HAL and Device Drivers V2.5,
2014-04-17

HAL and Device Drivers V2.5, 2014-04-17

HAL and Device Drivers V2.5,

2014-04-17 i

Contents

I HAL 1

1 HAL Introduction 2

1.1 HAL is based on traditional system design techniques e 2

1.1.1 PartSelection e e 2

1.1.2 Interconnection Design L e e e e e e 2

1.1.3 Implementation L e e 3

114 Testing o o v o e e e e e 3

115 Summaryo . e e e 3

1.2 HAL Concepts v v vt ittt e e e e e e e e e e 4

1.3 HAL COMPONENtS o v vt v e et i e e e e e e e e e e e 5

1.3.1 External Programs with HAL hooks 5

1.3.2 Internal COMpPONENts o o v v it e e e e e e e e e e e e e e 5

1.3.3 Hardware Drivers L e 6

1.3.4 Toolsand Utilities L o e e e e e e e 6

1.4 Timing Issues In HAL 6

2 Advanced HAL Tutorial 8

2.1 Introduction e e e 8

2. 1.1 NOtation L o o e e e e e e e e e e e 8

2.1.2 Tab-completion e e e e e e 8

2.1.3 The RTAPI environment 0ttt e e e e 8

22 ASimple Example e 9

2.2.1 Loading acomponentttt e e e e e e 9

2.2.2 Examiningthe HAL e e e e 9

2.2.3 Makingrealtime code run e e e e e e e e e 10

224 Changing Parameters o o i e e e e e e e e e 12

2.2.5 Saving the HAL configuration e 12

2.2.6 Exitinghalrun e e 13

2.2.7 Restoring the HAL configuration. e 13

HAL and Device Drivers V2.5,

2014-04-17 iii

2.2.8 Removing HAL frommemory 13

2.3 Halmeter o L e e e e e e e 13
24 Stepgen Example L e e e e e e 15
2.4.1 Installing the components e e e 15

24.2 Connecting pins with signals oL 16

2.4.3 Setting up realtime execution - threads and functions oL L. 17

244 Setting parameters e e e e e e e e e e e e e e e e e e e 18

245 Runit! ..o 19

2.5 Halscope o e e e e 19
2.5.1 Hookingupthe scope probes e 21

2.5.2 Capturing our first waveforms 24

2.5.3 Vertical Adjustments L e e e e e e e e e e e 25

254 Triggering e e 26

2.5.5 Horizontal Adjustments e e e 28

2.5.6 MoreChannels e e 29

257 Moresamples e e e e e e e e e e e e 30

3 General Reference 31
3.1 General Naming CONVENtONS v v v vt v it e e e et e e e e e e e e e 31
3.2 Hardware Driver Naming Conventions o vt v v i vttt e e e e e e 31
3.2.1 Pin/Parameter Nameso i e e e e e e e e e e e e e e e e e 31

322 Function Names i e e e e 32
Canonical Device Interfaces 34
4.1 Introduction oL e e e 34
4.2 Digital Input e e 34
421 PINS . . . 34

422 Parameters e e e e e e 34

423 FunctionSt i e e e e e e e 34

43 Digital Output L e e e e e e e e 34
431 PINS . . .o e 35

432 Parameterso e e e e e e e e e e e e e 35

433 Functions e e e 35

44 AnalogInput 35
441 PINS . . .o e 35

442 Parameters e e e e e e e e 35

443 Functions i e e 35

45 Analog Output oL e e e e e e e e 35
451 PINs . ..o e 35

452 Parameters e e e e e e 36

453 Functions e e 36

HAL and Device Drivers V2.5,

2014-04-17 v
5 HAL Tools 37
5.1 Halemd 37
5.2 Halmeter 37
5.3 Halscope e e e 38
6 Basic HAL Tutorial 39
6.1 HAL Commands e 39
6.1.1 loadrt 40
6.1.2 addf 40
6.1.3 loadusr 41
6.1.4 et . ..o 41
6.1.5 SEID . . o e e e e 42
6.1.6 SELS 43
6.1.7 unlinkp e 43
6.1.8 Obsolete Commands L 43
6.1.8.1 linkSp 43
6.1.82 linkps 44
6.1.8.3 MEeWSIZ e 44
6.2 HALData 44
6.2.1 Bit . ..o 44
6.2.2 Float e 44
6.2.3 832 44
6.2.4 U32 L 44
6.3 HALFiles 45
6.4 HAL COompONnents o v v ittt ettt e e e e e e e e 45
6.5 Logic COMPONENLS o v v v v e i e 45
6.5.1 and2 45
6.52 MNOL . . . L 46
6.53 02 . L 46
6.5.4 XOI2 46
6.5.5 LogicExamples e 47
6.6 Conversion COMPONENLS v v v v vttt i et e e e e e e e e e e e e e e e e 47
6.6.1 weighted_sum L e e e e e 47
7 Halshow 49
7.1 Starting Halshow o L e e e e e 49
7.2 HALTree Area 49
7.3 HAL Show Area L e 51
74 HAL Watch Area 54

HAL and Device Drivers V2.5,

2014-04-17 v
8 HAL Components 56
8.1 Commands and Userspace COMPONENLS o vt v vt vttt e e e e e e 56

8.2 Realtime Components List L e e e 57
8.2.1 Core LInuxCNC componentso v vt i i it e ettt e e e e 57

8.2.2 Logic and bitwise COMPONENLS« v v v v v e i e e b e e e e e e e e e e e e e e 57

8.2.3 Arithmetic and float-components e e e e e e e 58

8.2.4 TYPe CONVEISION v v v vt e it e e e e e e e e e e e e e e e e e 59

8.2.5 Hardware drivers L L e e 60

8.2.6 KinematiCs e 60

8.2.7 Motorcontrol e 61

8.2.8 BLDC and 3-phase motor control L. e e 61

8.2.9 Other e 62

83 HAL APIcalls o 63

84 RTAPIcalls e 64

9 HAL Component Descriptions 66
0.1 Stepgen e 66
0.2 PWMEEN o e e 73
0.3 Encoder e 74
0.4 PID e 77
9.5 Simulated Encoder e 79
0.6 Debounce e 80
0.7 SIZEEN e 80
0.8 TutS . . L 81

10 Parallel Port Driver 83
101 Parport. o o e e e e 83
10.1.1 Installing0 e 83

10.1.2 Pins . . . o o o 84

10.1.3 Parameters oL e e e e e e e 85

10.1.4 Functions o o it e e e e e e e 85

10.1.5 Common problems o L e e e e e e e e e e e 85

10.1.6 Using DoubleStep e e e e e e 86

10.2 probe_parport e e e e e 86
10.2.1 Installing o 0o e e e 86

11 HAL Examples 87
11.1 Manual Toolchange e e e e e e e 87
11.2 Compute VElOCIty o o o o e e e e e e 87
11.3 SoftStart e 89
11.4 Stand Alone HAL L e e 90

HAL and Device Drivers V2.5,

2014-04-17 vi

12 HAL User Interface 92
12,1 Introduction o . e e e e e e e 92
12.2 Halui pinreference e 92
13 Halui Examples 98
13.1 Remote Start o o o e e e e e e e e e 98
13.2 Pause & Resume L e 99
14 Comp HAL Component Generator 100
14.1 Introduction e e e 100
14.2 Installing o o e e e e e e e e e 100
14.3 Definitions e e e e e e e 100
14.4 Instance Creation o v vttt e e e e e e e e e e 101
14.5 Implicit Parameters L e e e e 101
[4.6 Syntax oo e e e 101
14.6.1 HAL functions e e e e e 103

14.6.2 OPLionS o ittt e e e 103

14.6.3 License and Authorship e e e e 103

14.6.4 Per-instance data StOTage ot e e e e e e e e e e e e e e e 104

14.6.5 Comments it e e e e e e e e e e e e e 104

14.7 ReStriCtions L L o e 104
14.8 Convenience MacCroS v v v v vt ittt e e e e e e e e e 105
14.9 Components with one function e 105
14.10Component Personality L e 105
14.11Compiling e 105
14.12Compiling realtime components outside the source tree o 106
14.13Compiling userspace components outside the source tree oL 106
T4.14Examples o L e e 106
T4.14. 1 constant o L e e e e e e e e e 106
TAT4A2SINCOS « . o v v o e e e e e e 107
T4.1430ut8 . . . L L e 107
14.14.4hal_loop o 108

14 14.5arraydemo oo e e e e e e e e e e 108

L 4 - T 108
T4.14.T10gIC . . o o o 109

HAL and Device Drivers V2.5,

2014-04-17 vii

15 Creating Userspace Python Components 110
I5.1 BasiCUSAZE . . . v v o v v i e e e e e e e e e e 110
15.2 Userspace components and delays 111
15.3 Create pins and parameters v v v v i e 111
153.1 Changingtheprefix e 111

15.4 Reading and writing pins and parameters L L e e e e e e e e 111
15.4.1 Driving output (HAL_OUT) pins« . . o e e e e e e e e e 112

15.4.2 Driving bidirectional (HAL_IO) pins i 112

I5.5 EXItINg o o e e e e 112
15.6 Projectideas L e 112

I Hardware Drivers 113
16 AXS5214H Driver 114
16.1 Installing o o e e 114
16.2 PINS . . . o o e e 114
16.3 Parameters e e e e e 114
16.4 FUunCtions o i i i s e e e e e e e e e 115

17 GS2 VFD Driver 116
17.1 Command Line Options o 0 v it e e e e e 116
172 PINS . . o o e e 116
17.3 Parameters o o i e e e e e e e e e e e e e e e e 117

18 Mesa HostMot2 Driver 118
18.1 Introduction e e e e e 118
18.2 Firmware Binaries L e e 118
18.3 Installing Firmware L L L 119
18.4 Loading HOStMOt2 o e e e e e e e e e e 119
18.5 Watchdog e e 119
18.5.1 Pins: . . o o o e 119

18.5.2 Parameters: e e e e e e e e e 119

1853 Functions: o o i i e e 119

18.6 HostMot2 Functions i e e e e 120
18.7 PINOULS o o o e e e e e 120
18.8 PINFiles o o 121
18.9 Firmware e e e e e e 121

I8 I0HAL PINs o o e 121
I8.11Configurations L e e e e e e e e e e e e e 122
18.12GPIO 124

HAL and Device Drivers V2.5,

2014-04-17 vii
I8.12.1PINS . . o o o 124
I8.12.2Parameters e e e e e 124

I8.I3StepGen o . e e e 125
I8.13.1PINS . . . o o e e 125
18.13.2Parameters e e e e e 125
18.13.3 Output Parameters e e e e e e e 126

I8 TAPWMGEN o o e e e 126
I8.14.1PINS . . . o o e 126
I8.14.2Parameters e e e e e 126
18.14.3 Output Parameters o e e e e e e 127

18.I5Encoder oL e e e 127
I8.15.1PINS o o 127
I8.15.2Parameters e e e 128

18.165125 Configuration e e e e 128
I8.16. 1 Firmware o o e e e e e 128
18.16.2 Configuration ot e e e e e e e e e e e e e e e 128
18.16.3 SSERIAL Configuration o o it it e e e e e e e e e e 129
18164 TITTLIMItS o o o e e e e e e e e e 129

18.17Example Configurations o e e e e e e e 129

19 Motenc Driver 130

19.1 PIns . . o 130

19.2 Parameters L 131

19.3 Functions i e e e e e e e 131

20 Opto22 Driver 132

20.1 The Adapter Card e 132

20.2 The Driver L e 132

203 PINS . . . L e 132

204 Parameters L.l 133

20.5 FUNCTIONS . . . o e e e e e e e e 133

20.6 Configuring /O Ports e e 133

20.7 PINNUmbering o e e e e e e e e e e 134

21 Pico Drivers 135

21.1 Command Line Options o o 0 it e e e e e e e e e e e 135

21.2 PINS . . e e e e 136

213 Parameters i e e e e e e e 137

21.4 FunctionS e 138

HAL and Device Drivers V2.5,
2014-04-17

22 Pluto P Driver
22.1 GeneralIlnfo
22.1.1 Requirements
22.1.2 Connectors
22.1.3 Physical Pins
2214 LED.
22.1.5 Power
22.1.6 PCinterface.

22.1.7 Rebuilding the FPGA firmware e e e e

22.1.8 For more information . . .
222 PlutoServo
222.1 Pinout.

22.2.2 Inputlatching and output updating e e e

22.2.3 HAL Functions, Pins and Parameters

22.2.4 Compatible driver hardware
223 PlutoStep
22.3.1 Pinout

22.3.2 Input latching and output updating L.

22.3.3 Step Waveform Timings .

22.3.4 HAL Functions, Pins and Parameters e

23 Servo To Go Driver
23.1 Installing
232 Pins
23.3 Parameters.

23.3.1 Functions

24 Legal Section
24.1 Copyright Terms

24.2 GNU Free Documentation License

25 Index

139
139
139
139
139
140
140
140
140
140
140
141
142
142
143
143
143
144
144
145

146
146
146
147
147

148
148
148

152

HAL and Device Drivers V2.5,
2014-04-17

The LinuxCNC Team

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2012 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

HAL and Device Drivers V2.5,

2014-04-17 1/154

Part I

HAL

HAL and Device Drivers V2.5,

2014-04-17 /154

Chapter 1

HAL Introduction

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of building blocks to be
loaded and interconnected to assemble a complex system. The Hardware part is because HAL was originally designed to make
it easier to configure LinuxCNC for a wide variety of hardware devices. Many of the building blocks are drivers for hardware
devices. However, HAL can do more than just configure hardware drivers.

1.1 HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is useful to examine those
principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC machine, those components might
be the main controller, servo amps or stepper drives, motors, encoders, limit switches, pushbutton pendants, perhaps a VFD for
the spindle drive, a PLC to run a toolchanger, etc. The machine builder must select, mount and wire these pieces together to
make a complete system.

1.1.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as black boxes. During the
design stage, he decides which parts he is going to use - steppers or servos, which brand of servo amp, what kind of limit switches
and how many, etc. The integrator’s decisions about which specific components to use is based on what that component does and
the specifications supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect the choice
of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback needed by the amp and the velocity or
position signals that must be sent to the amp from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every interface card will require a
driver. Additional components may be needed for software generation of step pulses, PLC functionality, and a wide variety of
other tasks.

1.1.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be interconnected. Each black
box has terminals, perhaps only two for a simple switch, or dozens for a servo drive or PLC. They need to be wired together. The
motors connect to the servo amps, the limit switches connect to the controller, and so on. As the machine builder works on the
design, he creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which signals are needed, and what they
should connect.

HAL and Device Drivers V2.5,

2014-04-17 3/154

1.1.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired and mounted, and then they
are interconnected according to the wiring diagram. In a physical system, each interconnection is a piece of wire that needs to be
cut and connected to the appropriate terminals.

HAL provides a number of tools to help build a HAL system. Some of the tools allow you to connect (or disconnect) a single
wire. Other tools allow you to save a complete list of all the parts, wires, and other information about the system, so that it can
be rebuilt with a single command.

1.1.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether a limit switch is working
or to measure the DC voltage going to a servo motor. He may hook up an oscilloscope to check the tuning of a drive, or to look
for electrical noise. He may find a problem that requires the wiring diagram to be changed; perhaps a part needs to be connected
differently or replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools needed for testing and
tuning a system. The same commands used to build the system can be used to make changes as needed.

1.1.5 Summary

This document is aimed at people who already know how to do this kind of hardware system integration, but who do not know
how to connect the hardware to LinuxCNC. See the Remote Start Example section in the HAL UI Examples documentation.

Femote
Fun Btn

| haluimade, auto

and2.0.inf

halui.mode.is-auta andZ.0.in

andZ.0.out hialulprogram.run

The traditional hardware design as described above ends at the edge of the main control. Outside the control are a bunch of
relatively simple boxes, connected together to do whatever is needed. Inside, the control is a big mystery — one huge black box
that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes device drivers and even
some internal parts of the controller into smaller black boxes that can be interconnected and even replaced just like the external
hardware. It allows the system wiring diagram to show part of the internal controller, rather than just a big black box. And most
importantly, it allows the integrator to test and modify the controller using the same methods he would use on the rest of the
hardware.

HAL and Device Drivers V2.5,

2014-04-17 4/154

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about using extra flexible eight
conductor shielded cable to connect an encoder to the servo input board in the computer, the reader immediately understands
what it is and is led to the question, what kinds of connectors will I need to make up each end. The same sort of thinking is
essential for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange
at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If you are comfortable with
the idea of interconnecting hardware black boxes, you will probably have little trouble using HAL to interconnect software black
boxes.

1.2 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary because these terms are
not arranged in alphabetical order. They are arranged by their relationship or flow in the HAL way of things.

Component
When we talked about hardware design, we referred to the individual pieces as parts, building blocks, black boxes, etc.
The HAL equivalent is a component or HAL component. (This document uses HAL component when there is likely to be
confusion with other kinds of components, but normally just uses component.) A HAL component is a piece of software
with well-defined inputs, outputs, and behavior, that can be installed and interconnected as needed.

Parameter
Many hardware components have adjustments that are not connected to any other components but still need to be accessed.
For example, servo amps often have trim pots to allow for tuning adjustments, and test points where a meter or scope can
be attached to view the tuning results. HAL components also can have such items, which are referred to as parameters.
There are two types of parameters: Input parameters are equivalent to trim pots - they are values that can be adjusted by
the user, and remain fixed once they are set. Output parameters cannot be adjusted by the user - they are equivalent to test
points that allow internal signals to be monitored.

Pin
Hardware components have terminals which are used to interconnect them. The HAL equivalent is a pin or HAL pin. (HAL
pin is used when needed to avoid confusion.) All HAL pins are named, and the pin names are used when interconnecting
them. HAL pins are software entities that exist only inside the computer.

Physical_Pin
Many I/O devices have real physical pins or terminals that connect to external hardware, for example the pins of a parallel
port connector. To avoid confusion, these are referred to as physical pins. These are the things that stick out into the real
world.

Signal
In a physical machine, the terminals of real hardware components are interconnected by wires. The HAL equivalent of a
wire is a signal or HAL signal. HAL signals connect HAL pins together as required by the machine builder. HAL signals
can be disconnected and reconnected at will (even while the machine is running).

Type
When using real hardware, you would not connect a 24 volt relay output to the +/-10V analog input of a servo amp. HAL
pins have the same restrictions, which are based upon their type. Both pins and signals have types, and signals can only be
connected to pins of the same type. Currently there are 4 types, as follows:

* bit - a single TRUE/FALSE or ON/OFF value
* float - a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.

* u32 - a 32 bit unsigned integer, legal values are 0 to 4,294,967,295
* 532 - a 32 bit signed integer, legal values are -2,147,483,647 to +2,147,483,647
Function

Real hardware components tend to act immediately on their inputs. For example, if the input voltage to a servo amp
changes, the output also changes automatically. However software components cannot act automatically. Each component

HAL and Device Drivers V2.5,

2014-04-17 5/ 154

has specific code that must be executed to do whatever that component is supposed to do. In some cases, that code simply
runs as part of the component. However in most cases, especially in realtime components, the code must run in a specific
sequence and at specific intervals. For example, inputs should be read before calculations are performed on the input data,
and outputs should not be written until the calculations are done. In these cases, the code is made available to the system in
the form of one or more functions. Each function is a block of code that performs a specific action. The system integrator
can use threads to schedule a series of functions to be executed in a particular order and at specific time intervals.

Thread
A thread is a list of functions that runs at specific intervals as part of a realtime task. When a thread is first created, it has a
specific time interval (period), but no functions. Functions can be added to the thread, and will be executed in order every
time the thread runs.

As an example, suppose we have a parport component named hal_parport. That component defines one or more HAL pins for
each physical pin. The pins are described in that component’s doc section: their names, how each pin relates to the physical pin,
are they inverted, can you change polarity, etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It
takes code to do that, and that is where functions come into the picture. The parport component needs at least two functions: one
to read the physical input pins and update the HAL pins, the other to take data from the HAL pins and write it to the physical
output pins. Both of these functions are part of the parport driver.

1.3 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that can be installed and intercon-
nected as needed. This section lists some of the available components and a brief description of what each does. Complete details
for each component are available later in this document.

1.3.1 External Programs with HAL hooks

motion
A realtime module that accepts NML ! motion commands and interacts with HAL

iocontrol
A user space module that accepts NML I/O commands and interacts with HAL

classicladder
A PLC using HAL for all I/O

halui

A user space program that interacts with HAL and sends NML commands, it is intended to work as a full User Interface
using external knobs & switches

1.3.2 Internal Components

stepgen
Software step pulse generator with position loop. See section Section 9.1

encoder
Software based encoder counter. See section Section 9.3
pid
Proportional/Integral/Derivative control loops. See section Section 9.4

siggen
A sine/cosine/triangle/square wave generator for testing. See section [sec:Siggen]

"Neutral Message Language provides a mechanism for handling multiple types of messages in the same buffer as well as simplifying the interface for
encoding and decoding buffers in neutral format and the configuration mechanism.

HAL and Device Drivers V2.5,
2014-04-17

6/154

supply
a simple source for testing

blocks
assorted useful components (mux, demux, or, and, integ, ddt, limit, wcomp, etc.)

1.3.3 Hardware Drivers

hal_ax5214h
A driver for the Axiom Measurement & Control AX5241H digital I/O board

hal_m5i20
Mesa Electronics 5i20 board

hal_motenc
Vital Systems MOTENC-100 board

hal_parport
PC parallel port.

hal_ppmc
Pico Systems family of controllers (PPMC, USC and UPC)

hal_stg
Servo To Go card (version 1 & 2)

hal_vti
Vigilant Technologies PCI ENCDAC-4 controller

1.3.4 Tools and Utilities

halemd
Command line tool for configuration and tuning. See section [sec:Halcmd]

halgui
GUI tool for configuration and tuning (not implemented yet).

halmeter
A handy multimeter for HAL signals. See section [sec:Halmeter].

halscope

A full featured digital storage oscilloscope for HAL signals. See section [sec:Halscope].

Each of these building blocks is described in detail in later chapters.

1.4 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon, simply connecting two pins

with a hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current flows (or stops) immediately.
Other coils may change state, etc, and it all just happens. But in PLC style ladder logic, it doesn’t work that way. Usually in a
single pass through the ladder, each rung is evaluated in the order in which it appears, and only once per pass. A perfect example

is a single rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and de-energize it. That means the

contacts close again, etc, etc. The relay becomes a buzzer.

HAL and Device Drivers V2.5,

2014-04-17 7 /154

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung, then when it finishes that pass,
the coil is ON. The fact that turning on the coil opens the contact feeding it is ignored until the next pass. On the next pass, the
PLC sees that the contact is open, and de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate
determined by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version of ClassicLadder exports a
function to do exactly that. Meanwhile, a thread is the thing that runs the function at specific time intervals. Just like you can
choose to have a PLC evaluate all its rungs every 10 ms, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is not what the thread does - that is determined by which functions are connected to
it. The real distinction is simply how often a thread runs.

In LinuxCNC you might have a 50 us thread and a 1 ms thread. These would be created based on BASE_PERIOD and
SERVO_PERIOD, the actual times depend on the values in your ini file.

The next step is to decide what each thread needs to do. Some of those decisions are the same in (nearly) any LinuxCNC
system—~For instance, motion-command-handler is always added to servo-thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s encoder read and DAC write
functions to the servo thread, or hooking stepgen’s function to the base-thread, along with the parport function(s) to write the
steps to the port.

HAL and Device Drivers V2.5,

2014-04-17 8/ 154

Chapter 2

Advanced HAL Tutorial

2.1 Introduction

Configuration moves from theory to device— HAL device that is. For those who have had just a bit of computer programming,
this section is the Hello World of the HAL. Halrun can be used to create a working system. It is a command line or text file tool
for configuration and tuning. The following examples illustrate its setup and operation.

2.1.1 Notation

Terminal commands are shown without the system prompt unless you are running HAL. The terminal window is in Application-
s/Accessories from the main Ubuntu menu bar.

Terminal Command Example

me@computer:~linuxcnc$ halrun
(will be shown like the following line)
halrun

(the halcmd: prompt will be shown when running HAL)
halcmd: loadrt debounce
halcmd: show pin

2.1.2 Tab-completion

Your version of halemd may include tab-completion. Instead of completing file names as a shell does, it completes commands
with HAL identifiers. You will have to type enough letters for a unique match. Try pressing tab after starting a HAL command:

Tab Completion

halcmd: loa<TAB>
halcmd: load

halcmd: loadrt

halcmd: loadrt deb<TAB>
halcmd: loadrt debounce

2.1.3 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in realtime, and all HAL compo-
nents store data in shared memory so realtime components can access it. Normal Linux does not support realtime programming

HAL and Device Drivers V2.5,

2014-04-17 9/154

or the type of shared memory that HAL needs. Fortunately there are realtime operating systems (RTOS’s) that provide the
necessary extensions to Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the LinuxCNC team came up with RTAPI, which provides a consistent way for programs to talk
to the RTOS. If you are a programmer who wants to work on the internals of LinuxCNC, you may want to study linuxcnc/src/r-
tapi/rtapi.h to understand the API. But if you are a normal person all you need to know about RTAPI is that it (and the RTOS)
needs to be loaded into the memory of your computer before you do anything with HAL.

2.2 A Simple Example

2.2.1 Loading a component

For this tutorial, we are going to assume that you have successfully installed the Live CD and, if using a RIP !, invoked the
rip-environment script to prepare your shell. In that case, all you need to do is load the required RTOS and RTAPI modules into
memory. Just run the following command from a terminal window:

Loading HAL

cd linuxcnc
halrun
halcmd:

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt is now shown as halcmd:.
This is because subsequent commands will be interpreted as HAL commands, not shell commands.

For the first example, we will use a HAL component called siggen, which is a simple signal generator. A complete description
of the siggen component can be found in the Siggen section of this Manual. It is a realtime component, implemented as a Linux
kernel module. To load siggen use the HAL command loadrt.

Loading siggen

halcmd: loadrt siggen

2.2.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd , the command line tool used to configure the HAL. This tutorial
will introduce some halcmd features, for a more complete description try man halcmd, or see the reference in Hal Commands
section of this document. The first halcmd feature is the show command. This command displays information about the current
state of the HAL. To show all installed components:

Show Components

halcmd: show comp

Loaded HAL Components:

ID Type Name PID State
3 RT siggen ready
2 User halcmd2177 2177 ready

Since halcmd itself is a HAL component, it will always show up in the list. The number after halcmd in the component list is the
process ID. It is possible to run more than one copy of halcmd at the same time (in different windows for example), so the PID is
added to the end of the name to make it unique. The list also shows the siggen component that we installed in the previous step.
The RT under Type indicates that siggen is a realtime component. The User under Type indicates it is a user space component.

Next, let’s see what pins siggen makes available:

Show Pins

'Run In Place, when the source files have been downloaded to a user directory.

HAL and Device Drivers V2.5,

2014-04-17 10/ 154

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float 1IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0.clock
3 float OUT 0 siggen.0.cosine
3 float 1IN 1 siggen.0.frequency
3 float 1IN 0 siggen.0.offset
3 float OUT 0 siggen.0.sawtooth
3 float OUT 0 siggen.0.sine
3 float OUT 0 siggen.0.square
3 float OUT 0 siggen.0.triangle

This command displays all of the pins in the current HAL. A complex system could have dozens or hundreds of pins. But right
now there are only nine pins. All eight of these pins are floating point, and carry data out of the siggen component. Since we
have not yet executed the code contained within the component, some the pins have a value of zero.

The next step is to look at parameters:
Show Parameters

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 0 siggen.0.update.time
3 s32 RW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now each parameter has the default value it was given
when the component was loaded. Note the column labeled Dir. The parameters labeled -W are writable ones that are never
changed by the component itself, instead they are meant to be changed by the user to control the component. We will see how to
do this later. Parameters labeled R- are read only parameters. They can be changed only by the component. Finally, parameter
labeled RW are read-write parameters. That means that they are changed by the component, but can also be changed by the user.
Note: the parameters siggen.O.update.time and siggen.O.update.tmax are for debugging purposes, and won’t be covered in this
section.

Most realtime components export one or more functions to actually run the realtime code they contain. Let’s see what function(s)
siggen exported:

Show Functions

halcmd: show funct

Exported Functions:
Owner CodeAddr Arg FP Users Name
00003 £801b000 fae820b8 YES 0 siggen.0.update

The siggen component exported a single function. It requires floating point. It is not currently linked to any threads, so users is
Zero.

2.2.3 Making realtime code run

To actually run the code contained in the function siggen.O.update, we need a realtime thread. The component called threads that
is used to create a new thread. Lets create a thread called fest-thread with a period of 1 ms (1,000 us or 1,000,000 ns):

halcmd: loadrt threads namel=test-thread periodl=1000000

Let’s see if that worked:
Show Threads

HAL and Device Drivers V2.5,

2014-04-17 11/154

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
999855 YES test—-thread (0, 0)

It did. The period is not exactly 1,000,000 ns because of hardware limitations, but we have a thread that runs at approximately
the correct rate, and which can handle floating point functions. The next step is to connect the function to the thread:

Add Function

halcmd: addf siggen.0O.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf (add function) command to
actually change something in the HAL. We told halcmd to add the function siggen.O.update to the thread test-thread, and if we
look at the thread list again, we see that it succeeded:

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
999855 YES test-thread (0, 0)
1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the HAL is first started, the thread(s)
are not actually running. This is to allow you to completely configure the system before the realtime code starts. Once you are
happy with the configuration, you can start the realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0.clock
3 float OUT -0.1640929 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.4475303 siggen.0.sawtooth
3 float OUT 0.9864449 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT -0.1049393 siggen.0O.triangle
And let’s look again:
halcmd: show pin
Component Pins:
Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0.clock
3 float OUT 0.0507619 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.516165 siggen.0.sawtooth
3 float OUT 0.9987108 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT 0.03232994 siggen.0.triangle

HAL and Device Drivers V2.5,

2014-04-17 12/154

We did two show pin commands in quick succession, and you can see that the outputs are no longer zero. The sine, cosine,
sawtooth, and triangle outputs are changing constantly. The square output is also working, however it simply switches from +1.0
to -1.0 every cycle.

2.2.4 Changing Parameters

The real power of HAL is that you can change things. For example, we can use the sefp command to set the value of a parameter.
Let’s change the amplitude of the signal generator from 1.0 to 5.0:
Set Pin

halcmd: setp siggen.O.amplitude 5

Check the parameters and pins again

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 1754 siggen.0.update.time
3 s32 RW 16997 siggen.0O.update.tmax

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 5 siggen.0.amplitude
3 bit ouT FALSE siggen.0O.clock
3 float OUT 0.8515425 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT 2.772382 siggen.0.sawtooth
3 float OUT -4.926954 siggen.0O.sine
3 float OUT 5 siggen.0.square
3 float OUT 0.544764 siggen.0O.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5, and that the pins now have larger values.

2.2.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show command. However two of the
commands actually changed things. As we design more complex systems with HAL, we will use many commands to configure
things just the way we want them. HAL has the memory of an elephant, and will retain that configuration until we shut it down.
But what about next time? We don’t want to manually enter a bunch of commands every time we want to use the system. We can
save the configuration of the entire HAL with a single command:

Save

halcmd: save

components

loadrt threads namel=test-thread periodl=1000000
loadrt siggen

pin aliases

signals

nets

parameter values

setp siggen.0O.update.tmax 14687
realtime thread/function links
addf siggen.0O.update test-thread

HAL and Device Drivers V2.5,

2014-04-17 13/154

The output of the save command is a sequence of HAL commands. If you start with an empty HAL and run all these commands,
you will get the configuration that existed when the save command was issued. To save these commands for later use, we simply
redirect the output to a file:

Save to a file

halcmd: save all saved.hal

2.2.6 Exiting halrun

When you’re finished with your HAL session type exit at the halcmd: prompt. This will return you to the system prompt and
close down the HAL session. Do not simply close the terminal window without shutting down the HAL session.

Exit HAL

halcmd: exit

2.2.7 Restoring the HAL configuration

To restore the HAL configuration stored in saved.hal, we need to execute all of those HAL commands. To do that, we use -f <file
name> which reads commands from a file, and -I (upper case i) which shows the halcmd prompt after executing the commands:
Run a Saved File

halrun -I -f saved.hal

Notice that there is not a start command in saved.hal. It’s necessary to issue it again (or edit saved.hal to add it there).

2.2.8 Removing HAL from memory

If an unexpected shut down of a HAL session occurs you might have to unload HAL before another session can begin. To do this
type the following command in a terminal window.

Removing HAL

halrun -U

2.3 Halmeter

You can build very complex HAL systems without ever using a graphical interface. However there is something satisfying about
seeing the result of your work. The first and simplest GUI tool for the HAL is halmeter. It is a very simple program that is the
HAL equivalent of the handy Fluke multimeter (or Simpson analog meter for the old timers).

We will use the siggen component again to check out halmeter. If you just finished the previous example, then you can load
siggen using the saved file. If not, we can load it just like we did before:

halrun

halcmd: loadrt siggen

halcmd: loadrt threads namel=test-thread periodl=1000000
halcmd: addf siggen.0O.update test-thread

halcmd: start

halcmd: setp siggen.O.amplitude 5

At this point we have the siggen component loaded and running. It’s time to start halmeter.

Starting Halmeter

HAL and Device Drivers V2.5,

2014-04-17 14 /154

halcmd: loadusr halmeter

The first window you will see is the Select Item to Probe window.

siggen.0.amplitude
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle

Close

Figure 2.1: Halmeter Select Window

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one displays all the signals, and
the third displays all the parameters. We would like to look at the pin siggen.0.cosine first, so click on it then click the Close
button. The probe selection dialog will close, and the meter looks something like the following figure.

HAL and Device Drivers V2.5,

2014-04-17 15/154

m Hal Meter =)&)
-0.6874131

siggen.0.cosine

Select | | Exit |

Figure 2.2: Halmeter

To change what the meter displays press the Select button which brings back the Select Item to Probe window.
You should see the value changing as siggen generates its cosine wave. Halmeter refreshes its display about 5 times per second.
To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more halmeters. The halmeter window
was intentionally made very small so you could have a lot of them on the screen at once.

2.4 Stepgen Example

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow you to load and connect a
number of simple components to make up a complex system. The next example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just finished one of the previous
examples, we need to remove the all components and reload the RTAPI and HAL libraries.

halcmd: exit

2.4.1 Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this component refer to the stepgen
section of the Integrator Manual. In this example we will use the velocity control type of stepgen. For now, we can skip the
details, and just run the following commands.

halrun

halcmd: loadrt stepgen step_type=0,0 ctrl_type=v,v

halcmd: loadrt siggen

halcmd: loadrt threads namel=fast fpl=0 periodl=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The second command loads our old
friend siggen, and the third one creates two threads, a fast one with a period of 50 microseconds and a slow one with a period of
1 millisecond. The fast thread doesn’t support floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins and parameters than before:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
4 float IN 1 siggen.0.amplitude
4 bit ouT FALSE siggen.0O.clock
4 float OUT 0 siggen.0.cosine
4 float IN 1 siggen.0.frequency
4 float IN 0 siggen.0.offset

HAL and Device Drivers V2.5,

2014-04-17 16/ 154
4 float OUT 0 siggen.0.sawtooth
4 float OUT 0 siggen.0.sine
4 float OUT 0 siggen.0.square
4 float OUT 0 siggen.0O.triangle
3 s32 ouT 0 stepgen.0.counts
3 bit ouT FALSE stepgen.0.dir
3 bit IN FALSE stepgen.0.enable
3 float OUT 0 stepgen.0.position-fb
3 Dbit ouT FALSE stepgen.0.step
3 float IN 0 stepgen.0.velocity-cmd
3 s32 ouT 0 stepgen.l.counts
3 bit ouT FALSE stepgen.l.dir
3 bit IN FALSE stepgen.l.enable
3 float OUT 0 stepgen.l.position-fb
3 bit ouT FALSE stepgen.l.step
3 float IN 0 stepgen.l.velocity-cmd
halcmd: show param
Parameters:
Owner Type Dir Value Name
4 s32 RO 0 siggen.0.update.time
4 s32 RW 0 siggen.0.update.tmax
3 u32 RW 0x00000001 stepgen.0.dirhold
3 u32 RW 0x00000001 stepgen.0.dirsetup
3 float RO 0 stepgen.0.frequency
3 float RW 0 stepgen.0.maxaccel
3 float RW 0 stepgen.0.maxvel
3 float RW 1 stepgen.0.position-scale
3 s32 RO 0 stepgen.0.rawcounts
3 u32 RW 0x00000001 stepgen.0.steplen
3 u32 RW 0x00000001 stepgen.0.stepspace
3 u32 RW 0x00000001 stepgen.l.dirhold
3 u32 RW 0x00000001 stepgen.l.dirsetup
3 float RO 0 stepgen.l.frequency
3 float RW 0 stepgen.l.maxaccel
3 float RW 0 stepgen.l.maxvel
3 float RW 1 stepgen.l.position-scale
3 s32 RO 0 stepgen.l.rawcounts
3 u32 RW 0x00000001 stepgen.l.steplen
3 u32 RW 0x00000001 stepgen.l.stepspace
3 s32 RO 0 stepgen.capture-position.time
3 s32 RW 0 stepgen.capture-position.tmax
3 s32 RO 0 stepgen.make-pulses.time
3 s32 RW 0 stepgen.make-pulses.tmax
3 s32 RO 0 stepgen.update-freqg.time
3 s32 RW 0 stepgen.update-freq.tmax

2.4.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL signals to connect the two
components. We are going to pretend that the two step pulse generators are driving the X and Y axis of a machine. We want
to move the table in circles. To do this, we will send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen
module creates the sine and cosine, but we need wires to connect the modules together. In the HAL, wires are called signals. We
need to create two of them. We can call them anything we want, for this example they will be X-vel and Y-vel. The signal X-vel
is intended to run from the cosine output of the signal generator to the velocity input of the first step pulse generator. The first

step is to connect the signal to the signal generator output. To connect a signal to a pin we use the net command.

net command

HAL and Device Drivers V2.5,

2014-04-17 17 /154

halcmd: net X-vel <= siggen.0.cosine

To see the effect of the net command, we show the signals again.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately following the signal name. The
arrow shows the direction of data flow - in this case, data flows from pin siggen.0.cosine to signal X-vel. Now let’s connect the
X-vel to the velocity input of a step pulse generator.

halcmd: net X-vel => stepgen.0.velocity-cmd

We can also connect up the Y axis signal Y-vel. It is intended to run from the sine output of the signal generator to the input of the
second step pulse generator. The following command accomplishes in one line what two net commands accomplished for X-vel.

halcmd: net Y-vel siggen.0.sine => stepgen.l.velocity-cmd

Now let’s take a final look at the signals and the pins connected to them.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine
==> stepgen.0.velocity-cmd
float 0 Y-vel <== siggen.0.sine

==> stepgen.l.velocity-cmd

The show sig command makes it clear exactly how data flows through the HAL. For example, the X-vel signal comes from pin
siggen.0.cosine, and goes to pin stepgen.O.velocity-cmd.

2.4.3 Setting up realtime execution - threads and functions

Thinking about data flowing through wires makes pins and signals fairly easy to understand. Threads and functions are a little
more difficult. Functions contain the computer instructions that actually get things done. Thread are the method used to make
those instructions run when they are needed. First let’s look at the functions available to us.

halcmd: show funct

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 £9992000 £c731278 YES 0 siggen.0.update
00003 £998b20f £fc7310b8 YES 0 stepgen.capture-position
00003 £998b000 £fc7310b8 NO 0 stepgen.make-pulses
00003 £998b307 £c7310b8 YES 0 stepgen.update-freq

In general, you will have to refer to the documentation for each component to see what its functions do. In this case, the function
siggen.O.update is used to update the outputs of the signal generator. Every time it is executed, it calculates the values of the sine,
cosine, triangle, and square outputs. To make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators.

The first one, stepgen.capture_position, is used for position feedback. It captures the value of an internal counter that counts the
step pulses as they are generated. Assuming no missed steps, this counter indicates the position of the motor.

HAL and Device Drivers V2.5,

2014-04-17 18 /154

The main function for the step pulse generator is stepgen.make_pulses. Every time make_pulses runs it decides if it is time to
take a step, and if so sets the outputs accordingly. For smooth step pulses, it should run as frequently as possible. Because it
needs to run so fast, make_pulses is highly optimized and performs only a few calculations. Unlike the others, it does not need
floating point math.

The last function, stepgen.update-freq, is responsible for doing scaling and some other calculations that need to be performed
only when the frequency command changes.

What this means for our example is that we want to run siggen.O.update at a moderate rate to calculate the sine and cosine
values. Immediately after we run siggen.0.update, we want to run stepgen.update_freq to load the new values into the step pulse
generator. Finally we need to run stepgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position
feedback, we don’t need to run stepgen.capture_position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what threads we have available.

halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
49849 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millisecond, and is capable of running
floating point functions. We will use it for siggen.O.update and stepgen.update_freq. The second thread is fast, which runs every
50 microseconds, and does not support floating point. We will use it for stepgen.make_pulses. To connect the functions to the
proper thread, we use the addf command. We specify the function first, followed by the thread.

halcmd: addf siggen.O.update slow
halcmd: addf stepgen.update-freq slow
halcmd: addf stepgen.make-pulses fast

After we give these commands, we can run the show thread command again to see what happened.

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
1 siggen.0.update
2 stepgen.update-freq
49849 NO fast (0, 0)
1 stepgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will run.

2.4.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By default, the siggen component
generates signals that swing from +1 to -1. For our example that is fine, we want the table speed to vary from +1 to -1 inches per
second. However the scaling of the step pulse generator isn’t quite right. By default, it generates an output frequency of 1 step
per second with an input of 1.000. It is unlikely that one step per second will give us one inch per second of table movement.
Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200 step per rev stepper with 10x microstepping.
So it takes 2000 steps for one revolution of the screw, and 5 revolutions to travel one inch. that means the overall scaling is
10000 steps per inch. We need to multiply the velocity input to the step pulse generator by 10000 to get the proper output. That
is exactly what the parameter stepgen.n.velocity-scale is for. In this case, both the X and Y axis have the same scaling, so we set
the scaling parameters for both to 10000.

halcmd: setp stepgen.O.position-scale 10000
halcmd: setp stepgen.l.position-scale 10000
halcmd: setp stepgen.0O.enable 1
halcmd: setp stepgen.l.enable 1

HAL and Device Drivers V2.5,

2014-04-17 19/154

This velocity scaling means that when the pin stepgen.0.velocity-cmd is 1.000, the step generator will generate 10000 pulses per
second (10KHz). With the motor and leadscrew described above, that will result in the axis moving at exactly 1.000 inches per
second. This illustrates a key HAL concept - things like scaling are done at the lowest possible level, in this case in the step pulse
generator. The internal signal X-vel is the velocity of the table in inches per second, and other components such as siggen don’t
know (or care) about the scaling at all. If we changed the leadscrew, or motor, we would change only the scaling parameter of
the step pulse generator.

2.4.5 Runit!

We now have everything configured and are ready to start it up. Just like in the first example, we use the start command.

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out step pulses, varying from
10KHz forward to 10KHz reverse and back again every second. Later in this tutorial we’ll see how to bring those internal signals
out to run motors in the real world, but first we want to look at them and see what is happening.

2.5 Halscope

The previous example generates some very interesting signals. But much of what happens is far too fast to see with halmeter. To
take a closer look at what is going on inside the HAL, we want an oscilloscope. Fortunately HAL has one, called halscope.

Halscope has two parts - a realtime part that is loaded as a kernel module, and a user part that supplies the GUI and display.
However, you don’t need to worry about this, because the userspace portion will automatically request that the realtime part be
loaded. Also notice the first time you run halscope in a directory it gives a benign message that the file autosave.halscope could
not be opened.

Starting Halscope

halcmd: loadusr halscope
halcmd: halscope: config file ’'autosave.halscope’ could not be opened

The scope GUI window will open, immediately followed by a Realtime function not linked dialog that looks like the following
figure.

HAL and Device Drivers V2.5,

2014-04-17 20/ 154

Realtime function not linked x

The HALSCOPE realtime sampling function
must be called from a HAL thread in to
determine the sampling rate.

Please do one of the following:

Select a thread name and multiplier then click 'OK!
or

Click 'Quit' to exit HALSCOPE

Thread: slow
Sample Period: 980 uSec
Sample Rate: 1.01 KHz
Thre Period

slow 989 uSec

fast 49.4 usec

Multiplier: | 1 =

Record Length

) 16000 samples (1 channel]
8000 samples (2 channels)
4000 samples (4 channels)
2000 samples (8 channels)

00 ® 0

1000 samples (16 channels)

oK | | Quit

Figure 2.3: Realtime function not linked dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once per millisecond, so click
on the 989 us thread slow and leave the multiplier at 1. We will also leave the record length at 4000 samples, so that we can use
up to four channels at one time. When you select a thread and then click OK, the dialog disappears, and the scope window looks

HAL and Device Drivers V2.5,

2014-04-17 21/154

something like the following figure.

File Help

Horizontal Run Mode- Trigger
Zoom [500 mSec | 4000 samples | & Nermal) @ Normal
Pos s per div at 1.01 KHz () Single | O Auto

| | e |© Rell Force

@ Stop || avel Pos

vertical
Gain Pos

L1

Scale Level
1{2(3((al{=2lallFl8fS|LIHLIHLIHLILIHLI| LE Offset F-{isir‘lg
Selected Channel Source

S L Chan Off MNone

Figure 2.4: Initial scope window

2.5.1 Hooking up the scope probes

At this point, Halscope is ready to use. We have already selected a sample rate and record length, so the next step is to decide
what to look at. This is equivalent to hooking virtual scope probes to the HAL. Halscope has 16 channels, but the number you
can use at any one time depends on the record length - more channels means shorter records, since the memory available for the
record is fixed at approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button /, and you will see the Select Channel Source
dialog as shown in the following figure. This dialog is very similar to the one used by Halmeter. We would like to look at the
signals we defined earlier, so we click on the Signals tab, and the dialog displays all of the signals in the HAL (only two for this
example).

HAL and Device Drivers V2.5,

2014-04-17 20/ 154

Select Chanmnel Source

Select a pin, signal, or parameter
as the source for channel 1.

Pins Signals | Parameters

siggen.0.amplitude

siggen.0.cosine
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle
stepgen.D.counts -

N o T .

Cancel

Figure 2.5: Select Channel Source

To choose a signal, just click on it. In this case, we want channel 1 to display the signal X-vel. Click on the Signals tab then click
on X-vel and the dialog closes and the channel is now selected.

HAL and Device Drivers V2.5,

2014-04-17 23 /154

Select Chanmnel Source

Select a pin, signal, or parameter
as the source for channel 1.

Pins Signals Parameters

Yovel

Cancel

Figure 2.6: Select Signal

The channel 1 button is pressed in, and channel number 1 and the name X-vel appear below the row of buttons. That display
always indicates the selected channel - you can have many channels on the screen, but the selected one is highlighted, and the
various controls like vertical position and scale always work on the selected one.

HAL and Device Drivers V2.5,
2014-04-17

24 /154

s

'l 213145 |elf7yss{11if1yl1{l| 16
Selected Channel
1

¥-yel

[

[

Scale

1 /div
Offset

0.000

Chan Off

File Help

Horizontal Run Mode- -Trigger

Zoom |1 500 mSec | 4000 samples || & Noermal|@ Normal

Pog == per div at 1.01 KHz 5iﬂg|E () Auto

| | pLe |© Rl Force
@ Stop ||| evel Pos
ertical
Gain Pos

Level

Rising

Source
Maone

Figure 2.7: Halscope

To add a signal to channel 2, click the 2 button. When the dialog pops up, click the Signals tab, then click on Y-vel. We also want
to look at the square and triangle wave outputs. There are no signals connected to those pins, so we use the Pins tab instead. For
channel 3, select siggen.0.triangle and for channel 4, select siggen.0.square.

2.5.2 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start the scope, click the Normal
button in the Run Mode section of the screen (upper right). Since we have a 4000 sample record length, and are acquiring 1000
samples per second, it will take halscope about 2 seconds to fill half of its buffer. During that time a progress bar just above the
main screen will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we haven’t configured
one yet, it will wait forever. To manually trigger it, click the Force button in the Trigger section at the top right. You should
see the remainder of the buffer fill, then the screen will display the captured waveforms. The result will look something like the

following figure.

HAL and Device Drivers V2.5,

2014-04-17 25 /154
F HAL Oscilloscope E]@
File Help
Horizontal Run Mode- -Trigger
Zoom |1 500 mSec | 4000 samples || @ Normal|@ Normal

Pog == per div at 1.01 KHz 5iﬂg|E () Auto

| | TRiGGer? | Rell Force
... I-I Etnp LE'lurE| pDS
... Vertical
... Gain Pos

[

... Scale LE'lurE|
: : 1 jdiv ----

.|2||3|.5 sll7llellsllsflefleflefzllz] 18| offset Rising
e 0.000

Selected Channel Source

4 siggen.0.square Chan Off | Mone

Figure 2.8: Captured Waveforms

The Selected Channel box at the bottom tells you that the purple trace is the currently selected one, channel 4, which is displaying
the value of the pin siggen.0.square. Try clicking channel buttons 1 through 3 to highlight the other three traces.

2.5.3 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use the Vertical controls in the
box to the right of the screen. These controls act on the currently selected channel. When adjusting the gain, notice that it covers

a huge range - unlike a real scope, this one can display signals ranging from very tiny (pico-
The position control moves the displayed trace up and down over the height of the screen only.

button should be used.

units) to very large (Tera-units).
For larger adjustments the offset

HAL and Device Drivers V2.5,

2014-04-17 26 /154

m HAL Oscilloscope BIEE)

File Help
Horizontal Run Mode- -Trigger
Zoom |1 500 mSec | 4000 samples || @ Normal|@ Normal
Pog == per div at 1.01 KHz 5iﬂg|E () Auto
| | TRiGGERy | O Rell Force
R RRRIF RPN SORESNORNR 0NN NORAE RRIFIONN U St Jievel pos
A W S W e S /e rtical
T S e S e S e Coin P os
.. [m B
............................. Scale LE"‘-'I.E|
: . 1 jdiv
.|2||3|.5 6 7|glls1f1)a]r|r]1] 16| offset || Rising
At 0.000
Selected Channel Source
1 HKvel Chan Off | Mone

Figure 2.9: Vertical Adjustment

2.5.4 Triggering

Using the Force button is a rather unsatisfying way to trigger the scope. To set up real triggering, click on the Source button at
the bottom right. It will pop up the Trigger Source dialog, which is simply a list of all the probes that are currently connected.
Select a probe to use for triggering by clicking on it. For this example we will use channel 3, the triangle wave as shown in the
following figure.

HAL and Device Drivers V2.5,

2014-04-17

27 /154

' Trigger Source

Select a channel to use for triggering.

Chan Source
1 ¥-vel

2 Wovel

4 siggen.0.square
5 -

& -

7 -

8 -

g -

10 ----

11 ----

12 ----

13 ----

14 --e-

15 ----

16 ----

Cancel

Figure 2.10: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders in the Trigger box along the
right edge. The level can be adjusted from the top to the bottom of the screen, and is displayed below the sliders. The position is
the location of the trigger point within the overall record. With the slider all the way down, the trigger point is at the end of the
record, and halscope displays what happened before the trigger point. When the slider is all the way up, the trigger point is at
the beginning of the record, displaying what happened after it was triggered. The trigger point is visible as a vertical line in the
progress box above the screen. The trigger polarity can be changed by clicking the button just below the trigger level display.

Now that we have adjusted the vertical controls and triggering, the scope display looks something like the following figure.

HAL and Device Drivers V2.5,

2014-04-17 28/154

m HAL Oscilloscope BIEE)

File Help

Horizontal Run Mode- -Trigger
Zoom [500 mSec | 4000 samples @ Normal| @ Normal
Pog == per div at 1.01 KHz 5iﬂg|E () Auto

| | pRe-TRIG | - Rell Force
___________________ U StoP i evel Pos
......... Vertical
... Gain Pos

............................. Scale LE'IUI.E|
; ; ; ; ; ; ; ; 1 /div 0.000

.|2||3|.5 sll7llellsllsflefleflefzllz] 18| offset Rising
b 0.000

Selected Channel f Source
1 Wl (1.12939) Chan Off ||| Chan 3

Figure 2.11: Waveforms with Triggering

2.5.5 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to expand the waveforms horizontally,
and the position slider to determine which part of the zoomed waveform is visible. However, sometimes simply expanding the
waveforms isn’t enough and you need to increase the sampling rate. For example, we would