User Manuelle V2.5, 2013-03-04

User Manuelle V2.5, 2013-03-04

User Manuelle V2.5, 2013-03-04

ii

Contents
I LinuxCNC Introduction 1
1 User Foreword 3
2 LinuxCNC User Introduction 5
2.1 ThisManual o e e e 5
2.2 How LinuxCNC Works e 5
2.3 Graphical User Interfaces e e e e e 6
24 Virtual Control Panels L L e 12
2.5 Languages i e e e e e e 14
2.6 Thinking Like a Machine Operator i i i it e e e e 14
2.7 Modes of Operation v v it e e e e e e e e e e e e e e e 14
3 Important User Concepts 16
3.1 Trajectory Control o e e e e e e e e e 16
3.1.1 Trajectory Planning L 16
3.1.2 Path Following L . e 16
3.1.3 Programming the Planner e e 16
3.1.4 Planning MOVES o L e e e e e 17
32 GCode 18
32,1 Defaults L 18
322 FeedRate o o 18
3.23 Tool Radius Offset e e e e 18
33 Homing 18
34 Tool Changes e e 18
3.5 Coordinate SYSEMS oo e e e e e e e e e e e e e e e 19
3.5.1 GS53 Machine Coordinateo e e e e e e e e e e 19
352 G54-59.3 User Coordinates o v v v v ittt e e e e e e e 19
353 When Youre Lost oL e e 19
3.6 Machine Configurations L e e e e e 19

User Manuelle V2.5, 2013-03-04

i

IT User Interfaces 22
4 AXIS GUI 23
4.1 Introductiono e e e 23
4.2 Getting Started L L L e e e e e e e e e 24
4.2.1 ATypical Session e e e e e e e 24

43 AXISDisplay 25
43.1 Menultems e e e 25
432 Toolbarbuttons e e e e 28

4.3.3 Graphical Display Area. e e e e e 29
434 TextDisplay Area e 31

435 Manual Control L e 31
43.6 MDI. . .. e 33
437 FeedOverride o o e e e 33
4.3.8 Spindle Speed Override L 33

439 JogSpeed e 34
4.3.10 Max VeloCity o o e e e e e e e e 34

4.4 Keyboard Controls L e e e e e e e e 34
4.5 Show LinuxCNC Status (inuxcnctop)« o v o v vttt e e e e e e e e e e e e 35
4.6 MDIinterface e 35
477 aXiSTEMOLE . . . o v v v e 36
4.8 Manual Tool Change o o i e e e e e e e 36
4.9 Pythonmodules e 36
4.10 Using AXISinLathe Mode e 37
4.11 Advanced Configuration o i e e e e e e e e e e e e e e 37
4.11.1 Program Filters e e e e e e 37
4.11.2 The X Resource Database e 38
4.11.3 Physical jogwheels 39
4114 ~JaxiSIC . . . o o i e e 39
4.11.5 External Editor L e 39
4.11.6 Virtual Control Panel 39
4.11.7 AxisPreview Control L e e e e 39

5 NGCGUI 41
5.1 OVEIVIEW . . . o oottt e e 42
52 Demo Configs e e 42
5.3 Librarieso e 43
54 Embedding NGCGULin AXiS i e e e e 43
5401 INIFile o 44

542 Truetype Tracer o o e e 45

543 INITExamples o o e e e e e e e e e 45

5.5 Subroutine Requirements e e 48
5.6 DB25Example e 49

User Manuelle V2.5, 2013-03-04

iv
6 Touchy GUI 53
6.1 Panel Configuration L e e e e e e 54
6.1.1 HALconnections e e e e 54
6.1.1.1 Requiredcontrols L 54
6.1.1.2 Optional controls e 54
6.1.1.3 Optional panel lamps e 54
6.1.2 Recommended forany setup L e 54
0.2 SEUP e e 54
6.2.1 Enabling Touchy e e e 54
6.2.2 Preferences 55
6.2.3 MACIOS . . . o o e 55
7 TkLinuxCNC GUI 56
7.1 Introduction e 56
7.2 Getting Started e e 57
7.2.1 Atypical session with TKLinuxCNC e e 57
7.3 Elements of the TkLinuxCNC window e 57
7.3.1 0 Main buttonso e e e 58
7.3.2 Offsetdisplay status bar e e e e 58
7.3.3 Coordinate Display Area e e e 58
7.3.3.1 Backplot e 58
7.3.4 Automaticcontrol 59
7.34.1 Buttonsforcontrol 59
7.34.2 TextProgram Display Area 59
7.3.5 Manual Control 59
7.3.5.1 Implicitkeys o e e e e e e 59
7.3.5.2 TheSpindle group e e e e 60
7.3.53 TheCoolant Group o i e e e e 60
7.3.6 Code Entry o o o e 60
7.3.6.1 MDI: . ..o 60
7.3.6.2 Active G-Codes e 60
7.3.7 JogSpeedo 61

7.3.8 FeedOverride. o e 61

7.3.9 Spindle speed Override L L e e e e e 61
7.4 Keyboard Controls L e 61

User Manuelle V2.5, 2013-03-04

v
8§ MINI GUI 62
8.1 Introduction 62

8.2 Screenlayout L e e e e e 63

83 MenuBar e 64

8.4 Control Button Bar 65
8.4.1 MANUAL . . . 65

842 AUTO . . . 66

843 MDI. . . 67

8.4.4 [FEEDHOLD]—[CONTINUE] e e 67

8.4.5 [ABORT] o 67

8.4.6 [ESTOP] o 68

85 LeftColumn 68
8.5.1 Axis Position Displays e e e e e e 68

8.5.2 Feedrate Override e e e 69

853 MeSsages e 69

8.6 RightColumn e e e e e 69
8.6.1 Program Editor L e 70

8.6.2 Backplot Display e 71

8.6.3 ToolPage e 71

8.6.4 OffsetPage L e e e e 72

8.7 Keyboard Bindings L 73
8.7.1 Common Keys e 73

872 Manual Mode 74

873 AutoMode 75

8.8 MISC . . o o i 75

9 KEYSTICK GUI 76
9.1 Introduction e e e 76
9.2 Installing L e 77
0.3 USING . . o v o e e e e e e 77
III Using LinuxCNC 78
10 CNC Machine Overview 79
10.1 Mechanical COMPONENES v v v v i e 79
T0.1.1 AXEs . . o o 79

10.1.2 Spindle L e e 79

10.1.3 Coolant 79

10.1.4 Feed and Speed Override o o i e e e 80

User Manuelle V2.5, 2013-03-04

vi

10.1.5 Block Delete Switch 80
10.1.6 Optional Program Stop Switch e e 80

10.2 Control and Data Components ot v vttt e e e e e e e e 80
10.2.1 Linear AXES o o v v i i e e e e e e e e 80
10.2.2 Rotational AXes o o e e 80
10.2.3 Controlled Point 80
10.2.4 Coordinated Linear Motion 0 e e e e e e 81
10.2.5 FeedRate L e 81
10.2.6 Coolant 81
1027 Dwell . . . oo o 81
10.2.8 Units . . . Lo o e e 81
10.2.9 CurrentPosition 81
10.2.10 Selected Plane 82
10.2.11 Tool Carousel L e e e e e 82
10.2.12Tool Change e 82
10.2.13 Pallet Shuttle 82
10.2.14Path Control Mode L 82

10.3 Interpreter Interaction with Switches 82
10.3.1 Feed and Speed Override Switches 82
10.3.2 Block Delete Switch L 82
10.3.3 Optional Program Stop Switch 82

10.4 Tool Table e 83
10.5 Parameters o oo e e e e e 83
11 Coordinate System 84
I1.1 Introduction L e 84
11.2 The Machine Position Command (G53) e e e e 84
11.3 Fixture Offsets (G54-G59.3) o e e e e e 85
11.3.1 Default coordinate SyStem o e e e e e e 86
11.3.2 Setting coordinate (fixture) offsets fromGecode 86

11.4 G2 OffSets . . . v o i e e e e e e 86
11.4.1 The G92 commands o it i e 86
11.4.2 Setting G92 values e e e e e e e e 87
1143 G92Cautions i e 87

11.5 Sample Program Using Offsets o i i i e 88

User Manuelle V2.5, 2013-03-04

Vi

12 Tool Compensation 90
12.1 ToolLength Offsets e 90
12.1.1 Touch Off e 90
12.1.2 Using GIOLI/LIO/LLL o o e e e e e e e e 91

12.2 Tool Table L e e e 91
12.2.1 Tool Table Format e 91
1222 Tool Changers e e 92

12.3 Cutter COMPENSAtION v v v v e et e 93
1231 OVEIVIEW . . . o o o ottt e e e e e e e 94
1232 Examples e e 95

13 G Code Overview 97
I3.1 OVErvIew o o o ot e e e e e 97
13.2 Formatofaline e e 97
13.3 Block Delete o o e e 98
13.4 Line Number e e e e 98
13.5 Word o o e e 98
13.6 Number e e e e 99
137 Parameterst e e e e e e e e e 99
13.7.1 Numbered Parameters e 100
13.7.2 Subroutine Parameters L L. L e 101
13.7.3 Named Parameters o e e e 101
13.7.4 System Parameters Lo e e e e e 102

13.8 EXPIessions o v i i v i e e e e e e e e e e e e 102
13.9 Binary Operators o v v v v vt v e e e e e e e e e e e e e e e e e e 102
13.10FUNCtions o o . e e e e e e 102
13.11Repeated Items o e e e e e e e e e e e 103
13.02Ttemorder L e e e e e e 103
13.13Commands and Machine Modes e e 104
13.14Polar Coordinates e e e e e e 104
13.15Modal Groups o o e 106
[3.16COMMENES oot e e e e e e e e e e e e e e e 107
I3 07MESSAZES « ¢ o v v v e e e e e e e e e e e e 108
13.18Probe Logging e e 108
13.19L08CING o o e e e e 108
13.20Debug MESSAZES v v i e e e e e e e e e e e e e e e e e e 108
13.21Print Messages o o e e e e e 108
13.22Comment Parameters e e e e e e e e 108
13.23File Requirements L L e e e e e e 109

User Manuelle V2.5, 2013-03-04

viii

13.24File Size o e e 109
13.25G Code Order of Execution o0 i e e e e e e e 109
13.26G Code Best Practices i e e e 110
13.26.1 Use an appropriate decimal precision oL e 110
13.26.2 Use consistent white Space o o i e e e e e e 110
13.26.3 Use Center-format arcs o v v v v i it e e e e e e e e e 110
13.26.4 Put important modal settings at the top of the file 110
13.26.5 Don’t put too many thingsononeline e 110
13.26.6 Don’t set & use a parameter on the same line L oL 110
13.26.7Don’tuse line numbers e 111
13.27Linear and Rotary AXiS o o i e e e e e e e e e e e 111
13.28Common Error Messages L e e e e e e 111
14 G Codes 112
14.1 Conventions v v vt it e e e e e e e e e e e e e 112
14.2 G Code Quick Reference Table e 112
143 GORapid Motion o o e 113
144 Gl Linear Feed e 114
145 G2,G3 ArcFeed e e 114
14.5.1 Center Format ArCs o i it e 115
14.5.2 Center Format Examples e e 116
14.5.3 Radius Format Arcs oL 118

14.6 GADwell 119
147 GS5.1 Quadratic B-spline e e e 119
148 G52G53NURBsBlock oo e 120
14.9 G7 Lathe Diameter Mode e e e 121
14.10G8 Lathe Radius Mode e 121
14 11GIOLT Set Tool Table e e 122
14.12G10 L2 Set Coordinate SyStem o o vt e e e e e e e e e e e 122
14.13GI0OL10Set Tool Table o e e e 124
14.14GI0OL11 Set Tool Table 124
14.15G10 L20 Set Coordinate System o v v v v i i e e e e e e e e e e e e e e e 125
14.16G17 - G19.1 Plane Selection o o o i e e e e 125
14.17G20, G21 UNItS o o e e e e 125
14.18G28, G28.1 Go to Predefined Position e e 126
14.19G30, G30.1 Go to Predefined Position e 126
14.20G33 Spindle Synchronized Motion L e 127
14.21G33.1 Rigid Tapping o o o e e e e e e e e 127

14.22G38.x Straight Probe 128

User Manuelle V2.5, 2013-03-04

ix

14.23G40 Compensation Off e 129
14.24G41, G42 Cutter Compensation v v v v v v e 130
14.25G41.1, G42.1 Dynamic Cutter Compensation ot v vttt e 130
14.26G43 Tool Length Offset o e 131
14.27G43.1: Dynamic Tool Length Offset e 131
14.28G49: Cancel Tool Length Compensation vt i v ittt e e e e e e e e e 132
14.29G53 Move in Machine Coordinates e 132
14.30G54-G59.3 Select Coordinate System e e e e e 132
14.31G61,G61.1 ExactPath Mode e 133
14.32G64 Path Blending 133
14.33G73 Drilling Cycle with Chip Breaking e 134
14.34G76 Threading Cycle e e e 134
14.35Canned Cycles o o e e e e 137

1435.1 Common Words e 137

14352 Sticky Words L e 137

14353 Repeat Cycle e e e e e e 137

14354 Retract Mode 138

14.35.5Canned Cycle Errors o e e 138

14.35.6 Preliminary and In-Between Motion e 138

14.35.7Why use acanned cycle? L e e e e e 139
14.36G80 Cancel Canned Cycle e 140
14.37G81 Drilling Cycle e 141
14.38G82 Drilling Cycle, Dwell 144
14.39G83 Peck Drilling Cycle e e e e 145
14.40G84 Right-Hand Tapping Cycle e 145
14.41G85 Boring Cycle, Feed Out e 145
14.42G86 Boring Cycle, Spindle Stop, Rapid Out e 146
14.43G87 Back Boring Cycle e 146
14.44G88 Boring Cycle, Spindle Stop, Manual Out e 146
14.45G89 Boring Cycle, Dwell, Feed Out e 146
14.46G90, G91 Distance Mode e e e 146
14.47G90.1, G91.1 Arc Distance Mode e e e e 147
14.48G92 Coordinate System Offset e e 147
14.49G92.1, G92.2 Reset Coordinate System Offsets e 147
14.50G92.3 Restore Axis Offsets 148
14.51G93, G994, G95: Feed Rate Mode o o i 148
14.52G96, G97 Spindle Control Mode e 148

14.53G98, G99 Canned Cycle Return Level e 149

User Manuelle V2.5, 2013-03-04

X
15 M Codes 150
15.1 M Code Quick Reference Table e 150
15.2 MO, MI Program Pause e 150
153 M2, M30 Program End oL 150
15.4 M60 Pallet Change Pause L e 151
15.5 M3, M4, M5 Spindle Control L e e e 151
15.6 M6 Tool Change e e 151
15.6.1 Manual Tool Change i e 151

15.6.2 Tool Changer i v e e e e e e e e e e e e e e e 152

1577 M7, M8, M9 Coolant Control e e e e 152
15.8 M48, M49 Speed and Feed Override Control e 152
15.9 M50 Feed Override Control o oo e 152
15.10M51 Spindle Speed Override Control e e e e e 153
15.11M52 Adaptive Feed Control e 153
15.12M53 Feed Stop Control e e e e 153
15.13M61 Set Current Tool Number 153
15.14M62 to M65 Output Control o L e e e 153
15.15M66 Waiton Input L. e e 154
15.16M67 Synchronized Analog Output L e e e 155
15.17M68 Analog Output o o e e e e e e e e e e e e e 155
15.18M100 to M199 User Defined Commands e 155

16 O Codes 158
16.1 Subroutines e 158
16.2 Looping o o e 159
16.3 Conditional L 160
16.4 Repeat o e e e e 160
16.5 Indirection L e e 161
16.6 Calling Files e e 161

17 Other Codes 162
17.1 F:SetFeed Rate 162
17.2 S:Set Spindle Speed L e e e 162

17.3 T:Select Tool o e e e 162

User Manuelle V2.5, 2013-03-04

Xi

18 G Code Examples 164
18.1 Mill Examples o o e e e e e e e e e e 164
18.1.1 Helical Hole Milling e 164
18.1.2 SIotting o o e e 164
18.1.3 GridProbe 164
18.1.4 SmartProbe 164
18.1.5 ToolLength Probe e 165
18.1.6 Hole Probe 165
18.1.7 Cutter COmMPensation v v v v it e e e e e e e e e e e e e e e e e e 165

18.2 Lathe Examples e e e 165
18.2.1 Threading e 165

19 Lathe User Information 166
19.1 Lathe Mode e 166
19.2 Lathe Tool Table L 166
19.3 Lathe Tool Orientation e 166
19.4 Tool Touch Off 170
19.4.1 The X Tool Offset e 170
1942 TheZTool Offset. 170
19.43 The ZMachine Offset 171

19.5 Threading o e e e 171
19.6 Constant Surface Speed e e 171
19.7 ATCSs . . . 171
19.7.1 Arcsand Lathe Design L e 172
19.7.2 Radius & Diameter Mode 172

19.8 Tool Path e 172
19.8.1 Control Point 172
19.8.2 Cutting Angles without Cutter Comp o i 173
19.8.3 CuttingaRadius e 174
19.8.4 Using Cutter COMP ot vttt e e e e e e e e e e e e e 176

20 RS274/NGC Differences 177
20.1 Changes from RS274/NGC e e e 177

20.2 Additions to RS274/NGC e 177

User Manuelle V2.5, 2013-03-04

Xii

21 Image to G Code
21.1 Whatis adepth map?

21.2 Integrating image-to-gcode with the AXIS userinterface

21.3 Using image-to-gcode
21.4 Option Reference
2141 Units
21.4.2 InvertImage
21.4.3 Normalize Image
21.4.4 Expand Image Border . .
21.4.5 Tolerance (units)
21.4.6 Pixel Size (units)

21.47 Plunge Feed Rate (units per minute) o v v v v vttt e e e e e

21.4.8 Feed Rate (UnitS per minute) o v vt v v et e e e e e e e e e e e e

21.49 Spindle Speed (RPM) . .
21.4.10 Scan Pattern
21.4.11 Scan Direction
21.4.12 Depth (units)
21.4.13 Step Over (pixels)
21.4.14 Tool Diameter
21.4.15 Safety Height
21.4.16Tool Type
21.4.17 Lace bounding
21.4.18 Contact angle

21.4.19 Roughing offset and depth per pass o i e e

22 Glossary

23 Legal Section
23.1 Copyright Terms

23.2 GNU Free Documentation License

24 Index

179
179
179
180
180
180
180
180
180
180
180
180
181
181
181
181
181
181
181
181
182
182
182
182

184

189
189
189

193

User Manuelle V2.5, 2013-03-04
xiii

The LinuxCNC Team

User Manuelle V2.5, 2013-03-04
1/195

Part I

LinuxCNC Introduction

User Manuelle V2.5, 2013-03-04
2/195

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2012 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

User Manuelle V2.5, 2013-03-04
3/195

Chapter 1

User Foreword

LinuxCNC is modular and flexible. These attributes lead many to see it as a confusing jumble of little things and wonder why it
is the way it is. This page attempts to answer that question before you get into the thick of things.

LinuxCNC started at the National Institute of Standards and Technology in the USA. It grew up using Unix as its operating
system. Unix made it different. Among early Unix developers there grew a set of code writing ideas that some call the Unix way.
These early LinuxCNC authors followed those ways.

Eric S. Raymond, in his book The Art of Unix Programming, summarizes the Unix philosophy as the widely-used engineering
philosophy, "Keep it Simple, Stupid" (KISS Principle). He then describes how he believes this overall philosophy is applied as
a cultural Unix norm, although unsurprisingly it is not difficult to find severe violations of most of the following in actual Unix
practice:

* Rule of Modularity: Write simple parts connected by clean interfaces.

Rule of Clarity: Clarity is better than cleverness.

* Rule of Composition: Design programs to be connected to other programs.

» Rule of Separation: Separate policy from mechanism; separate interfaces from engines.'

Mr. Raymond offered several more rules but these four describe essential characteristics of the LinuxCNC motion control system.

The Modularity rule is critical. Throughout these handbooks you will find talk of the interpreter or task planner or motion or
HAL. Each of these is a module or collection of modules. It’s modularity that allows you to connect together just the parts you
need to run your machine.

The Clarity rule is essential. LinuxCNC is a work in progress — it is not finished nor will it ever be. It is complete enough to
run most of the machines we want it to run. Much of that progress is achieved because many users and code developers are able
to look at the work of others and build on what they have done.

The Composition rule allows us to build a predictable control system from the many modules available by making them con-
nectable. We achieve connectability by setting up standard interfaces to sets of modules and following those standards.

The Separation rule requires that we make distinct parts that do little things. By separating functions debugging is much easier
and replacement modules can be dropped into the system and comparisons easily made.

What does the Unix way mean for you as a user of LinuxCNC. It means that you are able to make choices about how you will
use the system. Many of these choices are a part of machine integration, but many also affect the way you will use your machine.
As you read you will find many places where you will need to make comparisons. Eventually you will make choices, "I’ll use
this interface rather than that” or, “I’ll write part offsets this way rather than that way." Throughout these handbooks we describe
the range of abilities currently available.

As you begin your journey into using LinuxCNC we offer two cautionary notes:?

!Found at http://en.wikipedia.org/wiki/Unix_philosophy, 07/06/2008
2Found at http://en.wikipedia.org/wiki/Unix_philosophy, 07/06/2008

http://en.wikipedia.org/wiki/Unix_philosophy
http://en.wikipedia.org/wiki/Unix_philosophy

User Manuelle V2.5, 2013-03-04
4/195

* Paraphrasing the words of Doug Gwyn on UNIX: "LinuxCNC was not designed to stop its users from doing stupid things, as
that would also stop them from doing clever things."

* Likewise the words of Steven King: "LinuxCNC is user-friendly. It just isn’t promiscuous about which users it’s friendly with."

User Manuelle V2.5, 2013-03-04
5/195

Chapter 2

LinuxCNC User Introduction

2.1 This Manual

The focus of this manual is on using LinuxCNC. It is intended to be used once LinuxCNC is installed and configured. For
standard installations see the Getting Started Guide for step by step instructions to get you up and going. For detailed information
on installation and configuration of LinuxCNC see the Integrator Manual.

2.2 How LinuxCNC Works

The Enhanced Machine Controller (LinuxCNC) is a lot more than just another CNC mill program. It can control machine tools,
robots, or other automated devices. It can control servo motors, stepper motors, relays, and other devices related to machine
tools.

There are four main components to the LinuxCNC software:

¢ a motion controller (EMCMOT)
¢ a discrete I/O controller (EMCIO)
« a task executor which coordinates them (EMCTASK)

* and one of several graphical user interfaces.

In addition there is a layer called HAL (Hardware Abstraction Layer) which allows configuration of LinuxCNC without the need
of recompiling.

User Manuelle V2.5, 2013-03-04
6/195

Power supply

Linux PC

Stepper Stepper
drives motors

Figure 2.1: Simple LinuxCNC Controlled Machine

The above figure shows a simple block diagram showing what a typical 3-axis LinuxCNC system might look like. This diagram
shows a stepper motor system. The PC, running Linux as its operating system, is actually controlling the stepper motor drives by
sending signals through the printer port. These signals (pulses) make the stepper drives move the stepper motors. The LinuxCNC
system can also run servo motors via servo interface cards or by using an extended parallel port to connect with external control
boards. As we examine each of the components that make up an LinuxCNC system we will remind the reader of this typical
machine.

2.3 Graphical User Interfaces

A user interface is the part of the LinuxCNC that the machine tool operator interacts with. The LinuxCNC comes with several
types of user interfaces:

¢ Axis, the standard GUI interface.

User Manuelle V2.5, 2013-03-04

7/195
Eile Machine View Help
g S Y '
@fﬂf D@r ' 211 NN, IEIN IEIX-JB@ &5
Manual Contrel [F3] | mDI [F5] Preview | DRO
Axis:
Feed Override: 100 %
Jog Speed: 16 infmin
Max Velocity: 72 infmin
{ AXIS "splash g-code" Mot intended for actual milling)
(To run this code anyway you might have to Touch Off the Z axis)
(depending on your setup. As if you had some material in your mill...)
{ Hint jog the Z axis down a bit then touch off)
{ Also press the Toggle Skip Lines with "/" to see that part)
{(If the program is too big or small for your machine, change the scale #3)
(font: fusr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)
(text: EMC2*S*AXIS)
ESTOP No tool Position: Relative Actual

Figure 2.2: Axis GUI

* Touchy, a touch screen GUI.

User Manuelle V2.5, 2013-03-04

8/195
Relative Absolute DTG Handwheel
X: 0.0000 X: 0.0000 X: 0.0000
Y: 0.0000 ¥is 0.0000 Y: 0.0000 FO- 100%
Z: 1.2063 Z: 0.0000 Z: 0.0000
Power
S0O: 100%
Estop Reset Machine On Override Limits
MV: 100
Estop Machine Off
Jogging
Homing —
X
Home All Home Selected
Y
Unhome All Unhome Selected
[Fd
Startup MDI Manual Auto Status Preferences

Figure 2.3: Touchy GUI

* NGCGUI, a subroutine GUI that provides fill in the blanks programming of G code. It also supports concatenation of subroutine
files to enable you to build a complete G code file without programming.

User Manuelle V2.5, 2013-03-04

9/195
Eile Machine View Help
QL Ve =1z NIXIY|IP&|
Manual Control [F3] I MDI [F5] | Preview |DRO simp I xyz |
Axis o ngcgui-0 | mDVE—3='|

| = s ¥
| |

Create Feature

simp - simple subroutine example -- Ctrl-U to edit

Positional Parameters|

1|.6 |Fiadiu5A
2|04 hanms_b
3100 |Mednﬂe

Feed Override: 100 %) I 0
Jog Speed: 16 in/min | I —
Max Velocity: 72 in/min | |y |[Curtk for key bindings
1: [AXIS "splash g-code" Mot intended for actual milling) :é
2: [To run this code anyway you might have to Touch Off the Z axis)
3. (depending on your setup. As if you had some material in your mill...)
4: (Hint jog the Z axis down a bit then touch off)
S: [Also press the Toggle Skip Lines with "/" to see that part)
{ If the program is too big or small for your machine, change the scale #3)
3. (font: fusr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)
(text: EMC2+#5+AXIS) i

ESTOP |Mu tool

Figure 2.4: NGCGUI GUI imbedded into Axis

¢ Mini, a Tcl/Tk-based GUI

Position: Relative Actual

User Manuelle V2.5, 2013-03-04

10/195

Program View Settings Info [~ Editor v Backplot [~ Tools T Offsets Help
X-Y | X-Z | Y-z | 3D | HideSetup |
X-29.500]3
[]
Y 6.050
rot-x -16
Z-13.378]
. rot-y 17
. —ﬂ
Feed Override: 100 rot-z 30
| A i o
- MESSAGES - i
—ﬂ
1 - Program file is
/home/john/emc2-dev3/nc_files/30_ Refresh
Chips.ngc
vdEd | = Reset
Open... Run | Pause | Resume Step Verify I running

e TkLinuxCNC, a Tcl/Tk-based GUI

NPLOLT [(F<ysldilea™ s F3/ | L(F<Lsidie>-10.5/3)

NOL71Y [#<yscale>*7.237] Z[#<zscale>*-15.482]
MILBLY [#<yscale>*6.237] Z[#<zscale>*-13.677]
NI19LY [#<yscale>*4, 7371 Z[#<zscale>*-11.229]

NO201Y [2<yscale=*4. 2371 Z[#<zscale=*-10.475]

N92‘11‘r’[#<yscale>*3.23?2[#{25:319:»‘-9,204]
NO221Y [#<yscale=*2. 737 Z[#<zscale>*-8.696)
N9231Y [#<yscale=*2, 237]Z[#=<zscale=*-8, 264]

Figure 2.5: The Mini GUI

User Manuelle V2.5, 2013-03-04
11/195

File View Settings Units Ulilities Scripts

MIST OFF SPINDLE OFF >

MAMUAL FLOOD OFF BRAKE ON

Tool: 0 01 d 20,0000 Y0.0000 Z0.0000 (inch)

Work Offsets: G54 X0.0000 Y0.0000 Z0.0000

X 0.0000 .

_) machine

Y 0.0000 e

* world

Z continuous
. -

Linear Jog Speed (inch) /min:

Spindie speed Override:

GEB0 G17 G40 G20 GI0 G924 G54 G49 GI9 GE4 GIT7 G91.1 GB M5 M2 M4E M53 MO FO S0
Program: none - Status: idle

| Open... Run Pause Resume | Step Verify | Optional Stop

Figure 2.6: The TkLinuxCNC GUI

* Keystick, a character-based screen graphics program suitable for minimal installations (without the X server running).

User Manuelle V2.5, 2013-03-04

12/195

F1 Estop On/0fF Fo HMDI Mode

F2 HMachine Ons/0fF Fb Reset Interp
F3 HMarual Mode F7 HMist OnsOfFF

F9 5Spndl Fud/0OFf ESC Aborts Actions
F10 Spnd]l Rew/OFf TAB Selects Params
F11 Spndl Decreasze END (uits Display

F4 Auto Mode F8 Flood OnA0FF F12 Spndl Increase % Toggles Help
MAMUAL SPIMILE STOFPED -—— HOMED
Over+ide? 100 LUBE OFF BRAKE 0OM # SELECTED
Tool: Q LUBE 0K MIST OFF Speed: B0,0
Of fzet: [, Qo FLOOD OFF Ihcr: continuous

__E__
Relative Act Pos: [, QICI0

01, 000

—————————————————————— EMC-HAL-SIH-KEYSTICK EHC

yersion

Figure 2.7: The Keystick GUI

e Xemc, an X-Windows program. A simulator configuration of Xemc can be ran from the configuration picker.

* halui - a HAL based user interface which allows to control LinuxCNC using knobs and switches. See the Integrators manual

for more information on halui.

* linuxcncrsh - a telnet based user interface which allows commands to be sent to LinuxCNC from remote computers.

2.4 Virtual Control Panels

* PyVCP a python based virtual control panel that can be added to the Axis GUI or be stand alone.

User Manuelle V2.5, 2013-03-04

13/195
File Machine View Help
= & THC Enable
= THC Settings
Manual Control [F3] | MDI [F5] Preview | DRO Vel Tolerance |0.20

Axis: I:I

Volts Setting 1

AF| A AF

Volts Tolerance |2.0

Arc Volts Status
Under OK Over

Spindle: € Status
Velocity Arc Offset
B B -o.0000
Actual Volts
Feed Override: 100 %
Jog Speed: 60 infmin

Max Velocity: 420 in/min

MDI Commands

Rapid to Home

ESTOP No tool Position: Relative Actual

Figure 2.8: PyVCP with Axis

* GladeVCP - a glade based virtual control panel that can be added to the Axis GUI or be stand alone.

User Manuelle V2.5, 2013-03-04
14 /195

e & puEifE +=zNX¥[EE » | spine | comersangie | x00z | woe | Tt |
Hanuele Kentrola [F31 | MO [FS] verschin | DAD | Camern GladeNCP | ~Spindin _—
Whee & X ¥ T Modbus () VFD onlinei_)
AR gpond
_| bution D online
0@ oC brake) __manual
Spindle AFM ;. 0 VFDMr: 0.0
toggiebutton 0.0 3300
o0 2000
0.0
Gt Bolt. peoredion
- o) ' - e
ol
T— botbam
Scale |0 =1 | -
Vorschubiibersteusrung: 100w/ __ wn @ Conigat
Scheittgeschwindighst: 1823 mrymin [T _|_ N Fump |. b
Maximale Geschwindighost: 720 mmymin [0 || -__
{ ax15 ~splash g-code™ Mot imtended for actual milling) -_'l SOyl i oy ke
{ To ren this code anyway you might have to Tewch Off the 7 anis) 400
{ depending on year setep, As if pou had sose saterial in jour mill) __
{ Ming jogq the 7 sl d5wn & BAT 1Ren Teach off) |
{ ales press the Toggle Skip Lines with “5° 1o see that part } Limit wwritches
{ If the pregram 15 tos big or small for your machire, change ihe scale #3) “. ..-. 2_. 21.
{fent: Jusr/share/fontastrustype/ resTont FreefariiBeldItalic. vef)h
(axt: EMC2eLeAXTS) ¥

Figure 2.9: GladeVCP with Axis

See the Integrators manual for more information on Virtual Control Panels.

2.5 Languages

LinuxCNC uses translation files to translate LinuxCNC User Interfaces into many languages. You just need to log in with the
language you intend to use and when you start up LinuxCNC it comes up in that language. If your language has not been
translated contact a developer on the IRC or the mailing list if you can assist in the translation.

2.6 Thinking Like a Machine Operator

This book will not even pretend that it can teach you to run a mill or a lathe. Becoming a machinist takes time and hard work. An
author once said, "We learn from experience, if at all." Broken tools, gouged vices, and scars are the evidence of lessons taught.
Good part finish, close tolerances, and careful work are the evidence of lessons learned. No machine, no computer program, can
take the place of human experience.

As you begin to work with the LinuxCNC program, you will need to place yourself in the position of operator. You need to think
of yourself in the role of the one in charge of a machine. It is a machine that is either waiting for your command or executing
the command that you have just given it. Throughout these pages we will give information that will help you become a good
operator of the LinuxCNC system. You will need some information right up front here so that the following pages will make
sense to you.

2.7 Modes of Operation

When LinuxCNC is running, there are three different major modes used for inputting commands. These are Manual, Auto, and
MDI. Changing from one mode to another makes a big difference in the way that the LinuxCNC control behaves. There are

User Manuelle V2.5, 2013-03-04
15/195

specific things that can be done in one mode that cannot be done in another. An operator can home an axis in manual mode but
not in auto or MDI modes. An operator can cause the machine to execute a whole file full of G-codes in the auto mode but not in
manual or MDL

In manual mode, each command is entered separately. In human terms a manual command might be turn on coolant or jog X at
25 inches per minute. These are roughly equivalent to flipping a switch or turning the hand wheel for an axis. These commands
are normally handled on one of the graphical interfaces by pressing a button with the mouse or holding down a key on the
keyboard. In auto mode, a similar button or key press might be used to load or start the running of a whole program of G-code
that is stored in a file. In the MDI mode the operator might type in a block of code and tell the machine to execute it by pressing
the <return> or <enter> key on the keyboard.

Some motion control commands are available and will cause the same changes in motion in all modes. These include abort,
estop, and feed rate override). Commands like these should be self explanatory.

The AXIS user interface hides some of the distinctions between Auto and the other modes by making Auto-commands available
at most times. It also blurs the distinction between Manual and MDI because some Manual commands like Touch Off are actually
implemented by sending MDI commands. It does this by automatically changing to the mode that is needed for the action the
user has requested.

User Manuelle V2.5, 2013-03-04
16/195

Chapter 3

Important User Concepts

This chapter covers important user concepts that should be understood before attempting to run a CNC machine with g code.

3.1 Trajectory Control

3.1.1 Trajectory Planning

Trajectory planning, in general, is the means by which LinuxCNC follows the path specified by your G Code program, while still
operating within the limits of your machinery.

A G Code program can never be fully obeyed. For example, imagine you specify as a single-line program the following move:

Gl X1 F10 (Gl is linear move, X1 is the destination, F10 is the speed)

In reality, the whole move can’t be made at F10, since the machine must accelerate from a stop, move toward X=1, and then
decelerate to stop again. Sometimes part of the move is done at F10, but for many moves, especially short ones, the specified
feed rate is never reached at all. Having short moves in your G Code can cause your machine to slow down and speed up for the
longer moves if the naive cam detector is not employed with G64 Pn.

The basic acceleration and deceleration described above is not complex and there is no compromise to be made. In the INI file
the specified machine constraints such as maximum axis velocity and axis acceleration must be obeyed by the trajectory planner.

3.1.2 Path Following

A less straightforward problem is that of path following. When you program a corner in G Code, the trajectory planner can do
several things, all of which are right in some cases: it can decelerate to a stop exactly at the coordinates of the corner, and then
accelerate in the new direction. It can also do what is called blending, which is to keep the feed rate up while going through the
corner, making it necessary to round the corner off in order to obey machine constraints. You can see that there is a trade off
here: you can slow down to get better path following, or keep the speed up and have worse path following. Depending on the
particular cut, the material, the tooling, etc., the programmer may want to compromise differently.

Rapid moves also obey the current trajectory control. With moves long enough to reach maximum velocity on a machine with
low acceleration and no path tolerance specified, you can get a fairly round corner.

3.1.3 Programming the Planner
The trajectory control commands are as follows:

* G61 - (Exact Path Mode) visits the programmed point exactly, even though that means it might temporarily come to a complete
stop in order to change direction to the next programmed point.

User Manuelle V2.5, 2013-03-04
17 /195

* G61.1 - (Exact Stop Mode) tells the planner to come to an exact stop at every segment’s end.

¢ (G64 - (Blend Without Tolerance Mode) G64 is the default setting when you start LinuxCNC. G64 is just blending and the naive
cam detector is not enabled. G64 and G64 PO tell the planner to sacrifice path following accuracy in order to keep the feed
rate up. This is necessary for some types of material or tooling where exact stops are harmful, and can work great as long as
the programmier is careful to keep in mind that the tool’s path will be somewhat more curvy than the program specifies. When
using GO (rapid) moves with G64 use caution on clearance moves and allow enough distance to clear obstacles based on the
acceleration capabilities of your machine.

* G64 P- Q- - (Blend With Tolerance Mode) This enables the naive cam detector and enables blending with a tolerance. If
you program G64 P0.05, you tell the planner that you want continuous feed, but at programmed corners you want it to slow
down enough so that the tool path can stay within 0.05 user units of the programmed path. The exact amount of slowdown
depends on the geometry of the programmed corner and the machine constraints, but the only thing the programmer needs to
worry about is the tolerance. This gives the programmer complete control over the path following compromise. The blend
tolerance can be changed throughout the program as necessary. Beware that a specification of G64 PO has the same effect as
G64 alone (above), which is necessary for backward compatibility for old G Code programs. See the G Code Chapter for more
information on G64 P- Q-.

* Blending without tolerance - The controlled point will touch each specified movement at at least one point. The machine will
never move at such a speed that it cannot come to an exact stop at the end of the current movement (or next movement, if you
pause when blending has already started). The distance from the end point of the move is as large as it needs to be to keep up
the best contouring feed.

* Naive Cam Detector - Successive G1 moves that involve only the XYZ axes that deviate less than Q- from a straight line are
merged into a single straight line. This merged movement replaces the individual G1 movements for the purposes of blending
with tolerance. Between successive movements, the controlled point will pass no more than P- from the actual endpoints of
the movements. The controlled point will touch at least one point on each movement. The machine will never move at such a
speed that it cannot come to an exact stop at the end of the current movement (or next movement, if you pause when blending
has already started) On G2/3 moves in the G17 (XY) plane when the maximum deviation of an arc from a straight line is less
than the G64 Q- tolerance the arc is broken into two lines (from start of arc to midpoint, and from midpoint to end). those lines
are then subject to the naive cam algorithm for lines. Thus, line-arc, arc-arc, and arc-line cases as well as line-line benefit from
the naive cam detector. This improves contouring performance by simplifying the path.

In the following figure the blue line represents the actual machine velocity. The red lines are the acceleration capability of the
machine. The horizontal lines below each plot is the planned move. The upper plot shows how the trajectory planner will slow
the machine down when short moves are encountered to stay within the limits of the machines acceleration setting to be able to
come to an exact stop at the end of the next move. The bottom plot shows the effect of the Naive Cam Detector to combine the
moves and do a better job of keeping the velocity as planned.

Figure 3.1: Naive Cam Detector

3.1.4 Planning Moves

Make sure moves are long enough to suit your machine/material. Principally because of the rule that the machine will never
move at such a speed that it cannot come to a complete stop at the end of the current movement, there is a minimum movement
length that will allow the machine to keep up a requested feed rate with a given acceleration setting.

The acceleration and deceleration phase each use half the ini file MAX_ACCELERATION. In a blend that is an exact reversal,
this causes the total axis acceleration to equal the ini file MAX_ACCELERATION. In other cases, the actual machine acceleration
is somewhat less than the ini file acceleration

User Manuelle V2.5, 2013-03-04
18/195

To keep up the feed rate, the move must be longer than the distance it takes to accelerate from O to the desired feed rate and then
stop again. Using A as 1/2 the ini file MAX_ACCELERATION and F as the feed rate in units per second, the acceleration time
is t; = F/A and the acceleration distance is d, = F*t,/2. The deceleration time and distance are the same, making the critical
distance d = d, + dg =2 * d, = F?/A.

For example, for a feed rate of 1 inch per second and an acceleration of 10 inches/sec?, the critical distance is 12/10 = 1/10 = 0.1
inches.

For a feed rate of 0.5 inch per second, the critical distance is 52/100 = 25/10 = 0.025 inches.

3.2 G Code

3.2.1 Defaults

When LinuxCNC first starts up many G and M codes are loaded by default. The current active G and M codes can be viewed on
the MDI tab in the Active G-Codes: window in the AXIS interface. These G and M codes define the behavior of LinuxCNC and
it is important that you understand what each one does before running LinuxCNC. The defaults can be changed when running
a G-Code file and left in a different state than when you started your LinuxCNC session. The best practice is to set the defaults
needed for the job in the preamble of your G-Code file and not assume that the defaults have not changed. Printing out the
G-Code Quick Reference page can help you remember what each one is.

3.2.2 Feed Rate

How the feed rate is applied depends on if an axis involved with the move is a rotary axis. Read and understand the Feed Rate
section if you have a rotary axis or a lathe.

3.2.3 Tool Radius Offset

Tool Radius Offset (G41/42) requires that the tool be able to touch somewhere along each programmed move without gouging
the two adjacent moves. If that is not possible with the current tool diameter you will get an error. A smaller diameter tool may
run without an error on the same path. This means you can program a cutter to pass down a path that is narrower than the cutter
without any errors. See the Cutter Compensation Section for more information.

3.3 Homing

After starting LinuxCNC each axis must be homed prior to running a program or running a MDI command.

If your machine does not have home switches a match mark on each axis can aid in homing the machine coordinates to the same
place each time.

Once homed your soft limits that are set in the ini file will be used.

If you want to deviate from the default behavior, or want to use the Mini interface you will need to set the option NO_FORCE_HOMING
=1 in the [TRAIJ] section of your ini file. More information on homing can be found in the Integrator Manual.

3.4 Tool Changes

There are several options when doing manual tool changes. See the [EMCIO] section of the Integrator Manual for information
on configuration of these options. Also see the G28 and G30 section of the User Manual.

User Manuelle V2.5, 2013-03-04
19/195

3.5 Coordinate Systems

The Coordinate Systems can be confusing at first. Before running a CNC machine you must understand the basics of the
coordinate systems used by LinuxCNC. In depth information on the LinuxCNC Coordinate Systems is in the Coordinate System
Section of this manual.

3.5.1 G53 Machine Coordinate

When you home LinuxCNC you set the G53 Machine Coordinate System to 0 for each axis homed.
* No other coordinate systems or tool offsets are changed by homing.

The only time you move in the G53 machine coordinate system is when you program a G53 on the same line as a move. Normally
you are in the G54 coordinate system.

3.5.2 G54-59.3 User Coordinates

Normally you use the G54 Coordinate System. When an offset is applied to a current user coordinate system a small blue ball
with lines will be at the machine origin when your DRO is displaying Position: Relative Actual in Axis. If your offsets are
temporary use the Zero Coordinate System from the Machine menu or program GI0 L2 P1 X0 YO0 Z0 at the end of your G Code
file. Change the P number to suit the coordinate system you wish to clear the offset in.

* Offsets stored in a user coordinate system are retained when LinuxCNC is shut down.

* Using the Touch Off button in Axis sets an offset for the chosen User Coordinate System.

3.5.3 When You’re Lost

If you’re having trouble getting 0,0,0 on the DRO when you think you should, you may have some offsets programmed in and
need to remove them.

* Move to the Machine origin with G53 GO X0 Y0 Z0
¢ Clear any G92 offset with G92.1

Use the G54 coordinate system with G54

Set the G54 coordinate system to be the same as the machine coordinate system with G10 L2 P1 X0 YO Z0 RO
* Turn off tool offsets with G49

 Turn on the Relative Coordinate Display from the menu

Now you should be at the machine origin X0 YO Z0O and the relative coordinate system should be the same as the machine
coordinate system.

3.6 Machine Configurations

The following diagram shows a typical mill showing direction of travel of the tool and the mill table and limit switches. Notice
how the mill table moves in the opposite direction of the Cartesian coordinate system arrows shown by the Tool Direction image.
This makes the tool move in the correct direction in relation to the material.

User Manuelle V2.5, 2013-03-04
20/195

Tool Direction

+Z
+Y
+A
+X
Rotary Table
Rotaion +A
‘H'\-\.
Z Origin,
Home Switch &
19" Home Position

X Origin &
Home Switch

¥ Origin, Home Switch &
Home Position

Figure 3.2: Mill Configuration

The following diagram shows a typical lathe showing direction of travel of the tool and limit switches.

User Manuelle V2.5, 2013-03-04
21/195

Figure 3.3: Lathe Configuration

User Manuelle V2.5, 2013-03-04
22/195

Part 11

User Interfaces

User Manuelle V2.5, 2013-03-04
23/195

Chapter 4

AXIS GUI

4.1 Introduction

AXIS is a graphical front-end for LinuxCNC which features a live preview and backplot. It is written in Python and uses Tk and
OpenGL to display its user interface.

User Manuelle V2.5, 2013-03-04

24 /195

1% axis.ngc - AXIS 2.5.0 on EMC-HAL-SIM-AXIS BEIE)
Eile Machine View Help
i e | osam o 4
QD v/ +=ZNXIY| PG|
Manual Control [F3] | MDI [F5] Preview | DRO
Axis:
Feed Owverride: 100 %
Jog Speed: 16 in/min
Max Velocity: 72 in/min
{ AXIS "splash g-code" Mot intended for actual milling)
(To run this code anyway you might have to Touch Off the Z axis)
{ depending on your setup. As if you had some material in your mill...)
{ Hint jog the Z axis down a bit then touch off)
{ Also press the Toggle Skip Lines with "/" to see that part)
(If the program is too big or small for your machine, change the scale #3)
(font: susr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)
(text: EMC2*S*AXIS)
ESTOP No tool Position: Relative Actual

Figure 4.1: AXIS Window

4.2 Getting Started

If your configuration is not currently set up to use AXIS, you can change it by editing the .ini file. In the section [DISPLAY]
change the DISPLAY line to read DISPLAY = axis.

The sample configuration sim/axis.ini is already configured to use AXIS as its front-end.

4.2.1 A Typical Session

1. Start LinuxCNC.
2. Reset E-STOP (F1) and turn the Machine Power (F2) on.

3. Home all axes.

User Manuelle V2.5, 2013-03-04
25/195

Load the g-code file.
Use the preview plot to verify that the program is correct.
Load the material.

Set the proper offset for each axis by jogging and using the Touch Off button as needed.

® N s

Run the program.

Note

To run the same program again depends on your setup and requirements. You might need to load more material and set offsets
or move over and set an offset then run the program again. If your material is fixtured then you might need to only run the
program again. See the Machine Menu for more information on the run command.

4.3 AXIS Display

The AXIS window contains the following elements:

* A display area that shows one of the following:

— a preview of the loaded file (in this case, axis.ngc), as well as the current location of the CNC machine’s controlled point.
Later, this area will display the path the CNC machine has moved through, called the backplot

— alarge readout showing the current position and all offsets.

* A menu bar and toolbar that allow you to perform various actions

* Manual Control Tab - which allows you to make the machine move, turn the spindle on or off, and turn the coolant on or off if
included in the ini file.

* MDI Tab - where G-code programs can be entered manually, one line at a time. This also shows the Active G Codes which
shows which modal G Codes are in effect.

* Feed Override - which allows you to scale the speed of programmed motions. The default maximum is 120% and can be set
to a different value in the ini file. See the Integrator Manual for more information on this setting.

* Spindle Override - which allows you to scale the spindle speed up or down.

* Jog Speed - which allows you to set the jog speed within the limits set in the ini file. See the Integrator Manual for more
information on the ini file.

* Max Velocity - which allows you to restrict the maximum velocity of all programmed motions (except spindle synchronized
motion).

* A text display area that shows the loaded G-Code.

* A status bar which shows the state of the machine. In this screen shot, the machine is turned on, does not have a tool inserted,
and the displayed position is Relative (showing all offsets), and Actual (showing feedback position).

4.3.1 Menu ltems

Some menu items might be grayed out depending on how you have your .ini file configured. For more information on configura-
tion see the Integrator Manual.

FILE MENU

* Open... - Opens a standard dialog box to open a g code file to load in AXIS. If you have configured LinuxCNC to use a filter
program you can also open it up. See the Integrator manual for more information on filter programs.

User Manuelle V2.5, 2013-03-04
26/195

Recent Files - Displays a list of recently opened files.

Edit. .. - Open the current g code file for editing if you have an editor configured in your ini file. See the Integrator Manual for
more information on specifying an editor to use.

Reload - Reload the current g code file. If you edited it you must reload it for the changes to take affect. If you stop a file and
want to start from the beginning then reload the file. The toolbar reload is the same as the menu.

Save gcode as. .. - Save the current file with a new name.

Properties - The sum of the rapid and feed moves. Does not factor in acceleration, blending or path mode so time reported will
never be less than the actual run time.

Edit tool table. .. - Same as Edit if you have defined an editor you can open the tool table and edit it.
Reload tool table - After editing the tool table you must reload it.

Ladder editor - If you have loaded Classic Ladder you can edit it from here. See the Integrator Manual on setting up Classic
Ladder

Quit - Terminates the current LinuxCNC session.

MACHINE MENU

Toggle Emergency Stop FI - Change the state of the Emergency Stop.
Toggle Machine Power F2 - Change the state of the Machine Power if the Emergency Stop is not on.
Run Program - Run the currently loaded program from the beginning.

Run From Selected Line - Select the line you want to start from first. Use with caution as this will move the tool to the expected
position before the line first then it will execute the rest of the code.

@ Warning

Do not use Run From Selected Line if your g code program contains subroutines.

Step - Single step through a program.

Pause - Pause a program.

Resume - Resume running from a pause.

Stop - Stop a running program. When run is selected after a stop the program will start from the beginning.

Stop at M1 - If an M1 is reached, and this is checked, program execution will stop on the M1 line. Press Resume to continue.
Skip lines with "/" - If a line begins with / and this is checked, the line will be skipped.

Clear MDI history - Clears the MDI history window.

Copy from MDI history - Copies the MDI history to the clipboard

Paste to MDI history - Paste from the clipboard to the MDI history window

Calibration - Starts a PID tuning assistant, which is mainly for servo systems. Some things can be changed on a stepper system.

Show HAL Configuration - Opens the HAL Configuration window where you can monitor HAL Components, Pins, Parameters,
Signals, Functions, and Threads.

HAL Meter - Opens a window where you can monitor a single HAL Pin, Signal, or Parameter.

User Manuelle V2.5, 2013-03-04
27 /195

HAL Scope - Opens a virtual oscilloscope that allows plotting HAL values vs. time.

Show LinuxCNC Status - Opens a window showing LinuxCNC’s status.

Set Debug Level - Opens a window where debug levels can be viewed and some can be set.
Homing - Home one or all axes.

Unhoming - Unhome one or all axes.

Zero Coordinate System - Clear (set to zero) a chosen offset.

Tool touch off to workpiece - When performing Touch Off, the value entered is relative to the current workpiece (G5x) coordi-
nate system, as modified by the axis offset (G92). When the Touch Off is complete, the Relative coordinate for the chosen axis
will become the value entered. See G10 L10 in the G code chapter.

Tool touch off to fixture - When performing Touch Off, the value entered is relative to the ninth (G59.3) coordinate system,
with the axis offset (G92) ignored. This is useful when there is a tool touch-off fixture at a fixed location on the machine,
with the ninth (G59.3) coordinate system set such that the tip of a zero-length tool is at the fixture’s origin when the Relative
coordinates are 0. See G10 L11 in the G code chapter.

It’s all in your point of view

The AXIS display pick menu View refers to Top, Front, and Side views. These terms are correct if the CNC machine has
its Z axis vertical, with positive Z up. This is true for vertical mills, which is probably the most popular application, and
also true for almost all EDM machines, and even vertical turret lathes, where the part is turning below the tool.

The terms Top, Front, and Side might be confusing however, in other CNC machines, such as a standard lathe, where the Z
axis is horizontal, or a horizontal mill, again where the Z axis is horizontal, or even an inverted vertical turret lathe, where
the part is turning above the tool, and the Z axis positive direction is down!

Just remember that positive Z axis is (almost) always away from the part. So be familiar with your machine’s design and
interpret the display as needed.

Top View - The Top View (or Z view) displays the G code looking along the Z axis from positive to negative. This view is best
for looking at X & Y.

Rotated Top View - The Rotated Top View (or rotated Z view) also displays the G code looking along the Z axis from positive
to negative. But sometimes it’s convenient to display the X & Y axes rotated 90 degrees to fit the display better. This view is
also best for looking at X & Y.

Side View - The Side View (or X view) displays the G code looking along the X axis from positive to negative. This view is
best for looking at Y & Z.

Front View - The Front View (or Y view) displays the G code looking along the Y axis from negative to positive. This view is
best for looking at X & Z.

Perspective View - The Perspective View (or P view) displays the G code looking at the part from an adjustable point of view,
defaulting to X+, Y-, Z+. The position is adjustable using the mouse and the drag/rotate selector. This view is a compromise
view, and while it does do a good job of trying to show three (to nine!) axes on a two-dimensional display, there will often be
some feature that is hard to see, requiring a change in viewpoint. This view is best when you would like to see all three (to
nine) axes at once.

Display Inches - Set the AXIS display scaling for inches.
Display MM - Set the AXIS display scaling for millimeters.
Show Program - The preview display of the loaded G code program can be entirely disabled if desired.

Show Program Rapids - The preview display of the loaded G code program will always show the feedrate moves (G1,G2,G3)
in white. But the display of rapid moves (GO) in cyan can be disabled if desired.

User Manuelle V2.5, 2013-03-04
28/195

Alpha-blend Program - This option makes the preview of complex programs easier to see, but may cause the preview to display
more slowly.

Show Live Plot - The highlighting of the feedrate paths (G1,G2,G3) as the tool moves can be disabled if desired.

Show Tool - The display of the tool cone/cylinder can be disabled if desired.

Show Extents - The display of the extents (maximum travel in each axis direction) of the loaded G code program can be disabled
if desired.

Show Offsets - The selected fixture offset (G54-G59.3) origin location can be shown as a set of three orthogonal lines, one each
of red, blue, and green. This offset origin (or fixture zero) display can be disabled if desired.

Show Machine Limits - The machine’s maximum travel limits for each axis, as set in the ini file, are shown as a rectangular box
drawn in red dashed lines. This is useful when loading a new G code program, or when checking for how much fixture offset
would be needed to bring the G code program within the travel limits of your machine. It can be shut off if not needed.

Show Velocity - A display of velocity is sometimes useful to see how close your machine is running to its design velocities. It
can be disabled if desired.

Show Distance to Go - Distance to go is a very handy item to know when running an unknown G code program for the
first time. In combination with the rapid override and feedrate override controls, unwanted tool and machine damage can be
avoided. Once the G code program has been debugged and is running smoothly, the Distance to Go display can be disabled if
desired.

Clear Live Plot - As the tool travels in the Axis display, the G code path is highlighted. To repeat the program, or to better see
an area of interest, the previously highlighted paths can be cleared.

Show Commanded Position - This is the position that LinuxCNC will try to go to. Once motion has stopped, this is the position
LinuxCNC will try to hold.

Show Actual Position - Actual Position is the measured position as read back from the system’s encoders or simulated by
step generators. This may differ slightly from the Commanded Position for many reasons including PID tuning, physical
constraints, or position quantization.

Show Machine Position - This is the position in unoffset coordinates, as established by Homing.

Show Relative Position - This is the Machine Position modified by G5x, G92, and G43 offsets.
HELP MENU
e About Axis - We all know what this is.

* Quick Reference - Shows the keyboard shortcut keys.

4.3.2 Toolbar buttons

From left to right in the Axis display, the toolbar buttons (keyboard shortcuts shown [in brackets]) are:

. 6 Toggle Emergency Stop [F1] (also called E-Stop)

|ﬁ Toggle Machine Power [F2]

. D Open G Code file [O]

S

Reload current file [Ctrl-R]

User Manuelle V2.5, 2013-03-04
29/195

. B Begin executing the current file [R]

J l$ Execute next line [T]

. H H Pause Execution [P] Resume Execution[S]
o Stop Program Execution [ESC]

. I—_J' Toggle Skip lines with "/" [Alt-M-/]

M]i Toggle Optional Pause [Alt-M-1]

.

. Zoom Out

Zoom In

e — Top view

—

N

Rotated Top view

e f—— Side view

¢ “—— Front view

. “'ﬂg Perspective view

@
Toggle between Drag and Rotate Mode [D]

& Clear live backplot [Ctrl-K]

4.3.3 Graphical Display Area

Coordinate Display In the upper-left corner of the program display is the coordinate display. It shows the position of the
machine. To the left of the axis name, an origin symbol is shown if the axis has been homed.

&

A limit symbol is shown if the axis is on one of its limit switches.

=

To properly interpret these numbers, refer to the Position: indicator in the status bar. If the position is Absolute, then the displayed
number is in the machine coordinate system. If it is Relative, then the displayed number is in the offset coordinate system. When
the coordinates displayed are relative and an offset has been set, the display will include a cyan machine origin marker.

User Manuelle V2.5, 2013-03-04
30/195

If the position is Commanded, then it is the ideal position --for instance, the exact coordinate given in a GO command. If it is
Actual, then it is the position the machine has actually moved to. These values can differ for several reasons: Following error,
dead band, encoder resolution, or step size. For instance, if you command a movement to X 0.0033 on your mill, but one step of
your stepper motor or one encoder count is 0.00125, then the Commanded position might be 0.0033, but the Actual position will
be 0.0025 (2 steps) or 0.00375 (3 steps).

Preview Plot

When a file is loaded, a preview of it is shown in the display area. Fast moves (such as those produced by the GO command) are
shown as cyan lines. Moves at a feed rate (such as those produced by the G/ command) are shown as solid white lines. Dwells
(such as those produced by the G4 command) are shown as small pink X marks.

GO (Rapid) moves prior to a feed move will not show on the preview plot. Rapid moves after a T<n> (Tool Change) will not
show on the preview until after the first feed move. To turn either of these features off program a G1 without any moves prior to
the GO moves.

Program Extents

The extents of the program in each axis are shown. At the ends, the least and greatest coordinate values are indicated. In the
middle, the difference between the coordinates is shown.

When some coordinates exceed the soft limits in the .ini file, the relevant dimension is shown in a different color and enclosed
by a box. In figure below the maximum soft limit is exceeded on the X axis as indicated by the box surrounding the coordinate
value. The minimum X travel of the program is -1.95, the maximum X travel is 1.88, and the program requires 3.83 inches of X
travel. To move the program so it’s within the machine’s travel in this case, jog to the left and Touch Off X again.

Figure 4.2: Soft Limit

Tool Cone When no tool is loaded, the location of the tip of the tool is indicated by the fool cone. The tool cone does not provide
guidance on the form, length, or radius of the tool.

When a tool is loaded (for instance, with the MDI command 77 M6), the cone changes to a cylinder which shows the diameter
of the tool given in the tool table file.

Backplot When the machine moves, it leaves a trail called the backplot. The color of the line indicates the type of motion:
Yellow for jogs, faint green for rapid movements, red for straight moves at a feed rate, and magenta for circular moves at a feed
rate.

Interacting By left-clicking on a portion of the preview plot, the line will be highlighted in both the graphical and text displays.
By left-clicking on an empty area, the highlighting will be removed.

By dragging with the left mouse button pressed, the preview plot will be shifted (panned).

By dragging with shift and the left mouse button pressed, or by dragging with the mouse wheel pressed, the preview plot will be
rotated. When a line is highlighted, the center of rotation is the center of the line. Otherwise, the center of rotation is the center
of the entire program.

By rotating the mouse wheel, or by dragging with the right mouse button pressed, or by dragging with control and the left mouse
button pressed, the preview plot will be zoomed in or out.

By clicking one of the Preset View icons, or by pressing V, several preset views may be selected.

User Manuelle V2.5, 2013-03-04
31/195

4.3.4 Text Display Area

By left-clicking a line of the program, the line will be highlighted in both the graphical and text displays.

When the program is running, the line currently being executed is highlighted in red. If no line has been selected by the user, the
text display will automatically scroll to show the current line.

Eile Machine View Help
Qe LD Dduad/| /M +=ZNXY PR S
Manual Control [F3] | mDI [F5] Preview | DRO

Axis: [z] X: 0.2723%

v : 0.0300@
Z: -0.0100¢

Vel: 0.0000

Feed Override: 100 %
Jog Speed: 16 infmin
Max Velocity: 72 infmin

LUL X | AL/1L*FA4TD] ¥ [UrFHEFD] LL1INETO)

: GO1 X [-98*#34#5] Y [0*2#3+#6] (lineto)
GO1 X [-98%#3+25] Y [102*#3+26] (lineto)
G3 X[-29,9645%23+#5] Y[114,9024*%#3+#6] R[1100.7342%#3]
G3 X[36.5000%#3+#5] Y[134,0000+#3+26] R[567.9238+#3]
G3 X[81.5487*#3+#5] Y[153.0500+#3+#6] R[411.1467*#3]

G3 X[154.8636%23+#5] Y[217.2743%#3+#6] R[176.9183%#3]
G3 X[179.7500+23+#5] Y[260.7500+#3+#6] R[405.6030%#3]

oM No tool Position: Relative Actual

Figure 4.3: Current and Selected Lines

4.3.5 Manual Control

While the machine is turned on but not running a program, the items in the Manual Control tab can be used to move the machine
or control its spindle and coolant.

When the machine is not turned on, or when a program is running, the manual controls are unavailable.

Many of the items described below are not useful on all machines. When AXIS detects that a particular pin is not connected in
HAL, the corresponding item in the Manual Control tab is removed. For instance, if the HAL pin motion.spindle-brake is not

User Manuelle V2.5, 2013-03-04
32/195

connected, then the Brake button will not appear on the screen. If the environment variable AXIS_NO_AUTOCONFIGURE is
set, this behavior is disabled and all the items will appear.

The Axis group Axis allows you to manually move the machine. This action is known as jogging. First, select the axis to be
moved by clicking it. Then, click and hold the + or - button depending on the desired direction of motion. The first four axes can
also be moved by the arrow keys (X and Y), PAGE UP and PAGE DOWN keys (Z), and the [and] keys (A).

If Continuous is selected, the motion will continue as long as the button or key is pressed. If another value is selected, the
machine will move exactly the displayed distance each time the button is clicked or the key is pressed. By default, the available
values are 0.1000, 0.0100, 0.0010, 0.0001

See the Configure section of the Integrator Manual for more information on setting the increments.

Homing If your machine has home switches and a homing sequence defined for all axes the button will read Home All. The
Home All button or the Ctrl-HOME key will home all axes using the homing sequence. Pressing the HOME key will home the
current axis, even if a homing sequence is defined.

If your machine has home switches and no homing sequence is defined or not all axes have a homing sequence the button will
read Home and will home the selected axis only. Each axis must be selected and homed separately.

If your machine does not have home switches defined in the configuration the Home button will set the current selected axis
current position to be the absolute position O for that axis and will set the is-homed bit for that axis.

See the Integrator Manual for more information on homing.

Touch Off By pressing Touch Off or the END key, the G54 offset for the current axis is changed so that the current axis value
will be the specified value. Expressions may be entered using the rules for rs274ngc programs, except that variables may not be
referred to. The resulting value is shown as a number.

Enter Z coordinate relative to
workpiece:

sqri[2]/2]
= 0.707107 in

Coordinate System: Pl G54 —-|

OK Cancel |

Figure 4.4: Touch Off

See also the Tool touch off to workpiece and Tool touch off to fixture options in the Machine menu.

Override Limits By pressing Override Limits, the machine will temporarily be allowed to jog off of a physical limit switch.
This check box is only available when a limit switch is tripped. The override is reset after one jog. If the axis is configured with
separate positive and negative limit switches, LinuxCNC will allow the jog only in the correct direction. Override Limits will not
allow a jog past a soft limit. The only way to disable a soft limit on an axis is to Unhome it.

The Spindle group

The buttons on the first row select the direction for the spindle to rotate: Counterclockwise, Stopped, Clockwise. Counterclock-
wise will only show up if the pin motion.spindle-reverse is in the HAL file (it can be net trick-axis motion.spindle-reverse). The
buttons on the next row increase or decrease the rotation speed. The checkbox on the third row allows the spindle brake to be
engaged or released. Depending on your machine configuration, not all the items in this group may appear. Pressing the spindle
start button sets the S speed to 1.

The Coolant group

User Manuelle V2.5, 2013-03-04
33/195

The two buttons allow the Mist and Flood coolants to be turned on and off. Depending on your machine configuration, not all
the items in this group may appear.

4.3.6 MDI

MDI allows G-code commands to be entered manually. When the machine is not turned on, or when a program is running, the
MDI controls are unavailable.

Manual Control [F3] MDI [F5] I

History:
m3 A
gas8.1 x1
M&3 PO

GO X0 Y0 Z0
MGe3 PO

GO X0 Y0 Z0

S

MDI Command:
I Go |

Active G-Codes:

Gl G17 G40 G20 G90 G94 G54 G49 G99
G54 G97 G91.1 GB M2 MS M9 M48 M33 MO

Figure 4.5: The MDI tab

* History - This shows MDI commands that have been typed earlier in this session.

e MDI Command - This allows you to enter a g-code command to be executed. Execute the command by pressing Enter or by
clicking Go.

* Active G-Codes - This shows the modal codes that are active in the interpreter. For instance, G54 indicates that the G54 offset
is applied to all coordinates that are entered. When in Auto the Active G-Codes represent the codes after any read ahead by the
interpreter.

4.3.7 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests F60 and the slider is set to
120%, then the resulting feed rate will be 72.

4.3.8 Spindle Speed Override

By moving this slider, the programmed spindle speed can be modified. For instance, if a program requests S8000 and the slider
is set to 80%, then the resulting spindle speed will be 6400. This item only appears when the HAL pin motion.spindle-speed-out
is connected.

User Manuelle V2.5, 2013-03-04
34/195

4.3.9 Jog Speed

By moving this slider, the speed of jogs can be modified. For instance, if the slider is set to 1 in/min, then a .01 inch jog will
complete in about .6 seconds, or 1/100 of a minute. Near the left side (slow jogs) the values are spaced closely together, while
near the right side (fast jogs) they are spaced much further apart, allowing a wide range of jog speeds with fine control when it is
most important.

On machines with a rotary axis, a second jog speed slider is shown. This slider sets the jog rate for the rotary axes (A, B and C).

4.3.10 Max Velocity

By moving this slider, the maximum velocity can be set. This caps the maximum velocity for all programmed moves except
spindle-synchronized moves.

4.4 Keyboard Controls

Almost all actions in AXIS can be accomplished with the keyboard. A full list of keyboard shortcuts can be found in the AXIS
Quick Reference, which can be displayed by choosing Help > Quick Reference. Many of the shortcuts are unavailable when in
MDI mode.

Feed Override Keys The Feed Override keys behave differently when in Manual Mode. The keys 12345678 will select an axis
if it is programed. If you have 3 axis then > will select axis 0, 1 will select axis 1, and 2 will select axis 2. The remainder of the
number keys will still set the Feed Override. When running a program *1234567890 will set the Feed Override to 0% - 100%.

The most frequently used keyboard shortcuts are shown in the following Table

Table 4.1: Most Common Keyboard Shortcuts

Keystroke Action Taken Mode
F1 Toggle Emergency Stop All
F2 Turn machine on/off All
,1..9,0 Set feed override from 0% to 100% Varies
X, Activate first axis Manual
Y, 1 Activate second axis Manual
Z,2 Activate third axis Manual
A3 Activate fourth axis Manual
I Select jog increment Manual
C Continuous jog Manual
Control-Home Perform homing sequence Manual
End Touch off: Set G54 offset for active Manual
axis
Left, Right Jog first axis Manual
Up, Down Jog second axis Manual
Pg Up, Pg Dn Jog third axis Manual
L] Jog fourth axis Manual
(0] Open File Manual
Control-R Reload File Manual
R Run file Manual
P Pause execution Auto
S Resume Execution Auto
ESC Stop execution Auto
Control-K Clear backplot Auto/Manual
\Y% Cycle among preset views Auto/Manual
Shift-Left,Right Rapid X Axis Manual
Shift-Up,Down Rapid Y Axis Manual
Shift-PgUp, PgDn Rapid Z Axis Manual

User Manuelle V2.5, 2013-03-04
35/195

4.5 Show LinuxCNC Status (linuxcnctop)

AXIS includes a program called linuxcnctop which shows some of the details of LinuxCNC’s state. You can run this program by
invoking Machine > Show LinuxCNC Status

acceleration le+99 A
active queue 0

actual position 0.2723 0.0300 -1.2163

adaptive feed enabled 0

ain 0.0O0.ODODOOO0OO00.00.00.00.00.00.00.00.00,

go.o0O0OO0OOOO0O000000000000000000000000000.020

00.00.O0O0O00R.OOA0O0R.00.00.00.00.00.00.00.00.00.00.00.00.00.00.|_
0 0.00ODODOOOO0O0OO0O0O000.0RO0O0

angular_units 1.0000

aout 0.0O0.0D.0O0DO0D0.00R.00.00.00.00.00.00.00.00.00.

00.000OD0O0OO0OO0OO0O00B.00.0000000000000000.00.00.020.

go.00OO0OOO0O0O000.000000,00,0000.00.00.00.00.00.00.00.

00.0000000O00O000.00.0R00

axes 3

axis_mask 7

block_delete 1

command Mo2

current_line 2698

current_vel 0.0000

cycle time 0. 000999934

debug 0

delay_left 0.0

din OOoOO0ODODDODDOOODOOOO00000000000000O00GO0

OOoO0OOOOOOOOOOOO0O0O0O0O0O0O00000000000000O0020 ;

Copy All |

Figure 4.6: LinuxCNC Status Window

The name of each item is shown in the left column. The current value is shown in the right column. If the value has recently
changed, it is shown on a red background.

4.6 MDI interface

AXIS includes a program called MDI which allows text-mode entry of MDI commands to a running LinuxCNC session. You
can run this program by opening a terminal and typing

mdi /path/to/emc.nml

Once it is running, it displays the prompt MDI>. When a blank line is entered, the machine’s current position is shown. When a
command is entered, it is sent to LinuxCNC to be executed.

This is a sample session of mdi.

User Manuelle V2.5, 2013-03-04
36/195

$ MDI ~/emc2/configs/sim/emc.nml

MDI>

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

MDI> Gl F5 X1

MDI>

(0.5928500000000374, 0.0, 0.0, 0.0, 0.0, 0.0)
MDI>

(1.0000000000000639, 0.0, 0.0, 0.0, 0.0, 0.0)

4.7 axis-remote

AXIS includes a program called axis-remote which can send certain commands to a running AXIS. The available commands are
shown by running axis-remote --help and include checking whether AXIS is running (--ping), loading a file by name, reloading
the currently loaded file (--reload), and making AXIS exit (--quit).

4.8 Manual Tool Change

LinuxCNC includes a userspace HAL component called hal_manualtoolchange, which shows a window prompt telling you what
tool is expected when a M6 command is issued. After the OK button is pressed, execution of the program will continue.

The HAL configuration file configs/sim/axis_manualtoolchange.hal shows the HAL commands necessary to use this component.

hal_manualtoolchange can be used even when AXIS is not used as the GUL. This component is most useful if you have presettable
tools and you use the tool table.

Note
Important Note: Rapids will not show on the preview after a T<n> is issued until the next feed move after the M6. This can be
very confusing to most users. To turn this feature off for the current tool change program a G1 with no move after the T<n>.

@ Insert tool 1 and click continue when ready

Continue |

Figure 4.7: The Manual Toolchange Window

4.9 Python modules

AXIS includes several Python modules which may be useful to others. For more information on one of these modules, use pydoc
<module name> or read the source code. These modules include:

* emc provides access to the LinuxCNC command, status, and error channels
* gcode provides access to the rs274ngc interpreter

* rs274 provides additional tools for working with rs274ngc files

User Manuelle V2.5, 2013-03-04
37/195

* hal allows the creation of userspace HAL components written in Python
» _togl provides an OpenGL widget that can be used in Tkinter applications

 minigl provides access to the subset of OpenGL used by AXIS

To use these modules in your own scripts, you must ensure that the directory where they reside is on Python’s module path.
When running an installed version of LinuxCNC, this should happen automatically. When running in-place, this can be done by
using scripts/rip-environment.

4.10 Using AXIS in Lathe Mode

By including the line LATHE = [in the [DISPLAY] section of the ini file, AXIS selects lathe mode. The Y axis is not shown in
coordinate readouts, the view is changed to show the Z axis extending to the right and the X axis extending towards the bottom
of the screen, and several controls (such as those for preset views) are removed. The coordinate readouts for X are replaced with
diameter and radius.

Pressing V zooms out to show the entire file, if one is loaded.

When in lathe mode, the shape of the loaded tool (if any) is shown.

Lathe Tool Shape

4.11 Advanced Configuration

For more information on ini file settings that can change how AXIS works see the INI File/Sections/[DISPLAY] Section of
Configuration chapter in the Integrator manual.

4.11.1 Program Filters

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task: Something as simple as
making sure the file ends with M2, or something as complicated as generating G-Code from an image.

User Manuelle V2.5, 2013-03-04
38/195

The [FILTER] section of the ini file controls how filters work. First, for each type of file, write a PROGRAM_EXTENSION line.
Then, specify the program to execute for each type of file. This program is given the name of the input file as its first argument,
and must write rs274ngc code to standard output. This output is what will be displayed in the text area, previewed in the display
area, and executed by LinuxCNC when Run. The following lines add support for the image-to-gcode converter included with
LinuxCNC:

[FILTER]

PROGRAM_EXTENSION = .png, .gif Greyscale Depth Image
png = image-to-gcode

gif = image-to-gcode

It is also possible to specify an interpreter:

PROGRAM_EXTENSION = .py Python Script
py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example script is available at
nc_files/holecircle.py. This script creates g-code for drilling a series of holes along the circumference of a circle.

Circular Holes
Units Ga0 {in) |
* %, Center ¥ 1.0
® ® Center Y 0.0
Start Angle 5K |
Increment Angle (170
Radius 1.0
Hole Count a
Feed Rate g.0
Haole Depth -0.1
Ol (O=no dwell) (1.0
Retract Height 0.1
‘ Dk Cancel

Figure 4.8: Circular Holes

If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form

FILTER_PROGRESS=%d

will set the AXIS progress bar to the given percentage. This feature should be used by any filter that runs for a long time.

4.11.2 The X Resource Database

The colors of most elements of the AXIS user interface can be customized through the X Resource Database. The sample file
axis_light_background changes the colors of the backplot window to a dark lines on white background scheme, and also serves

User Manuelle V2.5, 2013-03-04
39/195

as a reference for the configurable items in the display area. The sample file axis_big_dro changes the position readout to a larger
size font. To use these files:

xrdb -merge /usr/share/doc/emc2/axis_light_background

xrdb -merge /usr/share/doc/emc2/axis_big_dro

For information about the other items which can be configured in Tk applications, see the Tk man pages.

Because modern desktop environments automatically make some settings in the X Resource Database that adversely affect AXIS,
by default these settings are ignored. To make the X Resource Database items override AXIS defaults, include the following line
in your X Resources:

*AxisxoptionLevel: widgetDefault

this causes the built-in options to be created at the option level widgetDefault, so that X Resources (which are level userDefault)
can override them.

4.11.3 Physical jog wheels

To improve the interaction of AXIS with physical jog wheels, the axis currently selected in the GUI is also reported on a pin with
a name like axisui.jog.x. One of these pins is TRUE at one time, and the rest are FALSE. These are meant to control motion’s
jog-enable pins.

After AXIS has created these HAL pins, it executes the HAL file named in [HALJPOSTGUI_HALFILE. Unlike [HALJHALFILE,
only one such file may be used.

4.11.4 ~./axisrc

If it exists, the contents of ~/.axisrc are executed as Python source code just before the AXIS GUI is displayed. The details of
what may be written in the axisrc are subject to change during the development cycle.

The following adds Control-Q as a keyboard shortcut for Quit.

root_window.bind ("<Control-g>", "destroy .")
help2.append(("Control-Q", "Quit"))

4.11.5 External Editor

The menu options File > Edit. .. and File > Edit Tool Table... become available after defining the editor in the ini section [DIS-
PLAY]. Useful values include EDITOR=gedit and EDITOR=gnome-terminal -e vim. For more information, see the DISPLAY
section of the INI Configuration Chapter in the Integrator Manual.

4.11.6 Virtual Control Panel

AXIS can display a custom virtual control panel in the right-hand pane. You can program buttons, indicators, data displays and
more. For more information, see the Integrator Manual.

4.11.7 Axis Preview Control

Special comments can be inserted into the G Code file to control how the preview of AXIS behaves. In the case where you want
to limit the drawing of the preview use these special comments. Anything between the (AXIS,hide) and (AXIS,show) will not be
drawn during the preview. The (AXIS,hide) and (AXIS,show) must be used in pairs with the (AXIS,hide) being first. Anything
after a (AXIS,stop) will not be drawn during the preview.

These comments are useful to unclutter the preview display (for instance while debugging a larger g-code file, one can disable
the preview on certain parts that are already working OK).

User Manuelle V2.5, 2013-03-04
40/195

* (AXIS,hide) Stops the preview (must be first)
* (AXIS,show) Resumes the preview (must follow a hide)
* (AXIS,stop) Stops the preview from here to the end of the file.

* (AXIS,notify,the_text) Displays the_text as an info display This display can be useful in the Axis preview when (debug,message)
comments are not displayed.

User Manuelle V2.5, 2013-03-04

41/195
Chapter 5
NGCGUI
Eile Machine View Help

Q0D &

U #=zZzNXIY[BPA >

Manual Control [F3] I MDI [F5] |
Axis: v

= s ¥
|

Feed Override: 100 %)

=

Jog Speed: 16 in/min | i

Max Velocity: 72 in/min |

Preview | DRO simp Ixyz |

ngcgui-0 | move->

simp - simple subroutine example -- Ctrl-U to edit

Positional Parameters|

1|.6

|Fiadiu5A

2 |0_4

| radius_b

3|100

| feedrate

Create Feature

0
Ctrl-k for Key bindings

(text: EMC2¥5#AXIS)

1: [AXIS "splash g-code" Mot intended for actual milling)

2: [To run this code anyway you might have to Touch Off the Z axis)

3. (depending on your setup. As if you had some material in your mill...)

{ Hint jog the Z axis down a bit then touch off)

{ Also press the Toggle Skip Lines with "/" to see that part)

{ If the program is too big or small for your machine, change the scale #3)

5. (font: susr/share/fonts/truetype/freefont/FreeSerifBoldItalic.ttf)

ESTOP |Nu tool

Position: Relative Actual

LA

User Manuelle V2.5, 2013-03-04
42 /195

5.1 Overview

* NGCGUI is a utility for using LinuxCNC subroutines.

NGCGUI can run as a standalone application or be embedded in multiple tab pages in the axis gui

* Multiple copies of the same subroutine can be created

* Subroutines can be concatenated together to form a complete multiple step program

* New subroutines can be added on the fly

NGCGUI is a powerful tool for building g-code programs from subroutines on the fly. Subroutines can be concatenated to build

a complete program. Multiple instances of a subroutine can be used to perform the same task in different locations on the part.
Any valid g-code can be used in the subroutine.

5.2 Demo Configs

Three demo configurations are are located in the sim directory of the LinuxCNC configuration picker. The configuration picker
is on the main menu Applications > CNC > LinuxCNC.

* ngcgui - a comprehensive example that contains these subroutines

— simp - a simple subroutine example that creates two circles
— xyz - creates a box based on two opposite corners

— iquad - creates an internal quadrilateral

— db25 - creates a DB25 plug cutout

— ihex - creates an interal hexagon

— gosper - a recursion demo

— Custom - load other ngcgui-compatible subfiles

— 1ttt - True Type Tracer creates text for engraving
* ngcgui-lathe - an example with lathe subroutines

id - bores the inside diameter

od - turns the outside diameter

taper-od - turns a taper on the outside diameter

Custom - creates custom tabs

* ngcgui-simple - a simple example

— simp - a simple subroutine example that creates two circles

— Xxyz - creates a box based on two opposite corners

To view the demonstration subroutines press the E-Stop @ then Machine Power then Home All. Pick a ngcgui tab and

press Create Feature then Finalize. Now press the Run p button to watch it run.

Note
The demonstration subroutines should run on the simualated machine configurations included in the distribution. A user should
always understand the behavior and purpose of a program before running on a real machine.

User Manuelle V2.5, 2013-03-04
43/195

5.3 Libraries

The simulation configs for ngcgui use links to non-user-writable LinuxCNC libraries for:

* ngcgui-compatible subfiles - ngcgui_lib
* Helper subroutines - ngcgui_lib/utilitysubs

* User M files - ngcgui_lib/mfiles

These libraries are defined by the ini file items:

[RS274NGC]
SUBROUTINE_PATH = ../../../nc_files/ngcgui_lib:../../../nc_files/ngcgui_lib/utilitysubs
USER_M_PATH = ../../../nc_files/ngcgui_lib/mfiles

Note

These are long lines (not continued on multiple lines) that specify the directories used in a search patch. The directory names
are separated by colons (:)

A user can create new directories for their own subroutines and M-files and add them to the search path(s).
For example, a user could create directories from the terminal.

mkdir /home/myusername/mysubs
mkdir /home/myusername/mymfiles

And then create or copy files to these user-writable directories. For instance, a user might create a ngcgui-compatible subfile
named:

/home/myusername/mysubs/example.ngc

The ini file must be edited to include new subfiles and to augment the path(s). For this example:

[RS274NGC]

SUBROUTINE_PATH = /home/myusername/mysubs:../../../nc_files/ngcgui_lib:../../../nc_files/ «
ngcgui_lib/utilitysubs

USER_M_PATH = /home/myusername/mymfiles:../../../nc_files/ngcgui_lib/mfiles

[DISPLAY]
NGCGUI_SUBFILE = example.ngc

LinuxCNC and ngcgui use the first file found when searching directories in a search path. With this behavior, you can supersede
an ngcgui_lib subfile by placing a subfile with an identical name in a directory that is found earlier in the path search. More
information can be found in the INI chapter of the Integrators Manual.

5.4 Embedding NGCGUI in Axis

Several NGCGUI examples are included with LinuxCNC and are located in the sim/ngcgui directory.

User Manuelle V2.5, 2013-03-04
44 /195

5.4.1 INIFile

The following INI file items for NGCGUI go in the [DISPLAY] section.

* TKPKG = Ngcgui 1.0 - the main NGCGUI package (must precede Ngcguittt)
* TKPKG = Ngcguittt 1.0 - the True Type Tracer package for generating text for engraving.
* NGCGUI_FONT = Helvetica -12 normal - specifices the font

* NGCGUI_PREAMBLE = in_std.ngc - the preamble file to be added in front of the subroutines. When concatenating several
subroutines this is only added once.

* NGCGUI_SUBFILE = simp.ngc - creates a tab from the named subroutine
* NGCGUI_SUBFILE = "" - creates a custom tab

* NGCGUI_OPTIONS = optl opt2 ... - NGCGUI options

nonew - disallow making a new custom tab

noremove - disallow removing any tab page

noauto - no auto send (makeFile, then manually send)

noiframe - no internal image, image on separate top level

o TIT = truetype-tracer - the truetype tracer program
* TTT_PREAMBLE = in_std.ngc - Optional, specifies filename for preamble used for ttt created subfiles
This is an example of embedding NGCGUI into Axis. The subroutines need to be in a directory specified by the [RS274NGC]SUBROUT

Some example subroutines use other subroutines so check to be sure you have the dependences, if any, in a SUBROUTINE_PATH
directory. Some subroutines may use custom Mfiles which must be in a directory specified by the [RS274NGCJUSER_M_PATH.

Note
This is not a complete INI the items show are what is used by ngcgui. Many additional items are required by LinuxCNC to have
a complete INI file.

Sample INI

[RS274NGC]

SUBROUTINE_PATH = ../../../nc_files/ngcgui_lib:../../../ngcgui_lib/utilitysubs
USER_M PATH = ../../../nc_files/ngcgui_lib/mfiles

[DISPLAY]

TKPKG = Ngcgui 1.0

TKPKG = Ngcguittt 1.0

Ngcgui must precede Ngcguittt

NGCGUI_FONT = Helvetica -12 normal

specify filenames only, files must be in [RS274NGC]SUBROUTINE_PATH
NGCGUI_PREAMBLE = in_std.ngc

NGCGUI_SUBFILE = simp.ngc

NGCGUI_SUBFILE = Xyz.ngc

NGCGUI_SUBFILE = iquad.ngc

NGCGUI_SUBFILE = db25.ngc

NGCGUI_SUBFILE = ihex.ngc

NGCGUI_SUBFILE = gosper.ngc

specify "" for a custom tab page

NGCGUI_SUBFILE = "

User Manuelle V2.5, 2013-03-04
45/195

#NGCGUI_SUBFILE = "" use when image frame is specified if

opening other files is required

images will be put in a top level window
NGCGUI_OPTIONS =

#NGCGUI_OPTIONS = optl opt2

opt items:

nonew —— disallow making a new custom tab

noremove —-— disallow removing any tab page

noauto —-— no auto send (makeFile, then manually send)

noiframe —-— no internal image, image on separate top level
TTT = truetype-tracer

TTT_PREAMBLE

in_std.ngc

PROGRAM_PREFIX = ../../nc_files

5.4.2 Truetype Tracer

Ngcgui_ttt provides support for truetype-tracer (v4). It creates an axis tab page which allows a user to create a new ngcgui tab
page after entering text and selecting a font and other parameters. (Truetype-tracer must be installed independently).

To embed ngcgui_ttt in axis, specify the following items in addition to ngcgui items:

Item: [DISPLAY]TKPKG = Ngcgui_ttt version_number
Example: [DISPLAY]TKPKG = Ngcgui_ttt 1.0
Note: Mandatory, specifies loading of ngcgui_ttt in an axis tab page named ttt.

Must follow the TKPKG = Ngcgui item.

Item: [DISPLAY]TTT = path_to_truetype-tracer
Example: [DISPLAY]TTT = truetype-tracer
Note: Optional, if not specified, attempt to use /usr/local/bin/truetype-tracer.

Specify with absolute pathname or as a simple executable name
in which case the user PATH environment will used to find the program.

Item: [DISPLAY]TTT_PREAMBLE = preamble_filename
Example: [DISPLAY]TTT_PREAMBLE in_std.ngc
Note: Optional, specifies filename for preamble used for ttt created subfiles.

5.4.3 INI Examples

Ngcgui uses the EMC search path to find files.
The search path begins with the standard directory specified by:

[DISPLAY]PROGRAM_PREFIX
followed by multiple directories specfied by:
[RS274NGC] SUBROUTINE_PATH

Directories Directories may be specifed as absolute paths or relative paths.

Example: [DISPLAY]PROGRAM_PREFIX /home /myname/emc2/nc_files
Example: [DISPLAY]PROGRAM_PREFIX = ~/emc2/nc_files
Example: [DISPLAY]PROGRAM_PREFIX ./../../nc_files

User Manuelle V2.5, 2013-03-04
46 /195

An absolute path beginning with a "/" specifies a complete filesystem location. A path beginning with a "~/" specifies a path
starting from the user’s home directory. A path beginning with "~username/" specifies a path starting in username’s home
directory.

Relative Paths Relative paths are based on the startup directory which is the directory containing the ini file. Using relative paths
can facilitate relocation of configurations but requires a good understanding of linux path specifiers.

./do is the same as dO, e.g., a directory named d0 in the startup directory
../dl refers to a directory dl in the parent directory
../ ../d2 refers to a directory d2 in the parent of the parent directory

./../../d3 etc.

Multiple directories can be specified with [RS274NGC]JSUBROUTINE_PATH by separating them with colons. The following
example illustrates the format for multiple directories and shows the use of relative and absolute paths.

Example: [RS274NGC] SUBROUTINE_PATH = ../../../nc_files/ngcgui_1lib:../../../nc_files/ngcgu

This is one long line, do not continue on multiple lines. When emc and/or ngcgui searches for files, the first file found in the
search is used.

EMC (and NGCGUI) must be able to find all subroutines including helper routines that are called from within NGCGUI subfiles.
It is convenient to place utility subs in a separate directory as indicated in the example above.

The distribution includes the ngcgui_lib directory and demo files for preambles, subfiles, postambles and helper files. To modify
the behavior of the files, you can copy any file and place it in an earlier part of the search path. The first directory searched is
[DISPLAY]PROGRAM_PREFIX. You can use this directory but it is better practice to create dedicated directory(ies) and put
them at the beginning of the [RS274NGC]SUBROUTINE_PATH.

In the following example, files in /home/myname/emc2/mysubs will be found before files in ../../../nc_files/ngcgui_lib.
Example: [RS274NGC] SUBROUTINE_PATH = /home/myname/emc2/mysubs:../../../nc_files/ngcgui_11i

New users may inadvertently try to use files that are not structured to be compatible with ngcgui requirements. Ngcgui will likely
report numerous errors if the files are not coded per its conventions. Good practice suggests that ngcgui-compatible subfiles
should be placed in a directory dedicated to that purpose and that preamble, postamble, and helper files should be in separate
directory(ies) to discourage attempts to use them as subfiles. Files not intended for use as subfiles can include a special comment:
"(not_a_subfile)" so that ngcgui will reject them automatically with a relevant message.

To embed ngcgui in axis, specify the following items in the inifile:

Item: [DISPLAY]PROGRAM_PREFIX = dirname
Example: [DISPLAY]PROGRAM_PREFIX = ../../../nc_files
Note: Mandatory and needed for numerous emc functions

It is the first directory used in the search for files

Item: [RS274NGC] SUBROUTINE_PATH = dirnamel:dirname?2:dirname3

Example: [RS274NGC]SUBROUTINE_PATH = ../../../nc_files/ngcgui_lib:../../../nc_files/ngcgui
Note: Optional, but very useful to organize subfiles and utility files

otem: [DISPLAY] TKPKG=Ngcguil version_number

Example: [DISPLAY]TKPKG=Ngcgui 1.0

Note: Mandatory, specifies loading of ngcgui axis tab pages

Item: [DISPLAY]NGCGUI_FONT = font_descriptor

Example: [DISPLAY]NGCGUI_FONT = Helvetica -12 normal

Note: Optional, font_descriptor is a tcl-compatible font specifier

with items for fonttype -fontsize fontweight
Default is: Helvetica -10 normal

Item: [DISPLAY]NGCGUI_SUBFILE = subfile_filename
Example: [DISPLAY]NGCGUI_SUBFILE

simp.ngc

User Manuelle V2.5, 2013-03-04

47 /195

Example:
Example:

Note:

ITtem:

Example:

Note:

ITtem:

Example:

Note:

Item:

Example:

Note:

[DISPLAY]NGCGUI_SUBFILE = xyz.ngc
[DISPLAY]NGCGUI_SUBFILE = ""

Use one or more items to specify ngcgui-compatible
subfiles that require an axis tab page on startup.

A "Custom" tab will be created when the filename is "".
A user can use a "Custom" tab to browse the file system
and identify preamble, subfile, and postamble files.

[DISPLAY]NGCGUI_PREAMBLE = preamble_filename

[DISPLAY]NGCGUI_PREAMBLE = in_std.ngc
Optional, when specified, the file is
Files created with "Custom" tab pages
with the page.

[DISPLAY]NGCGUI_POSTAMBLE = postamble_

[DISPLAY]NGCGUI_POSTAMBLE = bye.ngc
Optional, when specified, the file is
Files created with "Custom" tab pages
with the page.

[DISPLAY]NGCGUI_OPTIONS = optl opt2
[DISPLAY]NGCGUI_OPTIONS

prepended to all subfiles.
use the preamble specified
filename

appended to all subfiles.
use the postamble specified

nonew noremove

Multiple options are separated by blanks.
By default, ngcgui configures tab pages so that:

1) a user can make new tabs

2) a user can remove tabs (except for the last remaining one)
3) finalized files are automatically sent to axis
4)

an image frame (iframe) is made
an image for the subfile

available to display

The options nonew, noremove, noauto, noiframe respectively

disable these default behaviors.

By default, if an image (.png, .gif, jpg,pgm) file

is found in the same directory as the

subfile, the

image is displayed in the iframe. Specifying
the noiframe option makes available additional buttons
for selecting a preamble, subfile, and postamble and

additional checkboxes. Selections of

the checkboxes

are always available with special keys:
Ctrl-R Toggle "Retain values on Subfile read"

Ctrl-E Toggle "Expand subroutine”
Ctrl-a Toggle "Autosend"
(Ctrl-k lists all keys and functions)

If noiframe is specified and an image

file is found,

the image is displayed in a separate window and
all functions are available on the tab page.

The NGCGUI_OPTIONS apply to all ngcgui tabs except that the

nonew, noremove, and noiframe options

are not applicable

for "Custom" tabs. Do not use "Custom" tabs if you want

to limit the user’s ability to select
additional tab pages.

subfiles or create

User Manuelle V2.5, 2013-03-04
48 /195

5.5 Subroutine Requirements

An NGCGUI-compatible subfile contains a single subroutine definition. The name of the subroutine must be the same as the
filename (not including the .ngc suffix). LinuxCNC supports named or numbered subroutines, but only named subroutines are
compatible with NGCGUI. For more information see the O-Codes Chapter.

The first non-comment line should be a sub statement. The last non-comment line should be a endsub statement.
examp.ngc:

o<examp> sub
BODY_OF_SUBROUTINE
o<examp> endsub

The body of the subroutine should begin with a set of statements that define local named parameters for each positional parameter
expected for the subroutine call. These definitions must be consecutive beginning with #1 and ending with the last used parameter
number. Definitions must be provided for each of these parameters (no omissions).

Parameter Numbering

#<xparm> = #1
f<yparm> = #2
#<zparm> = #3

LinuxCNC considers all numbered parameters in the range #1 thru #30 to be calling parameters so ngcgui provides entry boxes
for any occurence of parameters in this range. It is good practice to avoid use of numbered parameters #1 through #30 anywhere
else in the subroutine. Using local, named parameters is recommended for all internal variables.

Each defining statement may optionally include a special comment and a default value for the parameter.

Statement Prototype

#<vname> = #n (=default_value)

or

#<vname> = #n (comment_text)

or

#<vname> = #n (=default_value comment_text)

Parameter Examples

#<xparm> = #1 (=0.0)
#<yparm> = #2 (Ystart)
#<zparm> #3 (=0.0 Z start setting)

If a default_value is provided, it will be entered in the entry box for the parameter on startup.
If comment_text is included, it will be used to identify the input instead of the parameter name.
Global Named Parameters Notes on global named parameters (#<_globalname>) and ngcgui:

As in many programming languages, use of globals is powerful but can often lead to unexpected consequences. In LinuxCNC,
existing global named parameters will be valid at subroutine execution and subroutines can modify or create global named
parameters.

The use of global named parameters as inputs to subroutines is discouraged because such usage requires the establishment
and maintenance of a well-defined global context that is problematic to maintain. Using numbered parameters #1 thru #30 as
subroutine inputs should be sufficient to satisfy a wide range of design requirements.

Declining Feature: Ngcgui includes some support for global named input parameters but usage is deprecated and not documented
here. Use of global named input parameters will not be supported with linuxCNC2.6.

While input global named parameters are discouraged, emc subroutines must use global named parameters for returning results.
Since ngcgui-compatible subfiles are aimed at gui usage, return values are not a common requirement. However, ngcgui is useful

User Manuelle V2.5, 2013-03-04
49/195

as a testing tool for subroutines which do return global named parameters and it is common for ngcgui-compatible subfiles to
call utility subroutine files that return results with global named parameters.

To support these usages, ngcgui ignores global named parameters that include a colon (:) character in their name. Use of the
colon (:) in the name prevents ngcgui from making entryboxes for these parameters.

Global Named Parameters

o<examp> sub

#<_examp:result> = #5410 (return the current tool diameter)

o<helper> call [#<x1>] [#<x2>] (call a subroutine)
#<xresult> = #<_helper:answer> (localize immediately the helper result)
#<_helper:answer> = 0.0 (nullify global named parameter used by subroutine)

o<examp> endsub

In the above example, the utility subroutine will be found in a separate file named helper.ngc. The helper routine returns a result
in a global named parameter named #<_helper:answer.

For good practice, the calling subfile immediately localizes the result for use elsewhere in the subfile and the global named
parameter used for returning the result is nullified in an attempt to mitigate its inadvertent use elsewhere in the global context.
(A nullification value of 0.0 may not always be a good choice).

Ngcgui supports the creation and concatenation of multiple features for a subfile and for multiple subfiles. It is sometimes useful
for subfiles to determine their order at runtime so ngcgui inserts a special global parameter that can be tested within subroutines.
The parameter is named #<_feature:>. Its value begins with a value of 0 and is incremented for each added feature.

Additional Features A special info comment can be included anywhere in an ngcgui-compatible subfile. The format is:

(info: info_text)

The info_text is displayed near the top of the ngcgui tab page in axis.

Files not intended for use as subfiles can include a special comment so that ngcgui will reject them automatically with a relevant
message.

(not_a_subfile)

An optional image file (.png,.gif,.jpg,.pgm) can accompany a subfile. The image file can help clarify the parameters used by
the subfile. The image file should be in the same directory as the subfile and have the same name with an appropriate image
suffix, e.g. the subfile examp.ngc could be accompanied by an image file examp.png. Ngcgui attempts to resize large images by
subsampling to a size with maximum width of 320 and maximum height of 240 pixels.

None of the conventions required for making an ngcgui-compatible subfile preclude its use as general purpose subroutine file for
LinuxCNC.

The LinuxCNC distribution includes a library (ngcgui_lib directory) that includes both example ngcgui-compatible subfiles and
utility files to illustrate the features of LinuxCNC subroutines and ngcgui usage.

Additional user sumitted subroutines can be found on the Forum in the Subroutines Section.

5.6 DB25 Example

The following shows the DB25 subroutine. In the first photo you see where you fill in the blanks for each variable.

User Manuelle V2.5, 2013-03-04

50/195
File Machine View Help
QR D& dduf@lm +=1ZNIXIY[EPE b
Manual Control [F3] IHIDI [F5] | Preview | DRO |simp |xyz |iquad db25 Iihex | gosper | Custom |ttt |
il @ e e remove| new || ngcgui-3 <-move| move—> |
;ll”(:ontmuous] db25 connector - uses iquad.ngc
Home All | Touch Off | Creats Feature | Einalize | Positional Parameters |
| 11 |toolno 11/90 |rotate
0 Restart
Enter parms for 1st feature - |2t:nn |rpm
3|2 |2conv{3climb
410 |feedrate
5|1 |cutdepth
6|02 |zlncr
702 |zsate
8o |zstart
Feed Override: 100% 0 __ [9|5 |xctr
Jog Speed: 16 in/min I 102 |ytop

Max Velocity: 72 in/min |

1:
2: (ngcgui: files: </home/john/emc2-dev/nc_files/ngecgui_lib/utilitysubs/in_std.ngc ..f..fnc_filesfngcguJ

s) Ry Y]

(ngcgui: FEATURE 110701:05.34.54) A

i 1ib/db25.ngc »)

(ngcgui: feature line added) #<_feature= = 0

(ngcgui: preamble file: shome/john/emc2-dev/nc_files/ngcgui_lib/utilitysubs/in_std.ngc)
gl7 (xy plane)

g20 (1inches)

P T . T - S Fr

ON

|Too| 1, offset 0.511, diameter 0.125 Position: Relative Actual

This photo shows the backplot of the DB25 subroutine.

User Manuelle V2.5, 2013-03-04

51/195
File Machine View Help
Qe o bpajc/u =1z NXIY P >
Manual Control [F3]1 | MDI [F5] Preview | DRO |simp |xyz |iquad |db25 |ihex |gosper | Custom |ttt
Axis: X Y Fd . 5.5090 ¢
+ ||continuous + : 2.4038¢

0.2000¢
0.0000

Home All Touch Off

Feed Override: 100 %
Jog Speed: 16 in/min
Max Velocity: 72 infmin
(#7 = zsafe = 0.2)
(#B = zstart = o)
(# = xctr = 5)
(#10 = ytop = 2)
{ #11 = rotate = a0)
o<db25> call [1]1[2000][2][1@][.1][.02][@.2][0] [5](2] [90]
(ngcgui: m2 line added) m2 (gS4 activated) %
ON Tool 1, offset 0.511, diameter 0.125 Position: Relative Actual

This photo shows the use of the new button and the custom tab to create three DB25 cutouts in one program.

User Manuelle V2.5, 2013-03-04

52/195
File Machine View Help
Q&I Vi =2 NIXIY P W
Manual Control [F3]1 | MDI [F5] Preview | DRO |simp |xyz |iguad |db25 |ihex | gosper | db25-1 |ttt | db25-2

Axis:

Feed Qverride: 100 %
Jog Speed: 16 infmin
Max Velocity: 72 in/min
(ngcgui: FEATURE 110701:06.36.13)
(ngcgui: files: =/home/john/emc2-dev/nc_files/ngcgui_lib/utilitysubs/in_std.ngc ../../nc_files/ngcgui_lib/db25.n

gc =)
(ngcgui: feature line added) #< feature= =0
(ngcgui: preamble file: shome/john/semc2-dev/nc_files/ngegui_lib/utilitysubs/in_std.ngc)
gl7 (xy plane)
g20 (inches)
g40 (cancel cutter radius compensation)
g49 (cancel tool lengthoffset)

ESTOP Mo tool Position: Relative Actual

User Manuelle V2.5, 2013-03-04
53/195

Chapter 6

Touchy GUI

Touchy is a user interface for LinuxCNC meant for use on machine control panels, and therefore does not require keyboard or
mouse.

It is meant to be used with a touch screen, and works in combination with a wheel/MPG and a few buttons and switches.

Relative Absolute DTG Handwheel
X: 0.0000 X: 0.0000 X: 0.0000
bi- 0.0000 Vi 0.0000 s 0.0000 FO: 100%
Z: 1.2063 Z: 0.0000 Z: 0.0000
Power
S0: 100%
Estop Reset Machine On Override Limits
MV: 100
Estop Machine Off
Jogging
Homing)
X
Home All Home Selected
Y
Unhome All Unhome Selected
Z
Startup MDI Manual Auto Status Preferences

Figure 6.1: Touchy

User Manuelle V2.5, 2013-03-04
54/195

6.1 Panel Configuration

6.1.1 HAL connections

Touchy requires that you create a file named touchy.hal in your configuration directory (the directory your ini file is in) to connect
its controls. Touchy executes the HAL commands in this file after it has made its own pins available for connection.

Touchy has several output pins that are meant to be connected to the motion controller to control wheel jogging:

* touchy.jog.wheel.increment, which is to be connected to the axis.N.jog-scale pin of each axis N.
* touchy.jog.wheel.N, which is to be connected to axis.N.jog-enable for each axis N.

* In addition to being connected to touchy.wheel-counts, the wheel counts should also be connected to axis.N.jog-counts for
each axis N. If you use HAL component ilowpass to smooth wheel jogging, be sure to smooth only axis.N.jog-counts and not
touchy.wheel-counts.

6.1.1.1 Required controls

Abort button (momentary contact) connected to the HAL pin fouchy.abort

* Cycle start button (momentary contact) connected to fouchy.cycle-start

Wheel/MPG, connected to touchy.wheel-counts and motion pins as described above

Single block (toggle switch) connected to fouchy.single-block

6.1.1.2 Optional controls

* For continuous jog, one center-off bidirectional momentary toggle (or two momentary buttons) for each axis, hooked to
touchy.jog.continuous.x.negative, touchy.jog.continuous.x.positive, etc.

* If a quill up button is wanted (to jog Z to the top of travel at top speed), a momentary button connected to fouchy.quill-up.

6.1.1.3 Optional panel lamps

* touchy.jog.active shows when the panel jogging controls are live

* touchy.status-indicator is on when the machine is executing G-code, and flashes when the machine is executing but is in
pause/feedhold.

6.1.2 Recommended for any setup

* Estop button hardwired in the estop chain

6.2 Setup

6.2.1 Enabling Touchy

To use Touchy, in the [DISPLAY] section of your ini file change the display selector line to DISPLAY = touchy

User Manuelle V2.5, 2013-03-04
55/195

6.2.2 Preferences
When you start Touchy the first time, check the Preferences tab. If using a touchscreen, choose the option to hide the pointer for
best results.

The Status Window is a fixed height, set by the size of a fixed font. This can be affected by the Gnome DPI, configured in System
/ Preferences / Appearance / Fonts / Details. If the bottom of the screen is cut off, reduce the DPI setting.

All other font sizes can be changed on the Preferences tab.

6.2.3 Macros

Touchy can invoke O-word macros using the MDI interface. To configure this, in the [TOUCHY] section of the ini file, add one
or more MACRO lines. Each should be of the format

MACRO=increment xinc yinc

In this example, increment is the name of the macro, and it accepts two parameters, named xinc and yinc.

Now, place the macro in a file named increment.ngc, in the PROGRAM_PREFIX directory or any directory in the SUBROU-
TINE_PATH.

It should look like:

O<increment> sub
G91 GO X#1 Y#2

G90

O<increment> endsub

Notice the name of the sub matches the file name and macro name exactly, including case.

When you invoke the macro by pressing the Macro button on the MDI tab in Touchy, you can enter values for xinc and yinc.
These are passed to the macro as #/ and #2 respectively. Parameters you leave empty are passed as value 0.

If there are several different macros, press the Macro button repeatedly to cycle through them.

In this simple example, if you enter -1 for xinc and press cycle start, a rapid GO move will be invoked, moving one unit to the
left.

This macro capability is useful for edge/hole probing and other setup tasks, as well as perhaps hole milling or other simple
operations that can be done from the panel without requiring specially-written gcode programs.

User Manuelle V2.5, 2013-03-04
56/195

Chapter 7

TkLinuxCNC GUI

7.1 Introduction

TkLinuxCNC is one of the first graphical front-ends for LinuxCNC. It is written in Tcl and uses the Tk toolkit for the display.
Being written in Tcl makes it very portable (it runs on a multitude of platforms). A separate backplot window can be displayed
as shown.

TkEmc BackPlot

Fle View Setfings Units Scripts 1 X-¥ X-Z V-2 n SETUP IESE]
ON MIST OFF
ABORT
AUTO

Tool: 1 Orrset: LR Workl OTsels: X0.0000 Y0.0000 A0.0000 (i)

override Emils

X -52.0000 o

- machine

Y 56.1280

7z 10.0000 o

|- | home |+

reis speec: [Foed Override: I swincte speed overrue: [JEEENN

G1 G17 G40 G21 GIN GI4 G54 G49 GIT GEI G51 MZ M5 M9 M4B F225 S1600
Frogram: MomeduvelemcZinc_filesi30_Chipsnge - Statlus: idle

| Opet... Pause REsume | Step | Vierty Optioral Stop

NGEIT¥5E.1
MNEA01¥5E.1

MEDT T GOZ10.

MNEQFT M3

Figure 7.1: TkLinuxCNC Window

User Manuelle V2.5, 2013-03-04
57 /195

7.2 Getting Started

To select TkLinuxCNC as the front-end for LinuxCNC, edit the .ini file. In the section [DISPLAY] change the DISPLAY line to
read

DISPLAY = tklinuxcnc

Then, start LinuxCNC and select that ini file. The sample configuration sim/tklinuxcnc/tklinuxcnc.ini is already configured to use
TkLinuxCNC as its front-end.

7.2.1 A typical session with TkLinuxCNC

1. Start LinuxCNC and select a configuration file.

2. Clear the E-STOP condition and turn the machine on (by pressing F1 then F2).
3. Home each axis.

Load the file to be milled.

Put the stock to be milled on the table.

A

Set the proper offsets for each axis by jogging and either homing again or right-clicking an axis name and entering an
offset value. !

=~

Run the program.

8. To mill the same file again, return to step 6. To mill a different file, return to step 4. When you’re done, exit LinuxCNC.

7.3 Elements of the TkLinuxCNC window

The TkLinuxCNC window contains the following elements:

* A menubar that allows you to perform various actions
* A set of buttons that allow you to change the current working mode, start/stop spindle and other relevant I/O
* Status bar for various offset related displays

* Coordinate display area

A set of sliders which control Jogging speed, Feed Override , and Spindle speed Override which allow you to increase or
decrease those settings

e Manual data input text box MDI
* Status bar display with active G-codes, M-codes, F- and S-words
* Interpreter related buttons

* A text display area that shows the G-code source of the loaded file

IFor some of these actions it might be necessary to change the mode LinuxCNC is currently running in.

User Manuelle V2.5, 2013-03-04
58/195

7.3.1 Main buttons

From left to right, the buttons are:

* Machine enable: ESTOP > ESTOP RESET > ON

* Toggle mist coolant

* Decrease spindle speed

* Set spindle direction SPINDLE OFF > SPINDLE FORWARD . SPINDLE REVERSE
* Increase spindle speed

e Abort
then on the second line:

* Operation mode: MANUAL > MDI > AUTO
* Toggle flood coolant

* Toggle spindle brake control

7.3.2 Offset display status bar

The Offset display status bar displays the currently selected tool (selected with Txx M6), the tool length offset (if active), and the
work offsets (set by right-clicking the coordinates).

7.3.3 Coordinate Display Area

The main part of the display shows the current position of the tool. The color of the position readout depends on the state of
the axis. If the axis is unhomed the axis will be displayed in yellow letters. Once homed it will be displayed in green letters. If
there is an error with the current axis TkLinuxCNC will use red letter to show that. (for example if an hardware limit switch is
tripped).

To properly interpret these numbers, refer to the radio boxes on the right. If the position is Machine, then the displayed number
is in the machine coordinate system. If it is Relative, then the displayed number is in the offset coordinate system. Further down
the choices can be actual or commanded. Actual refers to the feedback coming from encoders (if you have a servo machine), and
the commanded refers to the position command send out to the motors. These values can differ for several reasons: Following
error, deadband, encoder resolution, or step size. For instance, if you command a movement to X 0.0033 on your mill, but one
step of your stepper motor is 0.00125, then the Commanded position will be 0.0033 but the Actual position will be 0.0025 (2
steps) or 0.00375 (3 steps).

Another set of radio buttons allows you to choose between joint and world view. These make little sense on a normal type of
machine (e.g. trivial kinematics), but help on machines with non-trivial kinematics like robots or stewart platforms. (you can
read more about kinematics in the Integrator Manual).

7.3.3.1 Backplot

When the machine moves, it leaves a trail called the backplot. You can start the backplot window by selecting View— Backplot.

User Manuelle V2.5, 2013-03-04
59/195

7.3.4 Automatic control

7.3.4.1 Buttons for control

The buttons in the lower part of TkLinuxCNC are used to control the execution of a program: Open to load a program, Verify to
check it for errors, Run to start the actual cutting, Pause to stop it while running, Resume to resume an already paused program,
Step to advance one line in the program and Optional Stop to toggle the optional stop switch (if the button is green the program
execution will be stopped on any M1 encountered).

Program: fhomefjuvefemcZmc_filesf3D Chips.ngc - Status: idle

Open... Run Pause Resume Step Verfy Optional Stop

ME871Y56.0617-28.146
MBGE1Yo6.105.-27.694
NBB91Y56.117-27.838

HB301Y¥56.1287-27.634

ME911GOZ10.

HE931 MY

Figure 7.2: TkLinuxCNC Interpreter / program control

7.3.4.2 Text Program Display Area

When the program is running, the line currently being executed is highlighted in white. The text display will automatically scroll
to show the current line.

7.3.5 Manual Control

7.3.5.1 Implicit keys

TkLinuxCNC allows you to manually move the machine. This action is known as jogging. First, select the axis to be moved by
clicking it. Then, click and hold the + or - button depending on the desired direction of motion. The first four axes can also be
moved by the keyboard arrow keys (X and Y), the PAGE UP and PAGE DOWN keys (Z) and the [and] keys (A/4th).

If Continuous is selected, the motion will continue as long as the button or key is pressed. If another value is selected, the
machine will move exactly the displayed distance each time the button is clicked or the key is pressed. The available values are:
1.0000, 0.1000, 0.0100, 0.0010, 0.0001

By pressing Home or the HOME key, the selected axis will be homed. Depending on your configuration, this may just set the
axis value to be the absolute position 0.0, or it may make the machine move to a specific home location through use of home
switches. See the Integrator Manual for more information on homing.

By pressing Override Limits, the machine will temporarily be permitted to jog outside the limits defined in the .ini file. (Note: if
Override Limits is active the button will be displayed using a red color).

User Manuelle V2.5, 2013-03-04
60/195

I override limits

continuous

continuous

0.0001

 0.0010 L
N

0.0100

1.0000

Figure 7.3: TkLinuxCNC Override Limits & Jogging increments example

7.3.5.2 The Spindle group
The button on the first row selects the direction for the spindle to rotate: Counterclockwise, Stopped, Clockwise. The buttons

next to it allow the user to increase or decrease the rotation speed. The button on the second row allows the spindle brake to be
engaged or released. Depending on your machine configuration, not all the items in this group may have an effect.

7.3.5.3 The Coolant group

The two buttons allow the Mist and Flood coolants to be turned on and off. Depending on your machine configuration, not all
the items in this group may appear.

7.3.6 Code Entry

Manual Data Input (also called MDI), allows G-code programs to be entered manually, one line at a time. When the machine is
not turned on, and not set to MDI mode, the code entry controls are unavailable.

G1 G17 G40 G271 GI90 G994 G4 G49 99 Gb4 G51 M2 Mo M9 M48 F225 31600

Figure 7.4: The Code Entry tab

7.3.6.1 MDI:

This allows you to enter a g-code command to be executed. Execute the command by pressing Enter.

7.3.6.2 Active G-Codes

This shows the modal codes that are active in the interpreter. For instance, G54 indicates that the G54 offset is applied to all
coordinates that are entered.

User Manuelle V2.5, 2013-03-04
61/195

7.3.7 Jog Speed

By moving this slider, the speed of jogs can be modified. The numbers above refer to axis units / second. The text box with the
number is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

7.3.8 Feed Override

By moving this slider, the programmed feed rate can be modified. For instance, if a program requests F60 and the slider is set
to 120%, then the resulting feed rate will be 72. The text box with the number is clickable. Once clicked a popup window will
appear, allowing for a number to be entered.

7.3.9 Spindle speed Override

The spindle speed override slider works exactly like the feed override slider, but it controls to the spindle speed. If a program
requested S500 (spindle speed 500 RPM), and the slider is set to 80%, then the resulting spindle speed will be 400 RPM. This
slider has a minimum and maximum value defined in the ini file. If those are missing the slider is stuck at 100%. The text box
with the number is clickable. Once clicked a popup window will appear, allowing for a number to be entered.

7.4 Keyboard Controls
Almost all actions in TkLinuxCNC can be accomplished with the keyboard. Many of the shortcuts are unavailable when in MDI

mode.

The most frequently used keyboard shortcuts are shown in the following table.

Table 7.1: Most Common Keyboard Shortcuts

Keystroke Action Taken
F1 Toggle Emergency Stop
F2 Turn machine on/off
,1..9,0 Set feed override from 0% to 100%
X," Activate first axis
Y, 1 Activate second axis
Z,2 Activate third axis
A3 Activate fourth axis
Home Send active axis Home
Left, Right Jog first axis
Up, Down Jog second axis
Pg Up, Pg Dn Jog third axis
L] Jog fourth axis
ESC Stop execution

User Manuelle V2.5, 2013-03-04
62/195

Chapter 8

MINI GUI

8.1 Introduction

==} Stepper Freqmod Minimill E(m S

= = = =

ABORT

X -0.0000
Y 0.0000
Z 0.0000

Feed Override: 100

-- MESSAGES -

Figure 8.1: The Mini Graphical Interface (upon starting)

User Manuelle V2.5, 2013-03-04
63/195

Mini was designed to be a full screen graphical interface. It was first written for the Sherline CNC but is available for anyone to
use, copy, and distribute under the terms of the GPL copyright.

Rather than popup new windows for each thing that an operator might want to do, Mini allows you to display these within the

regular screen. Parts of this chapter are copied from the instructions that were written for that mill by Joe Martin and Ray Henry.
1

8.2 Screen layout

Eal Sherine Steppermod Minimill = O Ok

BT
X -0.0000 | eI e e e e

Y 0.0000
Zz 0.0000 I

Faad Ovarrida: 14040
| 1

-- MESSAGES - |

|

£0 x0 70 20

Figure 8.2: Mini Display for a Running LinuxCNC

The Mini screen is laid out in several sections. These include a menu across the top, a set of main control buttons just below
the menu, and two rather large columns of information that show the state of your machine and allow you to enter commands or
programs.

When you compare starting screen with run screen you will see many differences. In the second figure

* each axis has been homed — the display numbers are dark green

¢ the LinuxCNC mode is auto — the auto button has a light green background

"Much of this chapter quotes from a chapter of the Sherline CNC Operators Manual.

User Manuelle V2.5, 2013-03-04

64 /195

* the backplotter has been turned on — backplot is visible in the pop-in window

* the tool path from the program is showing in the display.

Once you start working with Mini you will quickly discover how easily it shows the conditions of the LinuxCNC and allows you
to make changes to it.

8.3 Menu Bar

The first row is the menu bar across the top. Here you can configure the screen to display additional information. Some of the
items in this menu are very different from what you may be accustomed to with other programs. You should take a few minutes
and look under each menu item in order to familiarize yourself with the features that are there.

The menu includes each of the following sections and subsections.

e Program - This menu includes both reset and exit functions. Reset will return the LinuxCNC to the condition that it was in
when it started. Some startup configuration items like the normal program units can be specified in the ini file.

* View - This menu includes several screen elements that can be added so that you can see additional information during a run.
These include

Position_Type - This menu item adds a line above the main position displays that shows whether the displays are in inches or
metric and whether they are Machine or Relative location and if they are Actual positions or Commanded positions. These
can be changed using the Settings menu described below.

Tool_Info - This adds a line immediately below the main position displays that shows which tool has been selected and the
length of offset applied.

Offset_Info - adds a line immediately below the tool info that shows what offsets have been applied. This is a total distance
for each axis from machine zero.

Show_Restart - adds a block of buttons to the right of the program display in auto mode. These allow the operator to restart
a program after an abort or estop. These will pop in whenever estop or abort is pressed but can be shows by the operator
anytime auto mode is active by selecting this menu item.

Hide_Restart - removes the block of buttons that control the restart of a program that has been aborted or estopped.
Show_Split_Right - changes the nature of the right hand column so that it shows both mode and pop-in information.

Show_Mode_Full - changes the right hand column so that the mode buttons or displays fill the entire right side of the screen.
In manual mode, running with mode full you will see spindle and lube control buttons as well as the motion buttons.

Show_Popin_Full - changes the right hand column so that the popin fills the entire right side of the screen.

* Settings - These menu items allow the operator to control certain parameters during a run.

— Actual_Position - sets the main position displays to actual(machine based) values.

Commanded_Position - sets the main position displays to the values that they were commanded to.
Machine_Position - sets the main position displays to the absolute distance from where the machine was homed.

Relative_Position - sets the main position displays to show the current position including any offsets like part zeros that are
active. For more information on offsets see the chapter on coordinate systems.

* Info - lets you see a number of active things by writing their values into the MESSAGE pad.

Program_File - will write the currently active program file name.
Editor_File - will write the currently active file if the editor pop in is active and a file has been selected for editing.

Parameter_File - will write the name of the file being used for program parameters. You can find more on this in the chapters
on offsets and using variables for programming.

Tool_File - will write the name of the tool file that is being used during this run.

User Manuelle V2.5, 2013-03-04
65/195

— Active_G-Codes - will write a list of all of the modal program codes that are active whenever this item is selected. For more
information about modal codes see the introductory part programming chapter.

* Help - opens a text window pop in that displays the contents of the help file.

You will notice between the info menu and the help menu there are a set of four buttons. These are called check buttons because
they have a small box that shows red if they have been selected. These four buttons, Editor, Backplot, Tools, and Offsets pop
in each of these screens. If more than one pop-in is active (button shown as red) you can toggle between these pop-ins by right
clicking your mouse.

8.4 Control Button Bar

Below the menu line is a horizontal line of control buttons. These are the primary control buttons for the interface. Using these
buttons you can change mode from [MANUAL] to [AUTO] to [MDI] (Manual Data Input). These buttons show a light green
background whenever that mode is active.

You can also use the [FEEDHOLD], [ABORT], and [ESTOP] buttons to control a programmed move.

8.4.1 MANUAL

This button or pressing <F3> sets the LinuxCNC to Manual mode and displays an abbreviated set of buttons the operator can use
to issue manual motion commands. The labels of the jog buttons change to match the active axis. Whenever Show_Mode_Full
is active in in manual mode, you will see spindle and lube control buttons as well as the motion buttons. A keyboard <i> or <I>
will switch from continuous jog to incremental jog. Pressing that key again will toggle the increment size through the available
sizes.

Figure 8.3: Manual Mode Buttons

User Manuelle V2.5, 2013-03-04
66 /195

From the Sherline CNC Operators Manual:

A button has been added to designate the present position as the home position. We felt that a machine of this type (Sherline
5400) would be simpler to operate if it didn’t use a machine home position. This button will zero out any offsets and will
home all axes right where they are.

Axis focus is important here. Notice in startup figure that in manual mode you see a line or groove around the X axis to
highlight its position display. This groove says that X is the active axis. It will be the target for jog moves made with the
plus and minus jog buttons. You can change axis focus by clicking on any other axis display. You can also change axis
focus in manual mode if you press its name key on your keyboard. Case is not important here. [Y] or [y] will shift the
focus to the Y axis. [A] or [a] will shift the focus to the A axis. To help you remember which axis will jog when you press
the jog buttons, the active axis name is displayed on them.

LinuxCNC can jog (move a particular axis) as long as you hold the button down when it is set for continuous, or it can
jog for a preset distance when it is set for incremental. You can also jog the active axis by pressing the plus [+] or minus
[-] keys on the keyboard. Again, case is not important for keyboard jogs. The two small buttons between the large jog
buttons let you set which kind of jog you want. When you are in incremental mode, the distance buttons come alive. You
can set a distance by pressing it with the mouse. You can toggle between distances by pressing [i] or [I] on the keyboard.
Incremental jog has an interesting and often unexpected effect. If you press the jog button while a jog is in progress, it
will add the distance to the position it was at when the second jog command was issued. Two one-inch jog presses in close
succession will not get you two inches of movement. You have to wait until the first one is complete before jogging again.

Jog speed is displayed above the slider. It can be set using the slider by clicking in the slider’s open slot on the side you
want it to move toward, or by clicking on the [Default] or [Rapid] buttons. This setting only affects the jog move while in
manual mode. Once a jog move is initiated, jog speed has no effect on the jog. As an example of this, say you set jog mode
to incremental and the increment to 1 inch. Once you press the [Jog] button it will travel that inch at the rate at which it
started.

8.4.2 AUTO

When the Auto button is pressed, or <F4> on the keyboard, and LinuxCNC is set to that mode, a set of the traditional auto
operation buttons is displayed, and a small text window opens to show a part program. During run the active line will be
displayed as white lettering on a red background.

In the auto mode, many of the keyboard keys are bound to controls. For example, the numbers above the qwerty keys are bound
to feed rate override. The 0 sets 100%, 9 sets 90% and such. Other keys work much the same as they do with the tkLinuxCNC
graphical interface.

Opan... Run Pansa Rasnma Stap Yarify idla
n 1494 [Thie is a tast plot nc program to ba ron on backplot)
nld1l [Anthor Ray Hanry 149-Fab-24044)
nldz2 £9 £53 =0 0 20 F340
nla3 x1 vlistart xy¥ circha)
nld4 g#17 §02 x2 v2 reqri[d.5]
n1d5 x1 ¥1 r-1*eqrild.511
nlds £9 z.1 [add xy Jatitaring)
nl1d7 ¥1.75%
nlds 20

Figure 8.4: Auto Mode

Auto mode does not normally display the active or modal codes. If the operator wishes to check these, use menu Info— Active_G-
Codes. This will write all modal codes onto the message scratch pad.

User Manuelle V2.5, 2013-03-04
67 /195

If abort or estop is pressed during a run, a set of buttons will display to the right of the text that allow the operator to shift the
restart line forward or backward. If the restart line is not the last active line, it will be highlighted as white letters on a blue
background. Caution, a very slow feed rate, and a finger poised over the pause button is advised during any program restart.

From the Sherline CNC Operators Manual:

The real heart of CNC machine tool work is the auto mode. Sherline’s auto mode displays the typical functions that people
have come to expect from LinuxCNC. Along the top are a set of buttons which control what is happening in auto mode.
Below them is the window that shows the part of the program currently being executed. As the program runs, the active
line shows in white letters on a red background. The first three buttons, [Open], [Run], and [Pause] do about what you’d
expect. [Pause] will stop the run right where it is. The next button, [Resume], will restart motion. They are like feedhold
if used this way. Once [Pause] is pressed and motion has stopped, [Step] will resume motion and continue it to the end of
the current block. Press [Step] again to get the motion of the next block. Press [Resume] and the interpreter goes back to
reading ahead and running the program. The combination of [Pause] and [Step] work a lot like single block mode on many
controllers. The difference is that [Pause] does not let motion continue to the end of the current block. Feed rate Override

. can be very handy as you approach a first cut. Move in quickly at 100 percent, throttle back to 10% and toggle between
[Feedhold] and 10% using the pause button. When you are satisfied that you’ve got it right, hit the zero to the right of nine
(feedrate=100%) and go.

The [Verify] button runs the interpreter through the code without initiating any motion. If Verify finds a problem it will
stop the read near the problem block and put up some sort of message. Most of the time you will be able to figure out the
problem with your program by reading the message and looking in the program window at the highlighted line. Some of
the messages are not very helpful. Sometimes you will need to read a line or two ahead of the highlight to see the problem.
Occasionally the message will refer to something well ahead of the highlight line. This often happens if you forget to end
your program with an acceptable code like %, M2, M30, or M60.

8.4.3 MDI

The MDI button or <F5> sets the Manual Data Input mode. This mode displays a single line of text for block entry and shows
the currently active modal codes for the interpreter.

From the Sherline CNC Operators Manual:

MDI mode allows you to enter single blocks and have the interpreter execute them as if they were part of a program (kind
of like a one-line program). You can execute circles, arcs, lines and such. You can even test sets of program lines by
entering one block, waiting for that motion to end, and then enter the next block. Below the entry window, there is a listing
of all of the current modal codes. This listing can be very handy. I often forget to enter a g00 before I command a motion.
If nothing happens I look down there to see if g80 is in effect. G80 stops any motion. If it’s there I remember to issue a
block like g00 x0 y0 z0. In MDI you are entering text from the keyboard so none of the main keys work for commands to
the running machine. [F1] will Estop the control.

Since many of the keyboard keys are needed for entry, most of the bindings that were available in auto mode are not available
here.

8.4.4 [FEEDHOLD]—[CONTINUE]

Feedhold is a toggle. When the LinuxCNC is ready to handle or is handling a motion command this button shows the feedhold
label on a red background. If feedhold has been pressed then it will show the continue label. Using it to pause motion has the
advantage of being able to restart the program from where you stopped it. Feedhold will toggle between zero speed and whatever
feed rate override was active before it was pressed. This button and the function that it activates is also bound to the pause button
on most keyboards.

8.4.5 [ABORT]

The abort button stops any motion when it is pressed. It also removes the motion command from the LinuxCNC. No further
motions are cued up after this button is pressed. If you are in auto mode, this button removes the rest of the program from the

User Manuelle V2.5, 2013-03-04
68 /195

motion cue. It also records the number of the line that was executing when it was pressed. You can use this line number to restart
the program after you have cleared up the reasons for pressing it.

8.4.6 [ESTOP]

The estop button is also a toggle but it works in three possible settings.

* When Mini starts up it will show a raised button with red background with black letters that say ESTOP PUSH. This is the
correct state of the machine when you want to run a program or jog an axis. Estop is ready to work for you when it looks like
this.

* If you push the estop button while a motion is being executed, you will see a recessed gray button that says ESTOPPED. You
will not be able to move an axis or do any work from the Mini gui when the estop button displays this way. Pressing it with
your mouse will return Mini to normal ready condition.

* A third view is possible here. A recessed green button means that estop has been take off but the machine has not been turned
on. Normally this only happens when <F1> estop has been pressed but <F2> has not been pressed.

Joe Martin says, "When all else fails press a software [ESTOP]." This does everything that abort does but adds in a reset so that
the LinuxCNC returns to the standard settings that it wakes up on. If you have an external estop circuit that watches the relevant
parallel port or DIO pin, a software estop can turn off power to the motors.

From the Sherline CNC Operators Manual:

Most of the time, when we abort or E-Stop it’s because something went wrong. Perhaps we broke a tool and want to
change it. We switch to manual mode and raise the spindle, change tools, and assuming that we got the length the same,
get ready to go on. If we return the tool to the same place where the abort was issued, LinuxCNC will work perfectly. It
is possible to move the restart line back or ahead of where the abort happened. If you press the [Back] or [Ahead] buttons
you will see a blue highlight that shows the relationship between the abort line and the one on which LinuxCNC will start
up again. By thinking through what is happening at the time of the restart you can place the tool tip where it will resume
work in an acceptable manner. You will need to think through things like tool offsets, barriers to motion along a diagonal
line, and such, before you press the [Restart] button.

8.5 Left Column

There are two columns below the control line. The left side of the screen displays information of interest to the operator. There
are very few buttons to press here.

8.5.1 Axis Position Displays
The axis position displays work exactly like they do with tkLinuxCNC. The color of the letters is important.
* Red indicates that the machine is sitting on a limit switch or the polarity of a min or max limit is set wrong in the ini file.

* Yellow indicates that the machine is ready to be homed.

¢ Green indicates that the machine has been homed.

The position can be changed to display any one of several values by using the menu settings. The startup or default settings can
be changed in the ini file so these displays wake up just the way that you want them.

User Manuelle V2.5, 2013-03-04
69/195

8.5.2 Feed rate Override

Immediately below the axis position displays is the feed rate override slider. You can operate feed rate override and feedhold in
any mode of operation. Override will change the speed of jogs or feed rate in manual or MDI modes. You can adjust feed rate
override by grabbing the slider with your mouse and dragging it along the groove. You can also change feed rate a percent at a
time by clicking in the slider’s groove. In auto mode you can also set feed override in 10% increments by pressing the top row of
numbers. This slider is a handy visual reference to how much override is being applied to programmed feed rate.

8.5.3 Messages

The message display located under the axis positions is a sort of scratch pad for LinuxCNC. If there are problems it will report
them there. If you try to home or move an axis when the [ESTOP] button is pressed, you’ll get a message that says something
about commanding motion when LinuxCNC is not ready. If an axis faults out for something like falling behind, the message pad
will show what happened. If you want to remind an operator to change a tool, for example, you can add a line of code to your
program that will display in the message box. An example might be (msg, change to tool #3 and press resume). This line of
code, included in a program, will display change to tool #3 and press resume in the message box. The word msg, (with comma
included) is the command to make this happen; without msg, the message wouldn’t be displayed. It will still show in the auto
modes’ display of the program file.

To erase messages simply click the message button at the top of the pad or, on the keyboard, hold down the [Alt] key and press
the [m] key.

8.6 Right Column

The right column is a general purpose place to display and work. Here you can see the modal buttons and text entry or displays.
Here you can view a plot of the tool path that will be commanded by your program. You can also write programs and control
tools and offsets here. The modal screens have been described above. Each of the popin displays are described in detail below.

User Manuelle V2.5, 2013-03-04
70/195

8.6.1 Program Editor

Figure 8.5: Mini Text Editor

The editor is rather limited compared to many modern text editors. It does not have undo nor paste between windows with the
clipboard. These were eliminated because of interaction with a running program. Future releases will replace these functions so
that it will work the way you’ve come to expect from a text editor. It is included because it has the rather nice feature of being
able to number and renumber lines in the way that the interpreter expects of a file. It will also allow you to cut and paste from
one part of a file to another. In addition, it will allow you to save your changes and submit them to the LinuxCNC interpreter
with the same menu click. You can work on a file in here for a while and then save and load if the LinuxCNC is in Auto mode.
If you have been running a file and find that you need to edit it, that file will be placed in the editor when you click on the editor
button on the top menu.

User Manuelle V2.5, 2013-03-04

71/195
8.6.2 Backplot Display
X-Y X-% Y-8 3D Hida Satup
Al
rot-x 27
S
u rot-y 17
e
rot-z 30
e
Zoom]
] u
Refrash
17l =4 [" Rasat

Figure 8.6: Minis Backplotter

Backplot [Backplot] will show the tool path that can be viewed from a chosen direction. 3-D is the default. Other choices and
controls are displayed along the top and right side of the pop-in. If you are in the middle of a cut when you press one of these
control buttons the machine will pause long enough to re-compute the view.

Along the right side of the pop-in there is a small pyramid shaped graphic that tries to show the angle you are viewing the tool
path from. Below it are a series of sliders that allow you to change the angle of view and the size of the plot. You can rotate the
little position angle display with these. They take effect when you press the [Refresh] button. The [Reset] button removes all of
the paths from the display and readies it for a new run of the program but retains your settings for that session.

If backplot is started before a program is started, it will try to use some color lines to indicate the kind of motion that was used
to make it. A green line is a rapid move. A black line is a feed rate move. Blue and red indicate arcs in counterclockwise and
clockwise directions.

The backplotter with Mini allows you to zoom and rotate views after you have run your program but it is not intended to store a
tool path for a long period of time.

8.6.3 Tool Page

The tool page is pretty much like the others. You can set length and diameter values here and they become effective when you
press the [Enter] key. You will need to set up your tool information before you begin to run a program. You can’t change tool
offsets while the program is running or when the program is paused.

User Manuelle V2.5, 2013-03-04
72/195

Figure 8.7: Mini Tool Display

The [Add Tools] and [Remove Tools] buttons work on the bottom of the tool list so you will want to fill in tool information in
descending order. Once a new tool has been added, you can use it in a program with the usual G-code commands. There is a 32
tool limit in the current LinuxCNC configuration files but you will run out of display space in Mini long before you get there.

Tip
You can use Menu > View > Show Popin Full to see more tools if you need.

8.6.4 Offset Page

The offset page can be used to display and setup work offsets. The coordinate system is selected along the left hand side of the
window. Once you have selected a coordinate system you can enter values or move an axis to a teach position.

User Manuelle V2.5, 2013-03-04
73/195

LR LA L La L L)

LR LA LD Lo L)

LR LA LD Lo L)

Q000009

LR L L L Lo L)

Figure 8.8: Mini Offset Display

You can also teach using an edgefinder by adding the radius and length to the offset_by widgets. When you do this you may need
to add or subtract the radius depending upon which surface you choose to touch from. This is selected with the add or subtract
radiobuttons below the offset windows.

The zero all for the active coordinate system button will remove any offsets that you have showing but they are not set to zero in
the variable file until you press the write and load file button as well. This write and load file button is the one to use when you
have set all of the axis values that you want for a coordinate system.

8.7 Keyboard Bindings

A number of the bindings used with tkLinuxCNC have been preserved with mini. A few of the bindings have been changed to
extend that set or to ease the operation of a machine using this interface. Some keys operate the same regradless of the mode.
Others change with the mode that LinuxCNC is operating in.

8.7.1 Common Keys

* Pause - Toggle feedhold

¢ Escape - abort motion

* FI - toggle estop/estop reset state

* F2 - toggle machine off/machine on state
* F3 - manual mode

e F4 - auto mode

User Manuelle V2.5, 2013-03-04
74 /195

e F5 - MDI mode

* F6 - reset interpreter

The following only work for machines using auxiliary I/O

e F7 - toggle mist on/mist off

* F8§ - toggle flood on/flood off

* F9 - toggle spindle forward/off
e F10 - toggle spindle reverse/off

F11 - decrease spindle speed

* FI2 - increase spindle speed

8.7.2 Manual Mode

1-9 0 - set feed override to 10%-90%, 0 is 100%
» ~ - set feed override to O or feedhold

* x - select X axis

e y-select Y axis

* 7z - select Z axis

* a - select A axis

e b - select B axis

e ¢ - select C axis

Left Right Arrow - jog X axis

* Up Down Arrow - jog Y axis

* Page Up Down - jog Z axis

* - _ - jog the active axis in the minus direction
* + = - jog the active axis in the plus direction.
* Home - home selected axis

* i [- toggle through jog increments

The following only work with a machine using auxiliary I/O

* b - take spindle brake off

* Alt-b - put spindle brake on

User Manuelle V2.5, 2013-03-04
75/195

8.7.3 Auto Mode

1-9,0 - set feed override to 10%-90%, 0 is 100%
* ~ - set feed override to O or feedhold

* 0/0 - open a program

* /R - run an opened program

* p/P - pause an executing program

* /S - resume a paused program

* a/A - step one line in a paused program

8.8 Misc

One of the features of Mini is that it displays any axis above number 2 as a rotary and will display degree units for it. It also
converts to degree units for incremental jogs when a rotary axis has the focus.

User Manuelle V2.5, 2013-03-04

76/195
Chapter 9
KEYSTICK GUI
9.1 Introduction
[] kKeystick = rEnE
F1 Estop OnA0fF F5 HMDI Mode F9 5Spndl Fud/Off ESC Aborts Actions

FZ Hachine Ons0ff Fb Reset Interp F10 Spndl Rew/0Off TAB Selects Params
F3 HManual Mode F/ HMist On/OFF F11 Spndl Decrease EMD Ouits Display

F4 Auto Mode F8 Flood Ons0fF F12 Spnd]l Increasze % Toggles Help
MAMLIAL SPIMDLE STOPPED —-—— HOMED
Override: 100X LUBE 0OFF ERAKE ON # SELECTED
Tool: i LUBE 0k MIST OFF Speed: B0,0
OFfzet: [, QO FLOOD OFF Incr: continuous

__E__
Felative Act Pos: [, QI0CIC)

2, 0000

Figure 9.1: The Mini Graphical Interface

Keystick is a minimal text based interface.

User Manuelle V2.5, 2013-03-04
77 /195

9.2 Installing

To use keystick change the DISPLAY setting in the ini file setting to:

DISPLAY = keystick

9.3 Using

Keystick is very simple to use. In the MDI Mode you simply start typing the g code and it shows up in the bottom text area. The
? key toggles help.

User Manuelle V2.5, 2013-03-04
78 /195

Part 111

Using LinuxCNC

User Manuelle V2.5, 2013-03-04
79/195

Chapter 10

CNC Machine Overview

This section gives a brief description of how a CNC machine is viewed from the input and output ends of the Interpreter.

10.1 Mechanical Components

A CNC machine has many mechanical components that may be controlled or may affect the way in which control is exercised.
This section describes the subset of those components that interact with the Interpreter. Mechanical components that do not
interact directly with the Interpreter, such as the jog buttons, are not described here, even if they affect control.

10.1.1 Axes

Any CNC machine has one or more Axes. Different types of CNC machines have different combinations. For instance, a 4-axis
milling machine may have XYZA or XYZB axes. A lathe typically has XZ axes. A foam-cutting machine may have XYUV
axes. In LinuxCNC, the case of a XYYZ gantry machine with two motors for one axis is better handled by kinematics rather
than by a second linear axis. !

Primary Linear Axes axesprimary linear primary linear The X, Y, and Z axes produce linear motion in three mutually
orthogonal directions.

Secondary Linear Axes axessecondary linear secondary linear The U, V, and W axes produce linear motion in three mutually
orthogonal directions. Typically, X and U are parallel, Y and V are parallel, and Z and W are parallel.

Rotational Axes axesrotational rotational The A, B and C axes produce angular motion (rotation). Typically, A rotates around
a line parallel to X, B rotates around a line parallel to Y, and C rotates around a line parallel to Z.

10.1.2 Spindle

A CNC machine typically has a spindle which holds one cutting tool, probe, or the material in the case of a lathe. The spindle
may or may not be controlled by the CNC software.

10.1.3 Coolant

If a CNC machine has components to provide mist coolant and/or flood coolant they can be controlled by G codes.

'If the motion of mechanical components is not independent, as with hexapod machines, the RS274/NGC language and the canonical machining functions
will still be usable, as long as the lower levels of control know how to control the actual mechanisms to produce the same relative motion of tool and workpiece
as would be produced by independent axes. This is called kinematics.

User Manuelle V2.5, 2013-03-04
80/195

10.1.4 Feed and Speed Override

A CNC machine can have separate feed and speed override controls, which let the operator specify that the actual feed rate or
spindle speed used in machining at some percentage of the programmed rate.

10.1.5 Block Delete Switch

A CNC machine can have a block delete switch. See the Block Delete Section.

10.1.6 Optional Program Stop Switch

A CNC machine can have an optional program stop switch. See the Optional Program Stop Section.

10.2 Control and Data Components

10.2.1 Linear Axes

The X, Y, and Z axes form a standard right-handed coordinate system of orthogonal linear axes. Positions of the three linear
motion mechanisms are expressed using coordinates on these axes.

The U, V and W axes also form a standard right-handed coordinate system. X and U are parallel, Y and V are parallel, and Z and
W are parallel (when A, B, and C are rotated to zero).

10.2.2 Rotational Axes

The rotational axes are measured in degrees as wrapped linear axes in which the direction of positive rotation is counterclockwise
when viewed from the positive end of the corresponding X, Y, or Z-axis. By wrapped linear axis, we mean one on which the
angular position increases without limit (goes towards plus infinity) as the axis turns counterclockwise and deceases without limit
(goes towards minus infinity) as the axis turns clockwise. Wrapped linear axes are used regardless of whether or not there is a
mechanical limit on rotation.

Clockwise or counterclockwise is from the point of view of the workpiece. If the workpiece is fastened to a turntable which turns
on a rotational axis, a counterclockwise turn from the point of view of the workpiece is accomplished by turning the turntable in
a direction that (for most common machine configurations) looks clockwise from the point of view of someone standing next to
the machine. 2

10.2.3 Controlled Point

The controlled point is the point whose position and rate of motion are controlled. When the tool length offset is zero (the default
value), this is a point on the spindle axis (often called the gauge point) that is some fixed distance beyond the end of the spindle,
usually near the end of a tool holder that fits into the spindle. The location of the controlled point can be moved out along the
spindle axis by specifying some positive amount for the tool length offset. This amount is normally the length of the cutting tool
in use, so that the controlled point is at the end of the cutting tool. On a lathe, tool length offsets can be specified for X and Z
axes, and the controlled point is either at the tool tip or slightly outside it (where the perpendicular, axis-aligned lines touched by
the front and side of the tool intersect).

2If the parallelism requirement is violated, the system builder will have to say how to distinguish clockwise from counterclockwise.

User Manuelle V2.5, 2013-03-04
81/195

10.2.4 Coordinated Linear Motion

To drive a tool along a specified path, a machining center must often coordinate the motion of several axes. We use the term
coordinated linear motion to describe the situation in which, nominally, each axis moves at constant speed and all axes move
from their starting positions to their end positions at the same time. If only the X, Y, and Z axes (or any one or two of them)
move, this produces motion in a straight line, hence the word linear in the term. In actual motions, it is often not possible to
maintain constant speed because acceleration or deceleration is required at the beginning and/or end of the motion. It is feasible,
however, to control the axes so that, at all times, each axis has completed the same fraction of its required motion as the other
axes. This moves the tool along same path, and we also call this kind of motion coordinated linear motion.

Coordinated linear motion can be performed either at the prevailing feed rate, or at traverse rate, or it may be synchronized to the
spindle rotation. If physical limits on axis speed make the desired rate unobtainable, all axes are slowed to maintain the desired
path.

10.2.5 Feed Rate

The rate at which the controlled point or the axes move is nominally a steady rate which may be set by the user. In the Interpreter,
the interpretation of the feed rate is as follows unless inverse time feed or feed per revolution modes are being used see Section
G93 G9%4 G9s.

1. If any of XYZ are moving, F is in units per minute in the XYZ cartesian system, and all other axes (ABCUVW) move so
as to start and stop in coordinated fashion.

2. Otherwise, if any of UVW are moving, F is in units per minute in the UVW cartesian system, and all other axes (ABC)
move so as to start and stop in coordinated fashion.

3. Otherwise, the move is pure rotary motion and the F word is in rotary units in the ABC pseudo-cartesian system.

10.2.6 Coolant

Flood coolant and mist coolant may each be turned on independently. The RS274/NGC language turns them off together see
Section M7 M8 M9.

10.2.7 Dwell

A machining center may be commanded to dwell (i.e., keep all axes unmoving) for a specific amount of time. The most common
use of dwell is to break and clear chips, so the spindle is usually turning during a dwell. Regardless of the Path Control Mode
(see Section Path Control) the machine will stop exactly at the end of the previous programmed move, as though it was in exact
path mode.

10.2.8 Units

Units used for distances along the X, Y, and Z axes may be measured in millimeters or inches. Units for all other quantities
involved in machine control cannot be changed. Different quantities use different specific units. Spindle speed is measured in
revolutions per minute. The positions of rotational axes are measured in degrees. Feed rates are expressed in current length units
per minute, or degrees per minute, or length units per spindle revolution, as described in Section G93 G94 G95.

10.2.9 Current Position

The controlled point is always at some location called the current position, and the controller always knows where that is. The
numbers representing the current position must be adjusted in the absence of any axis motion if any of several events take place:

1. Length units are changed.
2. Tool length offset is changed.

3. Coordinate system offsets are changed.

User Manuelle V2.5, 2013-03-04
82/195

10.2.10 Selected Plane

There is always a selected plane, which must be the XY-plane, the YZ-plane, or the XZ-plane of the machining center. The
Z-axis is, of course, perpendicular to the XY-plane, the X-axis to the YZ-plane, and the Y-axis to the XZ-plane.

10.2.11 Tool Carousel

Zero or one tool is assigned to each slot in the tool carousel.

10.2.12 Tool Change

A machining center may be commanded to change tools.

10.2.13 Pallet Shuttle

The two pallets may be exchanged by command.

10.2.14 Path Control Mode

The machining center may be put into any one of three path control modes: (1) exact stop mode, (2) exact path mode, or (3)
continuous mode with optional tolerance. In exact stop mode, the machine stops briefly at the end of each programmed move.
In exact path mode, the machine follows the programmed path as exactly as possible, slowing or stopping if necessary at sharp

corners of the path. In continuous mode, sharp corners of the path may be rounded slightly so that the feed rate may be kept up
(but by no more than the tolerance, if specified). See Sections G61/G61.1 and G64.

10.3 Interpreter Interaction with Switches

The Interpreter interacts with several switches. This section describes the interactions in more detail. In no case does the
Interpreter know what the setting of any of these switches is.

10.3.1 Feed and Speed Override Switches

The Interpreter will interpret RS274/NGC commands which enable M48 or disable M49 the feed and speed override switches.
For certain moves, such as the traverse out of the end of a thread during a threading cycle, the switches are disabled automatically.

LinuxCNC reacts to the speed and feed override settings when these switches are enabled.
See the M48 M49 Override section for more information.

10.3.2 Block Delete Switch

If the block delete switch is on, lines of G code which start with a slash (the block delete character) are not interpreted. If the
switch is off, such lines are interpreted. Normally the block delete switch should be set before starting the NGC program.

10.3.3 Optional Program Stop Switch

If this switch is on and an M1 code is encountered, program execution is paused.

User Manuelle V2.5, 2013-03-04
83/195

10.4 Tool Table

A tool table is required to use the Interpreter. The file tells which tools are in which tool changer slots and what the size and type
of each tool is. The name of the tool table is defined in the ini file:

[EMCIO]

tool table file
TOOL_TABLE = tooltable.tbl

The default filename probably looks something like the above, but you may prefer to give your machine its own tool table, using
the same name as your ini file, but with a tbl extension:

TOOL_TABLE = acme_300.tbl

or

TOOL_TABLE = EMC-AXIS-SIM.tbl

For more information on the specifics of the tool table format, see the Tool Table Format Section.

10.5 Parameters

In the RS274/NGC language view, a machining center maintains an array of numerical parameters defined by a system definition
(RS274ANGC_MAX_PARAMETERS). Many of them have specific uses especially in defining coordinate systems. The number
of numerical parameters can increase as development adds support for new parameters. The parameter array persists over time,
even if the machining center is powered down. LinuxCNC uses a parameter file to ensure persistence and gives the Interpreter
the responsibility for maintaining the file. The Interpreter reads the file when it starts up, and writes the file when it exits.

All parameters are available for use in G code programs.

The format of a parameter file is shown in the following table. The file consists of any number of header lines, followed by one
blank line, followed by any number of lines of data. The Interpreter skips over the header lines. It is important that there be
exactly one blank line (with no spaces or tabs, even) before the data. The header line shown in the following table describes the
data columns, so it is suggested (but not required) that that line always be included in the header.

The Interpreter reads only the first two columns of the table. The third column, Comment, is not read by the Interpreter.

Each line of the file contains the index number of a parameter in the first column and the value to which that parameter should
be set in the second column. The value is represented as a double-precision floating point number inside the Interpreter, but a
decimal point is not required in the file. All of the parameters shown in the following table are required parameters and must be
included in any parameter file, except that any parameter representing a rotational axis value for an unused axis may be omitted.
An error will be signaled if any required parameter is missing. A parameter file may include any other parameter, as long as its
number is in the range 1 to 5400. The parameter numbers must be arranged in ascending order. An error will be signaled if not.
Any parameter included in the file read by the Interpreter will be included in the file it writes as it exits. The original file is saved
as a backup file when the new file is written. Comments are not preserved when the file is written.

Table 10.1: Parameter File Format

Parameter Number Parameter Value Comment
5161 0.0 G28 Home X
5162 0.0 G28 Home Y

See the Parameters section for more information.

User Manuelle V2.5, 2013-03-04
84/195

Chapter 11

Coordinate System

11.1 Introduction

You have seen how handy a tool length offset can be. Having this allows the programmer to ignore the actual tool length when
writing a part program. In the same way, it is really nice to be able to find a prominent part of a casting or block of material
and work a program from that point rather than having to take account of the location at which the casting or block will be held
during the machining.

This chapter introduces you to offsets as they are used by the LinuxCNC. These include;

* machine coordinates (G53)
* nine fixture offsets (G54-G59.3)
* global offsets (G92)

11.2 The Machine Position Command (G53)

Regardless of any offsets that may be in effect, putting a G53 in a block of code tells the interpreter to go to the real or absolute
axis positions commanded in the block. For example

G53 GO X0 YO Z0

will get you to the actual position where these three axes are zero. You might use a command like this if you have a favorite
position for tool changes or if your machine has an auto tool changer. You might also use this command to get the tool out of the
way so that you can rotate or change a part in a vice.

G53 is not a modal command. It must be used on each line where motion based upon absolute machine position is desired.

User Manuelle V2.5, 2013-03-04
85/195

11.3 Fixture Offsets (G54-G59.3)

G53 G54 G55
X0YO X2Y0 X4 Y0

O O X0, YO X0, Y0
for for
finture #1 finture #2

fixture #5 fixture #6 finture #7 fixture #8

Fixture Offsets Work or fixture offset are used to make a part home that is different from the absolute, machine coordinate
system. This allows the part programmer to set up home positions for multiple parts. A typical operation that uses fixture offsets
would be to mill multiple copies of parts on multiple part holders or vises.

The values for offsets are stored in the VAR file that is requested by the INI file during the startup of an LinuxCNC. In our
example below we’ll use G55. The values for each axis for G55 are stored as variable numbers.

Variable Value
5241 0.000000
5242 0.000000
5243 0.000000
5244 0.000000
5245 0.000000
5246 0.000000

In the VAR file scheme, the first variable number stores the X offset, the second the Y offset and so on for all six axes. There are
numbered sets like this for each of the fixture offsets.

Each of the graphical interfaces has a way to set values for these offsets. You can also set these values by editing the VAR file
itself and then restarting LinuxCNC so that the LinuxCNC reads the new values however this is not the recommended way. G10,
(92, G28.1, etc are better ways to affect variables. For our example let’s directly edit the file so that G55 takes on the following
values.

Variable Value
5241 2.000000
5242 1.000000
5243 -2.000000
5244 0.000000
5245 0.000000
5246 0.000000

You should read this as moving the zero positions of G55 to X = 2 units, Y= 1 unit, and Z = -2 units away from the absolute zero
position.

User Manuelle V2.5, 2013-03-04
86/195

Once there are values assigned, a call to G55 in a program block would shift the zero reference by the values stored. The
following line would then move each axis to the new zero position. Unlike G53, G54 through G59.3 are modal commands. They
will act on all blocks of code after one of them has been set. The program that might be run using fixture offsets would require
only a single coordinate reference for each of the locations and all of the work to be done there. The following code is offered as
an example of making a square using the G55 offsets that we set above.

G55 GO X0 YO Z0
Gl F2 Z-0.2000
X1

Y1l

X0

YO0

GO Z0

G54 X0 YO Z0

M2

But, you say, why is there a G54 in there near the end. Many programmers leave the G54 coordinate system with all zero values
so that there is a modal code for the absolute machine based axis positions. This program assumes that we have done that and
use the ending command as a command to machine zero. It would have been possible to use g53 and arrive at the same place
but that command would not have been modal and any commands issued after it would have returned to using the G55 offsets
because that coordinate system would still be in effect.

G54 use preset work coordinate system 1
G55 use preset work coordinate system 2
G56 use preset work coordinate system 3
G57 use preset work coordinate system 4
G58 use preset work coordinate system 5
G59 use preset work coordinate system 6
G59.1 use preset work coordinate system 7
G59.2 use preset work coordinate system 8
G59.3 use preset work coordinate system 9

11.3.1 Default coordinate system

One other variable in the VAR file becomes important when we think about offset systems. This variable is named 5220. In the
default files its value is set to 1.00000. This means that when the LinuxCNC starts up it should use the first coordinate system as
its default. If you set this to 9.00000 it would use the ninth offset system as its default for start up and reset. Any value other than

an integer (decimal really) between 1 and 9, or a missing 5220 variable will cause the LinuxCNC to revert to the default value of
1.00000 on start up.

11.3.2 Setting coordinate (fixture) offsets from G code

The G10 L2x command can be used to set coordinate (fixture) offsets: (these are just quick summaries, see the G code section
for full details)

e G10 L2 P(fixture 1-9) - Set offset(s) to a value. Current position irrelevant. (see G10 L2 for details)

e G10 L20 P(fixture 1-9) - Set offset(s) so current position becomes a value. (see G10 L20 for details)

11.4 G92 Offsets

11.4.1 The G92 commands

This set of commands include;

User Manuelle V2.5, 2013-03-04
87 /195

G92 - This command, when used with axis names, sets values to offset variables.
e (G92.1 - This command sets zero values to the G92 variables.

* (G92.2 - This command suspends but does not zero out the G92 variables.

G92.3 - This command applies offset values that have been suspended.

When the commands are used as described above, they will work pretty much as you would expect.

To make the current point, what ever it is, have the coordinates X0, Y0, and Z0 you would use G92 X0 YO Z0. G92 does not
work from absolute machine coordinates. It works from current location.

G92 also works from current location as modified by any other offsets that are in effect when the G92 command is invoked.
While testing for differences between work offsets and actual offsets it was found that a G54 offset could cancel out a G92 and
thus give the appearance that no offsets were in effect. However, the G92 was still in effect for all coordinates and did produce
expected work offsets for the other coordinate systems.

It is a good practice to clear the G92 offsets at the end of their use with G92.1 or G92.2. When starting up LinuxCNC if any
offsets are in the G92 variables they will be applied when an axis is homed.

11.4.2 Setting G92 values
There are at least two ways to set G92 values.

¢ right mouse click on position displays of tkLinuxCNC will popup a window into which you can type a value.

¢ the G92 command

Both of these work from the current location of the axis to which the offset is to be applied.

Issuing G92 X YZA B C U V W does in fact set values to the G92 variables such that each axis takes on the value associated with
its name. These values are assigned to the current position of the machine axis. These results satisfy paragraphs one and two of
the NIST document.

G92 commands work from current axis location and add and subtract correctly to give the current axis position the value assigned
by the G92 command. The effects work even though previous offsets are in.

So if the X axis is currently showing 2.0000 as its position a G92 X0 will set an offset of -2.0000 so that the current location of
X becomes zero. A G92 X2 will set an offset of 0.0000 and the displayed position will not change. A G92 X5.0000 will set an
offset of 3.0000 so that the current displayed position becomes 5.0000.

11.4.3 G92 Cautions

Sometimes the values of a G92 offset will remain in the VAR file. This can happen when a file is aborted during processing that
has G92 offsets in effect. When this happens reset or a startup will cause them to become active again.

The variables are named:

Variable Value
5211 0.000000
5212 0.000000
5213 0.000000
5214 0.000000
5215 0.000000
5216 0.000000

where 5211 is the X axis offset and so on. If you are seeing unexpected positions as the result of a commanded move, as a result
of storing an offset in a previous program and not clearing them at the end then issue a G92.1 in the MDI window to clear the

User Manuelle V2.5, 2013-03-04
88/195

stored offsets.

If G92 values exist in the VAR file when LinuxCNC starts up, the G92 values in the var file will be applied to the values of the
current location of each axis. If this is home position and home position is set as machine zero everything will be correct. Once
home has been established using real machine switches, or by moving each axis to a known home position and issuing an axis
home command, any G92 offsets will be applied. If you have a G92 X1 in effect when you home the X axis the DRO will read
X: 1.000 instead of the expected X: 0.000 because the G92 was applied to the machine origin. If you issue a G92.1 and the DRO
now reads all zeros then you had a G92 offset in effect when you last ran LinuxCNC.

Unless your intention is to use the same G92 offsets in the next program, the best practice is to issue a G92.1 at the end of any G
Code files where you use G92 offsets.

11.5 Sample Program Using Offsets

This sample engraving project mills a set of four .1 radius circles in roughly a star shape around a center circle. We can setup the
individual circle pattern like this.

G10 L2 P1 X0 YO ZO (ensure that G54 is set to machine zero)
GO X-0.1 YO zO0

Gl F1 Z-0.25

G3 X-0.1 Y0 I0.1 J0O

GO z0

M2

We can issue a set of commands to create offsets for the four other circles like this.

G1l0 L2 P2 X0.5 (offsets G55 X value by 0.5 inch)
Gl0 L2 P3 X-0.5 (offsets G56 X value by -0.5 inch)
G10 L2 P4 Y0.5 (offsets G57 Y value by 0.5 inch)
G10 L2 P5 Y-0.5 (offsets G58 Y value by -0.5 inch)

We put these together in the following program:

(a program for milling five small circles in a diamond shape)

G10 L2 P1 X0 YO ZO (ensure that G54 is machine zero)
G1l0 L2 P2 X0.5 (offsets G55 X value by 0.5 inch)

G1l0 L2 P3 X-0.5 (offsets G56 X value by -0.5 inch)
G1l0 L2 P4 Y0.5 (offsets G57 Y value by 0.5 inch)

G10 L2 P5 Y-0.5 (offsets G58 Y value by -0.5 inch)

G54 GO X-0.1 YO Z0O (center circle)
Gl F1 z-0.25

G3 X-0.1 YO I0.1 JO

GO 70

G55 GO X-0.1 YO Z0O (first offset circle)
Gl F1 z-0.25

G3 X-0.1 Y0 I0.1 J0

GO z0

G56 GO X-0.1 YO Z0O (second offset circle)
Gl F1 7z-0.25

G3 X-0.1 YO 10.1 J0O

GO z0

G57 GO X-0.1 YO ZO (third offset circle)
Gl F1 z-0.25

G3 X-0.1 YO I0.1 JO

GO z0

User Manuelle V2.5, 2013-03-04
89/195

G58 GO X-0.1 YO Z0O (fourth offset circle)
Gl F1 z-0.25

G3 X-0.1 YO I0.1 J0O

G54 GO X0 YO zO

M2

Now comes the time when we might apply a set of G92 offsets to this program. You’ll see that it is running in each case at Z0.
If the mill were at the zero position, a G92 Z1.0000 issued at the head of the program would shift everything down an inch. You
might also shift the whole pattern around in the XY plane by adding some X and Y offsets with G92. If you do this you should
add a G92.1 command just before the m2 that ends the program. If you do not, other programs that you might run after this one
will also use that G92 offset. Furthermore it would save the G92 values when you shut down the LinuxCNC and they will be
recalled when you start up again.

User Manuelle V2.5, 2013-03-04

90/195

Chapter 12

Tool Compensation

12.1 Tool Length Offsets

12.1.1 Touch Off

Using the Touch Off Screen in the AXIS interface you can update the tool table automatically.

Typical steps for updating the tool table:

* After homing load a tool with Tn M6 where n is the tool number.

* Move tool to an established point using a gauge or take a test cut and measure.

* Click the "Touch Off" button in the Manual Control tab (or hit the End button on your keyboard).

* Select Tool Table in the Coordinate System drop down box.

* Enter the gauge or measured dimension and select OK.

The Tool Table will be changed with the correct Z length to make the DRO display the correct Z position and a G43 command
will be issued so the new tool Z length will be in effect. Tool table touch off is only available when a tool is loaded with Tn M6.

= Touch Off

@)

Enter £ coaordinate relative 1o
wiarkpiece:

0.23a0
= 0.230000

Coordinate system: T Tool Table —

IR,

iZancel

Figure 12.1: Touch Off Tool Table

User Manuelle V2.5, 2013-03-04
91/195

12.1.2 Using G10 L1/L10/L11

The G10 L1/L10/L11 commands can be used to set tool table offsets: (these are just quick summaries, see the G code section for
full details)

e G10 LI Pn - Set offset(s) to a value. Current position irrelevant. (see G10 L1 for details)
e G10 LI0 Pn - Set offset(s) so current position w/ fixture 1-8 becomes a value. (see G10 L10 for details)

* G0 LI11 Pn - Set offset(s) so current position w/ fixture 9 becomes a value. (see G10 L11 for details)

12.2 Tool Table

The Tool Table is a text file that contains information about each tool. The file is located in the same directory as your configura-
tion and is called tool.tbl. The tools might be in a tool changer or just changed manually. The file can be edited with a text editor
or be updated using G10 L1. See the Lathe Tool Table Section for an example of the lathe tool table format. The maximum
number of entries in the tool table is 56. The maximum tool and pocket number is 99999.

The Tool Editor or a text editor can be used to edit the tool table. If you use a text editor make sure you reload the tool table in
the GUL.

12.2.1 Tool Table Format

Table 12.1: Tool Table Format

T# P# \X \Y \Z \A \B \C \U \V \W \Dia\FA\BA\Ori\Rem
(no data after opening semicolon)

T1 P17 | X0 YO 70 A0 BO Co uo VO W0 | DO 10 JO Q0 ;rem
T2 P5 X0 YO Z0 A0 BO Co uo Vo W0 | DO 10 JO Qo0 ;rem
T3 P12 | X0 YO Z0 A0 BO Co uo VO W0 | DO 10 JO Qo0 ;rem

In general, the new tool table line format is:

* ; - opening semicolon, no data
* T - tool number, 0-99999 (tool numbers must be unique)

* P - pocket number, 1-99999 (pocket numbers must be unique)

X..W - tool offset on specified axis - floating-point
* D - tool diameter - floating-point, absolute value

* I - front angle (lathe only) - floating-point

* J - back angle (lathe only) - floating-point

* Q - tool orientation (lathe only) - integer, 0-9

* ; - beginning of comment or remark - text

The file consists of one opening semicolon on the first line, followed by up to a maximum of 56 tool entries. '

1 Although tool numbers up to 99999 are allowed, the number of entries in the tool table, at the moment, is still limited to a maximum of 56 tools for technical
reasons. The LinuxCNC developers plan to remove that limitation eventually. If you have a very large tool changer, please be patient.

User Manuelle V2.5, 2013-03-04
92/195

Earlier versions of LinuxCNC had two different tool table formats for mills and lathes, but since the 2.4.x release, one tool table
format is used for all machines. Just ignore the parts of the tool table that don’t pertain to your machine, or which you don’t need
to use.

Each line of the tool table file after the opening semicolon contains the data for one tool. One line may contain as many as 16
entries, but will likely contain much fewer.

The units used for the length, diameter, etc., are in machine units.

You will probably want to keep the tool entries in ascending order, especially if you are going to be using a randomizing tool
changer. Although the tool table does allow for tool numbers in any order.

Each line may have up to 16 entries. The first two entries are required. The last entry (a remark or comment, preceded by a
semicolon) is optional. It makes reading easier if the entries are arranged in columns, as shown in the table, but the only format
requirement is that there be at least one space or tab after each of the entries on a line and a newline character at the end of each
entry.

The meanings of the entries and the type of data to be put in each are as follows.

Tool Number (required) The 7 column contains the number (unsigned integer) which represents a code number for the tool.
The user may use any code for any tool, as long as the codes are unsigned integers.

Pocket Number (required) The P column contains the number (unsigned integer) which represents the pocket number (slot
number) of the tool changer slot where the tool can be found. The entries in this column must all be different.

The pocket numbers will typically start at 1 and go up to the highest available pocket on your tool changer. But not all tool
changers follow this pattern. Your pocket numbers will be determined by the numbers that your tool changer uses to refer to the
pockets. So all this is to say that the pocket numbers you use will be determined by the numbering scheme used in your tool
changer, and the pocket numbers you use must make sense on your machine.

Data Offset Numbers (optional) The Data Offset columns (XYZABCUVW) contain real numbers which represent tool offsets
in each axis. This number will be used if tool length offsets are being used and this tool is selected. These numbers can be
positive, zero, or negative, and are in fact completely optional. Although you will probably want to make at least one entry here,
otherwise there would be little point in making an entry in the tool table to begin with.

In a typical mill, you probably want an entry for Z (tool length offset). In a typical lathe, you probably want an entry for X (X
tool offset) and Z (Z tool offset). In a typical mill using cutter diameter compensation (cutter comp), you probably also want to
add an entry for D (cutter diameter). In a typical lathe using tool nose diameter compensation (tool comp), you probably also
want to add an entry for D (tool nose diameter).

A lathe also requires some additional information to describe the shape and orientation of the tool. So you probably want to have
entries for I (tool front angle) and J (tool back angle). You probably also want an entry for Q (tool orientation).

A complete description of the lathe entries can be found in the lathe section of the user manual here.

The Diameter column contains a real number. This number is used only if cutter compensation is turned on using this tool. If the
programmed path during compensation is the edge of the material being cut, this should be a positive real number representing the
measured diameter of the tool. If the programmed path during compensation is the path of a tool whose diameter is nominal, this
should be a small number (positive or negative, but near zero) representing only the difference between the measured diameter
of the tool and the nominal diameter. If cutter compensation is not used with a tool, it does not matter what number is in this
column.

The Comment column may optionally be used to describe the tool. Any type of description is OK. This column is for the benefit
of human readers only. The comment must be preceded by a semicolon.

12.2.2 Tool Changers

LinuxCNC supports three types of tool changers: manual, random location and fixed location. Information about configuring an
LinuxCNC tool changer is in the Integrator Manual.

Manual Tool Changer Manual tool changer (you change the tool by hand) is treated like a fixed location tool changer and the
P number is ignored. Using the manual tool changer only makes sense if you have tool holders that remain with the tool (Cat,
NMTB, Kwik Switch etc.) when changed thus preserving the location of the tool to the spindle. Machines with R-8 or router
collet type tool holders do not preserve the location of the tool and the manual tool changer should not be used.

User Manuelle V2.5, 2013-03-04
93/195

Fixed Location Tool Changers Fixed location tool changers always return the tools to a fixed position in the tool changer. This
would also include designs like lathe turrets. When LinuxCNC is configured for a fixed location tool changer the P number is
ignored (but read, preserved and rewritten) by LinuxCNC, so you can use P for any bookkeeping number you want.

Random Location Tool Changers Random location tool changers swap the tool in the spindle with the one in the changer. With
this type of tool changer the tool will always be in a different pocket after a tool change. When a tool is changed LinuxCNC
rewrites the pocket number to keep track of where the tools are. T can be any number but P must be a number that makes sense
for the machine.

12.3 Cutter Compensation

Cutter Compensation allows the programmer to program the tool path without knowing the exact tool diameter. The only caveat
is the programmer must program the lead in move to be at least as long as the largest tool radius that might be used.

There are two possible paths the cutter can take while cutter compensation is on to the left or right side of a line when facing the
direction of cutter motion from behind the cutter. To visualize this imagine you were standing on the part walking behind the
tool as it progresses across the part. G41 is your left side of the line and G42 is the right side of the line.

The end point of each move depends on the next move. If the next move creates an outside corner the move will be to the end
point of the compensated cut line. If the next move creates in an inside corner the move will stop short so to not gouge the part.
The following figure shows how the compensated move will stop at different points depending on the next move.

Cutside Corner
End of first mawve

G471 FPath

Frogrammed Fath

Inzide Corner

G42 Path End af first move

Figure 12.2: Compensation End Point

User Manuelle V2.5, 2013-03-04
94 /195

12.3.1 Overview

Tool Table Cutter compensation uses the data from the tool table to determine the offset needed. The data can be set at run time
with G10 L1.

Programming Entry Moves Any move that is long enough to perform the compensation will work as the entry move. The
minimum length is the cutter radius. This can be a rapid move above the work piece. If several rapid moves are issued after a
G41/42 only the last one will move the tool to the compensated position.

In the following figure you can see that the entry move is compensated to the right of the line. This puts the center of the tool to
the right of X0 in this case. If you were to program a profile and the end is at X0 the resulting profile would leave a bump due to
the offset of the entry move.

Resulting Profi

K

Last Comp Move ;-"f
a1 X0 Y I— > .
L T Lead 1n Move

@ C42 X0 Y1
-:' l::-\'.l LR]

IR

Figure 12.3: Entry Move

Z Motion Z axis motion may take place while the contour is being followed in the XY plane. Portions of the contour may be
skipped by retracting the Z axis above the part and by extending the Z-axis at the next start point.

Rapid Moves Rapid moves may be programed while compensation is turned on.

GOOD PRACTICES

e Start a program with G40 to make sure compensation is off.

User Manuelle V2.5, 2013-03-04

95/195

12.3.2 Examples

G—Code

F25 { Set Feed Rate
G40 [Cancel Comp b

G100 L1 P11 R0.ZE Z1 { Zet Tool Taoble)
T1 M& { Locad Tocl)

G42 [Start Comp Right)
31 1 %1 {Lead In Mawe)
X5 { Cut Path)

Th

1

1

240 { Cangel Cemp b
G0N0 YD L Exit Mowe)
MZ { End Program b

Exit Mowe :

‘_

=—— Part Jutline

S

Leod In Mowve

Tl

Figure 12.4: Outside Profile

_

Compenszated tool path

User Manuelle V2.5, 2013-03-04

96 /195

G20 { Inch Mode) -

F30 [Set Feed Rate }

GI L1 P11 R.2E Z1 ([Set Tool Table)
T1 WM& { Loagd the Tool)

GO Z0 [Move toc safe Z height)

G41 (Start Cutter Comp Left)

#4 Y3 [Rapid ta start peint)

G1 ®5 Z—1 [Move to cut height)

G3 ¥6 ¥4 J1 { Arc into cut path)

G1 Y6 (Cut Profile)

nZ

T2

Hé

4

GI X5 Y5 11 (Are ocut of cut path)
G070 [Mowe cutter to safe 7 height)
G40 { Stop Cutter Comp b

G0 ¥1 %1 { Move to zsafe position)
TO M& [Remowve Taol)

M2 { End Frogram 3

Compensated
Cut Path
Fart Profile

Fapid Move

Figure 12.5: Inside Profile

User Manuelle V2.5, 2013-03-04
97 /195

Chapter 13

G Code Overview

13.1 Overview

The LinuxCNC G Code language is based on the RS274/NGC language. The G Code language is based on lines of code. Each
line (also called a block) may include commands to do several different things. Lines of code may be collected in a file to make
a program.

A typical line of code consists of an optional line number at the beginning followed by one or more words. A word consists
of a letter followed by a number (or something that evaluates to a number). A word may either give a command or provide
an argument to a command. For example, G/ X3 is a valid line of code with two words. G/ is a command meaning move in a
straight line at the programmed feed rate to the programmed end point, and X3 provides an argument value (the value of X should
be 3 at the end of the move). Most LinuxCNC G Code commands start with either G or M (for General and Miscellaneous). The
words for these commands are called G codes and M codes.

The LinuxCNC language has no indicator for the start of a program. The Interpreter, however, deals with files. A single program
may be in a single file, or a program may be spread across several files. A file may demarcated with percents in the following
way. The first non-blank line of a file may contain nothing but a percent sign, %, possibly surrounded by white space, and later
in the file (normally at the end of the file) there may be a similar line. Demarcating a file with percents is optional if the file has
an M2 or M30 in it, but is required if not. An error will be signaled if a file has a percent line at the beginning but not at the end.
The useful contents of a file demarcated by percents stop after the second percent line. Anything after that is ignored.

The LinuxCNC G Code language has two commands (M2 or M30), either of which ends a program. A program may end before
the end of a file. Lines of a file that occur after the end of a program are not to be executed. The interpreter does not even read
them.

13.2 Format of a line

A permissible line of input code consists of the following, in order, with the restriction that there is a maximum (currently 256)
to the number of characters allowed on a line.

1. an optional block delete character, which is a slash /.
2. an optional line number.
3. any number of words, parameter settings, and comments.

4. an end of line marker (carriage return or line feed or both).

Any input not explicitly allowed is illegal and will cause the Interpreter to signal an error.

Spaces and tabs are allowed anywhere on a line of code and do not change the meaning of the line, except inside comments. This
makes some strange-looking input legal. The line GOX +0. 12 34Y 7 is equivalent to GO x+0.1234 Y7, for example.

User Manuelle V2.5, 2013-03-04
98/195

Blank lines are allowed in the input. They are to be ignored.

Input is case insensitive, except in comments, i.e., any letter outside a comment may be in upper or lower case without changing
the meaning of a line.

13.3 Block Delete

The optional block delete character the slash / when placed first on a line can be used by some user interfaces to skip lines of
code when needed. In Axis the key combination Alt-m-/ toggles block delete on and off. When block delete is on any lines
starting with the slash / are skipped.

13.4 Line Number

A line number is the letter N followed by an unsigned integer. Line numbers may be repeated or used out of order, although
normal practice is to avoid such usage. Line numbers may also be skipped, and that is normal practice. A line number is not
required to be used, but must be in the proper place if used.

13.5 Word

A word is a letter other than N followed by a real value.

Words may begin with any of the letters shown in the following Table. The table includes N for completeness, even though, as
defined above, line numbers are not words. Several letters (I, J, K, L, P, R) may have different meanings in different contexts.
Letters which refer to axis names are not valid on a machine which does not have the corresponding axis.

Table 13.1: Words and their meanings

Letter Meaning

A axis of machine

B axis of machine

C axis of machine

Tool radius compensation number

Feed rate

General function (See table Modal Groups)
Tool length offset index

X offset for arcs and G87 canned cycles

Y offset for arcs and G87 canned cycles

Z offset for arcs and G87 canned cycles.
Spindle-Motion Ratio for G33 synchronized movements.
Miscellaneous function (See table Modal Groups)
Line number

Dwell time in canned cycles and with G4.
Key used with G10.

Feed increment in G73, G83 canned cycles
Arc radius or canned cycle plane

Spindle speed

Tool selection

U axis of machine

V axis of machine

W axis of machine

X axis of machine

Y axis of machine

Z axis of machine

Tz R~z Qo wm >

N[| < = < c| 1| v =

User Manuelle V2.5, 2013-03-04
99/195

13.6 Number

The following rules are used for (explicit) numbers. In these rules a digit is a single character between 0 and 9.

* A number consists of (1) an optional plus or minus sign, followed by (2) zero to many digits, followed, possibly, by (3) one
decimal point, followed by (4) zero to many digits - provided that there is at least one digit somewhere in the number.

* There are two kinds of numbers: integers and decimals. An integer does not have a decimal point in it; a decimal does.

e Numbers may have any number of digits, subject to the limitation on line length. Only about seventeen significant figures will
be retained, however (enough for all known applications).

* A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the decimal point and the last non-zero
digit) zeros are allowed but not required. A number written with initial or trailing zeros will have the same value when it is read
as if the extra zeros were not there.

Numbers used for specific purposes in RS274/NGC are often restricted to some finite set of values or some to some range of
values. In many uses, decimal numbers must be close to integers; this includes the values of indexes (for parameters and carousel
slot numbers, for example), M codes, and G codes multiplied by ten. A decimal number which is supposed be close to an integer
is considered close enough if it is within 0.0001 of an integer.

13.7 Parameters

(Variables)

The RS274/NGC language supports parameters - what in other programming languages would be called variables. There are
several types of parameter of different purpose and appearance, each described in the following sections. The only value type
supported by parameters is floating-point; there are no string, boolean or integer types in G-code like in other programming
languages. However, logic expressions can be formulated with boolean operators (AND, OR, XOR, and the comparison operators
EQ.,NE,GT,GE,LT,LE), and the MOD, ROUND, FUP and FIX operators support integer arithmetic.

Parameters differ in syntax, scope, behavior when not yet initialized, mode, persistence and intended use.

Syntax
There are three kinds of syntactic appearance:

* numbered - #4711
* named local - #<localvalue>
* named global - #<_globalvalue>
Scope
The scope of a parameter is either global, or local within a subroutine. Subroutine parameters and local named variables
have local scope. Global named parameters and numbered parameters starting from number 31 are global in scope.

RS274/NGC uses lexical scoping - in a subroutine only the local variables defined therein, and any global variables are
visible. The local variables of a calling procedure are not visible in a called procedure.

Behavior of uninitialized parameters

1. unitialized global parameters, and unused subroutine parameters return the value zero when used in an expression.

2. unitialized named parameters signal an error when used in an expression.

User Manuelle V2.5, 2013-03-04
100/ 195

Mode
Most parameters are read/write and may be assigned to within an assignment statement. However, for many predefined
parameters this does not make sense, so they are are read-only - they may appear in expressions, but not on the left-hand
side of an assignment statement.

Persistence
When LinuxCNC is shut down, volatile parameters lose their values. All parameters except numbered parameters in the
current persistent range ! are volatile. Persistent parameters are saved in the .var file and restored to their previous values
when LinuxCNC is started again. Volatile numbered parameters are reset to zero.

Intended Use

1. user parameters:: numbered parameters in the range 31..5000, and named global and local parameters except prede-
fined parameters. These are available for general-purpose storage of floating-point values, like intermediate results,
flags etc, throughout program execution. They are read/write (can be assigned a value).

2. subroutine parameters - these are used to hold the actual parameters passed to a subroutine.
3. numbered parameters - most of these are used to access offsets of coordinate systems.

4. system parameters - used to determine the current running version. They are read-only.

13.7.1 Numbered Parameters

A numbered parameter is the pound character # followed by an integer between 1 and 5399. The parameter is referred to by this
integer, and its value is whatever number is stored in the parameter.

A value is stored in a parameter with the = operator; for example:

#3 = 15 (set parameter 3 to 15)

A parameter setting does not take effect until after all parameter values on the same line have been found. For example, if
parameter 3 has been previously set to 15 and the line #3=6 G1 X#3 is interpreted, a straight move to a point where X equals 15
will occur and the value of parameter 3 will be 6.

The # character takes precedence over other operations, so that, for example, #/+2 means the number found by adding 2 to the
value of parameter 1, not the value found in parameter 3. Of course, #/1+2] does mean the value found in parameter 3. The #
character may be repeated; for example ##2 means the value of the parameter whose index is the (integer) value of parameter 2.

The interpreter maintains a number of read-only parameters for a loaded tool:

¢ [-30 - Subroutine local parameters of call arguments. These parameters are local to the subroutine. See the O Codes Section.
* 1-5000 - G-Code user parameters. These parameters are global in the G Code file.

* 5061-5070 - Result of G38.2 Probe X YZABCUVW)

* 5161-5169 - G28 Home for X YZABCU VW)

* 5181-5189 - G30 Home for X YZABCUV W)

e 5210 -1 if G92 offsets are active, O if not

e 5211-5219 - G92 offset X YZABCUV W)

e 5220 - Current Coordinate System number 1 - 9 for G54 - G59.3

e 5221-5230 - Coordinate System 1, G54 (XY Z A B CU V W R) - R denotes the XY rotation angle around the Z axis
e 5241-5250 - Coordinate System 2, G55 (X YZABCUV WR)

e 5261-5270 - Coordinate System 3, G56 X YZAB CUV WR)

! The range of persistent parameters may change as development progresses. This range is currently 5161- 5390. It is defined in the _required_parameters
array in file the src/emc/rs274ngc/interp_array.cc .

User Manuelle V2.5, 2013-03-04
101/195

* 5281-5290 - Coordinate System 4, G57 (X YZABCU V WR)

* 5301-5310 - Coordinate System 5, G58 X YZABCU YV WR)

e 532]-5330 - Coordinate System 6, GS9 (X YZABCUV WR)

* 5341-5350 - Coordinate System 7, G59.1 X YZAB CU V WR)
* 5361-5370 - Coordinate System 8, G59.2 (X YZABCU YV WR)
* 5381-5390 - Coordinate System 9, G59.3 (X YZABCUV WR)
* 5399 - Result of M66 - Check or wait for input

* 5400 - Current Tool Number

* 5401-5409 - Tool Offset X YZABCUV W)

* 5410 - Current Tool Diameter

e 5411 - Current Tool Front Angle

* 5412 - Current Tool Back Angle

* 5413 - Current Tool Orientation

* 5420-5428 - Current Position including offsets in current program units (X Y ZAB CU V W)

13.7.2 Subroutine Parameters

1-30
Subroutine local parameters of call arguments. These parameters are local to the subroutine. Volatile. See also the chapter
on O-Codes.

13.7.3 Named Parameters

Named parameters work like numbered parameters but are easier to read. All parameter names are converted to lower case and
have spaces and tabs removed. Named parameters must be enclosed with < > marks.

#<named parameter here> is a local named parameter. By default, a named parameter is local to the scope in which it is assigned.
You can’t access a local parameter outside of its subroutine - this is so that two subroutines can use the same parameter names
without fear of one subroutine overwriting the values in another.

#<_global named parameter here> is a global named parameter. They are accessible from within called subroutines and may
set values within subroutines that are accessible to the caller. As far as scope is concerned, they act just like regular numeric
parameters. They are not stored in files.

Examples:
* Declaration of named global variable

#<_endmill_dia> = 0.049

* Reference to previously declared global variable

#<_endmill_rad> = [#<_endmill_dia>/2.0]

* Mixed literal and named parameters

0100 call [0.0] [0.0] [#<_inside_cutout>—-#<_endmill_dia>] [#<_Zcut>] [#<_feedrate>]

Notes:

The global parameters _a, _b, _c, ... _z have been reserved for special use. In the future, they may provide access to the last A
word, B word, C word, etc.

User Manuelle V2.5, 2013-03-04
102/ 195

13.7.4 System Parameters

Two global read only named parameters are available to check which version is running from G Code.

* #<_vmajor> - Major package version. If current version was 2.5.2 would return 2.5.

* #<_vminor> - Minor package version. If current version was 2.5.2 would return 0.2.

13.8 Expressions

An expression is a set of characters starting with a left bracket [and ending with a balancing right bracket] . In between the
brackets are numbers, parameter values, mathematical operations, and other expressions. An expression is evaluated to produce
a number. The expressions on a line are evaluated when the line is read, before anything on the line is executed. An example of
an expression is [1 + acos[0] - [#3 ** [4.0/2]]].

13.9 Binary Operators

Binary operators only appear inside expressions. There are four basic mathematical operations: addition (+), subtraction (-),
multiplication (*), and division (/). There are three logical operations: non-exclusive or (OR), exclusive or (XOR), and logical
and (AND). The eighth operation is the modulus operation (MOD). The ninth operation is the power operation (**) of raising the
number on the left of the operation to the power on the right. The relational operators are equality (EQ), inequality (NE), strictly
greater than (GT), greater than or equal to (GE), strictly less than (LT), and less than or equal to (LE).

The binary operations are divided into several groups according to their precedence. (see table [cap:Operator-Precedence]) If
operations in different precedence groups are strung together (for example in the expression [2.0/3 * 1.5 - 5.5/ 11.0]), operations
in a higher group are to be performed before operations in a lower group. If an expression contains more than one operation
from the same group (such as the first / and * in the example), the operation on the left is performed first. Thus, the example is
equivalentto: [[[2.0/3] *1.5] - [5.5/11.0]], which is equivalent to to [1.0 - 0.5] , which is 0.5.

The logical operations and modulus are to be performed on any real numbers, not just on integers. The number zero is equivalent
to logical false, and any non-zero number is equivalent to logical true.

Table 13.2: Operator Precedence

Operators Precedence
ok highest
*/MOD
+ -
EQNE GT GE LT LE
AND OR XOR lowest

13.10 Functions

A function is either ATAN followed by one expression divided by another expression (for example ATAN[2]/[1+3]) or any other
function name followed by an expression (for example SIN/90]). The available functions are shown in table [cap:Functions].
Arguments to unary operations which take angle measures (COS, SIN, and TAN) are in degrees. Values returned by unary
operations which return angle measures (ACOS, ASIN, and ATAN) are also in degrees.

User Manuelle V2.5, 2013-03-04
103/195

Table 13.3: Functions

Function Name Function result
ATANI[Y]/[X] Four quadrant inverse tangent
ABSJarg] Absolute value
ACOS|[arg] Inverse cosine
ASINJ[arg] Inverse sine
COSJarg] Cosine
EXPJ[arg] e raised to the given power
FIX[arg] Round down to integer
FUP[arg] Round up to integer
ROUNDJarg] Round to nearest integer
LNJarg] Base-e logarithm
SIN[arg] Sine
SQRTJarg] Square Root
TAN[arg] Tangent
EXISTS[arg] Check named Parameter

The FIX function rounds towards the left (less positive or more negative) on a number line, so that FIX[2.8] =2 and FIX[-2.8] =
-3, for example. The FUP operation rounds towards the right (more positive or less negative) on a number line; FUP[2.8] = 3
and FUP[-2.8] = -2, for example.

The EXISTS function checks for the existence of a single named parameter. It takes only one named parameter and returns 1 if
it exists and O if it does not exist. It is an error if you use a numbered parameter or an expression.

13.11 Repeated Items

A line may have any number of G words, but two G words from the same modal group may not appear on the same line See the
Modal Groups Section for more information.

A line may have zero to four M words. Two M words from the same modal group may not appear on the same line.
For all other legal letters, a line may have only one word beginning with that letter.

If a parameter setting of the same parameter is repeated on a line, #3=15 #3=6, for example, only the last setting will take effect.
It is silly, but not illegal, to set the same parameter twice on the same line.

If more than one comment appears on a line, only the last one will be used; each of the other comments will be read and its
format will be checked, but it will be ignored thereafter. It is expected that putting more than one comment on a line will be very
rare.

13.12 Item order

The three types of item whose order may vary on a line (as given at the beginning of this section) are word, parameter setting,
and comment. Imagine that these three types of item are divided into three groups by type.

The first group (the words) may be reordered in any way without changing the meaning of the line.

If the second group (the parameter settings) is reordered, there will be no change in the meaning of the line unless the same
parameter is set more than once. In this case, only the last setting of the parameter will take effect. For example, after the line
#3=15 #3=6 has been interpreted, the value of parameter 3 will be 6. If the order is reversed to #3=6 #3=15 and the line is
interpreted, the value of parameter 3 will be 15.

If the third group (the comments) contains more than one comment and is reordered, only the last comment will be used.

If each group is kept in order or reordered without changing the meaning of the line, then the three groups may be interleaved in
any way without changing the meaning of the line. For example, the line g40 gl #3=15 (foo) #4=-7.0 has five items and means
exactly the same thing in any of the 120 possible orders (such as #4=-7.0 gl #3=15 g40 (foo)) for the five items.

User Manuelle V2.5, 2013-03-04
104 /195

13.13 Commands and Machine Modes

Many commands cause the controller to change from one mode to another, and the mode stays active until some other command
changes it implicitly or explicitly. Such commands are called modal. For example, if coolant is turned on, it stays on until it is
explicitly turned off. The G codes for motion are also modal. If a G1 (straight move) command is given on one line, for example,
it will be executed again on the next line if one or more axis words is available on the line, unless an explicit command is given
on that next line using the axis words or canceling motion.

Non-modal codes have effect only on the lines on which they occur. For example, G4 (dwell) is non-modal.

13.14 Polar Coordinates

Polar Coordinates can be used to specify the XY coordinate of a move. The @n is the distance and "n is the angle. The advantage
of this is for things like bolt hole circles which can be done very simply by moving to a point in the center of the circle, setting
the offset and then moving out to the first hole then run the drill cycle. Polar Coordinates always are from the current XY zero
position. To shift the Polar Coordinates from machine zero use an offset or select a coordinate system.

In Absolute Mode the distance and angle is from the XY zero position and the angle starts with O on the X Positive axis and
increases in a CCW direction about the Z axis. The code G1 @1790 is the same as G1 Y1.

In Relative Mode the distance and angle is also from the XY zero position but it is cumulative. This can be confusing at first how
this works in incremental mode.

For example if you have the following program you might expect it to be a square pattern.

F100 G1 @.5 ~90
G91 @.5 "90
@.5 "~90

@.5 90

@.5 790

G90 GO X0 YO M2

You can see from the following figure that the output is not what you might expect. Because we added 0.5 to the distance each
time the distance from the XY zero position increased with each line.

User Manuelle V2.5, 2013-03-04
105/195

g

= |_| |_|
U

Figure 13.1: Polar Spiral

The following code will produce our square pattern.

F100 G1 @.5 ~90
G91 ~90

~90

90

90

G90 GO X0 YO M2

As you can see by only adding to the angle by 90 degrees each time the end point distance is the same for each line.

User Manuelle V2.5, 2013-03-04
106/ 195

Figure 13.2: Polar Square

It is an error if:

* An incremental move is started at the origin

¢ A mix of Polar and and X or Y words are used

13.15 Modal Groups

Modal commands are arranged in sets called modal groups, and only one member of a modal group may be in force at any given
time. In general, a modal group contains commands for which it is logically impossible for two members to be in effect at the
same time - like measure in inches vs. measure in millimeters. A machining center may be in many modes at the same time, with
one mode from each modal group being in effect. The modal groups are shown in the following Table.

Table 13.4: G-Code Modal Groups

Modal Group Meaning Member Words

Non-modal codes (Group 0) G4, G10 G28, G30, G53 G92, G92.1, G92.2, G92.3,

Motion (Group 1) GO0, G1, G2, G3, G33, G38.x, G73, G76, G8O, G81
G82, G83, G84, G85, G86, G87, G8S8, G&9

Plane selection (Group 2) G17, G18, G19, G17.1, G18.1, G19.1

Distance Mode (Group 3) G90, G91

Arc IJK Distance Mode (Group 4) G90.1, G91.1

Feed Rate Mode (Group 5) G93, G9%4, G95

Units (Group 6) G20, G21

Cutter Diameter Compensation (Group 7) G40, G41, G42, G41.1, G42.1

User Manuelle V2.5, 2013-03-04

107 /195

Table 13.4: (continued)

Modal Group Meaning Member Words
Tool Length Offset (Group 8) G43, G43.1, G49
Canned Cycles Return Mode (Group 10) G98, G99

Coordinate System (Group 12)

G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3

Control Mode (Group 13)

G61, G61.1, Go4

Spindle Speed Mode (Group 14)

G96, G97

Lathe Diameter Mode (Group 15)

G7,G8

Table 13.5: M-Code Modal Groups

Modal Group Meaning Member Words

Stopping (Group 4) MO, M1, M2, M30, M60

I/0 on/off (Group 5) M6 Tn

Tool Change (Group 6) M6 Tn

Spindle (Group 7) M3, M4, M5

Coolant (Group 8) (M7 M8 can both be on), M9
Override Switches (Group 9) M48, M49

User Defined (Group 10) M100-M199

For several modal groups, when a machining center is ready to accept commands, one member of the group must be in effect.
There are default settings for these modal groups. When the machining center is turned on or otherwise re-initialized, the default
values are automatically in effect.

Group 1, the first group on the table, is a group of G codes for motion. One of these is always in effect. That one is called the
current motion mode.

It is an error to put a G-code from group 1 and a G-code from group 0 on the same line if both of them use axis words. If an
axis word-using G-code from group 1 is implicitly in effect on a line (by having been activated on an earlier line), and a group 0
G-code that uses axis words appears on the line, the activity of the group 1 G-code is suspended for that line. The axis word-using
G-codes from group 0 are G10, G28, G30, and G92.

It is an error to include any unrelated words on a line with O- flow control.

13.16 Comments

Comments can be added to lines of G code to help clear up the intention of the programmer. Comments can be embedded in a
line using parentheses () or for the remainder of a line using a semi-colon. The semi-colon is not treated as the start of a comment
when enclosed in parentheses.

Comments may appear between words, but not between words and their corresponding parameter. So, S100(set speed)F200(feed)
is OK while S(speed)100F (feed) is not.

GO (Rapid to start) X1 Y1
GO X1 Y1 (Rapid to start; but don’t forget the coolant)
M2 ; End of program.

There are several active comments which look like comments but cause some action, like (debug,..) or (print,..). If there are
several comments on a line, only the last comment will be interpreted according to these rules. Hence, a normal comment
following an active comment will in effect disable the active comment. For example, (foo) (debug,#1) will print the value of
parameter #1, however (debug,#1)(foo) will not.

User Manuelle V2.5, 2013-03-04
108/ 195

A comment introduced by a semicolon is by definition the last comment on that line, and will always be interpreted for active
comment syntax.

13.17 Messages

* (MSG,) - displays message if MSG appears after the left parenthesis and before any other printing characters. Variants of MSG
which include white space and lower case characters are allowed. The rest of the characters before the right parenthesis are
considered to be a message. Messages should be displayed on the message display device of the user interface if provided.

Message Example

(MSG, This is a message)

13.18 Probe Logging

* (PROBEOPEN filename.txt) - will open filename.txt and store the 9-number coordinate consisting of XYZABCUVW of each
successful straight probe in it.

* (PROBECLOSE) - will close the open probelog file.

For more information on probing see the G38 Section.

13.19 Logging

* (LOGOPEN ,filename.txt) - opens the named log file. If the file already exists, it is truncated.
* (LOGAPPEND,filename) - opens the named log file. If the file already exists, the data is appended.
* (LOGCLOSE) - closes an open log file.

* (LOG,) - everything past the , is written to the log file if it is open. Supports expansion of parameters as described below.

13.20 Debug Messages

* (DEBUG,) - displays a message like (MSG,) with the addition of special handling for comment parameters as described below.

13.21 Print Messages

* (PRINT,) - messages are output to stderr with special handling for comment parameters as described below.

13.22 Comment Parameters

In the DEBUG, PRINT and LOG comments, the values of parameters in the message are expanded.

For example: to print a named global variable to stderr (the default console window) add a line to your G code like. ..
Parameters Example

(print,endmill dia = #<_endmill_dia>)

(print,value of variable 123 is: #123)

Inside the above types of comments, sequences like #123 are replaced by the value of the parameter 123. Sequences like #<named
parameter> are replaced by the value of the named parameter. Named parameters will have white space removed from them.
So, #<named parameter> will be converted to #<namedparameter>.

User Manuelle V2.5, 2013-03-04
109/195

13.23 File Requirements

A G code file must contain one or more lines of G code and be terminated with a Program End. Any G code past the program
end is not evaluated.

If a program end code is not used a pair of percent signs % with the first percent sign on the first line of the file followed by one
or more lines of G code and a second percent sign. Any code past the second percent sign is not evaluated.

Note
The file must be created with a text editor like Gedit and not a word processor like Open Office Word Processor.

13.24 File Size

The interpreter and task are carefully written so that the only limit on part program size is disk capacity. The TkLinuxCNC and
Axis interface both load the program text to display it to the user, though, so RAM becomes a limiting factor. In Axis, because
the preview plot is drawn by default, the redraw time also becomes a practical limit on program size. The preview can be turned
off in Axis to speed up loading large part programs. In Axis sections of the preview can be turned off using preview control
comments.

13.25 G Code Order of Execution

The order of execution of items on a line is defined not by the position of each item on the line, but by the following list:

* Comment (including message)

¢ Set feed rate mode (G93, G94).

* Set feed rate (F).

* Set spindle speed (S).

¢ Select tool (T).

* HAL pin I/O (M62-M68).

* Change tool (M6) and Set Tool Number (M61).

* Spindle on or off (M3, M4, M5).

¢ Save State (M70, M73), Restore State (M72), Invalidate State (M71).
¢ Coolant on or off (M7, M8, M9).

¢ Enable or disable overrides (M48, M49,M50,M51,M52,M53).
¢ User-defined Commands (M100-M199).

* Dwell (G4).

* Set active plane (G17, G18, G19).

* Set length units (G20, G21).

* Cutter radius compensation on or off (G40, G41, G42)

* Cutter length compensation on or off (G43, G49)

* Coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3).

User Manuelle V2.5, 2013-03-04
110/ 195

* Set path control mode (G61, G61.1, G64)

¢ Set distance mode (G90, G91).

¢ Set retract mode (G98, G99).

* Go to reference location (G28, G30) or change coordinate system data (G10) or set axis offsets (G92, G92.1, G92.2, G94).
* Perform motion (GO to G3, G33, G73, G76, G80 to G89), as modified (possibly) by G53.

 Stop MO0, M1, M2, M30, M60).

13.26 G Code Best Practices

13.26.1 Use an appropriate decimal precision

Use at least 3 digits after the decimal when milling in millimeters, and at least 4 digits after the decimal when milling in inches.

13.26.2 Use consistent white space

G-code is most legible when at least one space appears before words. While it is permitted to insert white space in the middle of
numbers, there is no reason to do so.

13.26.3 Use Center-format arcs

Center-format arcs (which use /- J- K- instead of R-) behave more consistently than R-format arcs, particularly for included
angles near 180 or 360 degrees.

13.26.4 Put important modal settings at the top of the file

When correct execution of your program depends on modal settings, be sure to set them at the beginning of the part program.
Modes can carry over from previous programs and from the MDI commands.

As a good preventative measure, put a line similar to the following at the top of all your programs:

G17 G20 G40 G49 G54 G80 G90 G94

(XY plane, inch mode, cancel diameter compensation, cancel length offset, coordinate system 1, cancel motion, non-incremental
motion, feed/minute mode)

Perhaps the most critical modal setting is the distance units—If you do not include G20 or G21, then different machines will mill
the program at different scales. Other settings, such as the return mode in canned cycles may also be important.

13.26.5 Don’t put too many things on one line

Ignore everything in Section Section 13.25, and instead write no line of code that is the slightest bit ambiguous.

13.26.6 Don’t set & use a parameter on the same line

Don’t use and set a parameter on the same line, even though the semantics are well defined. Updating a variable to a new value,
such as #1=[#1+#2] is OK.

User Manuelle V2.5, 2013-03-04
111/195

13.26.7 Don’t use line numbers

Line numbers offer no benefits. When line numbers are reported in error messages, the numbers refer to the line number in the
file, not the N-word value.

13.27 Linear and Rotary Axis

Because