "the spindle"), and
if the tool is not loaded it uses the pocket number in the tool changer. (This difference is important.)

2. Figures out what the new offsets should be.

3. The new tool information (diameter, offsets, angles, and orientation), along with the tool number and pocket number, are
passed to the Canon call SET_TOOL_TABLE_ENTRY().

a. (saicanon) Copy the new tool information to the specified pocket (in sai’s internal tool table, _tools).

Developer Manual V2.6.11,
2015-11-01

25/78

b. (emccanon) Build an EMC_TOOL_SET_OFFSET message with the new tool information, and send it to Task, which

passes it to IO. IO updates the specified pocket in its internal copy of the tool table (emcioStatus.tool.toolTable),

and if the specified tool is currently loaded (it is compared to emcioStatus.tool.toolInSpindle) then the
new tool information is copied to pocket O (the spindle) as well. (FIXME: that’s a buglet, should only be copied on
nonrandom machines.) Finally IO saves the new tool table.

4. Back in interp, if the modified tool is currently loaded in the spindle, and if the machine is a non-random toolchanger, then

the new tool information is copied from the tool’s home pocket to pocket O (the spindle) in interp’s copy of the tool table,
settings—>tool_table. (This copy is not needed on random tool changer machines because there, tools don’t have
a home pocket and instead we just updated the tool in pocket O directly.)

. The relevant numbered parameters (#5400-#5413) are updated from the tool information in the spindle (by copying the
information from interp’s settings->tool_table to settings—>parameters). (FIXME: this is a buglet, the
params should only be updated if it was the current tool that was modified).

. If the modified tool is currently loaded in the spindle, and if the config is for a nonrandom toolchanger, then the new
tool information is written to the tool table’s pocket 0 as well, via a second call to SET_TOOL_TABLE_ENTRY(). (This
second tool-table update is not needed on random toolchanger machines because there, tools don’t have a home pocket and

instead we just updated the tool in pocket O directly.)

2.23.3.5 M61

Set current tool number. This switches LinuxCNC’s internal representation of which tool is in the spindle, without actually
moving the toolchanger or swapping any tools.

Handled by Interp: :convert_tool_change ().

Canon: CHANGE_TOOL_NUMBER ()

settings->current_pocket is assigned the pocket number currently holding the tool specified by the Q-word argument.

2.23.3.6 G41/G41.1/G42/G42.1

Enable cutter radius compensation (usually called cutter comp).

Handled by Interp: :convert_cutter_compensation_on ().

No Canon call, cutter comp happens in the interpreter. Uses the tool table in the expected way: if a D-word tool number is
supplied it looks up the pocket number of the specified tool number in the table, and if no D-word is supplied it uses pocket 0
(the spindle).

2.23.3.7 G40

Cancel cutter radius compensation.

Handled by Interp: :convert_cutter_compensation_off ().

No Canon call, cutter comp happens in the interpreter. Does not use the tool table.

2.23.4

Internal state variables

This is not an exhaustive list! Tool information is spread through out LinuxCNC.

Developer Manual V2.6.11,

2015-11-01 56 /78

2.23.4.1 10
emcioStatus is of type EMC_IO_STAT

emcioStatus.tool.pocketPrepped

When IO gets the signal from HAL that the toolchanger prep is complete (after a Txxx command), this variable is set to

the pocket of the requested tool. When IO gets the signal from HAL that the tool change itself is complete (after an M6
command), this variable gets reset to -1.

emcioStatus.tool.toolInSpindle

Tool number of the tool currently installed in the spindle. Exported on the HAL pin iocontrol.0.tool—-number
(s32).

emcioStatus.tool.toolTable[]

An array of CANON_TOOL_TABLE structures, CANON_POCKETS_MAX long. Loaded from the tool table file at startup
and maintained there after. Index O is the spindle, indexes 1-(CANON_POCKETS_MAX-1) are the pockets in the
toolchanger. This is a complete copy of the tool information, maintained separately from Interp’s settings.tool_table.

2.23.4.2 interp

settingsisoftype settings, whichis struct setup_struct. Definedin src/emc/rs274ngc/interp_internal.h

settings.selected_pocket
Pocket of the tool most recently selected by Txxx.

settings.current_pocket

Original pocket of the tool currently in the spindle. In other words: which toolchanger pocket the tool that’s currently in
the spindle was loaded from.

settings.tool_table[]

An array of tool information. The index into the array is the "pocket number" (aka "slot number"). Pocket 0 is the spindle,
pockets 1 through (CANON_POCKETS_MAX-1) are the pockets of the toolchanger.

settings.tool_offset_index
Unused. FIXME: Should probably be removed.

settings.toolchange_flag
Interp sets this to true when calling Canon’s CHANGE_TOOL() function. Itis checked in Interp: :convert_tool_length
to decide which pocket to use for G43 (with no H-word): settings—>current_pocket if the tool change is still in
progress, pocket O (the spindle) if the tool change is complete.

settings.random_toolchanger
Set from the ini variable [EMCIO]RANDOM_TOOLCHANGER at startup. Controls various tool table handling logic.
(IO also reads this ini variable and changes its behavior based on it. For example, when saving the tool table, random
toolchanger save the tool in the spindle (pocket 0), but non-random toolchanger save each tool in its "home pocket".)

settings.tool_offset
This is an EmcPose variable.

* Used to compute position in various places.

* Sent to Motion via the EMCMOT_SET_OFFSET message. All motion does with the offsets is export them to the HAL
pinsmotion.0.tooloffset. [xyzabcuvw]. FIXME: export these from someplace closer to the tool table (io or
interp, probably) and remove the EMCMOT_SET_OFFSET message.

settings.pockets_max

Used interchangably with CANON_POCKETS_MAX (a #defined constant, set to 56 as of 2012 December 30). FIXME:
This settings variable is not currently useful and should probably be removed.

Developer Manual V2.6.11,

2015-11-01 5778

settings.tool_table
This is an array of CANON_TOOL_TABLE structures (defined in src/emc/nml_intf/emctool.h), with CANON_POCKETS
entries. Indexed by "pocket number", aka "slot number". Index 0 is the spindle, indexes 1-(CANON_POCKETS_MAX-1)
are the pockets in the tool changer. On a random toolchanger pocket numbers are meaningful. On a nonrandom toolchanger
pockets are meaningless; the pocket numbers in the tool table file are ignored and tools are assigned to tool_table slots
sequentially.

settings.tool_change_at_g30 , settings.tool_change_quill_up , settings.tool_change_with_spindle_on
These are set from ini variables in the [EMCIO] section, and control how tool changes are performed.

Developer Manual V2.6.11,
2015-11-01

28/78

Chapter 3

NML Messages

3.1 EMC OPERATOR

3.1.1 EMC_OPERATOR_ERROR_TYPE

Description, NML Type: textual error message to the operator, 11
Written From: emccanon.cc, iosh.cc
Read To: emctaskmain.cc, emcsh.cc

Parameter, Type: [error, char[LINELEN]]

3.1.2 EMC_OPERATOR_TEXT_TYPE

Description, NML Type: textual information message to the operator, 12
Written From: emctaskmain.cc
Read To: emctaskmain.cc, emcsh.cc

Parameter, Type: [text, char[LINELEN]]

3.1.3 EMC_OPERATOR_DISPLAY_TYPE

Description, NML Type: URL or filename of a document to display, 13
Obs: not used, only read

Written From: none

Read To: emctaskmain.cc, emcsh.cc

Parameter, Type: [display, char[LINELEN]]

3.2 EMC NULL, SET, DEBUG, & SYSTEM

3.21 EMC_NULL_TYPE

Description, NML Type: used to reset serial number to original, 21
Written From: thisQuit (emcsh.cc)
Read To: emctaskmain.cc

Parameter, Type: none

Developer Manual V2.6.11,

2015-11-01 59 /78

3.22 EMC_SET_DEBUG_TYPE

Description, NML Type: sets debug level, 22
Written From: emcloSetDebug (iotaskintf.cc), sendDebug (emcsh.cc)
Read To: emctaskmain.cc, ioControl.cc

Parameter, Type: [debug, int]

3.2.3 EMC_SYSTEM_CMD_TYPE

Description, NML Type: execute a system command, 30
Written From: user_defined_add_m_code (emctask.cc)
Read To: emcSystemCmd (emctaskmain.cc)

Parameter, Type: [string, char[LINELEN]]

3.3 EMC AXIS

3.3.1 EMC_AXIS_SET_AXIS_TYPE

Description, NML Type: axis type to linear or angular, 101
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [axisType, unsigned char]

3.3.2 EMC_AXIS_SET_UNITS_TYPE

Description, NML Type: units conversion factor, 102

Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [units, double]

3.3.3 EMC_AXIS_SET_GAINS_TYPE

Description, NML Type: Set the PID gains, 103
Obs: currently not used in EMC2, needs to go to HAL
Written From: none

Read To: emctaskmain.cc Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [p, double] [i,double] [d, double] [ff0,
double] [ff1, double] [ff2, double] [backlash, double] [bias, double] [maxError, double]

3.3.4 EMC_AXIS_SET_CYCLE_TIME_TYPE

Description, NML Type: cycle time for the servo task, 104

Written From: none

Read To: emctaskmain.cc

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [cycleTime, double]

Developer Manual V2.6.11,

2015-11-01 30/78

3.3.5 EMC_AXIS_SET_INPUT_SCALE_TYPE

Description, NML Type: scale factor and offset for the position input, 105
Obs: currently if 0’ed, used only directly from iniaxis

Written From: none Read To: emcTaskIssueCommand (emctaskmain.cc) calls emcAxisSetInputScale (minimilllbridgeporttaskintf.cc)
which sends EMCMOT_SET_INPUT_SCALE

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [scale, double] [offset, double]

3.3.6 EMC_AXIS_SET_OUTPUT_SCALE_TYPE

Description, NML Type: scale factor and offset for the position output, 106

Obs: currently if 0’ed, used only directly from iniaxis

Written From: none

Read To: emcTaskIssueCommand (emctaskmain.cc)

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [scale, double] [offset, double]

3.3.7 EMC_AXIS_SET_MIN_POSITION_LIMIT_TYPE

Description, NML Type: sets min limit, 107
Obs: also handled by iniaxis which directly calls emcAxisSetMinPositionLimit

Written From: none Read To: emcTaskIssueCommand (emctaskmain.cc) calls emcAxisSetMinPositionLimit (taskintf.cc) which
sends EMCMOT_SET_POSITION_LIMITS

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [limit, double]

3.3.8 EMC_AXIS_SET_MAX_POSITION_LIMIT_TYPE

Description, NML Type: sets max limit, 108
Obs: also handled by iniaxis which directly calls emcAxisSetMaxPositionLimit

Written From: none Read To: emcTaskIssueCommand (emctaskmain.cc) calls emcAxisSetMaxPositionLimit (taskintf.cc) which
sends EMCMOT_SET_POSITION_LIMITS

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [limit, double]

3.3.9 EMC_AXIS_SET_MIN_OUTPUT_LIMIT_TYPE

Description, NML Type: -, 109

Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [limit, double]

3.3.10 EMC_AXIS_SET_MAX_OUTPUT_LIMIT_TYPE

Description, NML Type: -, 110

Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [limit, double]

Developer Manual V2.6.11,

2015-11-01 31/78

3.3.11 EMC_AXIS_SET_FERROR_TYPE

Description, NML Type: sets max following error, 111
Obs: also handled by iniaxis which directly calls emcAxisSetFerror

Written From: none Read To: emcTaskIssueCommand (emctaskmain.cc) calls emcAxisSetFerror (taskintf.cc) which sends EM-
CMOT_SET_MAX_FERROR

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [ferror, double]

3.3.12 EMC_AXIS_SET_HOMING_VEL_TYPE

Description, NML Type: -, 112

Obs: in EMC2 those are SET_HOMING_PARAMS double home, double offset, double search_vel, double latch_vel, int
use_index, int ignore_limits,

Written From: none
Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [ferror, double]

3.3.13 EMC_AXIS_SET_HOME_TYPE

Description, NML Type: -, 113
Written From: none
Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [homingVel, double]

3.3.14 EMC_AXIS_SET_HOME_OFFSET TYPE

Description, NML Type: -, 114
Written From: none
Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [home, double]

3.3.15 EMC_AXIS_SET_MIN_FERROR_TYPE

Description, NML Type: sets min following error, 115
Obs: also handled by iniaxis which directly calls emcAxisSetMinFerror
Written From: none

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisSetMinFerror (taskintf.cc)
which sends EMCMOT_SET_MIN_FERROR

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [offset, double]

Developer Manual V2.6.11,

2015-11-01 30/78

3.3.16 EMC_AXIS_SET_MAX_VELOCITY_TYPE

Description, NML Type: sets max. velocity, 116
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [vel, double]

3.3.17 EMC_AXIS_INIT_TYPE

Description, NML Type: -, 118
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.18 EMC_AXIS_HALT_TYPE

Description, NML Type: -, 119
Obs: not used, only read
Written From: none

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisHalt (taskintf.cc)

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.19 EMC_AXIS_ABORT_TYPE

Description, NML Type: aborts motion on an axis (e.g. GUI jogs), 120
Obs: used from the GUI when stopping a manual jog
Written From: sendJogStop (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisAbort (taskintf.cc)
which sends EMCMOT_AXIS_ABORT

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.20 EMC_AXIS_ENABLE_TYPE

Description, NML Type: enables axis, 121
Obs: not used from tkemc & mini
Written From: sendAxisEnable (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisEnable (taskintf.cc)
which sends EMCMOT_ENABLE_AMPLIFIER

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

Developer Manual V2.6.11,
2015-11-01

33/78

3.3.21 EMC_AXIS_DISABLE_TYPE

Description, NML Type: disable axis, 122
Obs: not used from tkemc & mini
Written From: sendAxisDisable (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisDisable (taskintf.cc)
which sends EMCMOT_DISABLE_AMPLIFIER

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.22 EMC_AXIS_ HOME_TYPE

Description, NML Type: home an axis at current position, 123
Obs: used from tkemc & mini through emc_home
Written From: sendHome (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisHome (taskintf.cc)
which sends EMCMOT_HOME

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.23 EMC_AXIS_JOG_TYPE

Description, NML Type: jogs an axis continuously, 124
Obs: used on jogging
Written From: sendJogCont (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisJog (taskintf.cc)
which sends EMCMOT _JOG_CONT

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [vel, double]

3.3.24 EMC_AXIS_INCR_JOG_TYPE

Description, NML Type: jogs an axis with an increment, 125
Obs: used on jogging
Written From: sendJogIncr (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisIncrJog (taskintf.cc)
which sends EMCMOT_JOG_INCR

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]
incr, double] [vel, double]

3.3.25 EMC_AXIS_ABS_JOG_TYPE

Description, NML Type: jogs an axis with an absolute value, 126
Obs: not used, only read
Written From: none

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisAbsJog (taskintf.cc)

which sends EMCMOT_JOG_ABS Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [pos, double] [vel, double]

Developer Manual V2.6.11,

2015-11-01 34778

3.3.26 EMC_AXIS_ACTIVATE_TYPE

Description, NML Type: -, 127
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.27 EMC_AXIS_DEACTIVATE_TYPE

Description, NML Type: -, 128
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.28 EMC_AXIS_OVERRIDE_LIMITS_TYPE

Description, NML Type: overrides min/max limits during homing, 129
Obs: used from tkemc & mini through emc_override_limit
Written From: sendOverrideLimits (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisOverrideLimits (taskintf.cc)
which sends EMCMOT_OVERRIDE_LIMITS

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int]

3.3.29 EMC_AXIS_SET_OUTPUT_TYPE

Description, NML Type: sets an DAC output value, 130
Obs: currently not used in EMC2, needs to go to HAL
Written From: sendAxisSetOutput (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisSetOutput (taskintf.cc)
which sends EMCMOT_DAC_OUT

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [output, double]

3.3.30 EMC_AXIS_LOAD_COMP_TYPE

Description, NML Type: loads compensation values from a file, 131
Obs: currently usrmotLoadComp if 0’ed in EMC2
Written From: sendAxisLoadComp (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisLoadComp (minimilllbridgeporttaskintf.cc)
which calls usrmotLoadComp

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [file, char[LINELEN]]

Developer Manual V2.6.11,

2015-11-01 35/78

3.3.31 EMC_AXIS_ALTER_TYPE

Description, NML Type: loads the alter value to modify the axis position, 132
Written From: sendAxisAlter (emcsh.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisAlter (taskintf.cc)
which calls usrmotAlter

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [alter, double]

3.3.32 EMC_AXIS_SET STEP_PARAMS_TYPE

Description, NML Type: was used to set step related params, 133

Obs: currently not used in EMC2, needs to go to HAL
(maybe directly from the ini, not through NML)

Written From: none

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcAxisSetStepParams (taskintf.cc)
which sends EMCMOT_SET_STEP_PARAMS

Parameter, Type: [axis (in EMC_AXIS_CMD_MSG), int] [setup_time, double] [hold_time, double]

3.3.33 EMC_AXIS_STAT_TYPE

Description, NML Type: status for axis, not sent as a message but used as is, 199
Written From: none
Read To: none

Parameter, Type: [a HUGE load of params]

3.4 EMC TRAJ

3.41 EMC_TRAJ_SET_AXES TYPE

Description, NML Type: -, 201
Obs: not used

Written From: none

Read To: none

Parameter, Type: [axes, int]

3.4.2 EMC_TRAJ_SET_UNITS_TYPE

Description, NML Type: -, 202
Obs: not used

Written From: none

Read To: none

Parameter, Type: [linearUnits, double] [angularUnits, double]

Developer Manual V2.6.11,
2015-11-01

36/78

3.4.3 EMC_TRAJ_SET_CYCLE_TIME_TYPE

Description, NML Type: -, 203
Obs: not used

Written From: none

Read To: none

Parameter, Type: [cycleTime, double]

3.44 EMC_TRAJ_SET _MODE_TYPE

Description, NML Type: -, 204
Obs: not used
Written From: none

Read To: none

Parameter, Type: [mode, enum EMC_TRAJ_MODE_ENUM]

3.4.5 EMC_TRAJ_SET_VELOCITY_TYPE

Description, NML Type: sends a request to set the vel, which is in internal units/sec, 205

Written From: sendVelMsg (emccanon.cc)

Read To: emcTaskIssueCommand (emctaskmain.cc)
calls emcTrajSetVelocity (minimill | bridgeporttaskintf.cc)
which sends EMCMOT_SET_VEL

Parameter, Type: [velocity, double]

3.4.6 EMC_TRAJ_SET_ACCELERATION_TYPE

Description, NML Type: -, 206
Obs: not used

Written From: none

Read To: none

Parameter, Type: [accelerati