Manual Integrador V2.6.13,
2016-11-05

Manual Integrador V2.6.13, 2016-11-05

Manual Integrador V2.6.13,

2016-11-05 i

Contents

I LinuxCNC Introduction 1

1 Integrator Concepts 3

L1 Stepper SYSteMS o o e e e e e e e e e e e e e e e e 3

1.1.1 BasePeriod 3

112 StepTiming oo e 3

1.2 Servo SYStems o v i e e e e e e e e e e e e 4

1.2.1 BasicOperation i e e e e e e e 4

1.2.2 Proportional term e e e e e 5

1.2.3 Integralterm L e e e e e e e 5

1.2.4 Derivative term o o i e e e e e e e e e e e e e 5

1.25 Looptuning o o i e e e e e e e e e e e 6

1.2.6 Manual tuning e e e e e e e e e e e 6

1.3 RTAL. . . o 6

L3.1 ACPL . . 6

II Configuration 7

2 Latency Test 8

2.1 Port Address. e 10

3 INI Configuration 11

3.1 The INTFile Components i i it et e e e e e e e e e e e e e 11

3.1 Comments e e e e e e e e e e 11

3120 Sections L e e e e e e e 12

3.1.3 Variables e 12

3.1.4 Custom Sections and Variables L 12

3.1.5 Include Files o . e e e 13

3.2 INIFile Sections i o i e e 13

32,1 [EMC]Section v v it e e e e e 13

Manual Integrador V2.6.13,

2016-11-05 iii
322 [DISPLAY] SECHON v v v vttt ittt e e e e e e e e e 14
323 [FILTER] Section i e e e e e e e e e e e e e e e 15
324 [RS27ANGC] Section o vttt e e e 17
325 [EMCMOT] Section o vttt it e e e e e e e e e e e 17
3.2.6 [TASK] Section o 0 e e 17
327 [HALJ]SeCtion o i e e e e e e 18
3.2.8 [HALUIJSeCtion ot ittt e e e e e e e e e e e e 18
329 [TRAJ]Section o o o e 18
3.2.10 [AXIS_<num>] SECtiON v o e e e e e e e e 19
3.2.10.1 Homing e e e 20

32102 Servo e e e 21
32,103 SEEPPEIr . « . o o i e e 23
32,11 [EMCIO] Section o v i i e e e e e e e e e e e 24
4 Homing Configuration 25
4.1 OVEeIrVIBW o o e e e e 25
42 Homing SeqUeNnCe o o v e e e 25
4.3 Configuration o oL e e e e e 27
4.3.1 HOME_SEARCH_VEL e e e e e s 27
432 HOME_LATCH_VEL e e e s e e e e 27
433 HOME_FINAL_VEL e 27
4.3.4 HOME_IGNORE_LIMITS e e e e e e s 27
4.3.5 HOME_USE_INDEX e e e e 28
43.6 HOME_OFFSET e 28
437 HOME e 28
4.3.8 HOME_IS_SHARED 28
439 HOME_SEQUENCE e 28
4.3.10 VOLATILE_HOME e s e e e s e 28
4.3.11 LOCKING_INDEXER e e e e e e e 28
4.3.12 Immediate Homing L e e e e 29
5 Lathe Configuration 30
5.1 DefaultPlane e e 30
5.2 INISEtngs o o v o e e e 30
6 HAL TCL Files 31
6.1 Compatibility e 31
6.2 HaltclCommands e e e 31
6.3 Haltcl Inifile variables e e 32
6.4 Converting .hal filesto .tcl files o 33
6.5 Haltcl Notes e 33
6.6 Haltcl Examples o e e e e e e 33
6.7 Haltcl Interactive o e e e e e e e e e e e 34
6.8 Haltcl Distribution Examples (SIm) e e e e 34

Manual Integrador V2.6.13,

2016-11-05 v
7 Core Components 35
T MOUON . . . oo e e e e e 35
TAL OPONS . . o v o v o e e e e e e e e e e e e 36
T1.2 0 PINS . . oo 36
7.1.2.1 HAL pinusage for M19 orient spindle 37
713 Parameters e e e e e e 38
714 FunctionS o o e e e e e e e 39
7.2 AXIS(JOINES) . . . o o e e e e e e e e e e 39
T2.1 PINS . . oo 39
7222 Parameters e e 40
7.3 10controlo e 40
T30 PINS . Lo o 40
8 Stepper Configuration 41
8.1 Introduction e 41

82 Maximum SEPTALE v v v v e 41

8.3 Pinout e e e 41
8.3.1 standard_pinouthal L L 42
832 OVEIVIEW i i 43
8.3.3 Changing the standard_pinouthal L 43
8.3.4 Changing polarity of asignal 44
8.3.5 Adding PWM Spindle Speed Control 44
8.3.6 Adding anenable signal e e 44
8.3.7 External ESTOP button e 44
I GUI 46
9 Python Virtual Control Panel 47
9.1 Introduction e e 47
9.2 Panel ConstruCtion o ot e e e e e e e 48
0.3 Security e e e e e e 49
9.4 AXIS . . 49
9.5 Stand Alone L L e e 50
0.6 WIAZets o e 51
9.6.1 Syntax e e e e e 51

9.6.2 General Notes. 51
9.6.2.1 Comments e e e e e e e 52
9.6.2.2 Editingthe XML file 52
9.623 Colors 52

Manual Integrador V2.6.13,

2016-11-05 v
9.6.24 HALPINS 52
9.6.3 Label e 53
9.6.4 Multi_Label e 53
9.6.5 LEDS 53
9.6.5.1 RoundLED e 54
9.6.52 Rectangle LED 54
9.6.6 BUONS e e e 54
9.6.6.1 TextButton e 55
9.6.6.2 Checkbutton e e e 55
9.6.6.3 Radiobutton e 55
9.6.7 Number Displays e 56
9.6.7.1 Number e e 56
9.6.7.2 S32Number e e 57
9.6.7.3 u32Number e e e 57
9.6. 7.4 Bar e 57
9.6.7.5 Meer. i e e 57
9.6.8 NumberInputs e e e e e 58
9.6.8.1 SpinboxX e e 58
9.6.8.2 Scale e 59
9.6.83 Dial e 60
9.6.8.4 Jogwheel L e e e e 60

9.6.9 ImMages e e e e e 61
9.6.9.1 TImageBit 61

9.69.2 TImageu32 61
9.6.10 Containerst e e e e e 62
9.6.10.1 Borders e 62

9.6.10.2 HDbOX e 63

9.6.10.3 VbDOX e 63
9.6.10.4 Labelframe e e 64
9.6.10.5 Table 64

9.6.10.6 Tabs e e 65
10 PyVCP Examples 67
10.1 AXIS L o o 67
10.2 Floating o o e e e e e e 67
103 Jog Buttons L e e 68
10.3.1 Createthe Widgets e 69
10.3.2 Make COnnections v v v v v vt i e e e e e e e e e e e 71

104 Port TESter o o o e e e e e e e 71
10.5 GS2ZRPM Meter oo e e e e e e e 74
10.5.1 ThePanel e 74

10.5.2 The Connections v v v v it e e e e e e e 76

Manual Integrador V2.6.13,

2016-11-05 vi

11 Glade Virtual Control Panel 77
11.1 Whatis GladeVCP? o e e 77
11.1.1 PyVCPversus GladeVCPataglance 77

11.2 A Quick Tour with the Example Panel 78
11.2.1 Exploring the example panel L 81
11.2.2 Exploring the User Interface description o 81
11.2.3 Exploring the Python callback 82

11.3 Creating and Integrating a Glade user interface e 82
11.3.1 Prerequisite: Glade installation 82
11.3.2 Running Glade to create anew user interface L o o 82
1133 Testingapanel e 83
11.3.4 Preparing the HAL command file o 84
11.3.5 Integrating into Axis like PyVCP o . 84
11.3.6 Integrating into Axis as a tab nextto DRO and Preview 84
11.3.7 Integratinginto Touchy e 85

11.4 GladeVCP command line options o o o i i e e e e e e e e 85
11.5 Understanding the gladeVCP startup process o o v vt ittt e e e e e 86
11.6 HAL Widgetreference 0 i e e e e e e e 87
11.6.1 Widgetand HAL pin naming 00 i ittt e 87
11.6.2 Python attributes and methods of HAL Widgets 88
11.6.3 Setting pin and widget values L 88
11.6.4 The hal-pin-changed signal e 88
11.6.5 BUtONS o o o e e e 89
11.6.6 Scales o o e e e 90
11.6.7 SpinButton e 90
11.6.8 Jog Wheel e e 90
11.6.9 Label e 91
11.6.10 Containers: HAL_HideTable HAL_Table State_Sensitive_Table and HAL_HBox 92
TLLO.ITLED . . . L o 92
11.6.12 ProgressBar L e e e e 93
11.6.13ComboBOX e 94
T1.6.14BArs o oo e e 94
TLOASMEter o o o e e e 95
11.6. 16 HAL_Graph o e e 96
11.6.17 Gremlin tool path preview for .ngcfiles 96
T1.6. 18 HAL_OAfset o o e e 98
11.6.19DRO WIdget o o o e e e 98
11.6.20 Combi_DRO widget e 99

11.6.21 IconView (File selection) widget e 102

Manual Integrador V2.6.13,

2016-11-05 vi
11.6.22 Calculator widget o e e 105
11.6.23 Tooleditor widget o o e e e e e e e 106
11.6.24 Offsetpage o o o i e e 106
11.6.25 HAL _sourceview Widget o i e 108
11.6.26 MDI history o o o e e e e e e e e e e e e e 109
11.6.27 Animated function diagrams: HAL widgetsinabitmap 109

11.7 Action Widgets reference L e e e e e e e 110
11.7.1 EMC Action Widgets ot i e e e 111
11.7.2 EMC ToggleAction Widgets i i i i e e 111
11.7.3 The Action_MDI Toggle and Action_MDI widgets 111
11.7.4 A simple example: Execute MDI command on button press 111
11.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets 112
11.7.6 An advanced example: Feeding parameters to an O-word subroutine 112
11.7.7 Preparing for an MDI Action, and cleaning up afterwards 113
11.7.8 Using the LinuxCNC Stat object to deal with status changes 113

11.8 GladeVCP Programming e 114
11.8.1 UserDefined ACHONS o o oottt e e e 114
11.8.2 An example: adding custom user callbacksinPython 115
11.8.3 HAL value change events ittt 115
11.8.4 Programming model e e e e 115

11.8.4.1 The simple handlermodel 116

11.8.4.2 The class-based handlermodel 116

11.8.4.3 The get_handlers protocol e 116
11.8.5 Initialization SEqUENCE o ot e e e e e e e e 117
11.8.6 Multiple callbacks with the samename 117
11.8.7 The GladeVCP -U <useropts>flag e 117
11.8.8 Persistent variables in GladeVCP 118

11.8.8.1 Persistence, program versions and the signaturecheck 118
11.8.9 Using persistent variables L e 118
11.8.10 Saving the state on Gladvep shutdown Lo 119
11.8.11 Saving state when Ctrl-Cis pressed 0 i e e 119
11.8.12 Hand-editing .ini files e 120
11.8.13 Adding HAL PInS o o e e e e e e e e e e e e e 120
11.8. 14 Adding timers o e e e e e 120
11.8.15 Setting HAL widget properties programmatically L oL 120
11.8.16 Examples, and rolling your own GladeVCP application 121

11.9 FAQ . . o e 121

11.10Troubleshooting L . e e e e 122

11.11Implementation note: Key handling in AXiS 0 i i e 122

11.12Adding Custom Widgets e e 122

Manual Integrador V2.6.13,

2016-11-05 viii
12 HAL User Interface 123
12.1 Introduction L L 123
12.2 Halui pinreference e e e e e 123
IV Hardware Drivers 129
13 Parallel Port Driver 130
I3.1 Parport. . . . o o o e e e e e 130
13.1.1 Installing o 0 0 e e 130

I3.1.2 PINS . . . oo 131

13.1.3 Parameters e 132

13.1.4 Functions e 132

13.1.5 Common problems e 132

13.1.6 Using DoubleStep e e 133

13.2 probe_parporto e e e 133
13.2.1 Installing o o e e e e e e e e e e 133

14 AX5214H Driver 134
14.1 Installing o o o e e e e e 134
I4.2 PINS . . . e 134
14.3 Parameters e e e e 134
144 Functions 135

15 GS2 VFD Driver 136
15.1 Command Line Options e e e 136
152 PInS . . . o o 136
153 Parameters L e e e e e 137
16 Mesa HostMot2 Driver 138
16.1 Introduction L e e 138
16.2 Firmware Binaries L L e e 138
16.3 Installing Firmware L e e e e 139
16.4 Loading HOStMOt2 o e e e e e e 139
16.5 Watchdog 139
16.5.1 PIns: . . . oo 139

16.5.2 Parameters: o o e e e e e e e e 139

16.5.3 Functions:o e 139

16.6 HostMOt2 FUNctions o ottt it e e e e 140
16.7 PINOULS 140
16.8 PINFiles 141

Manual Integrador V2.6.13,

2016-11-05 ix
16.9 Firmware L 141
I6.I0HAL PIns 141
16.11Configurations e e e e e e e e e 142
16.12GPIO . . . 144

T6.12.1PINS . . L o o 144
16.12.2Parameters e e e 144
16.13StepGen L e 145
16.13.1PINS . . . L o e 145
16.13.2Parameters e e e e e e 145
16.13.3 Output Parameters o e e e e e e e 146
T6.TAPWMGEN o o e e e 146
I6.14.1PINS . . . L Lo 146
16.14.2Parameters e e e e 146
16.14.3 Output Parameters e 147
I6.15Encoder L e e e 147
L6.1S.1PINS © . . o o 147
16.15.2Parameters e e e 148
16.165125 Configuration e e e e 148
I6.16. 1 Firmware oo o e e e e 148
16.16.2 Configuration i e e e e e e e e e e e e e e 148
16.16.3 SSERTAL Configuration ot e e 149
16.16.4 TITTLIMItS o o oo o e e e e e e e e 149
16.17Example Configurations Ll e e e e e e e 149
17 Motenc Driver 150
I7.1 PINS . . . 150
17.2 Parameters 151
17.3 FunCtions o 0 i e e e e e 151
18 Opto22 Driver 152
18.1 The Adapter Card e 152
182 The Driver e 152
183 PIns 152
184 Parameters oL e e e e e e e e e e e e 153
18.5 FUNCTIONS e e 153
18.6 Configuring /O POTts e e e e e 153
187 Pin Numbering o e e e e e e e 154

Manual Integrador V2.6.13,

2016-11-05 «
19 Pico Drivers 155
19.1 Command Line Options o o i i e e e e e e e e e e e e e e e 155
192 PINS . . . L o 156
193 Parameters oo e e e e e e e e e e e e e 157
19.4 Functions e e 158
20 Pluto P Driver 159
20.1 GeneralInfo L L 159
20.1.1 Requirements o v i e e e e e e e e e e e e e e 159

20.1.2 COoNNECLOTS . . . v v v v v et e e e e e e e e e e e e e e e e e e e 159

20.1.3 Physical Pins 159

20.1.4 LED oo 160

20.1.5 Powero 160

20.1.6 PCinterface e 160

20.1.7 Rebuilding the FPGA firmware e 160

20.1.8 Formoreinformation L. 160

20.2 PIUto SErvo e e e e e e e 160
20.2.1 PINOUt L. e e 161

20.2.2 Inputlatching and output updating e e e e e 162

20.2.3 HAL Functions, Pins and Parameters 162

20.2.4 Compatible driver hardware L 163

203 PIUtO Step o e 163
20.3.1 PInOUt oL 163

20.3.2 Input latching and output updating oL e 164

20.3.3 Step Waveform Timings o o v i e e 164

20.3.4 HAL Functions, Pins and Parameters e 165

21 Servo To Go Driver 166
21.1 Installing o o e e e e e e e e e 166
212 PINS . . oL 167
21.3 Parameters e e e e e e e e 167
21.4 FunctionS o i e 167
22 ShuttleXpress 168
22,1 DeSCriptoOn v v v i it e e e e e e e e e e e 168
222 SEUP . ¢ o e e e e e e e e e 168

223 PINS . . L. e 168

Manual Integrador V2.6.13,
2016-11-05

Xi

V Advanced Topics

23 Python Interface
23.1 The linuxcnc Python module .

23.2 Usage Patterns for the LinuxCNC NML interface i ittt i et

23.3 Reading LinuxCNC status . .
23.3.1 linuxcnc.stat attributes
23.3.2 The axis dictionary . .

23.4 Preparing to send commands .

23.5 Sending commands through 1inuxcnc.command Lo

23.5.1 linuxcnc.commandattributes e e e e

23.5.2 linuxcnc.commandmethods: e

23.6 Reading the error channel . . .

23.7 Reading ini file values

23.8 The 1inuxcnc.positionlogger tyPe . « « v v v v v v vt b it e e e e e e e e e

23.8.1 members

23.8.2 methods

24 Kinematics

24.1 Introduction

24.2 Trivial Kinematics

24.3 Non-trivial kinematics

24.4 Implementation details

25 Stepper Tuning

25.1 Getting the most out of Software Stepping L

25.1.1 Run a Latency Test . .

25.1.2 Figure out what your drives Xpect o o it e e e e e

25.1.3 Choose your BASE_PERIOD e e

26 PID Tuning
26.1 PID Controller
26.1.1 Control loop basics . .
26.1.2 Theory
26.1.2.1 Proportional

170

171
171
171
172
172
176
177
178
179
179
181
181
182
182
182

183
183
183
183
184
185
185
186

187
187
187
188
188
189
189

Manual Integrador V2.6.13,

2016-11-05 i
26.1.2.2 Integral oL e e e 192

26.1.2.3 Derivativeo e 192

26.1.3 LoopTuning o e e e e 192
26.1.3.1 Simplemethod 193

26.1.3.2 Ziegler-Nichols method L 193

26.1.3.3 Final Steps o o o o e e e e 193

VI Ladder Logic 194
27 Classicladder Introduction 195
27.1 HIStOTY . . v ot e e e e e e e e e e e 195
27.2 IntroduCtion o vt e e e e e e e e e e e e e e e e e e 195
273 Exampleo 196
27.4 Basic Latching On-Off Circuit e e e 196
28 Classicladder Programming 198
28.1 Ladder CONCEPLS . . . v v v v v e 198
28.2 Lan@UAZES . .« « v v e e e e e e e e e e e e e e e e 198
283 Components e e e e e 198
28.3.1 Files . . . o o o 199
28.3.2 Realtime Module 199

28.3.3 Variables L 199

28.4 Loading the Classic Ladderusermodule 200
28.5 Classic Ladder GUI 200
28.5.1 Sections Manager L e e e e e e e 201
28.5.2 Section Display L. e e 201

28.5.3 The Variable Windows L 202
28.5.4 Symbol Window 205

28.5.5 The Editor window L e 206

28.5.6 Config Window e 207

28.6 Ladder objects e e e e 209
28.6.1 CONTACTS e e e 209
28.6.2 IECTIMERS e 209

28.6.3 TIMERS 210
28.6.4 MONOSTABLES e 210

28.6.5 COUNTERS 210
28.6.6 COMPARE e 211

28.6.7 VARIABLE ASSIGNMENT 212

28.6.8 COILS 213

Manual Integrador V2.6.13,

2016-11-05 xXiii
28.6.8.1 JUMPCOIL 214
28.6.82 CALL COIL e e 214
28.7 Classic Ladder Variables e 214
28.8 GRAFCET Programming o ittt e ettt e e e e e e e e 215
28.9 Modbus 216
28.9.1 MODBUS Settings o v vt i ettt e e 219
28.9.2 MODBUS INnfo o o 220
28.9.3 Communication Errors 220
28.9.4 MODBUSBuUZs 220
28.10Setting up Classic Ladder 0 L e e 221
28.10.1 Add the Modules e 221
28.10.2 Adding Ladder Logic e 221
29 Classicladder Examples 228
29.1 Wrapping COUNLET o vttt e e e it e e e e e e e e e e e 228
29.2 Reject Extra Pulses o e e e e 229
293 External E-Stop e 230
29.4 Timer/Operate Example e 233
VII Hardware Examples 235
30 PCI Parallel Port 236
31 Spindle Control 237
31.1 0-10v Spindle Speed e 237
31.2 PWM Spindle Speed L e 237
31.3 Spindle Enable e e e e 238
31.4 Spindle Direction e e e e e e e e e e 238
31.5 Spindle Soft Start e e e 238
31.6 Spindle Feedback L 239
31.6.1 Spindle Synchronized Motion e e e e e 239
31.6.2 Spindle AtSpeed e 240
32 MPG Pendant 241
33 GS2 Spindle 244

Manual Integrador V2.6.13,
2016-11-05

Xiv

VIII Diagnostics & FAQ

34 Stepper Diagnostics
34.1 Common Problems
34.1.1 Stepper Moves One Step .
34.1.2 No Steppers Move
34.1.3 Distance Not Correct . . .
34.2 Error Messages
34.2.1 Following Error
3422 RTAPIError
343 Testing.
34.3.1 Step Timing

35 Linux FAQ
35.1 Automatic Login
35.2 Automatic Startup
353 ManPages.
35.4 ListModules
35.5 EditingaRootFile
35.5.1 The Command Line Way .
3552 TheGUIWay
35.5.3 Root Access
35.6 Terminal Commands
35.6.1 Working Directory
35.6.2 Changing Directories . . .
35.6.3 Listing files in a directory
35.6.4 FindingaFile
35.6.5 Searching for Text
35.6.6 Bootup Messages
35.7 Convenience Items
35.7.1 Terminal Launcher
35.8 Hardware Problems

35.8.2 Monitor Resolution
359 Paths

36 Glossary

37 Legal Section
37.1 Copyright Terms
37.2 GNU Free Documentation License

38 Index

245

246
246
246
246
246
246
246
247
247
247

249
249
249
249
250
250
250
250
250
250
250
251
251
251
251
252
252
252
252
252
252
252

253

258
258
258

262

Manual Integrador V2.6.13,
2016-11-05

XV

The LinuxCNC Team

Manual Integrador V2.6.13,

2016-11-05 1/ 264

Part I

LinuxCNC Introduction

Manual Integrador V2.6.13,

2016-11-05 5/ 264

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2015 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

The LinuxCNC project is not affiliated with Debian®. Debian is a registered trademark owned by Software in the Public Interest,
Inc.

The LinuxCNC project is not affiliated with UBUNTU®. UBUNTU is a registered trademark owned by Canonical Limited.

AVISO

Debido a un reciente aumento de interés en otras traducciones, el equipo de EMC2 ha comenzado recientemente a este
esfuerzo para entregar un Traduccién al espafiol de la documentacién de EMC2.

Si a usted le gustaria ser un editor voluntario de la Traduccion al espafiol de EMC2, por favor péngase en contacto con nosotros.

NOTICE

Because of a recent increase in interest in other translations, the EMC2 team has recently begun this effort to deliver a Spanish
Translation of the EMC2 documentation.

If you would like to be a volunteer editor for the Spanish translation of EMC2, please contact us.

mailto:emc-users@lists.sourceforge.net

Manual Integrador V2.6.13,

2016-11-05 3/ 264

Chapter 1

Integrator Concepts

1.1 Stepper Systems

1.1.1 Base Period

BASE_PERIOD is the heartbeat of your LinuxCNC computer.! Every period, the software step generator decides if it is time
for another step pulse. A shorter period will allow you to generate more pulses per second, within limits. But if you go too short,
your computer will spend so much time generating step pulses that everything else will slow to a crawl, or maybe even lock up.
Latency and stepper drive requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you can get very rare errors that ruin a part every once in a while and are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest timing requirement of your
drive, and the worst case latency of your computer. This is not always the best choice. For example, if you are running a drive
with a 20 us direction signal hold time requirement, and your latency test said you have a maximum latency of 11 us, then if you
set the BASE_PERIOD to 20+11 =31 us you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per second
in another mode.

The problem is with the 20 us hold time requirement. That plus the 11 us latency is what forces us to use a slow 31 us period. But
the LinuxCNC software step generator has some parameters that let you increase the various times from one period to several.
For example, if steplen * is changed from 1 to 2, then there will be two periods between the beginning and end of the step pulse.
Likewise, if dirhold 3 is changed from 1 to 3, there will be at least three periods between the step pulse and a change of the
direction pin.

If we can use dirhold to meet the 20 us hold time requirement, then the next longest time is the 4.5 us high time. Add the 11 us
latency to the 4.5 us high time, and you get a minimum period of 15.5 us . When you try 15.5 us, you find that the computer
is sluggish, so you settle on 16 us . If we leave dirhold at 1 (the default), then the minimum time between step and direction is
the 16 us period minus the 11 us latency = 5 us , which is not enough. We need another 15 us . Since the period is 16 us , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the step pulse to the changing
direction pin is 5+16=21 us , and we don’t have to worry about the drive stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section of the HAL manual.

1.1.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes important. If the drive steps on the
falling edge then the output pin should be inverted.

I'This section refers to using stepgen, LinuxCNC'’s built-in step generator. Some hardware devices have their own step generator and do not use LinuxCNC’s
built-in one. In that case, refer to your hardware manual.

2steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL component. This parameter
adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3dirhold refers to a parameter that adjusts the length of the direction hold time.

Manual Integrador V2.6.13,

2016-11-05 4264

1.2 Servo Systems

1.2.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are more costly and complex.
Unlike stepper systems, servo systems require some type of position feedback device, and must be adjusted or tuned, as they
don’t quite work right out of the box as a stepper system might. These differences exist because servos are a closed loop system,
unlike stepper motors which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram of
how a servomotor system is connected.

Summing amp Power amp
Input signal + z
[command signal] Summer amp
- drives power amp

input fcommand) signal
ard feedback sighal
drive summing amp

Power amp
clries

feedback signal molor

feedback device Motaor

TR Y =
.|I|I'|'I |I|I'|'I |I||'|'I '|'|I *
ILTRRLERARERAREE o

motor drives load
and feadback device

Figure 1.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the summing amplifier drives
the power amplifier, the power amplifier drives the motor, the motor drives the load (and the feedback device), and the feedback
device (and the input signal) drive the motor. This looks very much like a circle (a closed loop) where A controls B, B controls
C, C controls D, and D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first, especially as compared
to more normal electronic circuits, where the inputs proceed smoothly to the outputs, and never go back.* If everything controls
everything else, how can that ever work, who’s in charge? The answer is that LinuxCNC can control this system, but it has to do
it by choosing one of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is called
PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction to the current error, the
Integral value determines the reaction based on the sum of recent errors, and the Derivative value determines the reaction based
on the rate at which the error has been changing. They are three common mathematical techniques that are applied to the task of
getting a working process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis position
and the set point is the commanded axis position.

4If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where what the outputs are doing now
depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then nevermind.

Manual Integrador V2.6.13,

2016-11-05 5/ 264

-setpoint Zi—errura-ﬂ Kin[te{ﬂa'r E-»{ Process }—uutput—r

Figure 1.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action designed for specific
process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error,
the degree to which the controller overshoots the set point and the degree of system oscillation.

1.2.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to the current error value. A high
proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the
system can become unstable. In contrast, a small gain results in a small output response to a large input error. If the proportional
gain is too low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is
a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice
indicate that it is the proportional term that should contribute the bulk of the output change.

1.2.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude of the error and the
duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should
have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process towards set point and eliminates
the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to
accumulated errors from the past, it can cause the present value to overshoot the set point value (cross over the set point and then
create a deviation in the other direction).

1.2.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with
respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller
set point. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and
improve the combined controller-process stability.

Manual Integrador V2.6.13,

2016-11-05 6/ 264

1.2.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled
process input can be unstable, i.e. its output diverges, with or without oscillation, and is limited only by saturation or mechanical
breakage. Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

1.2.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output of the loop oscillates, then the P
should be set to be approximately half of that value for a quarter amplitude decay type response. Then increase I until any offset
is correct in sufficient time for the process. However, too much I will cause instability. Finally, increase D, if required, until the
loop is acceptably quick to reach its reference after a load disturbance. However, too much D will cause excessive response and
overshoot. A fast PID loop tuning usually overshoots slightly to reach the set point more quickly; however, some systems cannot
accept overshoot, in which case an over-damped closed-loop system is required, which will require a P setting significantly less
than half that of the P setting causing oscillation.

1.3 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance. The RTAI patched kernel
lets you write applications with strict timing constraints. RTAI gives you the ability to have things like software step generation
which require precise timing.

1.3.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which interfere with RT
performance (for example: power management, CPU power down, CPU frequency scaling, etc). The LinuxCNC kernel (and
probably all RTAI-patched kernels) has ACPI disabled. ACPI also takes care of powering down the system after a shutdown has
been started, and that’s why you might need to push the power button to completely turn off your computer. The RTAI group has
been improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

Manual Integrador V2.6.13,

2016-11-05 7/ 264

Part 11

Configuration

Manual Integrador V2.6.13,

2016-11-05 8/ 264

Chapter 2

Latency Test

This test is the first test that should be performed on a PC to see if it is able to drive a CNC machine.

Latency is how long it takes the PC to stop what it is doing and respond to an external request. For LinuxCNC the request is
BASE_THREAD that makes the periodic heartbeat that serves as a timing reference for the step pulses. The lower the latency,
the faster you can run the heartbeat, and the faster and smoother the step pulses will be.

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within 10 microseconds each and
every time can give better results than the latest and fastest P4 Hyperthreading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a number of other things can
hurt the latency. The best way to find out what you are dealing with is to run the RTAI latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a parallel port that is capable
of outputting step pulses that are generated by the software. However, software step pulses also have some disadvantages:

* limited maximum step rate
e jitter in the generated pulses

¢ Joads the CPU

The best way to find out how well your PC will lrun LinuxCNC is to run the HAL latency test. To run the test, open a terminal
window (In Ubuntu, from Applications — Accessories — Terminal) and run the following command:

latency-test

You should see something like this:

Manual Integrador V2.6.13,

2016-11-05 9/ 264

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring emc2.

While the test is running. you should "abuse" the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1.0ms): 1001089 5929 995302

Base thread (25.0ps): 33954 9075 24843

Reset Statistics

Figure 2.1: HAL Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf the web. Copy some large
files around on the disk. Play some music. Run an OpenGL program such as glxgears. The idea is to put the PC through its paces
while the latency test checks to see what the worst case numbers are.

Note
Do not run LinuxCNC or Stepconf while the latency test is running.

The important numbers are the max jitter. In the example above, that is 9075 nanoseconds, or 9.075 microseconds. Record this
number, and enter it in Stepconf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least several minutes; sometimes
the worst case latency doesn’t happen very often, or only happens when you do some particular action. For instance, one Intel
motherboard worked pretty well most of the time, but every 64 seconds it had a very bad 300 us latency. Fortunately that was
fixable, see http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-20000 nanoseconds), the
computer should give very nice results with software stepping. If the max latency is more like 30-50 microseconds, you can still
get good results, but your maximum step rate might be a little disappointing, especially if you use microstepping or have very
fine pitch leadscrews. If the numbers are 100 us or more (100,000 nanoseconds), then the PC is not a good candidate for software
stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC is not a good candidate for LinuxCNC, regardless
of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. Another PC had very bad latency (several milliseconds)
when using the onboard video. But a $5 used video card solved the problem.

Note
LinuxCNC does not require bleeding edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?FixingSMIIssues

Manual Integrador V2.6.13,

2016-11-05 10/ 264

2.1 Port Address

For those who build their own hardware, one safeguard against shorting out an on-board parallel port - or even the whole
motherboard - is to use an add-on parallel port card. Even if you don’t need the extra layer of safety, a parport card is a good way
to add extra I/O lines with LinuxCNC.

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5V signals, and can come in a single or dual
ports.

To find the I/O addresses for these cards open a terminal window and use the list pci command:

lspci -v

Look for the entry with "Netmos" in it. Example of a 2-port card:

0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/O Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2POS (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/0 ports at b800 [size=8]

I/0 ports at bc00 [size=8]
I/0 ports at c000 [size=8]
I/0 ports at c400 [size=8]
I/0 ports at c800 [size=8]
I/0 ports at cc00 [size=16]

From experimentation, I’ve found the first port (the on-card port) uses the third address listed (c000), and the second port (the
one that attaches with a ribbon cable) uses the first address listed (b800).

You can then open an editor and put the addresses into the appropriate place in your .hal file.

loadrt hal_parport cfg="0x378 0xc000"

You must also direct LinuxCNC to run the read and write functions for the second card. For example,

addf parport.l.read base-thread 1
addf parport.l.write base-thread -1

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their settings depending on which
slot you put them into, so if you like to ’get under the hood’ and re-arrange things, be sure to check these values before you start
LinuxCNC.

Manual Integrador V2.6.13,

2016-11-05 11/ 264

Chapter 3

INI Configuration

3.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

¢ comments
e sections

e variables

Each of these elements is separated on single lines. Each end of line or newline character creates a new element.

3.1.1 Comments
A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at the start a line, the rest of the
line is ignored by the software. Comments can be used to describe what an INI element will do.

; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone carelessly edits a list
like this and leaves two of the lines uncommented, the first one encountered will be used.

Note that inside a variable, the "#" and ";" characters do not denote comments:

INCORRECT = value # and a comment

Correct Comment
CORRECT = value

Manual Integrador V2.6.13,

2016-11-05 12/ 264

3.1.2 Sections

Related parts of an ini file are separated into sections. A section name is enclosed in brackets like this [THIS_SECTION] The
order of sections is unimportant. Sections begin at the section name and end at the next section name.

The following sections are used by LinuxCNC:

* [EMC] general information

* [DISPLAY] settings related to the graphical user interface

o [FILTER] settings input filter programs

* [RS274NGC] settings used by the g-code interpreter

e [EMCMOT] settings used by the real time motion controller

o [TASK] settings used by the task controller

» [HAL] specifies .hal files

e [HALUI] MDI commands used by HALUI

» [TRAJ] additional settings used by the real time motion controller
e [AXIS_n] individual axis variables

* [EMCIO] settings used by the I/O Controller

3.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the first non-white space character
after the = up to the end of the line is passed as the value, so you can embed spaces in string symbols if you want to or need to.
A variable name is often called a keyword.

The following sections detail each section of the configuration file, using sample values for the configuration lines.

Variables that are used by LinuxCNC must always use the section names and variable names as shown. In the following example
the variable MACHINE is assigned the value My Machine.

Variable Example

MACHINE = My Machine

3.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one location for convenience.
To use a custom section variable in your HAL file add the section and variable to the INI file.
Custom Section Example

[OFESETS]
OFFSET_1 = 0.1234

To add a custom variable to a LinuxCNC section simply include the variable in that section.
Custom Variable Example

[AXIS_O0]
TYPE = LINEAR

SCALE = 16000

Manual Integrador V2.6.13,

2016-11-05 13/ 264

To use the custom variables in your HAL file put the section and variable name in place of the value.
HAL Example

setp offset.l.offset [OFFSETS]OFFSET_1
setp stepgen.O.position-scale [AXIS_O0]SCALE

Note
The value stored in the variable must match the type specified by the component pin.

3.1.5 Include Files

An INI file may include the contents of another file by using a #INCLUDE directive.
#INCLUDE Format

#INCLUDE filename
The filename can be specified as:

* afile in the same directory as the INI file
* afile located relative to the working directory
 an absolute file name (starts with a /)

¢ a user-home-relative file name (starts with a ~)

Multiple #INCLUDE directives are supported.
#INCLUDE Examples

#INCLUDE axis_0.inc

#INCLUDE ../parallel/axis_1l.inc

#INCLUDE below/axis_2.inc

#INCLUDE /home/myusername/myincludes/display.inc
#INCLUDE ~/linuxcnc/myincludes/rs274ngc.inc

The #INCLUDE directives are supported for one level of expansion only — an included file may not include additional files. The
recommended file extension is .inc. Do not use a file extension of .ini for included files.

3.2 INI File Sections

3.2.1 [EMC] Section

* VERSION = $Revision: 1.3 $ - The version number for the INI file. The value shown here looks odd because it is automatically
updated when using the Revision Control System. It’s a good idea to change this number each time you revise your file. If you
want to edit this manually just change the number and leave the other tags alone.

* MACHINE = My Controller - This is the name of the controller, which is printed out at the top of most graphical interfaces.
You can put whatever you want here as long as you make it a single line long.

* DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a terminal. Debug flags are
usually only useful to developers. See src/emc/nml_intf/debugflags.h for other settings.

Manual Integrador V2.6.13,

2016-11-05 14/ 264

3.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every user interface. The main
two interfaces for LinuxCNC are AXIS and Touchy. There are several newer interfaces, like gmoccapy and gscreen. Axis is an
interface for use with normal computer and monitor, Touchy is for use with touch screens. Gmoccapy can be used both ways
and offers also many connections for hardware controls. Descriptions of the interfaces are in the Interfaces section of the User
Manual.

e DISPLAY = axis - The name of the user interface to use. Valid options may include: axis, touchy, gmoccapy, gscreen, keystick,
mini, tklinuxcnc, xemec,

e POSITION_OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show when the user interface
starts. The RELATIVE coordinate system reflects the G92 and G5x coordinate offsets currently in effect.

e POSITION_FEEDBACK = ACTUAL - The coordinate value (COMMANDED or ACTUAL) to show when the user interface
starts. The COMMANDED position is the ideal position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors.

* MAX_FEED_OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of the programmed feed
rate.

e MIN_SPINDLE_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means 50% of the programmed
spindle speed. (This is useful as it’s dangerous to run a program with a too low spindle speed).

* MAX_SPINDLE _OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means 100% of the programmed
spindle speed.

* DEFAULT_SPINDLE_SPEED = 100 - The default spindle RPM when the spindle is started in manual mode. This is not the
minimum speed. In AXIS this defaults to 1 RPM if this setting is not present.

* PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default location for g-code files and the location for user-defined M-codes.
This location is searched for the file name before the subroutine path and user M path if specified in the [RS274NGC] section.

* INTRO_GRAPHIC = emc2.gif - The image shown on the splash screen.
e INTRO_TIME = 5 - The maximum time to show the splash screen, in seconds.

e CYCLE_TIME = 0.05 - Cycle time in seconds that display will sleep between polls.

Note
The following [DISPLAY] items are for the AXIS interface only, many of them are used also from gmoccapy, see the gmoccapy
document for details.

* DEFAULT_LINEAR_VELOCITY = .25 - The default velocity for linear jogs, in , machine units per second.

* MIN_VELOCITY = .0I - The approximate lowest value the jog slider.

* MAX_LINEAR_VELOCITY = 1.0 - The maximum velocity for linear jogs, in machine units per second.

* MIN_LINEAR_VELOCITY = .01 - The approximate lowest value the jog slider.

* DEFAULT _ANGULAR_VELOCITY = .25 - The default velocity for angular jogs, in machine units per second.
* MIN_ANGULAR_VELOCITY = .01 - The approximate lowest value the angular jog slider.

* MAX_ ANGULAR_VELOCITY = 1.0 - The maximum velocity for angular jogs, in machine units per second.

e INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The INCREMENTS can be used to
override the default. The values can be decimal numbers (e.g., 0.1000) or fractional numbers (e.g., 1/16), optionally followed
by a unit (cm, mm, um, inch, in or mil). If a unit is not specified the machine unit is assumed. Metric and imperial distances
may be mixed: INCREMENTS = 1 inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

Manual Integrador V2.6.13,

2016-11-05 15/ 264

GRIDS = 10 mm, 1 in, ... - Defines the preset values for grid lines. The value is interpreted the same way as INCREMENTS.

OPEN_FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts. Use a blank string "" and no file
will be loaded at start up.

EDITOR = gedit - The editor to use when selecting File > Edit to edit the G code from the AXIS menu. This must be configured
for this menu item to work. Another valid entry is gnome-terminal -e vim.

TOOL_EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting "File > Edit tool table..."

"non

in Axis). Other valid entries are "gedit", "gnome-terminal -e vim", and "gvim".
PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP section for more information.
LATHE = | - This displays in lathe mode with a top view and with Radius and Diameter on the DRO.

GEOMETRY = XYZABCUVW - Controls the preview and backplot of rotary motion. This item consists of a sequence of axis
letters, optionally preceded by a "-" sign. Only axes defined in [TRAJJAXES should be used. This sequence specifies the
order in which the effect of each axis is applied, with a "-" inverting the sense of the rotation. The proper GEOMETRY string
depends on the machine configuration and the kinematics used to control it. The example string GEOMETRY=XYZBCUVW
is for a 5-axis machine where kinematics causes UVW to move in the coordinate system of the tool and XYZ to move in the
coordinate system of the material. The order of the letters is important, because it expresses the order in which the different
transformations are applied. For example rotating around C then B is different than rotating around B then C. Geometry has
no effect without a rotary axis.

ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into a number of straight lines;
a semicircle is divided into ARCDIVISION parts. Larger values give a more accurate preview, but take longer to load and
result in a more sluggish display. Smaller values give a less accurate preview, but take less time to load and may result in a
faster display. The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).!

MDI_HISTORY_FILE = - The name of a local MDI history file. If this is not specified Axis will save the MDI history in
.axis_mdi_history in the user’s home directory. This is useful if you have multiple configurations on one computer.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

HELP_FILE = tklinucnc.txt - Path to help file.

3.2.3 [FILTER] Section

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task: Something as simple as
making sure the file ends with M2, or something as complicated as detecting whether the input is a depth image, and generating
g-code to mill the shape it defines. The [FILTER] section of the ini file controls how filters work. First, for each type of file, write
a PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program is given the name of
the input file as its first argument, and must write RS274NGC code to standard output. This output is what will be displayed in
the text area, previewed in the display area, and executed by LinuxCNC when Run.

PROGRAM_EXTENSION = .extension Description

If your post processor outputs files in all caps you might want to add the following line:

PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-gcode converter included with LinuxCNC:

PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image

n LinuxCNC 2.4 and earlier, the default value was 128.

Manual Integrador V2.6.13,

2016-11-05 16/ 264

— png = image-to-gcode
— gif = image-to-gcode
— jpg = image-to-gcode

It is also possible to specify an interpreter:

* PROGRAM_EXTENSION = .py Python Script

- py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example script is available at
nc_files/holecircle.py. This script creates g-code for drilling a series of holes along the circumference of a circle. Many more
g-code generators are on the LinuxCNC Wiki site http://wiki.linuxcnc.org/.

If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form

* FILTER_PROGRESS=%d

sets the AXIS progress bar to the given percentage. This feature should be used by any filter that runs for a long time.
Python filters should use the print function to output the result to Axis.

This example program filters a file and adds a W axis to match the Z axis. It depends on there being a space between each axis
word to work.

#! /usr/bin/env python
import sys
def main(argv) :

openfile = open(argv[0], ’'r’")
file_in = openfile.readlines/()
openfile.close ()

file_out = []
for line in file_in:
print line

if line.find('z’) !'= -1:
words = line.rstrip(’\n’)
words = words.split(’ ')
newword = "'
for 1 in words:

if i[0] == "2Z":
newword = 'W’+ 1i[1:]

if len (newword) > O:
words.append (newword)
newline = ' ' .join (words)
file_out.append(newline)

else:

file_out.append(line)

for item in file_out:

o)

print "%s" % item

if __ name_ == "_ main_ ":
main(sys.argv[l:])

http://wiki.linuxcnc.org/

Manual Integrador V2.6.13,

2016-11-05 17/ 264

3.2.4 [RS274NGC] Section

* PARAMETER_FILE = myfile.var - The file located in the same directory as the ini file which contains the parameters used by
the interpreter (saved between runs).

* ORIENT_OFFSET = 0 - A float value added to the R word parameter of an M19 Orient Spindle operation. Used to define an
arbitrary zero position regardless of encoder mount orientation.

* RS274NGC_STARTUP_CODE = G17 G20 G40 G49 G64 P0.001 G80 G90 G92 G94 G97 GI8 - A string of NC codes that
the interpreter is initialized with. This is not a substitute for specifying modal g-codes at the top of each ngc file, because the
modal codes of machines differ, and may be changed by g-code interpreted earlier in the session.

* SUBROUTINE_PATH = ncsubroutines:/tmp/testsubs:lathesubs:millsubs - Specifies a colon (:) separated list of up to 10 di-
rectories to be searched when single-file subroutines are specified in gcode. These directories are searched after searching
[DISPLAY]PROGRAM_PREFIX (if it is specified) and before searching [WIZARD]WIZARD_ROQT (if specified). The
paths are searched in the order that they are listed. The first matching subroutine file found in the search is used. Directo-
ries are specified relative to the current directory for the ini file or as absolute paths. The list must contain no intervening
whitespace.

o USER_M_PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated directories for user
defined functions. Directories are specified relative to the current directory for the ini file or as absolute paths. The list must
contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order is:
1. [DISPLAY]PROGRAM_PREFIX (if specified)
2. If [DISPLAY]PROGRAM_PREFIX is not specified, search the default location: nc_files
3. Then search each directory in the list [RS274ANGC]JUSER_M_PATH

The first executable M1xx found in the search is used for each M1xx.

* USER_DEFINED_FUNCTION_MAX_DIRS=5. The maximum number of directories defined at compile time.

Note
[WIZARD]WIZARD_ROQT is a valid search path but the Wizard has not been fully implemented and the results of using it are
unpredictable.

3.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values from this section to load
the motion controller. For more information on the motion controller see the Motion Section.

* EMCMOT = motmod - the motion controller name is typically used here.

e BASE_PERIOD = 50000 - the Base task period in nanoseconds.

SERVO_PERIOD = 1000000 - This is the "Servo" task period in nanoseconds.

TRAJ_PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

3.2.6 [TASK] Section

* TASK = milltask - Specifies the name of the task executable. The rask executable does various things, such as communicate
with the Uls over NML, communicate with the realtime motion planner over non-HAL shared memory, and interpret gcode.
Currently there is only one task executable that makes sense for 99.9% of users, milltask.

* CYCLE_TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the polling interval when
waiting for motion to complete, when executing a pause instruction, and when accepting a command from a user interface.
There is usually no need to change this number.

Manual Integrador V2.6.13,

2016-11-05 18/ 264

3.2.7 [HAL] section

TWOPASS=ON - Use two pass processing for loading HAL comps. With TWOPASS processing, all [HALJHALFILES are
first read and multiple appearances of loadrt directives for each moduleb are accumulated. No hal commands are executed in
this initial pass.

HALFILE = example.hal - Execute the file example.hal at start up. If HALFILE is specified multiple times, the files are
executed in the order they appear in the ini file. Almost all configurations will have at least one HALFILE, and stepper systems
typically have two such files, one which specifies the generic stepper configuration (core_stepper.hal) and one which specifies
the machine pin out (xxx_pinout.hal)

HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple times, the commands
are executed in the order they appear in the ini file. HALCMD lines are executed after all HALFILE lines.

SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending on the hardware drivers
used, this may make it possible to set outputs to defined values when LinuxCNC is exited normally. However, because there
is no guarantee this file will be executed (for instance, in the case of a computer crash) it is not a replacement for a proper
physical e-stop chain or other protections against software failure.

POSTGUI_HALFILE = example2.hal - (Only with the TOUCHY and AXIS GUI) Execute example2.hal after the GUI has
created its HAL pins. See section pyVCP with Axis Section for more information.

HALUI = halui - adds the HAL user interface pins. For more information see the HAL User Interface chapter.

3.2.8 [HALUI] section

MDI_COMMAND = G53 GO X0 Y0 Z0 - An MDI command can be executed by using halui.mdi-command-00. Increment the
number for each command listed in the [HALUI] section.

3.2.9 [TRAJ] Section

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are valid. Only axes named
in COORDINATES are accepted in g-code. This has no effect on the mapping from G-code axis names (X- Y- Z-) to joint
numbers—for trivial kinematics, X is always joint 0, A is always joint 3, and U is always joint 6, and so on. It is permitted to
write an axis name twice (e.g., X Y Y Z for a gantry machine) but this has no effect.

AXES = 3 - One more than the number of the highest joint number in the system. For an XYZ machine, the joints are numbered
0, 1 and 2; in this case AXES should be 3. For an XYUV machine using trivial kinematics, the V joint is numbered 7 and
therefore AXES should be 8. For a machine with nontrivial kinematics (e.g., scarakins) this will generally be the number of
controlled joints.

JOINTS = 3 - (This config variable is used by the Axis GUI only, not by the trajectory planner in the motion controller.)
Specifies the number of joints (motors) in the system. For example, an XYZ machine with a single motor for each axis has 3
joints. A gantry machine with one motor on each of two of the axes, and two motors on the third axis, has 4 joints.

HOME = 0 0 0 - Coordinates of the homed position of each axis. Again for a fourth axis you will need 0 0 0 0. This value is
only used for machines with nontrivial kinematics. On machines with trivial kinematics this value is ignored.

LINEAR_UNITS = <units> - Specifies the machine units for linear axes. Possible choices are (in, inch, imperial, metric, mm).
This does not affect the linear units in NC code (the G20 and G21 words do this).

ANGULAR_UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are deg, degree (360 per
circle), rad, radian (2pi per circle), grad, or gon (400 per circle). This does not affect the angular units of NC code. In
RS274NGC, A-, B- and C- words are always expressed in degrees.

DEFAULT _VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per second. The value shown in
Axis equals machine units per minute.

Manual Integrador V2.6.13,

2016-11-05 19/ 264

DEFAULT_ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration used for "teleop" (Cartesian
space) jogs, in machine units per second per second.

MAX_VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, in machine units per second. The value
shown equals 300 units per minute.

MAX_ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis move, in machine units per
second per second.

POSITION_FILE = position.txt - If set to a non-empty value, the joint positions are stored between runs in this file. This allows
the machine to start with the same coordinates it had on shutdown. This assumes there was no movement of the machine while
powered off. If unset, joint positions are not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller
machines without home switches.

NO_FORCE_HOMING = I - The default behavior is for LinuxCNC to force the user to home the machine before any MDI
command or a program is run. Normally, only jogging is allowed before homing. Setting NO_FORCE_HOMING = 1 allows
the user to make MDI moves and run programs without homing the machine first. Interfaces without homing ability will need
to have this option set to 1.

Warning
LinuxCNC will not know your axis travel limits when using NO_FORCE_HOMING = 1.

3.2.10 [AXIS_<num>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components in the axis control module.
The axis section names begin numbering at 0, and run through the number of axes specified in the [TRAJ] AXES entry minus 1.

Typically (but not always):

AXIS_0=X
AXIS_1=Y
AXIS 2=7
AXIS 3=A
AXIS_4=B
AXIS_5=C
AXIS_6=U
AXIS_ 7=V
AXIS_ 8=W

TYPE = LINEAR - The type of axes, either LINEAR or ANGULAR.

WRAPPED_ROTARY = I - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999 degrees. Positive
Numbers will move the axis in a positive direction and negative numbers will move the axis in the negative direction.

LOCKING_INDEXER = I - When this is set to 1 a GO move for this axis will initiate an unlock with axis.N.unlock pin then
wait for the axis.N.is-unlocked pin then move the axis at the rapid rate for that axis. After the move the axis.N.unlock will be
false and motion will wait for axis.N.is-unlocked to go false. Moving with other axes is not allowed when moving a locked
rotary axis.

UNITS = INCH - If specified, this setting overrides the related [TRAJ] UNITS setting. (e.g., [TRAJJLINEAR_UNITS if the
TYPE of this axis is LINEAR, [TRAJJANGULAR_UNITS if the TYPE of this axis is ANGULAR)

Manual Integrador V2.6.13,

2016-11-05 20 / 264

MAX_VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.
MAX_ACCELERATION = 20.0 - Maximum acceleration for this axis in machine units per second squared.

BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to make up for small deficiencies
in the hardware used to drive an axis. If backlash is added to an axis and you are using steppers the STEPGEN_MAXACCEL
must be increased to 1.5 to 2 times the MAX_ACCELERATION for the axis.

COMP_FILE = file.extension - A file holding compensation structure for the axis. The file could be named xscrew.comp,
for example, for the X axis. File names are case sensitive and can contain letters and/or numbers. The values are triplets
per line separated by a space. The first value is nominal (where it should be). The second and third values depend on the
setting of COMP_FILE_TYPE. Currently the limit inside LinuxCNC is for 256 triplets per axis. If COMP_FILE is specified,
BACKLASH is ignored. Compensation file values are in machine units.

COMP_FILE TYPE =0or I -

— If 0: The second and third values specify the forward position (where the axis is while traveling forward) and the reverse
position (where the axis is while traveling reverse), positions which correspond to the nominal position.”

— If 1: The second and third values specify the forward trim (how far from nominal while traveling forward) and the reverse
trim (how far from nominal while traveling in reverse), positions which correspond to the nominal position.

Example triplet with COMP_FILE_TYPE = 0: 1.00 1.01 0.99 +
Example triplet with COMP_FILE_TYPE = 1: 1.00 0.01 -0.01

MIN_LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

MAX_LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

MIN_FERROR = 0.010 - This is the value in machine units by which the axis is permitted to deviate from commanded position
at very low speeds. If MIN_FERROR is smaller than FERROR, the two produce a ramp of error trip points. You could think
of this as a graph where one dimension is speed and the other is permitted following error. As speed increases the amount of
following error also increases toward the FERROR value.

FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference between commanded
and sensed position exceeds this amount, the controller disables servo calculations, sets all the outputs to 0.0, and disables the
amplifiers. If MIN_FERROR is present in the .ini file, velocity-proportional following errors are used. Here, the maximum al-
lowable following error is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJIMAX_VELOCITY,
and proportionally smaller following errors for slower speeds. The maximum allowable following error will always be greater
than MIN_FERROR. This prevents small following errors for stationary axes from inadvertently aborting motion. Small fol-
lowing errors will always be present due to vibration, etc. The following polarity values determine how inputs are interpreted
and how outputs are applied. They can usually be set via trial-and-error since there are only two possibilities. The LinuxCNC
Servo Axis Calibration utility program (in the AXIS interface menu Machine/Calibration and in TkLinuxCNC it is under Set-
ting/Calibration) can be used to set these and more interactively and verify their results so that the proper values can be put in
the INI file with a minimum of trouble.

3.2.10.1 Homing

These parameters are Homing related, for a better explanation read the Homing Configuration Chapter.

HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

HOME_OFFSET = 0.0 - The axis position of the home switch or index pulse, in machine units. When the home point is found
during the homing process, this is the position that is assigned to that point. When sharing home and limit switches and using
a home sequence that will leave the home/limit switch in the toggled state the home offset can be used define the home switch
position to be other than 0 if your HOME position is desired to be 0.

HOME_SEARCH_VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direction of travel. A value
of zero means assume that the current location is the home position for the machine. If your machine has no home switches
you will want to leave this value at zero.

Manual Integrador V2.6.13,

2016-11-05 21/ 264

HOME_ILATCH_VEL = 0.0 - Homing velocity in machine units per second to the home switch latch position. Sign denotes
direction of travel.

HOME_FINAL_VEL = 0.0 - Velocity in machine units per second from home latch position to home position. If left at 0 or
not included in the axis rapid velocity is used. Must be a positive number.

HOME_USE_INDEX = NO - If the encoder used for this axis has an index pulse, and the motion card has provision for this
signal you may set it to yes. When it is yes, it will affect the kind of home pattern used. Currently, you can’t home to index
with steppers unless you’re using stepgen in velocity mode and PID.

HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch this should be set to
YES. When set to YES the limit switch for this axis is ignored when homing. You must configure your homing so that at the
end of your home move the home/limit switch is not in the toggled state you will get a limit switch error after the home move.

HOME_IS_SHARED = <n> - If the home input is shared by more than one axis set <n> to 1 to prevent homing from starting
if the one of the shared switches is already closed. Set <n> to 0 to permit homing if a switch is closed.

HOME_SEQUENCE = <n> - Used to define the "Home All" sequence. <n> starts at 0 and no numbers may be skipped. If left
out or set to -1 the joint will not be homed by the "Home All" function. More than one axis can be homed at the same time.

VOLATILE_HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is off or if E-Stop is on.
This is useful if your machine has home switches and does not have position feedback such as a step and direction driven
machine.

3.2.10.2 Servo

These parameters are relevant to axes controlled by servos.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a PID component and the assumption is that the output is volts.

* DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine units. This is often set to
a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict rules. Looser (larger) settings allow less servo
hunting at the expense of lower accuracy. Tighter (smaller) settings attempt higher accuracy at the expense of more servo
hunting. Is it really more accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Be careful about going below 1 encoder count, since you may create a condition where there is no place that your servo is happy.
This can go beyond hunting (slow) to nervous (rapid), and even to squealing which is easy to confuse with oscillation caused by
improper tuning. Better to be a count or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines ~ 4 pulse/line 1revolution 4000 pulses 1 pulse

* BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is added to the output. In most cases
it should be left at zero. However, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like all other components of the
output.

Manual Integrador V2.6.13,

2016-11-05 29/ 264

P = 50 - The proportional gain for the axis servo. This value multiplies the error between commanded and actual position in
machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the P gain are volts per
volts

machine unit, e.g., UMt

e [= 0 - The integral gain for the axis servo. The value multiplies the cumulative error between commanded and actual position
in machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the I gain are volts
volts

per machine unit second, e.g., Unit second

* D = 0 - The derivative gain for the axis servo. The value multiplies the difference between the current and previous errors,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the D gain are volts per machine unit
volts

per second, e.g., UNit second

* FFO = 0 - The Oth order feed forward gain. This number is multiplied by the commanded position, resulting in a contribution
volts

to the computed voltage for the motor amplifier. The units on the FF0 gain are volts per machine unit, e.g., Uil

e FFI = 0 - The Ist order feed forward gain. This number is multiplied by the change in commanded position per second,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF1 gain are volts per machine
volts

unit per second, e.g., Unit second

e FF2 = 0 - The 2nd order feed forward gain. This number is multiplied by the change in commanded position per second per
second, resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF2 gain are volts per
volts

. . — 7
machine unit per second per second, e.g., unit second

* OUTPUT_SCALE = 1.000 -

e OUTPUT_OFFSET = 0.000 - These two values are the scale and offset factors for the axis output to the motor amplifiers.
The second value (offset) is subtracted from the computed output (in volts), and divided by the first value (scale factor),
before being written to the D/A converters. The units on the scale value are in true volts per DAC output volts. The units on
the offset value are in volts. These can be used to linearize a DAC. Specifically, when writing outputs, the LinuxCNC first
converts the desired output in quasi-SI units to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

_ output—offset

raw
scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.

amplifier volts }=(output [=== |- offset| ==|)/250 ———

Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from the sensor readings. The
value for this offset is obtained by finding the value of your output which yields 0.0 for the actuator output. If the DAC is
linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the combined effects of amplifier
gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

Manual Integrador V2.6.13,

2016-11-05 23/ 264

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring the result.

2. Do a least-squares linear fit to get coefficients a, b such that == =8 = M EREE T

3. Note that we want raw output such that our measured result is identical to the commanded output. This means

a. command =a*raw+b
b, Faw=(command—b)/a

4. As aresult, the a and b coefficients from the linear fit can be used as the scale and offset for the controller directly.

See the following table for an example of voltage measurements.

Table 3.1: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

* MAX_OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the motor amplifier, in
volts. The computed output value is clamped to this limit. The limit is applied before scaling to raw output units. The value is
applied symmetrically to both the plus and the minus side.

* INPUT_SCALE = 20000 - in Sample configs

* ENCODER _SCALE = 20000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one
machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of LINEAR_UNITS.
For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale=2000 <2425 4 10 L&Y~ 20000 S241E
rev inch inch

3.2.10.3 Stepper

These parameters are relevant to axes controlled by steppers.

Warning

The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a stepgen component.

e SCALE = 4000 - in Sample configs

Manual Integrador V2.6.13,

2016-11-05 o4/ 264

e STEP_SCALE = 4000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one machine
unit as set in the [TRAIJ] section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
axis one machine unit will be equal to the setting of LINEAR_UNITS. For an angular axis one unit is equal to the setting in
ANGULAR_UNITS. For servo systems, this is the number of feedback pulses per machine unit. A second number, if specified,
is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired machine units of inch, we
have:

2steps 50 degree +10-7__ 4000 s1reps
1.8 degrees rev inch inch

inputscale=

e ENCODER_SCALE = 20000 (Optionally used in PNCconf built configs) - Specifies the number of pulses that corresponds to

a move of one machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of

LINEAR_UNITS. For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified,
is ignored. For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale =2000 S 4 10 v = 20000 S0
rev inch inch

* STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10% larger than the axis
MAX_ACCELERATION. This value improves the tuning of stepgen’s "position loop". If you have added backlash compen-
sation to an axis then this should be 1.5 to 2 times greater than MAX_ACCELERATION.

o STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as well. If specified, it should
also be 1% to 10% larger than the axis MAX_VELOCITY. Subsequent testing has shown that use of STEPGEN_MAXVEL
does not improve the tuning of stepgen’s position loop.

3.2.11 [EMCIO] Section

* EMCIO = io - Name of IO controller program

* CYCLE_TIME = 0.100 - The period, in seconds, at which EMCIO will run. Making it 0.0 or a negative number will tell
EMCIO not to sleep at all. There is usually no need to change this number.

e TOOL_TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

* TOOL_CHANGE_POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool change if three digits
are used. Specifies the XYZABC location when 6 digits are used. Specifies the XYZABCUVW location when 9 digits are
used. Tool Changes can be combined. For example if you combine the quill up with change position you can move the Z first
then the X and Y.

* TOOL_CHANGE_WITH_SPINDLE_ON = I - The spindle will be left on during the tool change when the value is 1. Useful
for lathes or machines where the material is in the spindle, not the tool.

* TOOL_CHANGE_QUILL UP = 1 - The Z axis will be moved to machine zero prior to the tool change when the value is 1.
This is the same as issuing a GO G53 Z0.

* TOOL_CHANGE_AT_G30 = I - The machine is moved to reference point defined by parameters 5181-5186 for G30 if the
value is 1. For more information on G30 and Parameters see the G Code Manual.

* RANDOM_TOOLCHANGER = I - This is for machines that cannot place the tool back into the pocket it came from. For
example, machines that exchange the tool in the active pocket with the tool in the spindle.

Manual Integrador V2.6.13,

2016-11-05 o5 / 264

Chapter 4

Homing Configuration

4.1 Overview

Homing seems simple enough - just move each joint to a known location, and set LinuxCNC'’s internal variables accordingly.
However, different machines have different requirements, and homing is actually quite complicated.

4.2 Homing Sequence

There are four possible homing sequences defined by the sign of SEARCH_VEL and LATCH_VEL, along with the associated
configuration parameters as shown in the following table. Two basic conditions exist, SEARCH_VEL and LATCH_VEL are
the same sign or they are opposite signs. For a more detailed description of what each configuration parameter does, see the
following section.

Manual Integrador V2.6.13,
2016-11-05

26/ 264

SEARCHVEL = POSITIVE
LATCHYEL = NEGATIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.00G

— HOME SWITCH RELEASES
Fa HOME SWITCH TRIFS

— OWEREHDOT
#

.y £ SEARCH FOR HOME SWITCH (SEARCHVEL)

-t - FINAL DETECTION OF SWITCH (LATCHVEL]

fe:

1.000

G0 TO HOME POSITION [MAXVEL)

3000

SEARCHVEL = POZITIVE
LATCHWEL = POSITIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1000 — HOME SWITCH RELEASES

Fa HOME SWITCH TRIFS

@ E== SEARCH FOR HOME SWITCH [SEARCHVEL}

BACK OFF OF HOME SWITCH [SEARCHWVEL)

= FINAL DETECTION OF SWITCH (LATCHVELD

bes
TH

1.000

G0 TO HOME POSITION [MAXWVEL)

3.000

SEARCHVEL = POZITIVE
LATCHVEL = MEGATIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HOME = 1000 —— HOME SWITCH RELEASES
. T <
/F/—HEM[SWITCH TRIPS

E"—-—_ SEARCH FOR ROME SWITLH [SEARCHVEL)

FINAL DETECTION OF SWITCH AND
NOEX PULSE [LATCHYEL)

GO TO HOME POSITION [MAXVEL)
I |

.
3000 NNDEX PULSES

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HUME = T.000 — HUME SWITLH RELEASES
—— HOME SWITCH TRIPS
/

4 ET--— SEARCH FOR HOME SWITCH [SEARCHYEL)

= © BACK OFF DF HOME SWITCH ISEARCHVEL)

P FINAL DETECTION OF SWITCH AND
NDEX PULSE [LATCHVEL)

1.00¢

G0 TO HOME POSITION [MAXVEL)

3000 TNypex PULSES

Figure 4.1: Homing Sequences

Manual Integrador V2.6.13,

2016-11-05 57 / 264

4.3 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [AXIS] section of the inifile.

Homing Type SEARCH_VEL LATCH_VEL USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES

Switch-only nonzero nonzero NO
Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

4.3.1 HOME_SEARCH_VEL

This variable has units of machine-units per second.

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch; the search stage of homing
is skipped.

If HOME_SEARCH_VEL is non-zero, then LinuxCNC assumes that there is a home switch. It begins by checking whether the
home switch is already tripped. If tripped it backs off the switch at HOME_SEARCH_VEL. The direction of the back-off is
opposite the sign of HOME_SEARCH_VEL. Then it searches for the home switch by moving in the direction specified by the
sign of HOME_SEARCH_VEL, at a speed determined by its absolute value. When the home switch is detected, the joint will
stop as fast as possible, but there will always be some overshoot. The amount of overshoot depends on the speed. If it is too high,
the joint might overshoot enough to hit a limit switch or crash into the end of travel. On the other hand, if HOME_SEARCH_VEL
is too low, homing can take a long time.

4.3.2 HOME_LATCH_VEL

This variable has units of machine-units per second.

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination of the home switch (if
present) and index pulse location (if present). It will usually be slower than the search velocity to maximize accuracy. If
HOME_SEARCH_VEL and HOME_LATCH_VEL have the same sign, then the latch phase is done while moving in the same
direction as the search phase. (In that case, LinuxCNC first backs off the switch, before moving towards it again at the latch
velocity.) If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while moving in
the opposite direction from the search phase. That means LinuxCNC will latch the first pulse after it moves off the switch. If
HOME_SEARCH_VEL is zero (meaning there is no home switch), and this parameter is nonzero, LinuxCNC goes ahead to the
index pulse search. If HOME_SEARCH_VEL is non-zero and this parameter is zero, it is an error and the homing operation will
fail. The default value is zero.

4.3.3 HOME_FINAL_VEL

This variable has units of machine-units per second.

It specifies the speed that LinuxCNC uses when it makes its move from HOME_OFFSET to the HOME position. If the
HOME_FINAL_VEL is missing from the ini file, then the maximum joint speed is used to make this move. The value must
be a positive number.

4.3.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether LinuxCNC will ignore
the limit switch input for this axis while homing. Setting this to YES will not ignore limit inputs for other axes. If you do not have

Manual Integrador V2.6.13,

2016-11-05 28 / 264

a separate home switch set this to YES and case connect the limit switch signal to the home switch input in HAL. LinuxCNC
will ignore the limit switch input for this axis while homing. To use only one input for all homing and limits you will have to
block the limit signals of the axes not homing in HAL and home one axis at a time.

4.3.5 HOME_USE_INDEX

Specifies whether or not th