Integrator Manuelle V2.5, 2013-03-04

Integrator Manuelle V2.5, 2013-03-04

Integrator Manuelle V2.5, 2013-03-04

ii

Contents
I LinuxCNC Introduction 1
1 Integrator Concepts 3
L1 Stepper SYSteMS o o e e e e e e e e e e e e e e e e 3
1.1.1 BasePeriod 3
112 StepTiming oo e 3
1.2 Servo SYStems o v i e e e e e e e e e e e e 4
1.2.1 BasicOperation i e e e e e e e 4
1.2.2 Proportional term e e e e e 5
1.2.3 Integralterm L e e e e e e e 5
1.2.4 Derivative term o o i e e e e e e e e e e e e e 5
1.25 Looptuning o o i e e e e e e e e e e e 6
1.2.6 Manual tuning e e e e e e e e e e e 6
1.3 RTAL. . . o 6
L3.1 ACPL . . 6
II Configuration 7
2 Latency Test 8
2.1 Port Address. e 10
3 INI Configuration 11
3.1 The INTFile Components i i it et e e e e e e e e e e e e e 11
3.1 Comments e e e e e e e e e e 11
3120 Sections L e e e e e e e 12
3.1.3 Variables e 12
3.1.4 Custom Sections and Variables 12
3.2 INIFile Sections o 0 o e e e e e e e 13
32,1 [EMC]Section e e e e 13
322 [DISPLAY] SeCtiont vttt ittt e e e e e e e e e e e 13

Integrator Manuelle V2.5, 2013-03-04

i

323 [FILTER] Section o o i it e e e e e e e e e e 15
324 [RS274ANGC] Section o v vttt e e e e e 15
325 [EMCMOT] Section o v ittt e e e e e e e e e 16
32.6 [TASK]Section o e 16
327 [HALJ]SeCtion o i e e e e e e 16
3.2.8 [HALUI]ISECtON o o e e e e e e e e e e e e e e e e e 17
3.2.9 [TRAJ] Section e e e 17
3.2.10 [AXIS_<num>] SECiON v v i e e e e e 18
3.2.10.1 Homing e e 19

32,11 [EMCIO] Section o o ottt e e e e e e 23

4 Homing Configuration 24
4.1 OVEIVIBW . . . oot e e e e e e 24
4.2 Homing SeqUeNnCe ot v e e e e e 24
4.3 Configuration e e 26
43.1 HOME_SEARCH_VEL e s e e 26
4.3.2 HOME_LATCH_VEL e e e e e e s 26
433 HOME_FINAL_VEL e e e e 26
43.4 HOME_IGNORE_LIMITS e e e e e e e 26
435 HOME_USE_INDEX e 27
43.6 HOME_OFFSET 27
437 HOME e 27
43.8 HOME_IS_SHARED e 27
439 HOME_SEQUENCE e 27
4.3.10 VOLATILE _HOME e e e e 27
43.11 LOCKING_INDEXER e e e e 27

5 Lathe Configuration 28
5.1 Default Plane o o o e e e 28
5.2 INISettings o o e e 28
6 HAL TCL Files 29
6.1 Compatibility e e 29
6.2 Haltcl Commands e e e e e e e e e 29
6.3 Haltcl Inifile variables e 30
6.4 Converting .hal files to .tcl files L e 30
6.5 Haltcl Notes e 30
6.6 Haltcl Examples o o e e 31
6.7 Haltcl Interactive L e e 31
6.8 Haltcl Distribution Examples (SIm) e e e 31

Integrator Manuelle V2.5, 2013-03-04

iv
7 Core Components 32
T MOUON . . . oo e e e e e 32
TAL OPONS . . o v o v o e e e e e e e e e e e e 33
TL2 PINS . oo oo 33
713 Parameters e e e e e e e e e 34
714 Functions i e e 35
7.2 AXIS(JOINES) o o o e e e e e e e e e e e 35
T2.1 PINS . Lo oo 35
7222 Parameters e e e e e e e e 36
7.3 G0controlo 36
731 PInS . . oo e 36
Stepper Configuration 37
8.1 Introduction e e e 37
8.2 Maximum StEP Iate i e e e e e e e e e e e e e e e 37
83 PINOut 37
8.3.1 standard_pinout.hal L. e 38
832 OVEIVIEW o o ittt e e e 39
8.3.3 Changing the standard_pinout.hal e 39
8.3.4 Changing polarity of asignal e 40
8.3.5 Adding PWM Spindle Speed Control 40
8.3.6 Addinganenablesignal 40
8.3.7 External ESTOPbutton 40
1 GUI 42
9 Python Virtual Control Panel 43
9.1 Introduction 43
9.2 Panel ConstruCtion e e e e e e e 44
0.3 SeCUTLY ¢ o e 45
0.4 AXIS . . 45
9.5 Stand Alone L 46
0.6 WIdgets e 47
9.6.1 Syntax e 47
9.6.2 General NOtes o e 47
9.62.1 Comments e e 48

9.6.2.2 Editingthe XML file 48

9.6.23 Colors 48

9.624 HALPIns 48

Integrator Manuelle V2.5, 2013-03-04

v
9.6.3 Label e 49
9.6.4 LEDS o 49
9.64.1 RoundLED 49
9.64.2 Rectangle LED 50
9.6.5 BUONS e e 50
9.6.5.1 TextButton e 50
9.6.5.2 Checkbutton e e 51

9.6.5.3 Radiobutton L e 51
9.6.6 Number Displays e 52
9.6.6.1 Number e e 52
9.6.6.2 s32Number 52
9.6.6.3 u32Number e e 53
9.6.6.4 Bar 53
9.6.6.5 Meter. e e e 53
9.6.7 NumberInputs e e e e e e 54
9.6.7.1 SpinboxX 54
9.6.7.2 Scale e 54
9.6.7.3 Dial 55
9.6.7.4 Jogwheel L 56
9.6.8 Images e 57
9.6.8.1 ImageBit 57
9.6.8.2 Imageu32 e e 57
9.6.9 Containers o v vt e e e e 58
9.6.9.1 Borders 58
9.6.9.2 HDOX 59
9.6.93 VDOX e 59
9.6.9.4 Labelframe e 60
9.6.9.5 Table e 60

9.6.9.6 Tabs e 61
10 PyVCP Examples 63
10.1 AXIS L o o 63
10.2 Floating o o e 63
103 Jog BUttons e e e e e e e e e 64
10.3.1 Createthe Widgets o . o e 65
10.3.2 Make Connections o ittt e e e e e e e e e e 67
104 Port Tester o o o o e e e e 67
10.5 GS2RPM Meter o o e e 70
10.5.1 ThePanel o e 70

10.5.2 The Connections v v v v v i i e e e e e e e e 72

Integrator Manuelle V2.5, 2013-03-04

vi

11 Glade Virtual Control Panel 73
11.1 Whatis GladeVCP? e 73
11.1.1 PyVCPversus GladeVCPataglance 73

11.2 A Quick Tour with the Example Panel 74
11.2.1 Exploring the example panel L 77
11.2.2 Exploring the User Interface description o Tl
11.2.3 Exploring the Python callback 77

11.3 Creating and Integrating a Glade user interface e 77
11.3.1 Prerequisite: Glade installation 77
11.3.2 Running Glade to create anew user interface L o o 78
11.3.3 Testingapanel e e e 79
11.3.4 Preparing the HAL command file e 79
11.3.5 Integrating into Axis like PyVCP 79
11.3.6 Integrating into Axis as a tab nextto DRO and Preview 80
11.3.7 Integratinginto Touchy e 80

11.4 GladeVCP command line options o o o i i e e e e e e e e 81
11.5 Understanding the gladeVCP startup process o o v vt ittt e e e e e 81
11.6 HAL Widgetreference 0 i e e e e e e e 82
11.6.1 Widgetand HAL pin naming 00 i ittt e 82
11.6.2 Python attributes and methods of HAL Widgets 83
11.6.3 Setting pin and widget values L 83
11.6.4 The hal-pin-changed signal e 83
11.6.5 BUtONS o o o e e e 84
11.6.6 Scales o o e e e 85
11.6.7 SpinButton L e e 85
11.6.8 Label 85
11.6.9 Containers: HAL_HBox and HAL _Table ittt 85
IL6.I0LED o 86
11.6.11 ProgressBar 86
11.6.12ComboBoX e 87
T1.6.13Bars o oo e 87
TLO.IAMeEter o o e e e e 88
11.6.15 Gremlin tool path preview for .ngcfiles 89
11.6.16 Animated function diagrams: HAL widgetsinabitmap 90

11.7 Action Widgets referenceo e 91
11.7.1 EMC Action WIid@ets o 0 v it e e e e e e e e e e e e 92
11.7.2 EMC ToggleAction widgets 92
11.7.3 The Action_MDI Toggle and Action_MDI widgets 92

11.7.4 A simple example: Execute MDI command on button press 92

Integrator Manuelle V2.5, 2013-03-04

vii
11.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets 93
11.7.6 An advanced example: Feeding parameters to an O-word subroutine 93
11.7.7 Preparing for an MDI Action, and cleaning up afterwards 94
11.7.8 Using the LinuxCNC Stat object to deal with status changes 94
11.8 GladeVCP Programming L e e e e 95
11.8.1 UserDefined ACONS o o i e e e e 95
11.8.2 An example: adding custom user callbacksinPython00 0oL, 95
11.8.3 HAL valuechange events i 96
11.8.4 Programming model e e e 96
11.8.4.1 Thesimple handlermodel 96
11.8.4.2 The class-based handlermodel 97
11.8.4.3 The get_handlers protocol e 97
11.8.5 Initialization SEQUENCE o v e e e e e e e e e e e e e e e e 97
11.8.6 Multiple callbacks with the samename 98
11.8.7 The GladeVCP -U <useropts>flag 98
11.8.8 Persistent variables in GladeVCP L 98
11.8.8.1 Persistence, program versions and the signature check 99
11.8.9 Using persistent variables L e 99
11.8.10 Saving the state on Gladvep shutdown oL 100
11.8.11 Saving state when Ctrl-Cispressed 0 i e e 100
11.8. 12 Hand-editing .ini files e 100
11.8.13 Adding HAL pins« o o e 101
11.8.14 Adding tiIMers o i e e e e e e 101
11.8.15 Setting HAL widget properties programmatically 101
11.8.16 Examples, and rolling your own GladeVCP application 102
11.9 FAQ . . . 102
11.10Troubleshooting o o e e e e e e e e e e e 103
11.11Implementation note: Key handling in Axis e 103
11.12Adding Custom Widgets o e e 103
12 HAL User Interface 104
12.1 Introduction L L e e e e 104
12.2 Haluipinreference 0 i e e e e e e e e e 104
IV Hardware Drivers 110
13 Parallel Port Driver 111
13.1 Parport. . . . o o e 111

13.1.1 Installing 0 o e e e e e e e 111

Integrator Manuelle V2.5, 2013-03-04

viii

13.1.2 PiNS . . . oo e 112
13.1.3 Parameters e e e e e e e e e e e 113
13.1.4 Functions e e e e e e e 113
13.1.5 Common problems e 113
13.1.6 Using DoubleStep L e e 114

13.2 probe_parport oo e e e e e e e e e e e e e e e e 114
13.2.1 Installing o o e e e e e e e 114

14 AXS5214H Driver 115
14.1 Installing o o e e e e 115
I4.2 PINS . . L o e e e 115
14.3 Parameters e e e e e e e e e 115
14.4 Functions o i e e 116
15 GS2 VFD Driver 117
15.1 Command Line Options o i i e e e e e e e e e e e e e e 117
I5.2 PINS . . o o o e 117
15.3 Parameters e e e e e 118
16 Mesa HostMot2 Driver 119
16.1 Introduction L . e e e e e e e 119
16.2 Firmware Binaries e e e 119
16.3 Installing Firmware L e e 120
16.4 Loading HoStMOt2 e 120
16.5 Watchdog o 120
16.5.1 Pins: . . . o L 120
16.5.2 Parameters: e e e e e e e e e e e 120
1653 Functions: o i i i e e e e e e e e e 120

16.6 HostMot2 Functions o i i e e e e 121
16.7 PINOULS o o o e e e 121
16.8 PINFiles o o 122
16.9 Firmware o e e e e e e 122
16.10HAL PIns o o 122
16.11Configurations L. e e e e e 123
L16.12GPIO . . . o e 125
T6.12.1PINS « . . o o o e e e 125
16.12.2Parameterso e e e e e e e e e e e e 125
16.13StepGen o o e e 126
16.13.1PINS . . . o o o e 126
16.13.2Parameters i e e e e e e e e e 126

Integrator Manuelle V2.5, 2013-03-04

ix

16.13.3 Output Parameters L e 127
LI6.14PWMGEN 127
16.14.1PInS o o 127
16.14.2Parameters o oo e e e e e e e e e e e e 127

16.14.3 Output Parameters e e e 128
16.15Encoder 128
16.15.1PINS . . . o o e e 128
16.15.2Parameterso e e e e e e e 129
16.165125 Configuration 0t e e e e e e e e e e e e e e e 129
16.16. 1 Firmware o o 129
16.16.2Configurationo e e e e e e 129

16.16.3 SSERTAL Configuration i ittt e e e e 130

16.16.4 TI7TTLIMItS oo e e e 130
16.17Example Configurations e e e 130

17 Motenc Driver 131
17.1 PINS . . o o e e e e e 131
17.2 Parameters e 132
17.3 Functions 132

18 Opto22 Driver 133
18.1 The Adapter Card e e e e e e e e 133
182 The Driver e e 133
183 PINS . . . o e 133
18.4 Parameters e e e e e 134
18.5 FUNCTIONS 134
18.6 Configuring /O Ports e 134
18.7 Pin Numbering o e 135

19 Pico Drivers 136
19.1 PINS . . . o 136
19.2 Parameters 137
19.3 Functions o e e e e e 138

20 Pluto P Driver 139
20.1 General Info e 139
20.1.1 Requirements o v v i e e e e e e e e e e e 139

20.1.2 Connectors o v it e e 139

20.1.3 Physical Pins e e e e 139

20.1.4 LED oo e 140

Integrator Manuelle V2.5, 2013-03-04

X

20.1.5 POWEr o 140

20.1.6 PCinterface e 140

20.1.7 Rebuilding the FPGA firmware e e 140

20.1.8 Formore information e e e e e e e e 140

20.2 PIUtO SEIrvo o e e e e 140
20.2.1 PInOut e e 141

20.2.2 Inputlatching and output updating e e 142

20.2.3 HAL Functions, Pins and Parameters 142

20.2.4 Compatible driver hardware L 143

203 PIUtO Step o e 143
203.1 Pinout e e e 143

20.3.2 Inputlatching and output updatingo e e 144

20.3.3 Step Waveform Timings o o v i e e e e 144

20.3.4 HAL Functions, Pins and Parameters 145

21 Servo To Go Driver 146
21.1 Installing o oL e 146
21.2 PINS . . o o e e 146
213 Parameters e e e e e e e e e e 147
21.3.1 Functions e e e e e 147

22 ShuttleXpress 148
22.1 DesCriptiOn ot i e e e e e e e e 148
222 SEUP . ¢ o v e e e e e e 148
223 PINS e 148

V Advanced Topics 150
23 Python Interface 151
23.1 The linuxcnc Pythonmodule o L 151
23.2 Usage Patterns for the LinuxCNC NML interface ittt 151
23.3 Reading LInuxCNC Status o v v v vt e e e e e e e e e e e e e e e e e e e 152
23.3.1 linuxcne.statattributes Lo L e e e e e e 152

23.3.2 Theaxis dictionary o i i e e e e 156

23.4 Preparing to send commands Lo e e e e e e 157
23.5 Sending commands through linuxcnc.commandot vttt e 158
23.5.1 linuxcnc.commandattributeso e 159

23.5.2 linuxcnc.commandmethods: L 159

23.6 Readingthe errorchannel L e 161
23.7 Readinginifile values L. e e e e 161
23.8 The 1inuxcnc.positionlogger tyPe . . . v v v v v v v v b i e e e e e e e e e e 162
23.8.1 members e e e e e e 162

23.82 methods e 162

Integrator Manuelle V2.5, 2013-03-04

Xi
24 Kinematics 163
24.1 Introduction e e e e e e 163
24.1.1 JoIntS VS. AXES o v it e e e e e e e e e 163
24.2 Trivial Kinematics L e e e 163
24.3 Non-trivial kinematics e e e e e 164
24.3.1 Forward transformation L. L e 165
24.3.2 Inverse transformation oL e e e e e e e e e 165
24.4 TImplementation details e e e 166
25 Stepper Tuning 167
25.1 Getting the most out of Software Stepping L e 167
25.1.1 RunalLlatency Test o i e e e e e e e 167
25.1.2 Figure out what your drives €Xpect e e e 168
25.1.3 Choose your BASE_PERIOD 168
25.1.4 Use steplen, stepspace, dirsetup, and/or dirhold oo oo 169
25.1.5 No Guessing! e e e e 169
26 PID Tuning 171
26.1 PID Controller e e 171
26.1.1 Control loopbasics L e e e e e 171
26.1.2 Theory e 172
26.1.2.1 Proportional L e e e e 172
26.1.2.2 Integral oL e e 172
26.1.2.3 Derivative e e e e e 172
26.1.3 Loop TUning o v vt e e e 172
26.1.3.1 Simplemethod e e e 173
26.1.3.2 Ziegler-Nichols method L o 173
26.1.33 Final Steps L 173
VI Ladder Logic 174
27 Classicladder Introduction 175
27.1 HIStOIy . . . o o o e e e 175
27.2 Introduction L. e e e e e e 175
273 Example e e e e e e e e e 176
27.4 Basic Latching On-Off Circuit e e 176

Integrator Manuelle V2.5, 2013-03-04

xii
28 Classicladder Programming 178
28.1 Ladder CONCepts v v v v i i e e e e e e e e e e e e e e e 178
28.2 Lan@UAGES . .« « . v e 178
283 COMPONENLS .« . v v v v v et e 178
28.3.1 Files o o 179
28.3.2 Realtime Module 179
28.3.3 Variables e 179
28.4 Loading the Classic Ladderusermodule e 180
28.5 Classic Ladder GUI 180
28.5.1 Sections Manager L. e e e e e e 181
28.5.2 Section Display e 181
28.5.3 The Variable Windows 182
28.5.4 Symbol Window L. e e e e e e 185
28.5.5 The Editor window L e 186
28.5.6 Config Window e 187
28.6 Ladder objects e e e e e e e e e e e e 189
28.6.1 CONTACTS e e 189
28.6.2 IECTIMERS 189
28.6.3 TIMERS e 190
28.6.4 MONOSTABLES 190
28.6.5 COUNTERS e 190
28.6.6 COMPARE e 191
28.6.7 VARIABLE ASSIGNMENT e 192
28.6.8 COILS 193
28.6.8.1 JUMPCOIL 194
28.6.8.2 CALLCOIL 194
28.7 Classic Ladder Variables e 194
28.8 GRAFCET Programming it e e e e e e 195
28.9 Modbus e 196
28.9.1 MODBUS Settings vt ittt e e e e e e e e 199
28.9.2 MODBUS Info 200
28.9.3 Communication Errors e 200
28.9.4 MODBUSBUZS o o i e 200
28.10Setting up Classic Ladder e e e e e 201
28.10.1 Addthe Modules 201

28.10.2 Adding Ladder Logic 201

Integrator Manuelle V2.5, 2013-03-04

xiii

29 Classicladder Examples
29.1 Wrapping Counter
29.2 Reject Extra Pulses
29.3 External E-Stop . .

29.4 Timer/Operate Example e e e

VII Hardware Examples

30 PCI Parallel Port

31 Spindle Control
31.1 0-10v Spindle Speed
31.2 PWM Spindle Speed
31.3 Spindle Enable . .
31.4 Spindle Direction .
31.5 Spindle Soft Start .
31.6 Spindle Feedback .

31.6.1 Spindle Synchronized Motion e e e e
31.6.2 Spindle At Speed e

32 MPG Pendant

33 GS2 Spindle

VIII Diagnostics & FAQ
34 Stepper Diagnostics
34.1 Common Problems L e e
34.1.1 Stepper Moves One Step o i i e e e e e e e e
34.1.2 NoSteppers MOVE o o i e e e e e
34.1.3 Distance NOt COITECt v v v v vttt e et e e e e e e e e e e e e
34.2 Error MESSAZES . .« v v v v i e
342.1 PFollowing Error L.

34.2.2 RTAPI Error
34.3 Testing.
34.3.1 Step Timing

208
208
209
210
213

215

216

217
217
217
218
218
218
219
219
220

221

224

225

Integrator Manuelle V2.5, 2013-03-04

Xiv

35 Linux FAQ
35.1 Automatic Login
35.2 Automatic Startup
353 ManPages.
35.4 ListModules
35.5 EditingaRootFile
35.5.1 The Command Line Way .
3552 TheGUIWay
35.5.3 Root Access
35.6 Terminal Commands
35.6.1 Working Directory
35.6.2 Changing Directories . . .
35.6.3 Listing files in a directory
35.6.4 FindingaFile
35.6.5 Searching for Text
35.6.6 Bootup Messages
35.7 Convenience Items
35.7.1 Terminal Launcher
35.8 Hardware Problems
35.8.1 Hardware Info
35.8.2 Monitor Resolution
359 Paths

36 Glossary

37 Legal Section
37.1 Copyright Terms

37.2 GNU Free Documentation License

38 Index

229
229
229
229
230
230
230
230
230
230
230
231
231
231
231
232
232
232
232
232
232
232

233

238
238
238

242

Integrator Manuelle V2.5, 2013-03-04

XV

The LinuxCNC Team

Integrator Manuelle V2.5, 2013-03-04
1/244

Part I

LinuxCNC Introduction

Integrator Manuelle V2.5, 2013-03-04
2/244

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2012 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

Integrator Manuelle V2.5, 2013-03-04
3/244

Chapter 1

Integrator Concepts

1.1 Stepper Systems

1.1.1 Base Period

BASE_PERIOD is the heartbeat of your LinuxCNC computer.! Every period, the software step generator decides if it is time
for another step pulse. A shorter period will allow you to generate more pulses per second, within limits. But if you go too short,
your computer will spend so much time generating step pulses that everything else will slow to a crawl, or maybe even lock up.
Latency and stepper drive requirements affect the shortest period you can use.

Worst case latencies might only happen a few times a minute, and the odds of bad latency happening just as the motor is changing
direction are low. So you can get very rare errors that ruin a part every once in a while and are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest timing requirement of your
drive, and the worst case latency of your computer. This is not always the best choice. For example, if you are running a drive
with a 20 us direction signal hold time requirement, and your latency test said you have a maximum latency of 11 us, then if you
set the BASE_PERIOD to 20+11 =31 us you get a not-so-nice 32,258 steps per second in one mode and 16,129 steps per second
in another mode.

The problem is with the 20 us hold time requirement. That plus the 11 us latency is what forces us to use a slow 31 us period. But
the LinuxCNC software step generator has some parameters that let you increase the various times from one period to several.
For example, if steplen * is changed from 1 to 2, then there will be two periods between the beginning and end of the step pulse.
Likewise, if dirhold 3 is changed from 1 to 3, there will be at least three periods between the step pulse and a change of the
direction pin.

If we can use dirhold to meet the 20 us hold time requirement, then the next longest time is the 4.5 us high time. Add the 11 us
latency to the 4.5 us high time, and you get a minimum period of 15.5 us . When you try 15.5 us, you find that the computer
is sluggish, so you settle on 16 us . If we leave dirhold at 1 (the default), then the minimum time between step and direction is
the 16 us period minus the 11 us latency = 5 us , which is not enough. We need another 15 us . Since the period is 16 us , we
need one more period. So we change dirhold from 1 to 2. Now the minimum time from the end of the step pulse to the changing
direction pin is 5+16=21 us , and we don’t have to worry about the drive stepping the wrong direction because of latency.

For more information on stepgen see the stepgen section of the HAL manual.

1.1.2 Step Timing

Step Timing and Step Space on some drives are different. In this case the Step point becomes important. If the drive steps on the
falling edge then the output pin should be inverted.

I'This section refers to using stepgen, LinuxCNC'’s built-in step generator. Some hardware devices have their own step generator and do not use LinuxCNC’s
built-in one. In that case, refer to your hardware manual.

2steplen refers to a parameter that adjusts the performance of LinuxCNC’s built-in step generator, stepgen, which is a HAL component. This parameter
adjusts the length of the step pulse itself. Keep reading, all will be explained eventually.

3dirhold refers to a parameter that adjusts the length of the direction hold time.

Integrator Manuelle V2.5, 2013-03-04
4/244

1.2 Servo Systems

1.2.1 Basic Operation

Servo systems are capable of greater speed and accuracy than equivalent stepper systems, but are more costly and complex.
Unlike stepper systems, servo systems require some type of position feedback device, and must be adjusted or tuned, as they
don’t quite work right out of the box as a stepper system might. These differences exist because servos are a closed loop system,
unlike stepper motors which are generally run open loop. What does closed loop mean? Let’s look at a simplified diagram of
how a servomotor system is connected.

Summing amp Power amp
Input signal + z
[command signal] Summer amp
- drives power amp

input fcommand) signal
ard feedback sighal
drive summing amp

Power amp
clries

feedback signal molor

feedback device Motaor

TR Y =
.|I|I'|'I |I|I'|'I |I||'|'I '|'|I *
ILTRRLERARERAREE o

motor drives load
and feadback device

Figure 1.1: Servo Loop

This diagram shows that the input signal (and the feedback signal) drive the summing amplifier, the summing amplifier drives
the power amplifier, the power amplifier drives the motor, the motor drives the load (and the feedback device), and the feedback
device (and the input signal) drive the motor. This looks very much like a circle (a closed loop) where A controls B, B controls
C, C controls D, and D controls A.

If you have not worked with servo systems before, this will no doubt seem a very strange idea at first, especially as compared
to more normal electronic circuits, where the inputs proceed smoothly to the outputs, and never go back.* If everything controls
everything else, how can that ever work, who’s in charge? The answer is that LinuxCNC can control this system, but it has to do
it by choosing one of several control methods. The control method that LinuxCNC uses, one of the simplest and best, is called
PID.

PID stands for Proportional, Integral, and Derivative. The Proportional value determines the reaction to the current error, the
Integral value determines the reaction based on the sum of recent errors, and the Derivative value determines the reaction based
on the rate at which the error has been changing. They are three common mathematical techniques that are applied to the task of
getting a working process to follow a set point. In the case of LinuxCNC the process we want to control is actual axis position
and the set point is the commanded axis position.

4If it helps, the closest equivalent to this in the digital world are state machines, sequential machines and so forth, where what the outputs are doing now
depends on what the inputs (and the outputs) were doing before. If it doesn’t help, then nevermind.

Integrator Manuelle V2.5, 2013-03-04
5/244

-setpoint Zi—errura-ﬂ Kin[te{ﬂa'r E-»{ Process }—uutput—r

Figure 1.2: PID Loop

By tuning the three constants in the PID controller algorithm, the controller can provide control action designed for specific
process requirements. The response of the controller can be described in terms of the responsiveness of the controller to an error,
the degree to which the controller overshoots the set point and the degree of system oscillation.

1.2.2 Proportional term

The proportional term (sometimes called gain) makes a change to the output that is proportional to the current error value. A high
proportional gain results in a large change in the output for a given change in the error. If the proportional gain is too high, the
system can become unstable. In contrast, a small gain results in a small output response to a large input error. If the proportional
gain is too low, the control action may be too small when responding to system disturbances.

In the absence of disturbances, pure proportional control will not settle at its target value, but will retain a steady state error that is
a function of the proportional gain and the process gain. Despite the steady-state offset, both tuning theory and industrial practice
indicate that it is the proportional term that should contribute the bulk of the output change.

1.2.3 Integral term

The contribution from the integral term (sometimes called reset) is proportional to both the magnitude of the error and the
duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should
have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output.

The integral term (when added to the proportional term) accelerates the movement of the process towards set point and eliminates
the residual steady-state error that occurs with a proportional only controller. However, since the integral term is responding to
accumulated errors from the past, it can cause the present value to overshoot the set point value (cross over the set point and then
create a deviation in the other direction).

1.2.4 Derivative term

The rate of change of the process error is calculated by determining the slope of the error over time (i.e. its first derivative with
respect to time) and multiplying this rate of change by the derivative gain.

The derivative term slows the rate of change of the controller output and this effect is most noticeable close to the controller
set point. Hence, derivative control is used to reduce the magnitude of the overshoot produced by the integral component and
improve the combined controller-process stability.

Integrator Manuelle V2.5, 2013-03-04
6/244

1.2.5 Loop tuning

If the PID controller parameters (the gains of the proportional, integral and derivative terms) are chosen incorrectly, the controlled
process input can be unstable, i.e. its output diverges, with or without oscillation, and is limited only by saturation or mechanical
breakage. Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral gain/reset, derivative
gain/rate) to the optimum values for the desired control response.

1.2.6 Manual tuning

A simple tuning method is to first set the I and D values to zero. Increase the P until the output of the loop oscillates, then the P
should be set to be approximately half of that value for a quarter amplitude decay type response. Then increase I until any offset
is correct in sufficient time for the process. However, too much I will cause instability. Finally, increase D, if required, until the
loop is acceptably quick to reach its reference after a load disturbance. However, too much D will cause excessive response and
overshoot. A fast PID loop tuning usually overshoots slightly to reach the set point more quickly; however, some systems cannot
accept overshoot, in which case an over-damped closed-loop system is required, which will require a P setting significantly less
than half that of the P setting causing oscillation.

1.3 RTAI

The Real Time Application Interface (RTAI) is used to provide the best Real Time (RT) performance. The RTAI patched kernel
lets you write applications with strict timing constraints. RTAI gives you the ability to have things like software step generation
which require precise timing.

1.3.1 ACPI

The Advanced Configuration and Power Interface (ACPI) has a lot of different functions, most of which interfere with RT
performance (for example: power management, CPU power down, CPU frequency scaling, etc). The LinuxCNC kernel (and
probably all RTAI-patched kernels) has ACPI disabled. ACPI also takes care of powering down the system after a shutdown has
been started, and that’s why you might need to push the power button to completely turn off your computer. The RTAI group has
been improving this in recent releases, so your LinuxCNC system may shut off by itself after all.

Integrator Manuelle V2.5, 2013-03-04
71244

Part 11

Configuration

Integrator Manuelle V2.5, 2013-03-04
8/244

Chapter 2

Latency Test

This test is the first test that should be performed on a PC to see if it is able to drive a CNC machine.

Latency is how long it takes the PC to stop what it is doing and respond to an external request. For LinuxCNC the request is
BASE_THREAD that makes the periodic heartbeat that serves as a timing reference for the step pulses. The lower the latency,
the faster you can run the heartbeat, and the faster and smoother the step pulses will be.

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts within 10 microseconds each and
every time can give better results than the latest and fastest P4 Hyperthreading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a number of other things can
hurt the latency. The best way to find out what you are dealing with is to run the RTAI latency test.

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a parallel port that is capable
of outputting step pulses that are generated by the software. However, software step pulses also have some disadvantages:

* limited maximum step rate
e jitter in the generated pulses

¢ Joads the CPU

The best way to find out how well your PC will lrun LinuxCNC is to run the HAL latency test. To run the test, open a terminal
window (In Ubuntu, from Applications — Accessories — Terminal) and run the following command:

latency-test

You should see something like this:

Integrator Manuelle V2.5, 2013-03-04
9/244

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring emc2.

While the test is running. you should "abuse" the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1.0ms): 1001089 5929 995302

Base thread (25.0ps): 33954 9075 24843

Reset Statistics

Figure 2.1: HAL Latency Test

While the test is running, you should abuse the computer. Move windows around on the screen. Surf the web. Copy some large
files around on the disk. Play some music. Run an OpenGL program such as glxgears. The idea is to put the PC through its paces
while the latency test checks to see what the worst case numbers are.

Note
Do not run LinuxCNC or Stepconf while the latency test is running.

The important numbers are the max jitter. In the example above, that is 9075 nanoseconds, or 9.075 microseconds. Record this
number, and enter it in Stepconf when it is requested.

In the example above, latency-test only ran for a few seconds. You should run the test for at least several minutes; sometimes
the worst case latency doesn’t happen very often, or only happens when you do some particular action. For instance, one Intel
motherboard worked pretty well most of the time, but every 64 seconds it had a very bad 300 us latency. Fortunately that was
fixable, see http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?FixingSMIIssues

So, what do the results mean? If your Max Jitter number is less than about 15-20 microseconds (15000-20000 nanoseconds), the
computer should give very nice results with software stepping. If the max latency is more like 30-50 microseconds, you can still
get good results, but your maximum step rate might be a little disappointing, especially if you use microstepping or have very
fine pitch leadscrews. If the numbers are 100 us or more (100,000 nanoseconds), then the PC is not a good candidate for software
stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC is not a good candidate for LinuxCNC, regardless
of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. Another PC had very bad latency (several milliseconds)
when using the onboard video. But a $5 used video card solved the problem.

Note
LinuxCNC does not require bleeding edge hardware.

For more information on stepper tuning see the Stepper Tuning Chapter.

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?FixingSMIIssues

Integrator Manuelle V2.5, 2013-03-04
10/ 244

2.1 Port Address

For those who build their own hardware, one safeguard against shorting out an on-board parallel port - or even the whole
motherboard - is to use an add-on parallel port card. Even if you don’t need the extra layer of safety, a parport card is a good way
to add extra I/O lines with LinuxCNC.

One good PCI parport card is made with the Netmos 9815 chipset. It has good +5V signals, and can come in a single or dual
ports.

To find the I/O addresses for these cards open a terminal window and use the list pci command:

lspci -v

Look for the entry with "Netmos" in it. Example of a 2-port card:

0000:01:0a.0 Communication controller: \

Netmos Technology PCI 9815 Multi-I/O Controller (rev 01)
Subsystem: LSI Logic / Symbios Logic 2POS (2 port parallel adapter)
Flags: medium devsel, IRQ 5
I/0 ports at b800 [size=8]

I/0 ports at bc00 [size=8]
I/0 ports at c000 [size=8]
I/0 ports at c400 [size=8]
I/0 ports at c800 [size=8]
I/0 ports at cc00 [size=16]

From experimentation, I’ve found the first port (the on-card port) uses the third address listed (c000), and the second port (the
one that attaches with a ribbon cable) uses the first address listed (b800).

You can then open an editor and put the addresses into the appropriate place in your .hal file.

loadrt hal_parport cfg="0x378 0xc000"

You must also direct LinuxCNC to run the read and write functions for the second card. For example,

addf parport.l.read base-thread 1
addf parport.l.write base-thread -1

Please note that your values will differ. The Netmos cards are Plug-N-Play, and might change their settings depending on which
slot you put them into, so if you like to ’get under the hood’ and re-arrange things, be sure to check these values before you start
LinuxCNC.

Integrator Manuelle V2.5, 2013-03-04
11/244

Chapter 3

INI Configuration

3.1 The INI File Components

A typical INI file follows a rather simple layout that includes;

¢ comments
e sections

e variables

Each of these elements is separated on single lines. Each end of line or newline character creates a new element.

3.1.1 Comments
A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at the start a line, the rest of the
line is ignored by the software. Comments can be used to describe what an INI element will do.

; This is my mill configuration file.
I set it up on January 12, 2012

Comments can also be used to turn off a variable. This makes it easier to pick between different variables.

DISPLAY = axis
DISPLAY = touchy

In this list, the DISPLAY variable will be set to axis because the other one is commented out. If someone carelessly edits a list
like this and leaves two of the lines uncommented, the first one encountered will be used.

Note that inside a variable, the "#" and ";" characters do not denote comments:

INCORRECT = value # and a comment

Correct Comment
CORRECT = value

Integrator Manuelle V2.5, 2013-03-04
12/244

3.1.2 Sections

Related parts of an ini file are separated into sections. A section name is enclosed in brackets like this [THIS_SECTION] The
order of sections is unimportant. Sections begin at the section name and end at the next section name.

The following sections are used by LinuxCNC:

* [EMC] general information

* [DISPLAY] settings related to the graphical user interface

o [FILTER] settings input filter programs

* [RS274NGC] settings used by the g-code interpreter

e [EMCMOT] settings used by the real time motion controller

o [TASK] settings used by the task controller

» [HAL] specifies .hal files

e [HALUI] MDI commands used by HALUI

» [TRAJ] additional settings used by the real time motion controller
e [AXIS_n] individual axis variables

* [EMCIO] settings used by the I/O Controller

3.1.3 Variables

A variable line is made up of a variable name, an equals sign (=), and a value. Everything from the first non-white space character
after the = up to the end of the line is passed as the value, so you can embed spaces in string symbols if you want to or need to.
A variable name is often called a keyword.

The following sections detail each section of the configuration file, using sample values for the configuration lines.

Variables that are used by LinuxCNC must always use the section names and variable names as shown. In the following example
the variable MACHINE is assigned the value My Machine.

Variable Example

MACHINE = My Machine

3.1.4 Custom Sections and Variables

Most sample configurations use custom sections and variables to put all of the settings into one location for convenience.
To use a custom section variable in your HAL file add the section and variable to the INI file.
Custom Section Example

[OFESETS]
OFFSET_1 = 0.1234

To add a custom variable to a LinuxCNC section simply include the variable in that section.
Custom Variable Example

[AXIS_O0]
TYPE = LINEAR

SCALE = 16000

Integrator Manuelle V2.5, 2013-03-04
13 /244

To use the custom variables in your HAL file put the section and variable name in place of the value.
HAL Example

setp offset.l.offset [OFFSETS]OFFSET_1
setp stepgen.0O.position-scale [AXIS_O0]SCALE

Note
The value stored in the variable must match the type specificied by the component pin.

3.2 INI File Sections

3.2.1 [EMC] Section

* VERSION = $Revision: 1.3 $ - The version number for the INI file. The value shown here looks odd because it is automatically
updated when using the Revision Control System. It’s a good idea to change this number each time you revise your file. If you
want to edit this manually just change the number and leave the other tags alone.

* MACHINE = My Controller - This is the name of the controller, which is printed out at the top of most graphical interfaces.
You can put whatever you want here as long as you make it a single line long.

* DEBUG = 0 - Debug level 0 means no messages will be printed when LinuxCNC is run from a terminal. Debug flags are
usually only useful to developers. See src/emc/nml_intf/emcglb.h for other settings.

3.2.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every user interface. The main two
interfaces for LinuxCNC are AXIS and Touchy. Axis is an interface for use with normal computer and monitor, Touchy is for
use with touch screens. Descriptions of the interfaces are in the Interfaces section of the User Manual.

* DISPLAY = axis - The name of the user interface to use. Valid options may include: axis, touchy, keystick, mini, tklinuxcnc,
Xxemc,

e POSITION_OFFSET = RELATIVE - The coordinate system (RELATIVE or MACHINE) to show when the user interface
starts. The RELATIVE coordinate system reflects the G92 and G5x coordinate offsets currently in effect.

e POSITION_FEEDBACK = ACTUAL - The coordinate value (COMMANDED or ACTUAL) to show when the user interface
starts. The COMMANDED position is the ideal position requested by LinuxCNC. The ACTUAL position is the feedback
position of the motors.

* MAX_FEED_OVERRIDE = 1.2 - The maximum feed override the user may select. 1.2 means 120% of the programmed feed
rate.

* MIN_SPINDLE_OVERRIDE = 0.5 - The minimum spindle override the user may select. 0.5 means 50% of the programmed
spindle speed. (This is useful as it’s dangerous to run a program with a too low spindle speed).

* MAX_SPINDLE_OVERRIDE = 1.0 - The maximum spindle override the user may select. 1.0 means 100% of the programmed
spindle speed.

* PROGRAM_PREFIX = ~/linuxcnc/nc_files - The default location for g-code files and the location for user-defined M-codes.
This location is searched for the file name before the subroutine path and user M path if specified in the [RS274NGC] section.

* INTRO_GRAPHIC = emc2.gif - The image shown on the splash screen.
e INTRO_TIME = 5 - The maximum time to show the splash screen, in seconds.

* CYCLE_TIME = 0.05 - Cycle time in seconds that display will sleep between polls.

Integrator Manuelle V2.5, 2013-03-04
14 /244

Note
The following [DISPLAY] items are for the AXIS interface only.

DEFAULT_LINEAR_VELOCITY = .25 - The default velocity for linear jogs, in , machine units per second.
MIN_VELOCITY = .01 - The approximate lowest value the jog slider.

MAX_LINEAR_VELOCITY = 1.0 - The maximum velocity for linear jogs, in machine units per second.
MIN_LINEAR_VELOCITY = .01 - The approximate lowest value the jog slider.

DEFAULT _ANGULAR_VELOCITY = .25 - The default velocity for angular jogs, in machine units per second.
MIN_ANGULAR_VELOCITY = .01 - The approximate lowest value the jog slider.
MAX_ANGULAR_VELOCITY = 1.0 - The maximum velocity for angular jogs, in machine units per second.

INCREMENTS = 1 mm, .5 in, ... - Defines the increments available for incremental jogs. The INCREMENTS can be used to
override the default. The values can be decimal numbers (e.g., 0.1000) or fractional numbers (e.g., 1/16), optionally followed
by a unit (cm, mm, um, inch, in or mil). If a unit is not specified the machine unit is assumed. Metric and imperial distances
may be mixed: INCREMENTS = 1 inch, 1 mil, 1 cm, I mm, 1 um is a valid entry.

OPEN_FILE = /full/path/to/file.ngc - The file to show in the preview plot when AXIS starts. Use a blank string "" and no file
will be loaded at start up.

EDITOR = gedit - The editor to use when selecting File > Edit to edit the gcode from the AXIS menu. This must be configured
for this menu item to work. Another valid entry is gnome-terminal -e vim.

TOOL_EDITOR = tooledit - The editor to use when editing the tool table (for example by selecting "File > Edit tool table. . ."

in Axis). Other valid entries are "gedit", "gnome-terminal -e vim", and "gvim".
PYVCP = /filename.xml - The PyVCP panel description file. See the PyVCP section for more information.
LATHE = | - This displays in lathe mode with a top view and with Radius and Diameter on the DRO.

GEOMETRY = XYZABCUVW - Controls the preview and backplot of rotary motion. This item consists of a sequence of axis
letters, optionally preceded by a "-" sign. Only axes defined in [TRAJJAXES should be used. This sequence specifies the
order in which the effect of each axis is applied, with a "-" inverting the sense of the rotation. The proper GEOMETRY string
depends on the machine configuration and the kinematics used to control it. The example string GEOMETRY=XYZBCUVW
is for a 5-axis machine where kinematics causes UVW to move in the coordinate system of the tool and XYZ to move in the
coordinate system of the material. The order of the letters is important, because it expresses the order in which the different
transformations are applied. For example rotating around C then B is different than rotating around B then C. Geometry has
no effect without a rotary axis.

ARCDIVISION = 64 - Set the quality of preview of arcs. Arcs are previewed by dividing them into a number of straight lines;
a semicircle is divided into ARCDIVISION parts. Larger values give a more accurate preview, but take longer to load and
result in a more sluggish display. Smaller values give a less accurate preview, but take less time to load and may result in a
faster display. The default value of 64 means a circle of up to 3 inches will be displayed to within 1 mil (.03%).!

MDI_HISTORY _FILE = - The name of a local MDI history file. If this is not specified Axis will save the MDI history in
.axis_mdi_history in the user’s home directory. This is useful if you have multiple configurations on one computer.

Note
The following [DISPLAY] item is used by the TKLinuxCNC interface only.

HELP_FILE = tklinucnc.txt - Path to help file.

n LinuxCNC 2.4 and earlier, the default value was 128.

Integrator Manuelle V2.5, 2013-03-04
15/244

3.2.3 [FILTER] Section

AXIS has the ability to send loaded files through a filter program. This filter can do any desired task: Something as simple as
making sure the file ends with M2, or something as complicated as detecting whether the input is a depth image, and generating
g-code to mill the shape it defines. The [FILTER] section of the ini file controls how filters work. First, for each type of file, write
a PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This program is given the name of
the input file as its first argument, and must write RS274NGC code to standard output. This output is what will be displayed in
the text area, previewed in the display area, and executed by LinuxCNC when Run.

PROGRAM_EXTENSION = .extension Description

If your post processor outputs files in all caps you might want to add the following line:

PROGRAM_EXTENSION = .NGC XYZ Post Processor

The following lines add support for the image-to-gcode converter included with LinuxCNC:

PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
— png = image-to-gcode

— gif = image-to-gcode

— jpg = image-to-gcode

It is also possible to specify an interpreter:

PROGRAM_EXTENSION = .py Python Script

- py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example script is available at
nc_files/holecircle.py. This script creates g-code for drilling a series of holes along the circumference of a circle. Many more
g-code generators are on the LinuxCNC Wiki site http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl.

If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form

FILTER_PROGRESS=%d

sets the AXIS progress bar to the given percentage. This feature should be used by any filter that runs for a long time.

3.2.4 [RS274NGC] Section

PARAMETER_FILE = myfile.var - The file located in the same directory as the ini file which contains the parameters used by
the interpreter (saved between runs).

RS274NGC_STARTUP_CODE = G01 G17 G20 G40 G49 G64 P0.001 G80 G90 G92 G94 G97 G98 - A string of NC codes
that the interpreter is initialized with. This is not a substitute for specifying modal g-codes at the top of each ngc file, because
the modal codes of machines differ, and may be changed by g-code interpreted earlier in the session.

SUBROUTINE_PATH = ncsubroutines:/tmp/testsubs:lathesubs:millsubs - Specifies a colon (:) separated list of up to 10 di-
rectories to be searched when single-file subroutines are specified in gcode. These directories are searched after searching
[DISPLAY]PROGRAM_PREFIX (if it is specified) and before searching [WIZARD]WIZARD_ROQT (if specified). The
paths are searched in the order that they are listed. The first matching subroutine file found in the search is used. Directories
are specified relative to the current directory for the inifile or as absolute paths. The list must contain no intervening whitespace.

USER_M_PATH = myfuncs:/tmp/mcodes:experimentalmcodes - Specifies a list of colon (:) separated directories for user
defined functions. Directories are specified relative to the current directory for the inifile or as absolute paths. The list must
contain no intervening whitespace.

A search is made for each possible user defined function, typically (M100-M199). The search order is:

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl

Integrator Manuelle V2.5, 2013-03-04
16 /244

1. [DISPLAY]PROGRAM_PREFIX (if specified)
2. If [DISPLAY]PROGRAM_PREFIX is not specified, search the default location: nc_files

3. Then search each directory in the list [RS274NGCJUSER_M_PATH
The first executable M1xx found in the search is used for each M1xx.

USER_DEFINED_FUNCTION_MAX_DIRS=5. The maximum number of directories defined at compile time.

Note
[WIZARD]WIZARD_ROOQT is a valid search path but the Wizard has not been fully implemented and the results of using it are
unpredictable.

3.2.5 [EMCMOT] Section

This section is a custom section and is not used by LinuxCNC directly. Most configurations use values from this section to load
the motion controller. For more information on the motion controller see the Motion Section.

EMCMOT = motmod - the motion controller name is typically used here.
BASE_PERIOD = 50000 - the Base task period in nanoseconds.

SERVO_PERIOD = 1000000 - This is the "Servo" task period in nanoseconds.
TRAJ_PERIOD = 100000 - This is the Trajectory Planner task period in nanoseconds.

3.2.6 [TASK] Section

TASK = milltask - Specifies the name of the fask executable. The task executable does various things, such as communicate
with the Uls over NML, communicate with the realtime motion planner over non-HAL shared memory, and interpret gcode.
Currently there is only one task executable that makes sense for 99.9% of users, milltask.

CYCLE_TIME = 0.010 - The period, in seconds, at which TASK will run. This parameter affects the polling interval when
waiting for motion to complete, when executing a pause instruction, and when accepting a command from a user interface.
There is usually no need to change this number.

3.2.7 [HAL] section

TWOPASS=ON - Use two pass processing for loading HAL comps. With TWOPASS processing, all [HALJHALFILES are
first read and multiple appearances of loadrt directives for each moduleb are accumulated. No hal commands are executed in
this initial pass.

HALFILE = example.hal - Execute the file example.hal at start up. If HALFILE is specified multiple times, the files are
executed in the order they appear in the ini file. Almost all configurations will have at least one HALFILE, and stepper systems
typically have two such files, one which specifies the generic stepper configuration (core_stepper.hal) and one which specifies
the machine pin out (xxx_pinout.hal)

HALCMD = command - Execute command as a single HAL command. If HALCMD is specified multiple times, the commands
are executed in the order they appear in the ini file. HALCMD lines are executed after all HALFILE lines.

SHUTDOWN = shutdown.hal - Execute the file shutdown.hal when LinuxCNC is exiting. Depending on the hardware drivers
used, this may make it possible to set outputs to defined values when LinuxCNC is exited normally. However, because there
is no guarantee this file will be executed (for instance, in the case of a computer crash) it is not a replacement for a proper
physical e-stop chain or other protections against software failure.

POSTGUI_HALFILE = example2.hal - (Only with the TOUCHY and AXIS GUI) Execute example2.hal after the GUI has
created its HAL pins. See section pyVCP with Axis Section for more information.

HALUI = halui - adds the HAL user interface pins. For more information see the HAL User Interface chapter.

Integrator Manuelle V2.5, 2013-03-04

17 /244

3.2.8 [HALUI] section

MDI_COMMAND = G53 GO X0 Y0 Z0 - An MDI command can be executed by using halui.mdi-command-00. Increment the
number for each command listed in the [HALUI] section.

3.2.9 [TRAJ] Section

The [TRAJ] section contains general parameters for the trajectory planning module in motion.

COORDINATES = X Y Z - The names of the axes being controlled. Only X, Y, Z, A, B, C, U, V, W are valid. Only axes named
in COORDINATES are accepted in g-code. This has no effect on the mapping from G-code axis names (X- Y- Z-) to joint
numbers—for trivial kinematics, X is always joint 0, A is always joint 3, and U is always joint 6, and so on. It is permitted to
write an axis name twice (e.g., X Y Y Z for a gantry machine) but this has no effect.

AXES = 3 - One more than the number of the highest joint number in the system. For an XYZ machine, the joints are numbered
0, 1 and 2; in this case AXES should be 3. For an XYUV machine using trivial kinematics, the V joint is numbered 7 and
therefore AXES should be 8. For a machine with nontrivial kinematics (e.g., scarakins) this will generally be the number of
controlled joints.

JOINTS = 3 - (This config variable is used by the Axis GUI only, not by the trajectory planner in the motion controller.)
Specifies the number of joints (motors) in the system. For example, an XYZ machine with a single motor for each axis has 3
joints. A gantry machine with one motor on each of two of the axes, and two motors on the third axis, has 4 joints.

HOME = 0 0 0 - Coordinates of the homed position of each axis. Again for a fourth axis you will need 0 0 0 0. This value is
only used for machines with nontrivial kinematics. On machines with trivial kinematics this value is ignored.

LINEAR_UNITS = <units> - Specifies the machine units for linear axes. Possible choices are (in, inch, imperial, metric, mm).
This does not affect the linear units in NC code (the G20 and G21 words do this).

ANGULAR_UNITS = <units> - Specifies the machine units for rotational axes. Possible choices are deg, degree (360 per
circle), rad, radian (2pi per circle), grad, or gon (400 per circle). This does not affect the angular units of NC code. In
RS274NGC, A-, B- and C- words are always expressed in degrees.

DEFAULT _VELOCITY = 0.0167 - The initial rate for jogs of linear axes, in machine units per second. The value shown in
Axis equals machine units per minute.

DEFAULT_ACCELERATION = 2.0 - In machines with nontrivial kinematics, the acceleration used for "teleop" (Cartesian
space) jogs, in machine units per second per second.

MAX_VELOCITY = 5.0 - The maximum velocity for any axis or coordinated move, in machine units per second. The value
shown equals 300 units per minute.

MAX_ACCELERATION = 20.0 - The maximum acceleration for any axis or coordinated axis move, in machine units per
second per second.

POSITION_FILE = position.txt - If set to a non-empty value, the joint positions are stored between runs in this file. This allows
the machine to start with the same coordinates it had on shutdown. This assumes there was no movement of the machine while
powered off. If unset, joint positions are not stored and will begin at 0 each time LinuxCNC is started. This can help on smaller
machines without home switches.

NO_FORCE_HOMING = I - The default behavior is for LinuxCNC to force the user to home the machine before any MDI
command or a program is run. Normally, only jogging is allowed before homing. Setting NO_FORCE_HOMING = 1 allows
the user to make MDI moves and run programs without homing the machine first. Interfaces without homing ability will need
to have this option set to 1.

® Warning
Using this will allow the machine to go beyond the soft limits while in operation. It is not generally desirable to allow
this.

Integrator Manuelle V2.5, 2013-03-04
18 /244

3.2.10 [AXIS_<nhum>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components in the axis control module.
The axis section names begin numbering at 0, and run through the number of axes specified in the [TRAJ] AXES entry minus 1.

Typically (but not always):

* AXIS 0=X
* AXIS_1=Y
s AXIS 2=7
« AXIS 3=A
* AXIS_ 4=B
* AXIS. 5=C
* AXIS 6=U
* AXIS. 7=V
* AXIS 8=W

* TYPE = LINEAR - The type of axes, either LINEAR or ANGULAR.

* WRAPPED_ROTARY = 1 - When this is set to 1 for an ANGULAR axis the axis will move 0-359.999 degrees. Positive
Numbers will move the axis in a positive direction and negative numbers will move the axis in the negative direction.

e LOCKING_INDEXER = I - When this is set to 1 a GO move for this axis will initiate an unlock with axis.N.unlock pin then
wait for the axis.N.is-unlocked pin then move the axis at the rapid rate for that axis. After the move the axis.N.unlock will be
false and motion will wait for axis.N.is-unlocked to go false. Moving with other axes is not allowed when moving a locked
rotary axis.

e UNITS = INCH - If specified, this setting overrides the related [TRAJ] UNITS setting. (e.g., [TRAJJLINEAR_UNITS if the
TYPE of this axis is LINEAR, [TRAJJANGULAR_UNITS if the TYPE of this axis is ANGULAR)

* MAX_VELOCITY = 1.2 - Maximum velocity for this axis in machine units per second.
* MAX_ACCELERATION = 20.0 - Maximum acceleration for this axis in machine units per second squared.

* BACKLASH = 0.0000 - Backlash in machine units. Backlash compensation value can be used to make up for small deficiencies
in the hardware used to drive an axis. If backlash is added to an axis and you are using steppers the STEPGEN_MAXACCEL
must be increased to 1.5 to 2 times the MAX_ACCELERATION for the axis.

* COMP_FILE = file.extension - A file holding compensation structure for the axis. The file could be named xscrew.comp,
for example, for the X axis. File names are case sensitive and can contain letters and/or numbers. The values are triplets
per line separated by a space. The first value is nominal (where it should be). The second and third values depend on the
setting of COMP_FILE_TYPE. Currently the limit inside LinuxCNC is for 256 triplets per axis. If COMP_FILE is specified,
BACKLASH is ignored. Compensation file values are in machine units.

* COMP_FILE TYPE =0or I -

— If 0: The second and third values specify the forward position (where the axis is while traveling forward) and the reverse
position (where the axis is while traveling reverse), positions which correspond to the nominal position.’

— If 1: The second and third values specify the forward trim (how far from nominal while traveling forward) and the reverse
trim (how far from nominal while traveling in reverse), positions which correspond to the nominal position.

Example triplet with COMP_FILE_TYPE = 0: 1.00 1.01 0.99 +
Example triplet with COMP_FILE_TYPE = 1: 1.00 0.01 -0.01

e MIN_LIMIT = -1000 - The minimum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

Integrator Manuelle V2.5, 2013-03-04
19/244

MAX_LIMIT = 1000 - The maximum limit (soft limit) for axis motion, in machine units. When this limit is exceeded, the
controller aborts axis motion.

MIN_FERROR = 0.010 - This is the value in machine units by which the axis is permitted to deviate from commanded position
at very low speeds. If MIN_FERROR is smaller than FERROR, the two produce a ramp of error trip points. You could think
of this as a graph where one dimension is speed and the other is permitted following error. As speed increases the amount of
following error also increases toward the FERROR value.

FERROR = 1.0 - FERROR is the maximum allowable following error, in machine units. If the difference between commanded
and sensed position exceeds this amount, the controller disables servo calculations, sets all the outputs to 0.0, and disables the
amplifiers. If MIN_FERROR is present in the .ini file, velocity-proportional following errors are used. Here, the maximum al-
lowable following error is proportional to the speed, with FERROR applying to the rapid rate set by [TRAJIMAX_VELOCITY,
and proportionally smaller following errors for slower speeds. The maximum allowable following error will always be greater
than MIN_FERROR. This prevents small following errors for stationary axes from inadvertently aborting motion. Small fol-
lowing errors will always be present due to vibration, etc. The following polarity values determine how inputs are interpreted
and how outputs are applied. They can usually be set via trial-and-error since there are only two possibilities. The LinuxCNC
Servo Axis Calibration utility program (in the AXIS interface menu Machine/Calibration and in TkLinuxCNC it is under Set-
ting/Calibration) can be used to set these and more interactively and verify their results so that the proper values can be put in
the INI file with a minimum of trouble.

3.2.10.1 Homing

These parameters are Homing related, for a better explanation read the Homing Configuration Chapter.

HOME = 0.0 - The position that the joint will go to upon completion of the homing sequence.

HOME_OFFSET = 0.0 - The axis position of the home switch or index pulse, in machine units. When the home point is found
during the homing process, this is the position that is assigned to that point. When sharing home and limit switches and using
a home sequence that will leave the home/limit switch in the toggled state the home offset can be used define the home switch
position to be other than 0 if your HOME position is desired to be 0.

HOME_SEARCH_VEL = 0.0 - Initial homing velocity in machine units per second. Sign denotes direction of travel. A value
of zero means assume that the current location is the home position for the machine. If your machine has no home switches
you will want to leave this value at zero.

HOME_LATCH_VEL = 0.0 - Homing velocity in machine units per second to the home switch latch position. Sign denotes
direction of travel.

HOME_FINAL_VEL = 0.0 - Velocity in machine units per second from home latch position to home position. If left at 0 or
not included in the axis rapid velocity is used. Must be a positive number.

HOME_USE_INDEX = NO - If the encoder used for this axis has an index pulse, and the motion card has provision for this
signal you may set it to yes. When it is yes, it will affect the kind of home pattern used. Currently, you can’t home to index
with steppers unless you’re using stepgen in velocity mode and PID.

HOME_IGNORE_LIMITS = NO - When you use the limit switch as a home switch and the limit switch this should be set to
YES. When set to YES the limit switch for this axis is ignored when homing. You must configure your homing so that at the
end of your home move the home/limit switch is not in the toggled state you will get a limit switch error after the home move.

HOME_IS_SHARED = <n> - If the home input is shared by more than one axis set <n> to 1 to prevent homing from starting
if the one of the shared switches is already closed. Set <n> to 0 to permit homing if a switch is closed.

HOME_SEQUENCE = <n> - Used to define the "Home All" sequence. <n> starts at 0 and no numbers may be skipped. If left
out or set to -1 the joint will not be homed by the "Home All" function. More than one axis can be homed at the same time.

VOLATILE_HOME = 0 - When enabled (set to 1) this joint will be unhomed if the Machine Power is off or if E-Stop is on.
This is useful if your machine has home switches and does not have position feedback such as a step and direction driven
machine.

Integrator Manuelle V2.5, 2013-03-04
20/ 244

Warning

@ The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a PID component and the assumption is that the output is volts.

* DEADBAND = 0.000015 - How close is close enough to consider the motor in position, in machine units. This is often set to
a distance equivalent to 1, 1.5, 2, or 3 encoder counts, but there are no strict rules. Looser (larger) settings allow less servo
hunting at the expense of lower accuracy. Tighter (smaller) settings attempt higher accuracy at the expense of more servo
hunting. Is it really more accurate if it’s also more uncertain? As a general rule, it’s good to avoid, or at least limit, servo
hunting if you can.

Be careful about going below 1 encoder count, since you may create a condition where there is no place that your servo is happy.
This can go beyond hunting (slow) to nervous (rapid), and even to squealing which is easy to confuse with oscillation caused by
improper tuning. Better to be a count or two loose here at first, until you’ve been through gross tuning at least.

Example of calculating machine units per encoder pulse to use in deciding DEADBAND value:

1 revolution 1line 0.2units _ 0.200units _ 0.00005 units
1000lines = 4 pulselline 1revolution 4000 pulses 1 pulse

* BIAS = 0.000 - This is used by hm2-servo and some others. Bias is a constant amount that is added to the output. In most cases
it should be left at zero. However, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically. bias is turned off when the PID loop is disabled, just like all other components of the
output.

e P = 50 - The proportional gain for the axis servo. This value multiplies the error between commanded and actual position in
machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the P gain are volts per
volts

machine unit, e.g., UMt

e [= 0 - The integral gain for the axis servo. The value multiplies the cumulative error between commanded and actual position
in machine units, resulting in a contribution to the computed voltage for the motor amplifier. The units on the I gain are volts
volts

per machine unit second, e.g., UNit second

* D = 0 - The derivative gain for the axis servo. The value multiplies the difference between the current and previous errors,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the D gain are volts per machine unit
volts

per second, e.g., UNit second

* FFO = 0 - The Oth order feed forward gain. This number is multiplied by the commanded position, resulting in a contribution
volts

to the computed voltage for the motor amplifier. The units on the FF0 gain are volts per machine unit, e.g., LRIt

* FFI = 0 - The 1st order feed forward gain. This number is multiplied by the change in commanded position per second,
resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF1 gain are volts per machine
volts

unit per second, e.g., unit second

Integrator Manuelle V2.5, 2013-03-04
21/244

e FF2 = 0 - The 2nd order feed forward gain. This number is multiplied by the change in commanded position per second per
second, resulting in a contribution to the computed voltage for the motor amplifier. The units on the FF2 gain are volts per
volts

. . —_— 3
machine unit per second per second, e.g., unit second

* OUTPUT_SCALE = 1.000 -

e OUTPUT_OFFSET = 0.000 - These two values are the scale and offset factors for the axis output to the motor amplifiers.
The second value (offset) is subtracted from the computed output (in volts), and divided by the first value (scale factor),
before being written to the D/A converters. The units on the scale value are in true volts per DAC output volts. The units on
the offset value are in volts. These can be used to linearize a DAC. Specifically, when writing outputs, the LinuxCNC first
converts the desired output in quasi-SI units to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

_output—offset

raw
scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output SI units]/[actuator units]. For
example, on a machine with a velocity mode amplifier such that 1 volt results in 250 mm/sec velocity.
mim

amplifier | volts |=(output | g:—oﬁ‘seﬂ %:”25[} secvolt

Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-subtracted from the sensor readings. The
value for this offset is obtained by finding the value of your output which yields 0.0 for the actuator output. If the DAC is
linearized, this offset is normally 0.0.

The scale and offset can be used to linearize the DAC as well, resulting in values that reflect the combined effects of amplifier
gain, DAC non-linearity, DAC units, etc.

To do this, follow this procedure.

1. Build a calibration table for the output, driving the DAC with a desired voltage and measuring the result.

.....

2. Do aleast-squares linear fit to get coefficients a, b such that measured =

3. Note that we want raw output such that our measured result is identical to the commanded output. This means

a. command =axraw+b
b, rTaw={command—b)/a

4. As aresult, the a and b coefficients from the linear fit can be used as the scale and offset for the controller directly.

See the following table for an example of voltage measurements.

Table 3.1: Output Voltage Measurements

Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

Integrator Manuelle V2.5, 2013-03-04
22 /244

* MAX_OUTPUT = 10 - The maximum value for the output of the PID compensation that is written to the motor amplifier, in
volts. The computed output value is clamped to this limit. The limit is applied before scaling to raw output units. The value is
applied symmetrically to both the plus and the minus side.

e INPUT_SCALE = 20000 - in Sample configs

e ENCODER_SCALE = 20000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one
machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of LINEAR_UNITS.
For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified, is ignored. For
example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale=2000 S50 1 102 = 20000 S
rev inch inch

Warning

@ The following are custom INI file entries that you may find in a sample INI file or a wizard generated file. These are
not used by the LinuxCNC software. They are only there to put all the settings in one place. For more information on
custom INI file entries see the Custom Sections and Variables subsection.

The following items might be used by a stepgen component.

* SCALE = 4000 - in Sample configs

* STEP_SCALE = 4000 - in PNCconf built configs Specifies the number of pulses that corresponds to a move of one machine
unit as set in the [TRAJ] section. For stepper systems, this is the number of step pulses issued per machine unit. For a linear
axis one machine unit will be equal to the setting of LINEAR_UNITS. For an angular axis one unit is equal to the setting in
ANGULAR_UNITS. For servo systems, this is the number of feedback pulses per machine unit. A second number, if specified,
is ignored.

For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and desired machine units of inch, we
have:

2steps 360 degree <10 7€Y_— 4000 3%PS

input scale =
nputscate 1.8 degrees rev inch inch

* ENCODER_SCALE = 20000 (Optionally used in PNCconf built configs) - Specifies the number of pulses that corresponds to
a move of one machine unit as set in the [TRAJ] section. For a linear axis one machine unit will be equal to the setting of
LINEAR_UNITS. For an angular axis one unit is equal to the setting in ANGULAR_UNITS. A second number, if specified,
is ignored. For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units of inch, we have:

input scale=2000 2425 4 10 L&Y~ 20000 S
rev inch inch

o STEPGEN_MAXACCEL = 21.0 - Acceleration limit for the step generator. This should be 1% to 10% larger than the axis
MAX_ACCELERATION. This value improves the tuning of stepgen’s "position loop". If you have added backlash compen-
sation to an axis then this should be 1.5 to 2 times greater than MAX_ACCELERATION.

* STEPGEN_MAXVEL = 1.4 - Older configuration files have a velocity limit for the step generator as well. If specified, it should
also be 1% to 10% larger than the axis MAX_VELOCITY. Subsequent testing has shown that use of STEPGEN_MAXVEL
does not improve the tuning of stepgen’s position loop.

Integrator Manuelle V2.5, 2013-03-04
23 /244

3.2.11 [EMCIO] Section

e EMCIO = io - Name of 10 controller program

* CYCLE_TIME = 0.100 - The period, in seconds, at which EMCIO will run. Making it 0.0 or a negative number will tell
EMCIO not to sleep at all. There is usually no need to change this number.

e TOOL_TABLE = tool.tbl - The file which contains tool information, described in the User Manual.

* TOOL_CHANGE_POSITION = 0 0 2 - Specifies the XYZ location to move to when performing a tool change if three digits
are used. Specifies the XYZABC location when 6 digits are used. Specifies the XYZABCUVW location when 9 digits are
used. Tool Changes can be combined. For example if you combine the quill up with change position you can move the Z first
then the X and Y.

* TOOL_CHANGE_WITH_SPINDLE_ON = I - The spindle will be left on during the tool change when the value is 1. Useful
for lathes or machines where the material is in the spindle, not the tool.

* TOOL_CHANGE_QUILL_UP = 1 - The Z axis will be moved to machine zero prior to the tool change when the value is 1.
This is the same as issuing a GO G53 Z0.

* TOOL_CHANGE_AT_G30 = I - The machine is moved to reference point defined by parameters 5181-5186 for G30 if the
value is 1. For more information on G30 and Parameters see the G Code Manual.

* RANDOM_TOOLCHANGER = 1 - This is for machines that cannot place the tool back into the pocket it came from. For
example, machines that exchange the tool in the active pocket with the tool in the spindle.

Integrator Manuelle V2.5, 2013-03-04
24 /244

Chapter 4

Homing Configuration

4.1 Overview

Homing seems simple enough - just move each joint to a known location, and set LinuxCNC'’s internal variables accordingly.
However, different machines have different requirements, and homing is actually quite complicated.

4.2 Homing Sequence

There are four possible homing sequences, along with the associated configuration parameters as shown in the following table.
For a more detailed description of what each configuration parameter does, see the following section.

Integrator Manuelle V2.5, 2013-03-04

25/ 244

SEARCHVEL = POSITIVE
LATCHYEL = NEGATIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1.00G

— HOME SWITCH RELEASES
Fa HOME SWITCH TRIFS

— OWEREHDOT
#

.y £ SEARCH FOR HOME SWITCH (SEARCHVEL)

-t - FINAL DETECTION OF SWITCH (LATCHVEL]

fe:

1.000

G0 TO HOME POSITION [MAXVEL)

3000

SEARCHVEL = POZITIVE
LATCHWEL = POSITIVE
USEINDEX = FALSE

HOMEOFFSET = 3.000
HOME = 1000 — HOME SWITCH RELEASES

Fa HOME SWITCH TRIFS

@ E== SEARCH FOR HOME SWITCH [SEARCHVEL}

BACK OFF OF HOME SWITCH [SEARCHWVEL)

= FINAL DETECTION OF SWITCH (LATCHVELD

bes
TH

1.000

G0 TO HOME POSITION [MAXWVEL)

3.000

SEARCHVEL = POZITIVE
LATCHVEL = MEGATIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HOME = 1000 —— HOME SWITCH RELEASES
. T <
/F/—HEM[SWITCH TRIPS

E"—-—_ SEARCH FOR ROME SWITLH [SEARCHVEL)

FINAL DETECTION OF SWITCH AND
NOEX PULSE [LATCHYEL)

GO TO HOME POSITION [MAXVEL)
I |

.
3000 NNDEX PULSES

SEARCHVEL = POZITIVE
LATCHVEL = POSITIVE
USEINDEX = TRUE

HOMEOFFSET = 3.000
HUME = T.000 — HUME SWITLH RELEASES
—— HOME SWITCH TRIPS
/

4 ET--— SEARCH FOR HOME SWITCH [SEARCHYEL)

= © BACK OFF DF HOME SWITCH ISEARCHVEL)

P FINAL DETECTION OF SWITCH AND
NDEX PULSE [LATCHVEL)

1.00¢

G0 TO HOME POSITION [MAXVEL)

3000 TNypex PULSES

Figure 4.1: Homing Sequences

Integrator Manuelle V2.5, 2013-03-04

26/ 244

4.3 Configuration

The following determines exactly how the home sequence behaves. They are defined in an [AXIS] section of the inifile.

Homing Type SEARCH_VEL LATCH_VEL USE_INDEX
Immediate 0 0 NO
Index-only 0 nonzero YES
Switch-only nonzero nonzero NO

Switch and Index nonzero nonzero YES

Note
Any other combinations may result in an error.

431 HOME_SEARCH_VEL

The default value is zero. A value of zero causes LinuxCNC to assume that there is no home switch; the search stage of homing
is skipped.

If HOME_SEARCH_VEL is non-zero, then LinuxCNC assumes that there is a home switch. It begins by checking whether the
home switch is already tripped. If tripped it backs off the switch at HOME_SEARCH_VEL. The direction of the back-off is
opposite the sign of HOME_SEARCH_VEL. Then it searches for the home switch by moving in the direction specified by the
sign of HOME_SEARCH_VEL, at a speed determined by its absolute value. When the home switch is detected, the joint will
stop as fast as possible, but there will always be some overshoot. The amount of overshoot depends on the speed. If it is too high,
the joint might overshoot enough to hit a limit switch or crash into the end of travel. On the other hand, if HOME_SEARCH_VEL
is too low, homing can take a long time.

4.3.2 HOME_LATCH_VEL

Specifies the speed and direction that LinuxCNC uses when it makes its final accurate determination of the home switch (if
present) and index pulse location (if present). It will usually be slower than the search velocity to maximize accuracy. If
HOME_SEARCH_VEL and HOME_LATCH_VEL have the same sign, then the latch phase is done while moving in the same
direction as the search phase. (In that case, LinuxCNC first backs off the switch, before moving towards it again at the latch
velocity.) If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while moving in
the opposite direction from the search phase. That means LinuxCNC will latch the first pulse after it moves off the switch. If
HOME_SEARCH_VEL is zero (meaning there is no home switch), and this parameter is nonzero, LinuxCNC goes ahead to the
index pulse search. If HOME_SEARCH_VEL is non-zero and this parameter is zero, it is an error and the homing operation will
fail. The default value is zero.

4.3.3 HOME_FINAL_VEL

It specifies the speed that LinuxCNC uses when it makes its move from HOME_OFFSET to the HOME position. If the
HOME_FINAL_VEL is missing from the ini file, then the maximum joint speed is used to make this move. The value must
be a positive number.

4.3.4 HOME_IGNORE_LIMITS

Can hold the values YES / NO. The default value for this parameter is NO. This flag determines whether LinuxCNC will ignore
the limit switch input for this axis while homing. Setting this to YES will not ignore limit inputs for other axes. If you do not have
a separate home switch set this to YES and case connect the limit switch signal to the home switch input in HAL. LinuxCNC
will ignore the limit switch input for this axis while homing. To use only one input for all homing and limits you will have to
block the limit signals of the axes not homing in HAL and home one axis at a time.

Integrator Manuelle V2.5, 2013-03-04
27 1 244

4.3.5 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME_USE_INDEX = YES), LinuxCNC will latch on the
rising edge of the index pulse. If false, LinuxCNC will latch on either the rising or falling edge of the home switch (depending
on the signs of HOME_SEARCH_VEL and HOME_LATCH_VEL). The default value is NO.

4.3.6 HOME_OFFSET

Contains the location of the home switch or index pulse, in joint coordinates. It can also be treated as the distance between the
point where the switch or index pulse is latched and the zero point of the joint. After detecting the index pulse, LinuxCNC sets
the joint coordinate of the current point to HOME_OFFSET. The default value is zero.

4.3.7 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the index pulse, and setting the
coordinate of that point to HOME_OFFSET, LinuxCNC makes a move to HOME as the final step of the homing process. The
default value is zero. Note that even if this parameter is the same as HOME_OFFSET, the joint will slightly overshoot the latched
position as it stops. Therefore there will always be a small move at this time (unless HOME_SEARCH_VEL is zero, and the
entire search/latch stage was skipped). This final move will be made at the joint’s maximum velocity. Since the joint is now
homed, there should be no risk of crashing the machine, and a rapid move is the quickest way to finish the homing sequence. !

4.3.8 HOME_IS_SHARED

If there is not a separate home switch input for this axis, but a number of momentary switches wired to the same pin, set this
value to 1 to prevent homing from starting if one of the shared switches is already closed. Set this value to 0 to permit homing
even if the switch is already closed.

4.3.9 HOME_SEQUENCE

Used to define a multi-axis homing sequence HOME ALL and enforce homing order (e.g., Z may not be homed if X is not
yet homed). An axis may be homed after all axes with a lower HOME_SEQUENCE have already been homed and are at the
HOME_OFFSET. If two axes have the same HOME_SEQUENCE, they may be homed at the same time. If HOME_SEQUENCE
is -1 or not specified then this joint will not be homed by the HOME ALL sequence. HOME_SEQUENCE numbers start with O
and there may be no unused numbers.

4.3.10 VOLATILE_HOME

If this setting is true, this axis becomes unhomed whenever the machine transitions into the OFF state. This is appropriate for
any axis that does not maintain position when the axis drive is off. Some stepper drives, especially microstep drives, may need
this.

4.3.11 LOCKING_INDEXER

If this axis is a locking rotary indexer, it will unlock before homing, and lock afterward.

I The distinction between home_offset and home is that home_offset first establishes the scale location on the machine by applying the home_offset value to
the location where home was found, and then home says where the joint should move to on that scale.

Integrator Manuelle V2.5, 2013-03-04
28 /244

Chapter 5

Lathe Configuration

5.1 Default Plane

When LinuxCNC'’s interpreter was first written, it was designed for mills. That is why the default plane is XY (G17). A normal
lathe only uses the XZ plane (G18). To change the default plane place the following line in the .ini file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G138

The above can be overwritten in a g code program so always set important things in the preamble of the g code file.

5.2 INI Settings

The following .ini settings are needed for lathe mode in Axis in addition to or replacing normal settings in the .ini file.

[DISPLAY]

DISPLAY = axis
LATHE =1

[TRAJ]

AXES = 3
COORDINATES = X Z
[AXIS_O0]

[AXIS_2]

Integrator Manuelle V2.5, 2013-03-04
29 /244

Chapter 6

HAL TCL Files

The halcmd language excels in specifiying components and connections but offers no computational capabilities. As a result, ini
files are limited in the clarity and brevity that is possible with higher level languages.

The haltcl facility provides a means to use tcl scripting and its features for computation, looping, branching, procedures, etc. in
ini files. To use this functionality, you use the tcl language and the extension .tcl for halfiles.

The .tcl extension is understood by the main script (linuxcnc) that processes ini files. Haltcl files are identified in the the HAL
section of ini files (just like .hal files).

Example

[HAL]
HALFILE = conventional_ file.hal
HALFILE = tcl_based file.tcl

With appropriate care, .hal and .tcl files can be intermixed.

6.1 Compatibility

The halcmd language used in .hal files has a simple syntax that is actually a subset of the more powerful general-purpose tcl
scripting language.

6.2 Haltcl Commands

Haltcl files use the tcl scripting language augmented with the specific commands of the LinuxCNC hardware abstraction layer
(HAL). The hal-specific commands are.

addf, alias,

delf, delsig,

getp, gets

ptype,

stype,

help,

linkpp, linkps, linksp, list, loadrt, loadusr, lock,
net, newsig,

save, setp, sets, show, source, start, status, stop,
unalias, unlinkp, unload, unloadrt, unloadusr, unlock,
waitusr

Integrator Manuelle V2.5, 2013-03-04
30/ 244

Two special cases occur for the gets and list commands due to conflicts with tcl builtin commands. For haltcl, these commands
must be preceded with the keyword hal.

halcmd haltcl

gets hal gets
list hal list

6.3 Haltcl Inifile variables

Inifile variables are accessible by both halcmd and haltcl but with differing syntax.
LinuxCNC ini files use SECTION and ITEM specifiers to identify configuration items.

[SECTION_A]
ITEM1 = value_1
ITEM2 = value_2

[SECTION_B]
The ini file values are accessible by text substition in .hal files using the form.
[SECTION]ITEM

The same ini file values are accessible in .tcl files using the form of a tcl global array variable.
$::SECTION (ITEM)

For example, an ini file item like:

[AXIS_0]

MAX VELOCITY = 4

is expressed as [AXIS_O]MAX_VELOCITY in .hal files for halcmd and as $::AXIS_OMAX_VELOCITY) in .tcl files for haltcl

6.4 Converting .hal files to .tcl files

Existing .hal files can be converted to .tcl files by hand editing to adapt to the differences mentioned above. The process can be
automated with scripts that convert using these substitutions.

[SECTION]ITEM ——--> $::SECTION (ITEM)
gets —-——> hal gets
list —-—=> hal list

6.5 Haltcl Notes

In haltcl, the value argument for the sets and sefp commands is implicitly treated as an expression in the tcl language.
Example
set gain to convert deg/sec to units/min for AXIS_0 radius

setp scale.0.gain 6.28/360.0%xS$::AXIS_0 (radius)*60.0

Whitespace in the bare expression is not allowed, use quotes for that:

Integrator Manuelle V2.5, 2013-03-04
31/244

setp scale.0.gain "6.28 / 360.0 * $::AXIS_O(radius) =* 60.0"

In other contexts, such as loadrt, you must explicitly use the tcl expr command ([expr {}]) for computational expressions.
Example

loadrt motion base_period=[expr {500000000/$::TRAJ (MAX_PULSE_RATE) }]

6.6 Haltcl Examples

Consider the topic of stepgen headroom. Software stepgen runs best with an acceleration constraint that is "a bit higher" than the
one used by the motion planner. So, when using halemd files, we force inifiles to have a manually calculated value.

[AXIS_O0]
MAXACCEL = 10.0
STEPGEN_MAXACCEL = 10.5

With haltcl, you can use tcl commands to do the computation and eliminate the STEPGEN_MAXACCEL inifile item altogether.

setp stepgen.0.maxaccel $::AXIS_0 (MAXACCEL)=x1.05

Another haltcl feature is looping and testing. For example, many simulator configurations use "core_sim.hal" or "core_sim9.hal"
hal files. These differ because of the requirement to connect more or fewer axes. The following haltcl code would work for any
combination of axes in a trivkins machine.

Create position, velocity and acceleration signals for each axis
set ddt O
foreach axis {X Y Z A B C UV W} axno {01 2 3 45 6 7 8} {
’'list pin’ returns an empty list if the pin doesn’t exist
if {[hal list pin axis.$axno.motor-pos-cmd] == {}} {
continue
}
net ${axis}pos axis.S$axno.motor-pos-cmd => axis.S$axno.motor-pos-fb \
=> ddt.$ddt.in
net ${axis}vel <= ddt.S$ddt.out
incr ddt
net ${axis}vel => ddt.$ddt.in
net ${axis}acc <= ddt.S$ddt.out
incr ddt
}
puts [show sig xvel]
puts [show sig xacc]

6.7 Haltcl Interactive

The halrun command recognizes haltcl files. With the -T option, haltcl can be run interaactively as a tcl interpreter. This capability
is useful for testing and for standalone hal applications.

Example

$ halrun -T haltclfile.tcl

6.8 Haltcl Distribution Examples (sim)

The configs/sim/simtcl directory includes an ini file that uses a .tcl file to demonstrate a haltcl configuration in conjunction with
the usage of twopass processing. The example shows the use of tcl procedures, looping, the use of comments, and output to the
terminal.

Integrator Manuelle V2.5, 2013-03-04
32 /244

Chapter 7

Core Components

See also the man pages motion(9).

7.1 Motion

These pins and parameters are created by the realtime motmod module. This module provides a HAL interface for LinuxCNC’s
motion planner. Basically motmod takes in a list of waypoints and generates a nice blended and constraint-limited stream of joint
positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio. The default is 4 each.

Pin names starting with axis are actually joint values, but the pins and parameters are still called axis.N. They are read and
updated by the motion-controller function.

Motion is loaded with the motmod command. A kins should be loaded before motion.

loadrt motmod [base_period_nsec=period] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=[0-9] ([num_dio=1-64] num_aio=1-16])]

* base_period_nsec = 50000 - the Base task period in nanoseconds. This is the fastest thread in the machine.

Note

On servo-based systems, there is generally no reason for base_period_nsec to be smaller than servo_period_nsec. On
machines with software step generation, the base_period_nsec determines the maximum number of steps per second. In the
absence of long step length and step space requirements, the absolute maximum step rate is one step per base_period_nsec.
Thus, the base_period _nsec shown above gives an absolute maximum step rate of 20,000 steps per second. 50,000 ns (50
us) is a fairly conservative value. The smallest usable value is related to the Latency Test result, the necessary step length,
and the processor speed. Choosing a base_period_nsec that is too low can lead to the "Unexpected real time delay" message,
lockups, or spontaneous reboots.

* servo_period_nsec = 1000000 - This is the Servo task period in nanoseconds. This value will be rounded to an integer multiple
of base_period_nsec. This period is used even on systems based on stepper motors.

This is the rate at which new motor positions are computed, following error is checked, PID output values are updated, and so
on. Most systems will not need to change this value. It is the update rate of the low level motion planner.

* traj_period_nsec = 100000 - This is the Trajectory Planner task period in nanoseconds. This value will be rounded to an
integer multiple of servo_period_nsec. Except for machines with unusual kinematics (e.g., hexapods) there is no reason to
make this value larger than servo_period_nsec.

Integrator Manuelle V2.5, 2013-03-04
33 /244

7.1.1 Options

If the number of digital I/O needed is more than the default of 4 you can add up to 64 digital I/O by using the num_dio option
when loading motmod.

If the number of analog I/O needed is more than the default of 4 you can add up to 16 analog I/O by using the num_aio option
when loading motmod.

7.1.2 Pins
These pins, parameters, and functions are created by the realtime motmod module.

* motion.adaptive-feed - (float, in) When adaptive feed is enabled with M52 P , the commanded velocity is multiplied by this
value. This effect is multiplicative with the NML-level feed override value and motion.feed-hold.

* motion.analog-in-00 - (float, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M66.

* motion.analog-out-00 - (float, out) These pins (00, 01, 02, 03 or more if configured) are controlled by M67 or M68.
* motion.coord-error - (bit, out) TRUE when motion has encountered an error, such as exceeding a soft limit

* motion.coord-mode - (bit, out) TRUE when motion is in coordinated mode, as opposed to teleop mode

* motion.current-vel - (float, out) The current tool velocity in user units per second.

* motion.digital-in-00 - (bit, in) These pins (00, 01, 02, 03 or more if configured) are controlled by M62-65.

* motion.digital-out-00 - (bit, out) These pins (00, 01, 02, 03 or more if configured) are controlled by the M62-65.

* motion.distance-to-go - (float,out) The distance remaining in the current move.

* motion.enable - (bit, in) If this bit is driven FALSE, motion stops, the machine is placed in the machine off state, and a message
is displayed for the operator. For normal motion, drive this bit TRUE.

* motion.feed-hold - (bit, in) When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.
* motion.in-position - (bit, out) TRUE if the machine is in position.

e motion.motion-enabled - (bit, out) TRUE when in machine on state.

* motion.on-soft-limit - (bit, out) TRUE when the machine is on a soft limit.

* motion.probe-input - (bit, in) G38.x uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

* motion.program-line - (s32, out) The current program line while executing. Zero if not running or between lines while single
stepping.

* motion.requested-vel - (float, out) The current requested velocity in user units per second from the F=n setting in the G Code
file. No feed overrides or any other adjustments are applied to this pin.

* motion.spindle-at-speed - (bit, in) Motion will pause until this pin is TRUE, under the following conditions: before the first
feed move after each spindle start or speed change; before the start of every chain of spindle-synchronized moves; and if in
CSS mode, at every rapid to feed transition. This input can be used to ensure that the spindle is up to speed before starting a cut,
or that a lathe spindle in CSS mode has slowed down after a large to small facing pass before starting the next pass at the large
diameter. Many VFDs have an at speed output. Otherwise, it is easy to generate this signal with the HAL near component, by
comparing requested and actual spindle speeds.

* motion.spindle-brake - (bit, out) TRUE when the spindle brake should be applied.
* motion.spindle-forward - (bit, out) TRUE when the spindle should rotate forward.

* motion.spindle-index-enable - (bit, I/O) For correct operation of spindle synchronized moves, this pin must be hooked to the
index-enable pin of the spindle encoder.

Integrator Manuelle V2.5, 2013-03-04
34 /244

motion.spindle-on - (bit, out) TRUE when spindle should rotate.
motion.spindle-reverse - (bit, out) TRUE when the spindle should rotate backward

motion.spindle-revs - (float, in) For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder. The spindle encoder position should be scaled such that spindle-revs increases by 1.0 for each
rotation of the spindle in the clockwise (M3) direction.

motion.spindle-speed-in - (float, in) Feedback of actual spindle speed in rotations per second. This is used by feed-per-
revolution motion (G95). If your spindle encoder driver does not have a velocity output, you can generate a suitable one by
sending the spindle position through a ddf component. If you do not have a spindle encoder, you can loop back motion.spindle-
speed-out-rps.

motion.spindle-speed-out - (float, out) Commanded spindle speed in rotations per minute. Positive for spindle forward (M3),
negative for spindle reverse (M4).

motion.spindle-speed-out-rps - (float, out) Commanded spindle speed in rotations per second. Positive for spindle forward
(M3), negative for spindle reverse (M4).

motion.teleop-mode - (bit, out) TRUE when motion is in teleop mode, as opposed to coordinated mode

motion.tooloffset.x ... motion.tooloffset.w - (float, out, one per axis) shows the tool offset in effect; it could come from the tool
table (G43 active), or it could come from the gcode (G43.1 active)

7.1.3 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any time.

motion-command-handler.time - (s32, RO)
motion-command-handler.tmax - (s32, RW)

motion-controller.time - (s32, RO)

motion-controller.tmax - (s32, RW)

motion.debug-bit-0 - (bit, RO) This is used for debugging purposes.
motion.debug-bit-1 - (bit, RO) This is used for debugging purposes.
motion.debug-float-0 - (float, RO) This is used for debugging purposes.
motion.debug-float-1 - (float, RO) This is used for debugging purposes.
motion.debug-float-2 - (float, RO) This is used for debugging purposes.
motion.debug-float-3 - (float, RO) This is used for debugging purposes.
motion.debug-s32-0 - (s32, RO) This is used for debugging purposes.
motion.debug-s32-1 - (s32, RO) This is used for debugging purposes.

motion.servo.last-period - (u32, RO) The number of CPU cycles between invocations of the servo thread. Typically, this
number divided by the CPU speed gives the time in seconds, and can be used to determine whether the realtime motion
controller is meeting its timing constraints

motion.servo.last-period-ns - (float, RO)

motion.servo.overruns - (32, RW) By noting large differences between successive values of motion.servo.last-period , the
motion controller can determine that there has probably been a failure to meet its timing constraints. Each time such a failure
is detected, this value is incremented.

Integrator Manuelle V2.5, 2013-03-04
35/ 244

7.1.4 Functions

Generally, these functions are both added to the servo-thread in the order shown.

* motion-command-handler - Processes motion commands coming from user space

e motion-controller - Runs the Linux CNC motion controller

7.2 Axis (Joints)

These pins and parameters are created by the realtime motmod module. These are actually joint values, but the pins and parame-
ters are still called axis.N.' They are read and updated by the motion-controller function.

7.2.1 Pins

e axis.N.active - (bit, out)

* axis.N.amp-enable-out - (bit, out) TRUE if the amplifier for this joint should be enabled

* axis.N.amp-fault-in - (bit, in) Should be driven TRUE if an external fault is detected with the amplifier for this joint
e axis.N.backlash-corr - (float, out)

* axis.N.backlash-filt - (float, out)

* axis.N.backlash-vel - (float, out)

* axis.N.coarse-pos-cmd - (float, out)

e axis.N.error - (bit, out)

* axis.N.f-error - (float, out)

e axis.N.f-error-lim - (float, out)

* axis.N.f-errored - (bit, out)

* axis.N.faulted - (bit, out)

* axis.N.free-pos-cmd - (float, out)

* axis.N.free-tp-enable - (bit, out)

* axis.N.free-vel-lim - (float, out)

* axis.N.home-sw-in - (bit, in) Should be driven TRUE if the home switch for this joint is closed.
* axis.N.homed - (bit, out)

* axis.N.homing - (bit, out) TRUE if the joint is currently homing

* axis.N.in-position - (bit, out)

¢ axis.N.index-enable - (bit, 1/0O)

* axis.N.jog-counts - (s32, in) Connect to the counts pin of an external encoder to use a physical jog wheel.

* axis.N.jog-enable - (bit, in) When TRUE (and in manual mode), any change in jog-counts will result in motion. When false,
Jjog-counts is ignored.

* axis.N.jog-scale - (float, in) Sets the distance moved for each count on jog-counts, in machine units.

'In trivial kinematics machines, there is a one-to-one correspondence between joints and axes.

Integrator Manuelle V2.5, 2013-03-04
36 /244

axis.N.jog-vel-mode - (bit, in) When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog-scale units for each count, regardless of how long that might take. When TRUE, the wheel operates in velocity mode -
motion stops when the wheel stops, even if that means the commanded motion is not completed.

axis.N.joint-pos-cmd - (float, out) The joint (as opposed to motor) commanded position. There may be an offset between the
joint and motor positions—for example, the homing process sets this offset.

axis.N.joint-pos-fb - (float, out) The joint (as opposed to motor) feedback position.

axis.N.joint-vel-cmd - (float, out)

axis.N.kb-jog-active - (bit, out)

axis.N.motor-pos-cmd - (float, out) The commanded position for this joint.

axis.N.motor-pos-fb - (float, in) The actual position for this joint.

axis.N.neg-hard-limit - (bit, out)

axis.N.pos-lim-sw-in - (bit, in) Should be driven TRUE if the positive limit switch for this joint is closed.

axis.N.pos-hard-limit - (bit, out)

axis.N.neg-lim-sw-in - (bit, in) Should be driven TRUE if the negative limit switch for this joint is closed.

axis.N.wheel-jog-active - (bit, out)

7.2.2 Parameters

e axis.N.home-state - Reflects the step of homing currently taking place.

7.3 iocontrol

iocontrol — accepts NML I/O commands, interacts with HAL in userspace.

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more i/0, consider using
the realtime synchronized i/o provided by motion instead.

7.3.1 Pins

* iocontrol.0.coolant-flood - (bit, out) TRUE when flood coolant is requested.

* iocontrol.0.coolant-mist - (bit, out) TRUE when mist coolant is requested.

* iocontrol.0.emc-enable-in - (bit, in) Should be driven FALSE when an external E-Stop condition exists.
e jocontrol.0.lube - (bit, out) TRUE when lube is commanded.

* iocontrol.0.lube_level - (bit, in) Should be driven TRUE when lube level is high enough.

* iocontrol.0.tool-change - (bit, out) TRUE when a tool change is requested.

* iocontrol.0.tool-changed - (bit, in) Should be driven TRUE when a tool change is completed.

¢ jocontrol.0.tool-number - (s32, out) The current tool number.

* iocontrol.0.tool-prep-number - (s32, out) The number of the next tool, from the RS274NGC T-word.
* iocontrol.0.tool-prepare - (bit, out) TRUE when a tool prepare is requested.

* iocontrol.0.tool-prepared - (bit, in) Should be driven TRUE when a tool prepare is completed.

* iocontrol.0.user-enable-out - (bit, out) FALSE when an internal E-Stop condition exists.

* iocontrol.0.user-request-enable - (bit, out) TRUE when the user has requested that E-Stop be cleared.

Integrator Manuelle V2.5, 2013-03-04
37 /244

Chapter 8

Stepper Configuration

8.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See the Getting Started Guide.

This chapter describes some of the more common settings for manually setting up a stepper based system. Because of the various
possibilities of configuring LinuxCNGC, it is very hard to document them all, and keep this document relatively short.

The most common LinuxCNC usage is for stepper based systems. These systems are using stepper motors with drives that accept
step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the motors), yet the system
needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on the sample config released along with LinuxCNC. The config is called stepper, and usually it is
found in /etc/emc2/sample-configs/stepper.

8.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for step-and-direction output. The
maximum requested step rate is the product of an axis” MAX_VELOCITY and its INPUT_SCALE. If the requested step rate is
not attainable, following errors will occur, particularly during fast jogs and GO moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one step is possible for each
BASE_PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will cause the machine to become
unresponsive or even lock up), the INPUT_SCALE (if you can select different step sizes on your stepper driver, change pulley
ratios, or leadscrew pitch), or the MAX_VELOCITY and STEPGEN_MAXVEL.

If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then consider using hard-
ware step generation (such as with the Linux CNC-supported Universal Stepper Controller, Mesa cards, and others.)

8.3 Pinout

One of the major flaws in LinuxCNC was that you couldn’t specify the pinout without recompiling the source code. LinuxCNC
is far more flexible, and now (thanks to the Hardware Abstraction Layer) you can easily specify which signal goes where. See
the HAL manual for more detailed information on HAL.

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside the HAL.

Integrator Manuelle V2.5, 2013-03-04
38/244

Note
We are presenting one axis to keep it short, all others are similar.

The ones relevant for our pinout are:

signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in

Depending on what you have chosen in your .ini file you are using either standard_pinout.hal or xylotex_pinout.hal. These are
two files that instruct the HAL how to link the various signals & pins. Further on we’ll investigate the standard_pinout.hal.

8.3.1 standard_pinout.hal

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers
using a parport for I/O

#

first load the parport driver

loadrt hal_parport cfg="0x0378"

#

next connect the parport functions to threads
read inputs first

addf parport.0.read base-thread 1

write outputs last

addf parport.O0.write base-thread -1

#

finally connect physical pins to the signals
net Xstep => parport.0.pin-03-out

net Xdir => parport.0.pin-02-out

net Ystep => parport.0.pin-05-out
net Ydir => parport.0.pin-04-out
net Zstep => parport.0.pin-07-out
net Zdir => parport.0.pin-06-out

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0O.tool-changed

connect "spindle on" motion controller pin to a physical pin
net spindle-on motion.spindle-on => parport.0.pin-09-out

#H#
You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core_stepper.hal

###

net Xen => parport.0.pin-0l-out

#H4

If you want active low for this pin, invert it like this:
###

setp parport.0.pin-0Ol-out-invert 1

###

Integrator Manuelle V2.5, 2013-03-04

39/ 244

A sample home switch on the X axis (axis 0). make a signal,

link the incoming parport pin to the signal, then link the signal
to LinuxCNC’s axis 0 home switch input pin

4

net Xhome parport.0.pin-10-in => axis.0.home-sw-in

###

Shared home switches all on one parallel port pin?

that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the ini file. See the
user manual!

#H4#

net homeswitches <= parport.0.pin-10-in
net homeswitches => axis.0.home-sw—in

net homeswitches => axis.l.home-sw—-in

net homeswitches => axis.2.home-sw-in

#H4#
Sample separate limit switches on the X axis (axis 0)

#H#

net X-neg-limit parport.0.pin-11-in => axis.O.neg-lim-sw-in
net X-pos-limit parport.0.pin-12-in => axis.0.pos-lim-sw-in

#H4#
Just like the shared home switches example, you can wire together

limit switches. Beware if you hit one, LinuxCNC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this.

iid

net Xlimits parport.0.pin-13-in => axis.0.neg-lim-sw—-in axis.O.pos-lim-sw-in

The lines starting with # are comments, and their only purpose is to guide the reader through the file.

8.3.2 Overview

There are a couple of operations that get executed when the standard_pinout.hal gets executed/interpreted:

* The Parport driver gets loaded (see the Parport section of the HAL Manual for details)
* The read & write functions of the parport driver get assigned to the base thread !

* The step & direction signals for axes X,Y,Z get linked to pins on the parport

Further I/O signals get connected (estop loopback, toolchanger loopback)

* A spindle-on signal gets defined and linked to a parport pin

8.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and locate the parts you want to

change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to do is to change the number in

the parport.0.pin-XX-out name:

Ithe fastest thread in the LinuxCNC setup, usually the code gets executed every few tens of microseconds

Integrator Manuelle V2.5, 2013-03-04
40/ 244

net Xstep parport.0.pin-03-out
net Xdir parport.0.pin-02-out

can be changed to:

net Xstep parport.0.pin-02-out
net Xdir parport.0.pin-03-out

or basically any other out pin you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

8.3.4 Changing polarity of a signal
If external hardware expects an “active low” signal, set the corresponding -invert parameter. For instance, to invert the spindle
control signal:

setp parport.0.pin-09-invert TRUE

8.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base—-thread

net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value

net spindle-on motion.spindle-on => pwmgen.0O.enable

net spindle-pwm pwmgen.O.pwm => parport.0.pin-09-out

setp pwmgen.0O.scale 1800 # Change to your ’spindles top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0 RPM, 10% PWM gives 180 RPM, etc.
If there is a minimum PWM required to get the spindle to turn, follow the example in the nist-lathe sample configuration to use
a scale component.

8.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the motors. For this reason
there are already defined signals called Xen, Yen, Zen.

To connect them use the following example:

net Xen parport.0.pin-08-out

You can either have one single pin that enables all drives; or several, depending on the setup you have. Note, however, that
usually when one axis faults, all the other drives will be disabled as well, so having only one enable signal / pin for all drives is a
common practice.

8.3.7 External ESTOP button

As you can see in the standard_pinout.hal file by default the stepper configuration assumes no external ESTOP button. 2

To add a simple external button you need to replace the line:

2 An extensive explanation of hooking up ESTOP circuitry is explained in the wiki.linuxcnc.org and elsewhere in the Integrator Manual

Integrator Manuelle V2.5, 2013-03-04
41/ 244

net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

with
net estop-loop parport.0.pin-01-in iocontrol.0.emc-enable-in
This assumes an ESTOP switch connected to pin 01 on the parport. As long as the switch will stay pushed?, LinuxCNC will be

in the ESTOP state. When the external button gets released LinuxCNC will immediately switch to the ESTOP-RESET state, and
all you need to do is switch to Machine On and you’ll be able to continue your work with LinuxCNC.

3make sure you use a maintained switch for ESTOP.

Integrator Manuelle V2.5, 2013-03-04
42 /244

Part 111

GUI

Integrator Manuelle V2.5, 2013-03-04
43 /244

Chapter 9

Python Virtual Control Panel

9.1 Introduction

Python Virtual Control Panel The PyVCP (Python Virtual Control Panel) is designed to give the integrator the ability to
customize the AXIS interface with buttons and indicators to do special tasks.

Hardware machine control panels can use up a lot of I/O pins and can be expensive. That is where Virtual Control Panels have
the advantage as well as it cost nothing to build a PyVCP.

Virtual Control Panels can be used for testing or monitoring things to temporarily replace real I/O devices while debugging ladder
logic, or to simulate a physical panel before you build it and wire it to an I/O board.

The following graphic displays many of the PyVCP widgets.

Integrator Manuelle V2.5, 2013-03-04
44 / 244

Meet the widgets:

A LED indicates a HAL_BIT: {{f) 30

A Scale controls a HAL_FLOAT... I—
A Button controls a HAL_BIT... Button |

0.0

and so does a checkbox _| | which can be indicated with a Bar...

0.0

or a Number +0.0000

This is a hbox. Widgets are packed horizontally:

o 58 0.0 ..
Button L -
L 0.0 100.0

These are a vhoxes within a hbox. This demonstrates box nesting and vertical packing:

Buttonz || 0.0
@ Button2 | +0.000 0.0 100.0

+0.000 0.0

3I]j +0.000 0.0 100.0

g 10000 .

0.0

Button3 | 0.0 100.0
Button4 |
Buttond |

9.2 Panel Construction

The layout of a PyVCP panel is specified with an XML file that contains widget tags between <pyvcp> and </pyvcp>. For
example:

<pyvcp>
<label text="This is a LED indicator"/>
<led/>

</pyvcp>

This is a LED indicator

If you place this text in a file called tiny.xml, and run

halrun -I loadusr pyvcp -c mypanel tiny.xml

Integrator Manuelle V2.5, 2013-03-04
45/ 244

PyVCP will create the panel for you, which includes two widgets, a Label with the text This is a LED indicator, and a LED, used
for displaying the state of a HAL BIT signal. It will also create a HAL component named mypanel (all widgets in this panel are
connected to pins that start with mypanel.). Since no <halpin> tag was present inside the <led> tag, PyVCP will automatically
name the HAL pin for the LED widget mypanel.led.0

For a list of widgets and their tags and options, see the widget reference below.
Once you have created your panel, connecting HAL signals to and from the PyVCP pins is done with the halcmd:

net <signal-name> <pin-name> <opt-direction> <opt-pin-name>signal-name

If you are new to HAL, the HAL basics chapter in the Integrator Manual is a good place to start.

9.3 Security

Parts of PyVCP files are evaluated as Python code, and can take any action available to Python programs. Only use PyVCP .xml
files from a source that you trust.

9.4 AXIS

Since AXIS uses the same GUI toolkit (Tkinter) as PyVCP, it is possible to include a PyVCP panel on the right side of the normal
AXIS user interface. A typical example is explained below.

Place your PyVCP XML file describing the panel in the same directory where your .ini file is. Say we we want to display the
current spindle speed using a Bar widget. Place the following in a file called spindle.xml:

<pyvcp>
<label>
<text>"Spindle speed:"</text>
</label>
<bar>
<halpin>"spindle-speed"</halpin>
<max_>5000</max_>
</bar>
</pyvcp>

Here we’ve made a panel with a Label and a Bar widget, specified that the HAL pin connected to the Bar should be named
spindle-speed, and set the maximum value of the bar to 5000 (see widget reference below for all options). To make AXIS aware
of this file, and call it at start up, we need to specify the following in the [DISPLAY] section of the .ini file:

PYVCP = spindle.xml

To make our widget actually display the spindle-speed it needs to be hooked up to the appropriate HAL signal. A .hal file that
will be run once AXIS and PyVCP have started can be specified in the [HAL] section of the .ini file:

POSTGUI_HALFILE = spindle_to_pyvcp.hal

This change will run the HAL commands specified in spindle_to_pyvcp.hal. In our example the contents could look like this:

net spindle-rpm-filtered => pyvcp.spindle-speed

assuming that a signal called spindle-rpm-filtered already exists. Note that when running together with AXIS, all PyVCP widget
HAL pins have names that start with pyvep..

Integrator Manuelle V2.5, 2013-03-04

46 /244
|[_ axis-lathe.m = AKXl 11 TC-HAL-51M-LA :|:|:||
Eile Machine WView Help
3 ke =l B Spindle spead:

QR bpifa/ig +=%» pinte sp
Manual Contral [F3] | paD) [F5) Prewiew | pRO |:| s |
0o 2000

FAxlg; w ¥ O Z
.AtSpeed

+ ||Continuaus =

Home All Touch O

Spindle: sop |0

+

Fieed Ovarrida 100%
Spindle Overide 100°%
Jog Speed A1 infmin

W Velocity 200 indrain

{ A¥IS "splash g-code”)

{ Mot intended for actual milling)
#1=_1 (5H)

a2=, 00 (CUT)

3=, 0015 (SCALE)

s4=f0 (FEED)

L0

(Character: "E') M1
Fad

0N Mo tool Posdion: Relative Actual

This is what the newly created PyVCP panel should look like in AXIS. The sim/lathe configuration is already configured this

way.

9.5 Stand Alone

This section describes how PyVCP panels can be displayed on their own with or without LinuxCNC’s machine controller.

To load a stand alone PyVCP panel with LinuxCNC use these commands:

loadusr -Wn mypanel pyvcp —g WxH+X+Y -c mypanel <path/>panel_file.xml

You would use this if you wanted a floating panel or a panel with a GUI other than AXIS.

-Wn panelname - makes HAL wait for the component panelname to finish loading (become ready in HAL speak) before
processing more HAL commands. This is important because PyVCP panels export HAL pins, and other HAL components will
need them present to connect to them. Note the capital W and lowercase n. If you use the -Wn option you must use the -c
option to name the panel.

pyvep < -g> < -¢> panel.xml - builds the panel with the optional geometry and/or panelname from the xml panel file. The
panel.xml can be any name that ends in .xml. The .xml file is the file that describes how to build the panel. You must add the
path name if the panel is not in the directory that the HAL script is in.

-g <WxH><+X+Y> - specifies the geometry to be used when constructing the panel. The syntax is Width x Height + X Anchor
+ Y Anchor. You can set the size or position or both. The anchor point is the upper left corner of the panel. An example is -g
250x500+800+0 This sets the panel at 250 pixels wide, 500 pixels tall, and anchors it at X800 YO.

-c panelname - tells PyVCP what to call the component and also the title of the window. The panelname can be any name
without spaces.

Integrator Manuelle V2.5, 2013-03-04
47/ 244

To load a stand alone PyVCP panel without LinuxCNC use this command:

loadusr -Wn mypanel pyvcp —-g 250x500+800+0 -c mypanel mypanel.xml

The minimum command to load a pyvcp panel is:

loadusr pyvcp mypanel.xml

You would use this if you want a panel without LinuxCNC’s machine controller such as for testing or a standalone DRO.

The loadusr command is used when you also load a component that will stop HAL from closing until it’s done. If you loaded a
panel and then loaded Classic Ladder using loadusr -w classicladder, CL would hold HAL open (and the panel) until you closed
CL. The -Wn above means wait for the component -Wn "name" to become ready. (name can be any name. Note the capital W
and lowercase n.) The -c tells PyVCP to build a panel with the name panelname using the info in panel_file_name.xmi. The
name panel_file_name.xml can be any name but must end in .xml - it is the file that describes how to build the panel. You must
add the path name if the panel is not in the directory that the HAL script is in.

An optional command to use if you want the panel to stop HAL from continuing commands / shutting down. After loading any
other components you want the last HAL command to be:

waituser panelname

This tells HAL to wait for component panelname to close before continuing HAL commands. This is usually set as the last
command so that HAL shuts down when the panel is closed.

9.6 Widgets

HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be float, s32 or u32. For more
information on HAL data types see the HAL manual. The PyVCP widget can either display the value of the signal with an
indicator widget, or modify the signal value with a control widget. Thus there are four classes of PyVCP widgets that you can
connect to a HAL signal. A fifth class of helper widgets allow you to organize and label your panel.

1. Widgets for indicating bit signals: led, rectled

2. Widgets for controlling bif signals: button, checkbutton, radiobutton
3. Widgets for indicating number signals: number, $32, u32, bar, meter
4. Widgets for controlling number signals: spinbox, scale, jogwheel

5. Helper widgets: hbox, vbox, table, label, labelframe

9.6.1 Syntax

Each widget is described briefly, followed by the markup used, and a screen shot. All tags inside the main widget tag are optional.

9.6.2 General Notes

At the present time, both a tag-based and an attribute-based syntax are supported. For instance, the following XML fragments
are treated identically:

<led halpin="my-led"/>

and

<led><halpin>"my-led"</halpin></led>

When the attribute-based syntax is used, the following rules are used to turn the attributes value into a Python value:

Integrator Manuelle V2.5, 2013-03-04
48/ 244

"

1. If the first character of the attribute is one of the following, it is evaluated as a Python expression: {([
2. If the string is accepted by int(), the value is treated as an integer
3. If the string is accepted by float(), the value is treated as floating-point

4. Otherwise, the string is accepted as a string.

When the tag-based syntax is used, the text within the tag is always evaluated as a Python expression.

The examples below show a mix of formats.

9.6.2.1 Comments

To add a comment use the xml syntax for a comment.

<!-- My Comment —-->

9.6.2.2 Editing the XML file

Edit the XML file with a text editor. In most cases you can right click on the file and select open with text editor or similar.

9.6.2.3 Colors

Colors can be specified using the X11 rgb colors by name gray?75 or hex #0000ff. A complete list is located here http://sedition.com/-
perl/rgb.html.

Common Colors (colors with numbers indicate shades of that color)

» white

* black

* blue and bluel - 4

* cyan and cyanl - 4

e green and greenl - 4

* yellow and yellowl - 4
* red and redl - 4

* purple and purplel - 4
* gray and grayO - 100

9.6.2.4 HAL Pins

HAL pins provide a means to connect the widget to something. Once you create a HAL pin for your widget you can connect it to
another HAL pin with a nef command in a .hal file. For more information on the net command see the HAL Commands section
of the HAL manual.

http://sedition.com/perl/rgb.html
http://sedition.com/perl/rgb.html

Integrator Manuelle V2.5, 2013-03-04
49 /244

9.6.3 Label

A label is a piece of text on your panel.
The label has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.

<label>
<text>"This is a Label:"</text>
 ("Helvetica",20)
</label>

The above code produced this example.

‘m HEE)
This is a Label:

9.6.4 LEDs

A LED is used to indicate the status of a bif halpin. The LED color will be on_color when the halpin is true, and off_color
otherwise.

* <halpin> - sets the name of the pin, default is /ed.n, where n is an integer

e <size> - sets the size of the led, default is 20

* <on_color> - sets the color of the LED when the pin is true. default is green
* <off_color> - sets the color of the LED when the pin is false. default is red
* <disable_pin> - when true adds a disable pin to the led.

* <disabled_color> - sets the color of the LED when the pin is disabled.

9.6.4.1 Round LED

<led>
<halpin>"my-led"</halpin>
<size>50</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>

The above code produced this example.

s

Integrator Manuelle V2.5, 2013-03-04
50/ 244

9.6.4.2 Rectangle LED

This is a variant of the led widget.

<vbox>
<relief>RIDGE</relief>
<bd>6</bd>
<rectled>
<halpin>"my-led"</halpin>
<height>"50"</height>
<width>"100"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</rectled>
</vbox>

The above code produced this example. Also showing a vertical box with relief.

SeEEEE)

9.6.5 Buttons

A button is used to control a BIT pin. The pin will be set True when the button is pressed and held down, and will be set False
when the button is released. Buttons can use the following formatting options

* <padx>n</padx> - where n is the amount of extra horizontal extra space
* <pady>n</pady> - where n is the amount of extra vertical extra space
* <activebackground>"color"</activebackground> - the cursor over color

* <bg>"color"</bg> - the color of the button

9.6.5.1 Text Button

A text button controls a bit halpin. The halpin is false until the button is pressed then it is true. The button is a momentary button.
The text button has an optional disable pin that is created when you add <disable_pin>True</disable_pin>.

<button>
<halpin>"ok-button"</halpin>
<text>"OK"</text>

</button>

<button>
<halpin>"abort-button"</halpin>
<text>"Abort"</text>

</button

The above code produced this example.

Integrator Manuelle V2.5, 2013-03-04
51 /244

9.6.5.2 Checkbutton

A checkbutton controls a bit halpin. The halpin will be set True when the button is checked, and false when the button is
unchecked. The checkbutton is a toggle type button.

<checkbutton>
<halpin>"coolant-chkbtn"</halpin>
<text>"Coolant"</text>

</checkbutton>

<checkbutton>
<halpin>"chip-chkbtn"</halpin>
<text>"Chips "</text>

</checkbutton>

The above code produced this example. The coolant checkbutton is checked. Notice the extra spaces in the Chips text to keep
the checkbuttons aligned.

® Coolant
_| Chips

9.6.5.3 Radiobutton

A radiobutton will set one of the halpins true. The other pins are set false.

<radiobutton>
<choices>["one", "two", "three"]</choices>
<halpin>"my-radio"</halpin>
</radiobutton>

The above code produced this example.

Note that the HAL pins in the example above will me named my-radio.one, my-radio.two, and my-radio.three. In the image
above, one is the selected value.

Integrator Manuelle V2.5, 2013-03-04
52 /244

9.6.6 Number Displays
Number displays can use the following formatting options

¢ ("Font Name",n) where # is the font size

* <width>n</width> where n is the overall width of the space used

* <justify>pos</justify> where pos is LEFT, CENTER, or RIGHT (doesn’t work)
* <padx>n</padx> where n is the amount of extra horizontal extra space

* <pady>n</pady> where n is the amount of extra vertical extra space

9.6.6.1 Number

The number widget displays the value of a float signal.

<number>
<halpin>"my-number"</halpin>
 ("Helvetica",24)
<format>"+4.4f"</format>
</number>

The above code produced this example.

[t)| 6]
+12.3426

* - is a Tkinter font type and size specification. One font that will show up to at least size 200 is courier 10 pitch, so for
areally big Number widget you could specify:

 ("courier 10 pitch",100)

* <format> - is a C-style format specified that determines how the number is displayed.

9.6.6.2 s32 Number

The s32 number widget displays the value of a s32 number. The syntax is the same as number except the name which is <s32>.
Make sure the width is wide enough to cover the largest number you expect to use.

<s32>
<halpin>"my-number"</halpin>
 ("Helvetica", 24)
<format>"6d"</format>
<width>6</width>

</s32>

The above code produced this example.

CE0ED
123456

Integrator Manuelle V2.5, 2013-03-04
53 /244

9.6.6.3 u32 Number

The u32 number widget displays the value of a u32 number. The syntax is the same as number except the name which is <u32>.

9.6.6.4 Bar

A bar widget displays the value of a FLOAT signal both graphically using a bar display and numerically.

<bar>
<halpin>"my-bar"</halpin>
<min_>0</min_>
<max_>123</max_>
<bgcolor>"grey"</bgcolor>
<fillcolor>"red"</fillcolor>
</bar>

The above code produced this example.

= bar E]@ﬁ

270

0 123

9.6.6.5 Meter

Meter displays the value of a FLOAT signal using a traditional dial indicator.

<meter>
<halpin>"mymeter"</halpin>
<text>"Battery"</text>
<subtext>"Volts"</subtext>
<size>250</size>
<min_>0</min_>
<max_>15.5</max_>
<majorscale>1l</majorscale>
<minorscale>0.2</minorscale>
<regionl>(14.5,15.5,"yellow")</regionl>
<region2>(12,14.5,"green")</region2>
<region3> (0,12, "red")</region3>
</meter>

The above code produced this example.

Integrator Manuelle V2.5, 2013-03-04
54 /244

9.6.7 Number Inputs
9.6.7.1 Spinbox

Spinbox controls a FLOAT pin. You increase or decrease the value of the pin by either pressing on the arrows, or pointing at the
spinbox and rolling your mouse-wheel.

<spinbox>
<halpin>"my-spinbox"</halpin>
<min_>-12</min_>
<max_>33</max_>
<initval>0</initval>
<resolution>0.1</resolution>
<format>"2.3f"</format>
 ("Arial", 30)

</spinbox>

The above code produced this example.

‘= BEE)

3.500

<4

9.6.7.2 Scale

Scale controls a float or a s32 pin. You increase or decrease the value of the pin be either dragging the slider, or pointing at the
scale and rolling your mouse-wheel. The halpin will have both -f and -i added to it to form the float and s32 pins. Width is the
width of the slider in vertical and the height of the slider in horizontal orientation.

Integrator Manuelle V2.5, 2013-03-04
55 /244

<scale>
 ("Helvetica",16)
<width>"25"</width>
<halpin>"my-hscale"</halpin>
<resolution>0.1</resolution>
<orient>HORIZONTAL</orient>
<initval>-15</initval>
<min_>-33</min_>
<max_>26</max_>

</scale>

<scale>
 ("Helvetica",16)
<width>"50"</width>
<halpin>"my-vscale"</halpin>
<resolution>1</resolution>
<orient>VERTICAL</orient>
<min_>100</min_>
<max_>0</max_>

</scale>

The above code produced this example.

(SsE)EIES)

-15.0
LR

100

9.6.7.3 Dial

The Dial outputs a HAL float and reacts to both mouse wheel and dragging. Double left click to increase the resolution and
double right click to reduce the resolution by one digit. The output is capped by the min and max values. The <cpr> is how many
tick marks are on the outside of the ring (beware of high numbers).

<dial>
<size>200</size>
<cpr>100</cpr>
<min_>-15</min_>
<max_>15</max_>
<text>"Dial"</text>
<initval>0</initval>
<resolution>0.001</resolution>
<halpin>"anaout"</halpin>
<dialcolor>"yellow"</dialcolor>
<edgecolor>"green"</edgecolor>
<dotcolor>"black"</dotcolor>

</dial>

Integrator Manuelle V2.5, 2013-03-04
56 /244

The above code produced this example.

a dial =) (@) (=)

9.6.7.4 Jogwheel

Jogwheel mimics a real jogwheel by outputting a FLOAT pin which counts up or down as the wheel is turned, either by dragging
in a circular motion, or by rolling the mouse-wheel.

<jogwheel>
<halpin>"my-wheel"</halpin>
<cpr>45</cpr>
<size>250</size>
</jogwheel>

The above code produced this example.

Integrator Manuelle V2.5, 2013-03-04
57 /244

9.6.8 Images

Image displays use only .gif image format. All of the images must be the same size. The images must be in the same directory
as your ini file (or in the current directory if running from the command line with halrun/halemd).

9.6.8.1 Image Bit

The image_bit toggles between two images by setting the halpin to true or false.

<image name=’fwd’ file=’'fwd.gif’/>
<image name=’'rev’ file='rev.gif’ />
<vbox>
<image_bit halpin=’selectimage’ images=’fwd rev’ />
</vbox>

This example was produced from the above code. Using the two image files fwd.gif and rev.gif. FWD is displayed when
selectimage is false and REV is displayed when selectimage is true.

r::j ﬁﬁjl!l[::]ﬁir::] ﬁﬁjl!l[::]w

FWD | REV

9.6.8.2 Image u32

The image_u32 is the same as image_bit except you have essentially an unlimited number of images and you select the image by
setting the halpin to a integer value with O for the first image in the images list and 1 for the second image etc.

Integrator Manuelle V2.5, 2013-03-04
58 /244

<image name=’stb’ file=’'stb.gif’/>
<image name=’fwd’ file='fwd.gif’/>
<image name='rev’ file='rev.gif’/>
<vbox>
<image_u32 halpin='selectimage’ images=’stb fwd rev’/>
</vbox>

The above code produced the following example by adding the stb.gif image.

r::j ﬁﬁjl!ll[:]ﬁff:j ﬁﬁjl!ll[:]ﬁr::j ﬁﬁjl!ll[:]ﬁ

Stand
sy | FWD REV

Notice that the default is the min even though it is set higher than max unless there is a negative min.

9.6.9 Containers

Containers are widgets that contain other widgets. Containers are used to group other widgets.

9.6.9.1 Borders

Container borders are specified with two tags used together. The <relief> tag specifies the type of border and the <bd> specifies
the width of the border.

o <relief>type</relief> - Where type is FLAT, SUNKEN, RAISED, GROOVE, or RIDGE
* <bd>n</bd> - Where n is the width of the border.

<hbox>

<button>
<relief>FLAT</relief>
<text>"FLAT"</text>
<bd>3</bd>

</button>

<button>
<relief>SUNKEN</relief>
<text>"SUNKEN"</text>
<bd>3</bd>

</button>

<button>
<relief>RAISED</relief>
<text>"RAISED"</text>
<bd>3</bd>

</button>

<button>
<relief>GROOVE</relief>
<text>"GROOVE"</text>
<bd>3</bd>

</button>

<button>
<relief>RIDGE</relief>

Integrator Manuelle V2.5, 2013-03-04
59 /244

<text>"RIDGE"</text>
<bd>3</bd>
</button>
</hbox>

The above code produced this example.

borders

FLAT I SUNKEH RAISED I GROOVE RIDGE

9.6.9.2 Hbox

Use an Hbox when you want to stack widgets horizontally next to each other.

<hbox>
<relief>RIDGE</relief>
<bd>6</bd>
<label><text>"a hbox:"</text></label>
<led></led>
<number></number>
<bar></bar>
</hbox>

The above code produced this example.

Inside an Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand expand=""/> tags to choose how
items in the box behave when the window is re-sized. For details of how fill, anchor, and expand behave, refer to the Tk pack
manual page, pack(3tk). By default, fill="y", anchor="center", expand="yes".

9.6.9.3 Vbox

Use a Vbox when you want to stack widgets vertically on top of each other.

<vbox>
<relief>RIDGE</relief>
<bd>6</bd>
<label><text>"a vbox:"</text></label>
<led></led>
<number></number>
<bar></bar>
</vbox>

The above code produced this example.

Integrator Manuelle V2.5, 2013-03-04
60/ 244

— vbox lEJ 1@1 1@1

a vhox:
0.0
0.0
0.0 100.0

Inside a Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand expand=""/> tags to choose how
items in the box behave when the window is re-sized. For details of how fill, anchor, and expand behave, refer to the Tk pack
manual page, pack(3tk). By default, fill="x", anchor="center", expand="yes".

9.6.9.4 Labelframe

A labelframe is a frame with a groove and a label at the upper-left corner.

<labelframe text="Group Title">
 ("Helvetica",16)
<hbox>
<led/>
<led/>
</hbox>

</labelframe>

The above code produced this example.

W ECH S E e

Group Title,
0 |

9.6.9.5 Table

A table is a container that allows layout in a grid of rows and columns. Each row is started by a <tablerow/> tag. A contained
widget may span rows or columns through the use of the <tablespan rows= cols=/> tag. The sides of the cells to which the
contained widgets “stick” may be set through the use of the <tablesticky sticky=/> tag. A table expands on its flexible rows and
columns.

Example:
<table flexible_rows="[2]" flexible_ columns="[1,4]">
<tablesticky sticky="new"/>
<tablerow/>
<label>

<text>" A (cell 1,1) "</text>
<relief>RIDGE</relief>
<bd>3</bd>

</label>

<label text="B (cell 1,2)"/>

Integrator Manuelle V2.5, 2013-03-04

61 /244

<tablespan columns="2"/>

<label text="C, D (cells 1,3 and 1,4)"/>
<tablerow/>

<label text="E (cell 2,1)"/>

<tablesticky sticky="nsew"/>

<tablespan rows="2"/>

<label text="’spans\n2 rows’"/>

<tablesticky sticky="new"/>

<label text=" (cell 2,3)"/>
<label text="H (cell 2,4)"/>
<tablerow/>

<label text="J (cell 3,1)"/>

<label text="K (cell 3,2)"/>

<u32 halpin="test"/>
</table>

The above code produced this example.

r

-

SEE)

I Acell1,1) B (cell1,2) C, D (cells1,3and1,4)

E(cellzZ1) spans G (cell 2,3) H (cell 2,4)
J(cell 3,1) 2rows K (cell 3,2)

0

9.6.9.6 Tabs

A tabbed interface can save quite a bit of space.

<tabs>
<names> ["spindle", "green eggs"]</names>
</tabs>
<tabs>
<names>["Spindle", "Green Eggs", "Ham"]</names>
<vbox>
<label>
<text>"Spindle speed:"</text>
</label>
<bar>
<halpin>"spindle-speed"</halpin>
<max_>5000</max_>
</bar>
</vbox>
<vbox>
<label>
<text>" (this is the green eggs tab) "</text>
</label>
</vbox>
<vbox>
<label>
<text>" (this tab has nothing on it)"</text>
</label>
</vbox>
</tabs>

The above code produced this example showing each tab selected.

Integrator Manuelle V2.5, 2013-03-04
62 /244

= tabs —|l=] |z

| Spindle]Green Eygs | Ham |

Spindle speed:

0.0 2000

= tabs R

Spindle Green Eggs | Ham |

(this is the green eqggs tah)

m tabs ==z

| Spindle | Green Egygs Ham]

(this tab has nothing on it}

Integrator Manuelle V2.5, 2013-03-04
63 /244

Chapter 10

PyVCP Examples

10.1 AXIS

To create a PyVCP panel to use with the AXIS interface that is attached to the right of AXIS you need to do the following basic
things.

* Create an .xml file that contains your panel description and put it in your config directory.

Add the PyVCP entry to the [DISPLAY] section of the ini file with your .xml file name.

Add the POSTGUI_HALFILE entry to the [HAL] section of the ini file with the name of your postgui HAL file name.

Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to EMC.

10.2 Floating

To create floating PyVCP panels that can be used with any interface you need to do the following basic things.

* Create an .xml file that contains your panel description and put it in your config directory.
* Add a loadusr line to your .hal file to load each panel.
* Add the links to HAL pins for your panel in the postgui.hal file to connect your PyVCP panel to EMC.

The following is an example of a loadusr command to load two PyVCP panels and name each one so the connection names in
HAL will be known.

loadusr —-Wn btnpanel pyvcp —-c btnpanel panell.xml
loadusr -Wn sppanel pyvcp —-c sppanel panel2.xml

The -Wn makes HAL Wait for name to be loaded before proceeding. The pyvep -¢ makes PyVCP name the panel.
The HAL pins from panell.xml will be named btnpanel.<pin name>
The HAL pins from panel2.xml will be named sppanel.<pin name>

Make sure the loadusr line is before any nets that make use of the PyVCP pins.

Integrator Manuelle V2.5, 2013-03-04
64 /244

10.3 Jog Buttons

In this example we will create a PyVCP panel with jog buttons for X, Y, and Z. This configuration will be built upon a Stepconf
Wizard generated configuration. First we run the Stepconf Wizard and configure our machine, then on the Advanced Configura-
tion Options page we make a couple of selections to add a blank PyVCP panel as shown in the following figure. For this example
we named the configuration pyvcp_xyz on the Basic Machine Information page of the Stepconf Wizard.

EMGESTeEppersMillNComhguration

Advanced Configuration Options

Include Halul user interface component
Include custom PyWCP GUI panel
Pywvecp Options
@ Blank program:
() Spindle speed/tool position display Display
() X¥Z buttons (uses Halul) asample
() Existing custom program panel
Allow connections to HAL
] Include Classicladder PLC
PLC Options
Murnber of digital in pins: |1':' %|
Mumber of digital out pins: |'1';' %|
Mumber of analeg (s32) in pins: |1 %|
Murmber of analog (532) out pins: |1 g|
Include modbus master support
) Elank ladder program
Estop ladder program
. @, Edit [adder
Serial modbus program - Edit ladds
- program
Existing custorn program
¥ Allow connections to HAL

=) cancel ‘ ‘ = Back | [ﬂEDFWEFd]

Figure 10.1: XYZ Wizard Configuration

The Stepconf Wizard will create several files and place them in the /emc/configs/pyvcp_xyz directory. If you left the create link
checked you will have a link to those files on your desktop.

Integrator Manuelle V2.5, 2013-03-04
65 /244

10.3.1 Create the Widgets

Open up the custompanel.xml file by right clicking on it and selecting open with text editor. Between the <pyvcp></pyvcp> tags
we will add the widgets for our panel.

Look in the PyVCP Widgets Reference section of the manual for more detailed information on each widget.
In your custompanel.xml file we will add the description of the widgets.

<pyvcp>
<labelframe text="Jog Buttons">
 ("Helvetica",16)

<!-— the X jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"x-plus"</halpin>
<text>"X+"</text>

</button>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"x-minus"</halpin>
<text>"X-"</text>

</button>

</hbox>

<!-— the Y jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"y-plus"</halpin>
<text>"Y+"</text>

</button>

<button>
 ("Helvetica",20)
<width>3</width>
<halpin>"y-minus"</halpin>
<text>"Y-"</text>

</button>

</hbox>

<!-— the Z jog buttons -->

<hbox>

<relief>RAISED</relief>

<bd>3</bd>

<button>
 ("Helvetica", 20)
<width>3</width>
<halpin>"z-plus"</halpin>
<text>"Z+"</text>

</button>

<button>
 ("Helvetica", 20)
<width>3</width>
<halpin>"z-minus"</halpin>

Integrator Manuelle V2.5, 2013-03-04
66 / 244

<text>"7Z-"</text>
</button>
</hbox>

<!-— the jog speed slider —-—>

<vbox>

<relief>RAISED</relief>

<bd>3</bd>

<label>
<text>"Jog Speed"</text>
 ("Helvetica",16)

</label>

<scale>
 ("Helvetica",14)
<halpin>"jog-speed"</halpin>
<resolution>1</resolution>
<orient>HORIZONTAL</orient>
<min_>0</min_>
<max_>80</max_>

</scale>

</vbox>

</labelframe>
</pyvcp>

After adding the above you now will have a PyVCP panel that looks like the following attached to the right side of AXIS. It looks
nice but it does not do anything until you connect the buttons to halui. If you get an error when you try and run scroll down to
the bottom of the pop up window and usually the error is a spelling or syntax error and it will be there.

Help |

-Jog Buttons————
X+ | X-

Jog Speed
0
i

Figure 10.2: Jog Buttons

Integrator Manuelle V2.5, 2013-03-04
67 /244

10.3.2 Make Connections

To make the connections needed open up your custom_postgui.hal file and add the following.

connect the X PyVCP buttons
net my-jogxminus halui.jog.0.minus <= pyvcp.x-minus
net my-jogxplus halui.jog.0.plus <= pyvcp.x-plus

connect the Y PyVCP buttons
net my-jogyminus halui.jog.l.minus <= pyvcp.y-minus
net my-jogyplus halui.jog.l.plus <= pyvcp.y-plus

connect the Z PyVCP buttons
net my-jogzminus halui.jog.2.minus <= pyvcp.z-minus
net my-jogzplus halui.jog.2.plus <= pyvcp.z-plus

connect the PyVCP jog speed slider
net my-jogspeed halui.jog-speed <= pyvcp.jog-speed-f

After resetting the E-Stop and putting it into jog mode and moving the jog speed slider in the PyVCP panel to a value greater
than zero the PyVCP jog buttons should work. You can not jog when running a g code file or while paused or while the MDI tab
is selected.

10.4 Port Tester

This example shows you how to make a simple parallel port tester using PyVCP and HAL.
First create the ptest.xml file with the following code to create the panel description.

<!-- Test panel for the parallel port cfg for out -->
<pyvcp>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>"btn01"</halpin>
<text>"Pin 01"</text>
</button>
<led>
<halpin>"led-01"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<button>
<halpin>"btn02"</halpin>
<text>"Pin 02"</text>
</button>
<led>
<halpin>"led-02"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>

Integrator Manuelle V2.5, 2013-03-04

68 /244

<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>"Pin 10"</text>
 ("Helvetica",14)
</label>
<led>
<halpin>"led-10"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
<hbox>
<relief>RIDGE</relief>
<bd>2</bd>
<label>
<text>"Pin 11"</text>
 ("Helvetica",14)
</label>
<led>
<halpin>"led-11"</halpin>
<size>25</size>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</led>
</hbox>
</pyvcp>

This will create the following floating panel which contains a couple of in pins and a couple of out pins.

To run the HAL commands that we need to get everything up and running we put the following in our ptest.hal file.

loadrt hal_parport cfg="0x378 out"

loadusr -Wn ptest pyvcp —-c ptest ptest.xml
loadrt threads namel=porttest periodl=1000000

addf parport.0.read porttest
addf parport.0.write porttest

net pin0l ptest.btn0l parport.0.pin-0l-out ptest.led-01
net pin02 ptest.btn02 parport.0.pin-02-out ptest.led-02
net pinl0 parport.0.pin-10-in ptest.led-10
net pinll parport.0.pin-11-in ptest.led-11

start

Figure 10.3: Port Tester Panel

Integrator Manuelle V2.5, 2013-03-04

69 /244

To run the HAL file we use the following command from a terminal window.

~$ halrun -I -f ptest.hal

The following figure shows what a complete panel might look like.

To add the rest of the parallel port pins just modify the .xml and .hal files.

Portlest

pin 120
pin 13 @

Pin 01 . Fin 02
Pin 03 . Pin 04
Pin 03 . Fin 06
Pin 07 . Fin 08
Pin 09 . Pin 14
Pin 16 . Pin 17

pin 15 @

Figure 10.4: Port Tester Complete

To show the pins after running the HAL script use the following command at the halcmd prompt:

halcmd: show pin
Component Pins:
Owner Type Dir

2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit IN
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit ouT
2 bit IN
2 bit ouT
2 bit ouT
2 bit IN

Value
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE

FALSE
TRUE

FALSE
TRUE

FALSE
TRUE

FALSE
FALSE
TRUE

FALSE
FALSE

Name

parport.0.pin-0l-out <== pinOl
parport.0.pin-02-out <== pin02
parport.0.pin-03-out
parport.0.pin-04-out
parport.0.pin-05-out
parport.0.pin-06-out
parport.0.pin-07-out
parport.0.pin-08-out
parport.0.pin-09-out
parport.0.pin-10-in ==> pinl0
parport.0.pin-10-in-not
parport.0.pin-11-in ==> pinll
parport.0.pin-11-in-not
parport.0.pin-12-in
parport.0.pin-12-in-not
parport.0.pin-13-in
parport.0.pin-13-in-not
parport.0.pin-14-out
parport.0.pin-15-in
parport.0.pin-15-in-not
parport.0.pin-16-out

Integrator Manuelle V2.5, 2013-03-04
70/ 244

bit IN FALSE parport.0.pin-17-out
bit OUT FALSE ptest.btn0l ==> pin0l
bit OUT FALSE ptest.btn02 ==> pin02
bit IN FALSE ptest.led-01 <== pin0O1l
bit IN FALSE ptest.led-02 <== pin02
bit IN TRUE ptest.led-10 <== pinl0
bit IN TRUE ptest.led-11 <== pinll

B DS DD N

This will show you what pins are IN and what pins are OUT as well as any connections.

10.5 GS2 RPM Meter

The following example uses the Automation Direct GS2 VDF driver and displays the RPM and other info in a PyVCP panel.
This example is based on the GS2 example in the Hardware Examples section this manual.

10.5.1 The Panel

To create the panel we add the following to the .xml file.

<pyvcp>
<!-— the RPM meter ——>
<hbox>
<relief>RAISED</relief>
<bd>3</bd>
<meter>

<halpin>"spindle_rpm"</halpin>
<text>"Spindle"</text>
<subtext>"RPM"</subtext>
<size>200</size>
<min_>0</min_>
<max_>3000</max_>
<majorscale>500</majorscale>
<minorscale>100</minorscale>
<regionl>0,10,"yellow"</regionl>
</meter>
</hbox>

<!-— the On Led ——>

<hbox>
<relief>RAISED</relief>
<bd>3</bd>

<vbox>
<relief>RAISED</relief>
<bd>2</bd>

<label>

<text>"On"</text>

 ("Helvetica",18)

</label>

<width>5</width>

<hbox>

<label width="2"/> <!-- used to center the led ——>
<rectled>

<halpin>"on-led"</halpin>
<height>"30"</height>
<width>"30"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>

Integrator Manuelle V2.5, 2013-03-04
71/ 244

</rectled>
</hbox>
</vbox>

<!-— the FWD Led —--—>
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>"FWD"</text>
 ("Helvetica",18)

<width>5</width>
</label>
<label width="2"/>
<rectled>

<halpin>"fwd-led"</halpin>
<height>"30"</height>
<width>"30"</width>
<on_color>"green"</on_color>
<off_color>"red"</off_color>
</rectled>
</vbox>

<!--— the REV Led —--—>
<vbox>
<relief>RAISED</relief>
<bd>2</bd>
<label>
<text>"REV"</text>
 ("Helvetica",18)

<width>5</width>
</label>
<label width="2"/>
<rectled>

<halpin>"rev-led"</halpin>
<height>"30"</height>
<width>"30"</width>
<on_color>"red"</on_color>
<off_color>"green"</off_color>
</rectled>
</vbox>
</hbox>
</pyvcp>

The above gives us a PyVCP panel that looks like the following.

Integrator Manuelle V2.5, 2013-03-04

72 /244
BL a5 N0 - ARIS Pre- s CUs HEAD on 052 =
Eile Maching Misw Help
Qe cflbdi@ige+=ZNXIYEPE »
Manuzl Contral [F3] | M1 F5) Preview | DRO

Furla: = X C¥Y 2

- | +||Cantinuous +

Spindle
4 :

Home Axds Touch Off Y] Zal

Spindle: sop [

On | FWD | REV
H B B

Feed DOvarmda: 100%
Spindle Overnda 100%

Jog Speed 5.6 in/min

Pz Walociy G0 nidmin |

{ RIS “splash gcode™)

{ Kot internded For actual milling 3
¥l=,1 [5H)

2=, 00 (CUT)

B3=, 0003 {SCALED

#4=E0 (FEET)

Ca0

(Character: 'E')
Goo 7wl

[ali] Mo tool Posilion: Relative Actual

Figure 10.5: GS2 Panel

10.5.2 The Connections

To make it work we add the following code to the custom_postgui.hal file.

display the rpm based on freqg * rpm per hz

loadrt mult2

addf mult2.0 servo-thread

setp mult2.0.inl 28.75

net cypher_speed mult2.0.in0 <= spindle-vfd.frequency-out
net speed_out pyvcp.spindle_rpm <= mult2.0.out

run led
net gs2-run => pyvcp.on-led

fwd led
net gs2-fwd => pyvcp.fwd-led

rev led
net running-rev spindle-vfd.spindle-rev => pyvcp.rev-led

Some of the lines might need some explanations. The fwd led line uses the signal created in the custom.hal file whereas the rev
led needs to use the spindle-rev bit. You can’t link the spindle-fwd bit twice so you use the signal that it was linked to.

Integrator Manuelle V2.5, 2013-03-04
73/ 244

Chapter 11

Glade Virtual Control Panel

11.1 What is GladeVCP?

GladeVCP is an LinuxCNC component which adds the ability to add a new user interface panel to LinuxCNC user interfaces
like Axis or Touchy. Unlike PyVCP, GladeVCP is not limitied to displaying and setting HAL pins, as arbitrary actions can be
executed in Python code - in fact, a complete LinuxCNC user interface could be built with GladeVCP and Python.

GladeVCP users the Glade WYSIWYG user interface editor, which makes it easy to create visually pleasing panels. It relies on
the PyGTK bindings to the rich GTK+ widget set, and in fact all of these may be used in a Glade VCP application - not just the
specialized widgets for interacting with HAL and LinuxCNC, which are documented here.

11.1.1 PyVCP versus GladeVCP at a glance

Both support the creation of panels with HAL widgets - user interface elements like LED’s, buttons, sliders etc whose values are
linked to a HAL pin, which in turn interfaces to the rest of LinuxCNC.

PyVCP:

» widget set: uses TkInter widgets
* user interface creation: "edit XML file / run result / evaluate looks" cycle
* no support for embedding user-defined event handling

* no LinuxCNC interaction beyond HAL pin I/O supported
GladeVCP:

» widget set: relies on the GTK+ widget set.

* user interface creation: uses the Glade WYSIWYG user interface editor

» any HAL pin change may be directed to call back into a user-defined Python event handler

» any GTK signal (key/button press, window, I/O, timer, network events) may be associated with user-defined handlers in Python

e direct LinuxCNC interaction: arbitrary command execution, like initiating MDI commands to call a G-code subroutine, plus
support for status change operations through Action Widgets

* several independent GladeVCP panels may be run in different tabs

* separation of user interface appearance and functionality: change appearance without touching any code

http://glade.gnome.org/
http://www.pygtk.org/
http://www.gtk.org/
http://www.gtk.org/
http://glade.gnome.org/

Integrator Manuelle V2.5, 2013-03-04

74 /244

11.2 A Quick Tour with the Example Panel

GladeVCP panel windows may be run in three different setups:

* always visible integrated into Axis at the right side, exactly like PyVCP panels

* as a tab in Axis and Touchy; in Axis this would create a third tab besides the Preview and DRO tabs which must be raised

explicitly

* as a standalone toplevel window, which can be iconifyed/deiconified independent of the main window.

Installed LinuxCNC If your using an installed version of LinuxCNC the examples shown below are in the configuration picker

in the Sample Configurations > sim > gladevcp branch.

Git Checkout The following instructions only apply if your using a git checkout. Open a terminal and change to the directory

created by git then issue the commmands as shown.

Note

For the following commands to work on your git checkout you must first run make then run sudo make setuid then run .

./scripts/rip-environment. More information about a git checkout is on the linuxcnc wiki page.

Run the sample GladeVCP panel integrated into Axis like PyVCP as follows:

$ cd configs/sim/gladevcp
$ linuxcnc gladevcp_panel.ini

File Mucking Vs 5]

Qe = »e Dl ed=mlzmIXlYIBg = Spindle aln

Barazsl Conteol [F3] MM IFSD Frview | DRO |“ e

ey Status
%2582]
£ {:} Prepaded ool O
i
- ® Current tool: 0
2 [System: 0
FIEEE LN _
) . Srale walue: 0.0000
] Spinbutton: 0,00
MDY Corremand:
D0 0 | .
1 Settings
Bt GCodies
o § , 4 = -
L) GLF A0 L) G0 LR L5 [AR LS heCkbRATan | 13 = FaROTRATCN
o5l GOT GHL.1 OB HE MO H48 H3Z3 HD FO
0
LED 1 ¥ radeolautbon
Fispdd Chmir 1tk 100 %
[0 e 16 inmin T
Mz wpksity 73 iryrman Faals 0 —{ 0 racicbutton
{ BXIS “splash p:code” Mot intendsd for actusl silling 1 1
To run 1his ¢odé daywip yiu might hive 1 Teuch OFF the T aais Coarmimand s
{ depending on your seiup. &S su had some material an yeur mll]
Hint jeg 1he I sciy dowm & Bil Than Seuch a1t
[Al press the Togdls Skip Lirds wiih “F° to See that part) > =i _ | Eacube Oweond
i If 1he program 1% Ecd Big ar swall for your sachire. change the scale &3) MaCFarel | CUEENL Y EIEM suwEaEing
Fd—pn] LB E
L Tgnk -.'.r-'\."a'+-!."!'\.-""..l"_.;..l.'!r“-!'-."-'-'+f'ur;!|,|r.:‘.;"a".' Eif)
iTeal: EEMCI 4 EXTE)
=] i L Pesiion: Fdathne & bsal

Run the same panel, but as a tab inside Axis:

Integrator Manuelle V2.5, 2013-03-04
75/ 244

$ cd configs/sim/gladevcp
$ linuxcnc gladevcp_tab.ini

axis.nge - AXIS 35 0-pre on EMO-MAL-SIM-AXIS

QR o rbpuUEIn =z RIXX[EH &

Marsgal Control (F3] 404 [F21 | Previen |DRO GladeVOP demo |

Hiszory: Spindie
e | eeeeesea— W

S Status

|
;

£0D0mY Settings
e— & checkbution 638 :Iﬁ*m
T
40.3
LED 1 O radokitton
M Cormerand: ‘ =)

L] Gota
Jog Speed: 16 ipean IR ro 2ern

I

1: § BXIS “splash g-cade™ Wat 1atendsd for actiual seliisq b

20§ To run 1his code saywap yom aight Bawe te Tomih Off the T axis)

- depending en psur setug. &5 1T yeu had sess satsrial is powr mali...)

d § Hint jeg the T aels down 8 bit thes femh ofd]

5. Also press the Tegyle Skup Lines wiih “/° o tee that part §

00§ If the progras is foe big or seall fer yeur sachine, chasge the icale &3)

B ffent susrssharesfonts/tree type/Treefen i FresSe ridBe 14l talic, 1t
O fiexe: BMCEgrRxIs) ¥

= [rten: meatve A

To run this panel as a standalone toplevel window besides Axis, just start Axis in the background and start gladevcp as follows:

$ cd configs/sim/axis

$ linuxcnc axis.ini &

$ gladevcp -c gladevcp —-u ../gladevcp/hitcounter.py —-H ../gladevcp/manual-example.hal ../ «
gladevcp/manual-example.ui

Integrator Manuelle V2.5, 2013-03-04

76/ 244

Fle Mackans View

= foll=T-A0 X
Maruaal Conbrol [FA] MDY (F5]

History

b

M Corrimand

L4 0 G |

Bt GCodes
} LTGRO0 DR R4 LN LRSS
L.l 08 HE M9 He8 HE3 WO FD

) GLY
54 T

Fispe] i ki 104} %
oy Spied: L6 Fferan
Mux Welcg iy 74 mjrman

| BXIS “splash ge-coade” Hat iatended
rgn 1Ras

edLng o0 paur setig. &S b

e T, .
o press ke Tegyle

. ET the program 1% Soo B1g ar

tTenk | JSusrfshar
(THal: BEECIPAXNIS)
o Pz Lo

To run this panel inside Touchy:

$ cd configs/sim/gladevcp

$ linuxcnc gladevcp_touchy.ini

L
Relative
I =0.4941
T 0. SO0
Z: 0.306E
el
£
Nlalur
O
L]
o
[]
|
1]
L LET

& oy i e

E o e e

Startup MDDl Manual

cphe 0ol DO) medhe b B Dl

Auto

Freveew | DROD

for actusl mililsg |
SEEe dnyway pow maght Rame s
yau had some material 1=
nt jeq thae I aely down & bRt them foaxh
Ep LLnES wiTH ~
wnall far

gl (HE fhe £

¢
o fEd TRat part |
yeur saching

fEientesirgwiygpe s reetent FradtarifBelarsalic, ik

Pedition: Radatied Aflual

Absolute
*X1 0.0000
#¥: 0.0000

Z: =0.0000

=i

L]

Status

Preferences

pomr malll

chamge fhe scale &3 §

Xs
T
3

Fregaerd mad ©
L T
Sy
S e st O

epeim . K0 R

sk i er

u raciai i

OTG
0, Gy
0, 0800
LML=

v frmd e

GladeVCP demo

gladevcp *

: J

Prepaned food: O
Curment bosod: O
System: 5
Scale value: 32,0000

Spanibafthorm: 0000

Settings
<~ chidkBflon | G59 = | = FaOtetlon
Xra
LED 1 [f-lm L= iy
LEDT 50 v o e
leggie
Commands
Gotn Gotn . .
Fackine | CuTent system | "‘;:":;?"“' J
o] b= L e
Fe——

FO: 100%

S50: 100G

ML LD

Jogging

(VR F)] X

0.0:K1)

00001 Z

Integrator Manuelle V2.5, 2013-03-04
77 1 244

Functionally these setups are identical - they only differ in screen real estate requirements and visibility. Since it is possible to
run several GladeVCP components in parallel (with different HAL component names), mixed setups are possible as well - for
instance a panel on the right hand side, and one or more tabs for less-frequently used parts of the interface.

11.2.1 Exploring the example panel
While running Axis, explore Show HAL Configuration - you will find the gladevep HAL component and may observe their pin
values while interacting with the widgets in the panel. The HAL setup can be found in configs/gladevcp/manual-example.hal.

The example panel has two frames at the bottom. The panel is configured so that resetting ESTOP activates the Settings frame
and turning the machine on enables the Commands frame at the bottom. The HAL widgets in the Settings frame are linked to
LEDs and labels in the Status frame, and to the current and prepared tool number - play with them to see the effect. Executing
the T<toolnumber> and M6 commands in the MDI window will change the current and prepared tool number fields.

The buttons in the Commands frame are MDI Action widgets - pressing them will execute an MDI command in the interpreter.
The third button Execute Oword subroutine is an advanced example - it takes several HAL pin values from the Settings frame, and
passes them as parameters to the Oword subroutine. The actual parameters received by the routine are displayed by (DEBUG,)
commands - see configs/gladevcp/nc_files/oword.ngc for the subroutine body.

To see how the panel is integrated into Axis, see the [DISPLAY]GLADEVCP statements in gladevcp_panel.ui, and the [DIS-
PLAYJEMBED* and [HAL]JPOSTGUI _HALFILE statements in gladevcp_tab.ini respectively.

11.2.2 Exploring the User Interface description

The user interface is created with the glade Ul editor - to explore it, you need to have glade installed. To edit the user interface,
run the command

$ glade configs/gladevcp/manual-example.ui

The center window shows the appearance of the UI. All user interface objects and support objects are found in the right top
window, where you can select a specific widget (or by clicking on it in the center window). The properties of the selected widget
are displayed, and can be changed, in the right bottom window.

To see how MDI commands are passed from the MDI Action widgets, explore the widgets listed under Actions in the top right
window, and in the right bottom window, unter the General tab, the MDI command property.

11.2.3 Exploring the Python callback
See how a Python callback is integrated into the example:

* in glade, see the hit s label widget (a plain GTK+ widget)
* in the buttonl widget, look at the Signals tab, and find the signal pressed associated with the handler on_button_press

* in ../gladevcp/hitcounter.py, see the method on_button_press and see how it sets the label property in the hits object

The is just touching upon the concept - the callback mechanism will be handled in more detail in the GladeVCP Programming
section.

11.3 Creating and Integrating a Glade user interface

11.3.1 Prerequisite: Glade installation

To view or modify Glade Ul files, you need glade installed - it is not needed just to run a GladeVCP panel. If the glade command
is missing, install it with the command:

Integrator Manuelle V2.5, 2013-03-04
78 /244

$ sudo apt—-get install glade
Verify the version number to be greater than 3.6.7:

$ glade --version
glade3 3.6.7

11.3.2 Running Glade to create a new user interface
This section just outlines the initial LinuxCNC-specific steps. For more information and a tutorial on glade, see http://glade.gnome.org.
Some glade tips & tricks may also be found on youtube.

Either modify an existing UI component by running glade <file>.ui or start a new one by just running the glade com-
mand from the shell.

If LinuxCNC was not installed from a package, the LinuxCNC shell environment needs to be setup with . <linuxcncdir>/scr
otherwise glade won’t find the LinuxCNC-specific widgets.

When asked for unsaved Preferences, just accept the defaults and hit Close.

* From Toplevel (left pane), pick Window (first icon) as top level window, which by default will be named window!I. Do not
change this name - GladeVCP relies on it.

* In the left tab, scroll down and expand HAL Python and EMC Actions.
* add a container like a HAL_Box or a HAL_Table from HAL Python to the frame

* pick and place some elements like LED, button, etc. within a container

This will look like so:

glada-manual,ui

 MAL Python L - " ;Id:'_;:ﬂ
1 - i
I E e = [} hai_tatie]
[08 8= 0= B bl edl
o 0.0 we bl labedl
@- < { &0 = : W bl edz
wa mi § B J | |
Objects =]
‘i ‘i Fj == HAL HEcale Properibes - HAL HScabe [hal,.
E B General | Packing Common Signals b
e [EMIC Acthed | 7
Hamne hal_Frscale]
o
00 IS q
A LI Draw Value: s
DB & Fa. Top
Positicn:
Q=<r o = e Cerinunus =
| .--.‘.-- -'—
m 200 —
| !i T L J E 4
L L] | -

http://glade.gnome.org
http://www.youtube.com

Integrator Manuelle V2.5, 2013-03-04
79/ 244

Glade tends to write a lot of messages to the shell window, which mostly can be ignored. Select File—Save as, give it a name
like myui.ui and make sure it’s saved as GtkBuilder file (radio button left bottom corner in Save dialog). GladeVCP will also
process the older libglade format correctly but there is no point in using it. The convention for GtkBuilder file extension is .ui.

11.3.3 Testing a panel

You’re now ready to give it a try (while LinuxCNC, e.g. Axis is running) it with:

gladevcp myui.ui

GladeVCP creates a HAL component named like the basename of the Ul file - myui in this case - unless overriden by the —c

<component name> option. If running Axis, just try Show HAL configuration and inspect its pins.

You might wonder why widgets contained a HAL_Hbox or HAL_Table appear greyed out (inactive). HAL containers have an
associated HAL pin which is off by default, which causes all contained widgets to render inactive. A common use case would be
to associate these container HAL pins with halui.machine.is-on or one of the halui.mode. signals, to assure some
widgets appear active only in a certain state.

To just activate a container, execute the HAL command setp gladevcp.<container-name> 1.

11.3.4 Preparing the HAL command file

The suggested way of linking HAL pins in a GladeVCP panel is to collect them in a separate file with extension .hal. This file
is passed via the POSTGUI_HALFILE= option in the HAL section of your ini file.

() Caution
Do not add the GladeVCP HAL command file to the Axis [HAL]HALFILE= ini section, this will not have the desired
effect - see the following sections.

11.3.5 Integrating into Axis like PyVCP

Place the GladeVCP panel in the righthand side panel by specifying the following in the ini file:

[DISPLAY]
add GladeVCP panel where PyVCP used to live:
GLADEVCP= -u ../gladevcp/hitcounter.py ../gladevcp/manual-example.ui

[HAL]

HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ../gladevcp/manual-example.hal

[RS274NGC]

gladevcp Demo specific Oword subs live here

SUBROUTINE_PATH = ../gladevcp/nc_files/

The HAL component name of a GladeVCP application started with the the GLADEVCP option is fixed: gladevcp. The
command line actually run by Axis in the above configuration is as follows:

halcmd loadusr —-Wn gladevcp gladevcp —-c¢ gladevcp —-x {XID} <arguments to GLADEVCP>

This means you may add arbitrary gladevcp options here, as long as they dont collide with the above command line options.

Note
The [RS274NGC] SUBROUTINE_PATH= option is only set so the example panel will find the Oword subroutine for the MDI
Command widget. It might not be needed in your setup.

Integrator Manuelle V2.5, 2013-03-04
80/ 244

11.3.6 Integrating into Axis as a tab next to DRO and Preview

To do so, edit your .ini file and add to the DISPLAY and HAL sections of ini file as follows:

[DISPLAY]

add GladeVCP panel as a tab next to Preview/DRO:

EMBED_TAB_NAME=GladeVCP demo

EMBED_TAB_COMMAND=halcmd loadusr -Wn gladevcp gladevcp -c gladevcp -x {XID} -u ../gladevcp/ «

hitcounter.py ../gladevcp/manual-example.ui
[HAL]
HAL commands for GladeVCP components in a tab must be executed via POSTGUI_HALFILE
POSTGUI_HALFILE = ../gladevcp/manual-example.hal
[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../gladevcp/nc_files/

Note the halcmd loadusr way of starting the tab command - this assures that POSTGUI_HALFILE will only be run after the
HAL component is ready. In rare cases you might run a a command here which uses a tab but does not have an associated HAL
component. Such a command can be started without halcmd loadusr, and this signifies to Axis that it does not have to wait for a
HAL component since there is none.

When changing the component name in the above example, note that the names used in -Wn <component>and -c¢ <component>
must be identical.

Try it out by running Axis - there should be a new tab called GladeVCP demo near the DRO tab. Select that tab, you should see
the example panel nicely fit within Axis.

Note
Make sure the Ul file is the last option passed to GladeVCP in both the GLADEVCP= and EMBED_TAB_COMMAND= state-
ments.

11.3.7 Integrating into Touchy

To do add a GladeVCP tab to Touchy, edit your .ini file as follows:

[DISPLAY]

add GladeVCP panel as a tab

EMBED_TAB_NAME=GladeVCP demo

EMBED_TAB_COMMAND=gladevcp -c gladevcp -x {XID} -u ../gladevcp/hitcounter.py -H ../gladevcp <
/gladevcp-touchy.hal ../gladevcp/manual-example.ui

[RS274NGC]
gladevcp Demo specific Oword subs live here
SUBROUTINE_PATH = ../gladevcp/nc_files/

Note the following differences to the Axis tab setup:

* The HAL command file is slightly modified since Touchy does not use the halui components so its signals are not available and
some shortcuts have been taken.

* there is no POSTGUI_HALFILE= ini option, but passing the HAL command file on the EMBED_TAB_COMMAND-= line is
ok

e the halcmd loaduser -Wn . .. incantation is not needed.

Integrator Manuelle V2.5, 2013-03-04
81/244

11.4 GladeVCP command line options

See also man gladevcp . These are the gladevcp command line options:

Usage: gladevcp [options] myfile.ui

Options:
-h, --help
show this help message and exit
-c NAME
Set component name to NAME. Default is base name of UI file
-d
Enable debug output
-g GEOMETRY
Set geometry WIDTHXHEIGHT+XOFFSET+YOFFSET. Values are in pixel units, XOFFSET/YOFFSET is referenced
from top left of screen. Use -g WIDTHXHEIGHT for just setting size or -g +XOFFSET+YOFFSET for just position
-H FILE
execute hal statements from FILE with halcmd after the component is set up and ready
-m MAXIMUM
force panel window to maximize. Together with the -g geometry option one can move the panel to a second monitor and
force it to use all of the screen
-t THEME
set gtk theme. Default is system theme. Different panels can have different themes. An example theme can be found in the
EMC Wiki.
-x XID
Re-parent GladeVCP into an existing window XID instead of creating a new top level window
-u FILE
Use File’s as additional user defined modules with handlers
-U USEROPT

pass USEROPTS to Python modules

11.5 Understanding the gladeVCP startup process

The integration steps outlined above look a bit tricky, and they are. It does therefore help to understand the startup process of
LinuxCNC and how this relates to gladeVCP.

The normal LinuxCNC startup process does the following:

* the realtime environment is started

¢ all HAL components are loaded

» the HAL components are linked together through the .hal cmd scripts
* task, iocontrol and eventually the user interface is started

¢ pre-gladeVCP the assumption was: by the time the Ul starts, all of HAL is loaded, plumbed and ready to go

The introduction of gladeVCP brought the following issue:

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?GTK_Themes

Integrator Manuelle V2.5, 2013-03-04
82 /244

* gladeVCP panels need to be embedded in a master GUI window setup, e.g. Axis, or Touchy (embedded window or as an
embedded tab)

* this requires the master GUI to run before the gladeVCP window can be hooked into the master GUI
* however gladeVCP is also a HAL component, and creates HAL pins of its own.
* as a consequence, all HAL plumbing involving gladeVCP HAL pins as source or destination must be run after the GUI has

been set up

This is the purpose of the POSTGUI_HALFILE. This ini option is inspected by the GUIs. If a GUI detects this option, it runs
the corresponding HAL file after any embedded gladVCP panel is set up. However, it does not check whether a gladeVCP panel
is actually used, in which case the HAL cmd file is just run normally. So if you do NOT start gladeVCP through GLADEVCP or
EMBED_TAB etc, but later in a separate shell window or some other mechanism, a HAL command file in POSTGUI_HALFILE
will be executed too early. Assuming gladeVCP pins are referenced herein, this will fail with an error message indicating that
the gladeVCP HAL component is not available.

So, in case you run gladeVCP from a separate shell window (i.e. not started by the GUI in an embedded fashion):

* you cannot rely on the POSTGUI_HALFILE ini option causing the HAL commands being run at the right point in time, so
comment that out in the ini file

* explicitly pass the HAL command file which refers to gladeVCP pins to gladeVCP with the -H <halcmd file> option (see
previous section).

11.6 HAL Widget reference

GladeVcp includes a collection of Gtk widgets with attached HAL pins called HAL Widgets, intended to control, display or
otherwise interact with the LinuxCNC HAL layer. They are intended to be used with the Glade user interface editor. With proper
installation, the HAL Widgets should show up in Glade’s HAL Python widget group. Many HAL specific fields in the Glade
General section have an associated mouse-over tool tip.

HAL signals come in two variants, bits and numbers. Bits are off/on signals. Numbers can be "float", "s32" or "u32". For more
information on HAL data types see the HAL manual. The GladeVcp widgets can either display the value of the signal with an
indicator widget, or modify the signal value with a control widget. Thus there are four classes of GladeVcp widgets that you can
connect to a HAL signal. Another class of helper widgets allow you to organize and label your panel.

* Widgets for indicating "bit" signals: HAL_LED

» Widgets for controlling "bit" signals: HAL_Button HAL_RadioButton HAL_CheckButton

* Widgets for indicating "number" signals: HAL_Label, HAL_ProgressBar, HAL_HBar and HAL_VBar, HAL_Meter
* Widgets for controlling "number" signals: HAL_SpinButton, HAL_HScale and HAL_VScale

* Helper widgets: HAL_HBox and HAL_Table

* Tool Path preview: HAL_Gremlin

11.6.1 Widget and HAL pin naming

Most HAL widgets have a single associated HAL pin with the same HAL name as the widget (glade: General—Name).

Exceptions to this rule currently are.

e HAL_Spinbutton and HAL_ComboBox, which have two pins: a <widgetname>-f (float) and a <widgetname>-s (s32)
pin

* HAL_ProgressBar, which has a <widgetname>-value input pin, and a <widgetname>-scale input pin.

Integrator Manuelle V2.5, 2013-03-04
83 /244

11.6.2 Python attributes and methods of HAL Widgets

HAL widgets are instances of GtKWidgets and hence inherit the methods, properties and signals of the applicable GtkWid-
get class. For instance, to figure out which GtkWidget-related methods, properties and signals a HAL_Button has, lookup the
description of GtkButton in the PyGtk Reference Manual.

An easy way to find out the inheritance relationship of a given HAL widget is as follows: run glade, place the widget in a window,
and select it; then choose the Signals tab in the Properties window. For example, selecting a HAL_LED widget, this will show
that a HAL_LED is derived from a GtkWidget, which in turn is derived from a GtkObject, and eventually a GObject.

HAL Widgets also have a few HAL-specific Python attributes:

hal_pin
the underlying HAL pin Python object in case the widget has a single pin type

hal_pin_s, hal_pin_f
the S32 and float pins of the HAL_Spinbutton and HAL_ComboBox widgets - note these widgets do not have a hal_pin
attribute!

hal_pin_scale
the float input pin of HAL_ProgressBar widget representing the maximum absolute value of input.

The are several HAL-specific methods of HAL Widgets, but the only relevant method is:

<halpin>.get()
Retrieve the value of the current HAL pin, where <halpin> is the applicable HAL pin name listed above.

11.6.3 Setting pin and widget values

As a general rule, if you need to set a HAL output widget’s value from Python code, do so by calling the underlying Gtk setter
(e.g. set_active (), set_value ()) - do not try to set the associated pin’s value by halcomp [pinname] = value
directly because the widget will not take notice of the change!.

It might be tempting to set HAL widget input pins programmatically. Note this defeats the purpose of an input pin in the first place
- it should be linked to, and react to signals generated by other HAL components. While there is currently no write protection
on writing to input pins in HAL Python, this doesn’t make sense. You might use setp pinname value in the associated halfile for
testing though.

It is perfectly OK to set an output HAL pin’s value with halcomp [pinname] = value provided this HAL pin is not associ-
ated with a widget, that is, has been created by the hal_glib.GPin (halcomp.newpin (<name>, <type>, <direction>)
method (see GladeVCP Programming for an example).

11.6.4 The hal-pin-changed signal

Event-driven programming means that the Ul tells your code when "something happens" - through a callback, like when a button
was pressed. The output HAL widgets (those which display a HAL pin’s value) like LED, Bar, VBar, Meter etc, support the
hal-pin-changed signal which may cause a callback into your Python code when - well, a HAL pin changes its value. This means
there’s no more need for permanent polling of HAL pin changes in your code, the widgets do that in the background and let you
know.

Here is an example how to set a hal-pin-changed signal for a HAL_LED in the Glade UI editor:

http://www.pygtk.org/docs/pygtk/class-gtkbutton.html
http://www.pygtk.org/docs/pygtk

Integrator Manuelle V2.5, 2013-03-04
84 /244

+ EH hal_tablel -
= hal_buttonl 1
= hal_spinbuttonl
= hal_togglebuttonl

_ Lol B8

I HAL LED Properties - HAL_LED [hal_led1]
General | Packing Common | Signals | &

Sagnal Handler User data
= HAL_LED
 hal-pin-changed on_led_pin_changed

"

The example in configs/gladevcp/examples/complex shows how this is handled in Python.

11.6.5 Buttons

This group of widgets are derived from various Gtk buttons and consists of HAL_Button, HAL_ToggleButton, HAL_RadioButton
and CheckButton widgets. All of them have a single output BIT pin named identical to the widget. Buttons have no additional
properties compared to their base Gtk classes.

HAL_Button: instantaneous action, does not retain state. Important signal: pressed

* HAL_ToggleButton, HAL_CheckButton: retains on/off state. Important signal: toggled

HAL_RadioButton: a one-of-many group. Important signal: toggled (per button).
* Important common methods: set_active (), get_active ()

* Important properties: label, image

@ chocolate

Excute Owo

checkbutton O strawberry subroutine

Check button: Radio buttons: Toggle button:

Tip
Defining radio button groups in Glade:

 decide on default active button

* in the other button’s General— Group select the default active button’s name in the Choose a Radio Button in this project
dialog.

See configs/gladevcp/by-widget/radiobutton for a GladeVCP application and Ul file for working with radio
buttons.

Integrator Manuelle V2.5, 2013-03-04
85/ 244

11.6.6 Scales

HAL_HScale and HAL_VScale are derived from the GtkHScale and GtkVScale respectively. They have one output FLOAT pin
with name equal to widget name. Scales have no additional properties.

To make a scale useful in Glade, add an Adjustment (General— Adjustment—New or existing adjustment) and edit the adjustment
object. It defines the default/min/max/increment values. Also, set adjustment Page size and Page increment to zero to avoid
warnings.

Example HAL_HScale:

11.6.7 SpinButton

HAL SpinButton is derived from GtkSpinButton and holds two pins:

<widgetname>-f
out FLOAT pin

<widgetname>-s
out S32 pin

To be useful, Spinbuttons need an adjustment value like scales, see above.

[z B

Example SpinButton:

11.6.8 Label

HAL_Label is a simple widget based on GtkLabel which represents a HAL pin value in a user-defined format.

label_pin_type
The pin’s HAL type (0:S32, 1:float, 2:U32), see also the tooltip on ’General =HAL pin type ’(note this is different from
PyVCP which has three label widgets, one for each type).

text_template
Determines the text displayed - a Python format string to convert the pin value to text. Defaults to $ s (values are converted
by the str() function) but may contain any legit as an argument to Pythons format() method.
Example: Distance: %.03f will display the text and the pin value with 3 fractional digits padded with zeros for a
FLOAT pin.

11.6.9 Containers: HAL_HBox and HAL_Table

Compared to their Gtk counterparts they have one input BIT pin which controls if their child widgets are sensitive or not. If the
pin is low then child widgets are inactive which is the default.

Tip
If you find some part of your GladeVCP application is grayed out (insensitive), see whether a container’s pin is unset.

Integrator Manuelle V2.5, 2013-03-04
86 /244

11.6.10 LED

The hal_led simulates a real indicator LED. It has a single input BIT pin which controls it’s state: ON or OFF. LEDs have several
properties which control their look and feel:

on_color
a String defining ON color of LED. May be any valid gtk.gdk.Color name. Not working on Ubuntu 8.04.

off color
String defining OFF color of LED. May be any valid gtk.gdk.Color name or special value dark. dark means that OFF
color will be set to 0.4 value of ON color. Not working on Ubuntu 8.04.

pick_color_on, pick_color_off
Colors for ON and OFF states may be represented as # RRRRGGGGBBBB strings. These are optional properties which have
precedence over on_color and off_color.

led_size
LED radius (for square - half of LED’s side)

led_shape
LED Shape. Valid values are 0 for round, 1 for oval and 2 for square shapes.

led_blink_rate
if set and LED is ON then it’s blinking. Blink period is equal to "led_blink_rate" specified in milliseconds.

As an input widget, LED also supports the hal-pin-changed signal. If you want to get a notification in your code when
the LED’s HAL pin was changed, then connect this signal to a handler, for example on_led_pin_changed and provide the
handler as follows:

def on_led_pin_changed(self,hal_led,data=None) :
print "on_led_pin_changed() - HAL pin value:",hal_led.hal_pin.get ()

This will be called at any edge of the signal and also during program start up to report the current value.

[ECECEE:
® O

Example LEDs:

11.6.11 ProgressBar

Note
This widget might go away. Use the HAL_HBar and HAL_VBar widgets instead.

The HAL_ProgressBar is derived from gtk.ProgressBar and has two float HAL input pins:

<widgetname>
the current value to be displayed

<widgetname>-scale
the maximum absolute value of input

It has the following properties:

Integrator Manuelle V2.5, 2013-03-04
87 /244

scale
value scale. set maximum absolute value of input. Same as setting the <widgetname>.scale pin. A float, range from
_224 to +224.

green_limit
green zone limit lower limit

yellow_limit
yellow zone limit lower limit

red_limit
red zone limit lower limit

text_template
Text template to display the current value of the <widgetname> pin. Python formatting may be used for dict { "value" :valu

Example HAL_ProgressBar:

11.6.12 ComboBox

HAL_ComboBox is derived from gtk.ComboBox. It enables choice of a value from a dropdown list.

It exports two HAL pins:

<widgetname>-f
the current value, type FLOAT

<widgetname>-s
the current value, type S32

It has the following property which can be set in Glade:

column
the column index, type S32, defaults to -1, range from -1..100 .

In default mode this widgets sets the pins to the index of the chosen list entry. So if your widget has three labels, it may only
assume values 0,1 and 2.

In column mode (column > -1), the value reported is chosen from the ListStore array as defined in Glade. So typically your
widget definition would have two columns in the ListStore , one with text displayed in the dropdown, and an int or float value to
use for that choice.

There’s an example in configs/gladevcp/by-widget/combobox/combobox. {py, ui} which uses column mode
to pick a float value from the ListStore.

If you’re confused like me about how to edit ComboBox ListStores and CellRenderer, see http://www.youtube.com/watch?v=Z5_F-
rW2cLS8.

11.6.13 Bars

HAL Bar and VBar widgets for horizontal and vertical bars representing float values. They have one input FLOAT hal pin. Both
bars have the following properties:

invert
Swap min and max direction. An inverted HBar grows from right to left, an inverted VBar from top to bottom.

http://www.youtube.com/watch?v=Z5_F-rW2cL8
http://www.youtube.com/watch?v=Z5_F-rW2cL8

Integrator Manuelle V2.5, 2013-03-04
88 /244

min, max
Minimum and maximum value of desired range. It is not an error condition if the current value is outside this range.

Zero
Zero point of range. If it’s inside of min/max range then the bar will grow from that value and not from the left (or right)
side of the widget. Useful to represent values that may be both positive or negative.

force_width, force_height
Forced width or height of widget. If not set then size will be deduced from packing or from fixed widget size and bar will
fill whole area.

text_template
Like in Label sets text format for min/max/current values. Can be used to turn off value display.

bg_color
Background (inactive) color of bar.

z0_color, z1_color, z2_color
Colors of different value zones. Defaults are green, yellow and red. For description of zones see z+_border
properties.

z0_border, z1_border
Define up bounds of color zones. By default only one zone is enabled. If you want more then one zone set z0_border
and z1_border to desired values so zone 0 will fill from O to first border, zone 1 will fill from first to second border and
zone 2 — from last border to 1. Borders are set as fractions, values from O to 1.

EoTEET oo ot

Horizontal bar: Vertical bar:

11.6.14 Meter

HAL Meter is a widget similar to PyVCP meter - it represents a float value and has one input FLOAT hal pin. HAL Meter has
the following properties:

min, max
Minimum and maximum value of desired range. It is not an error condition if the current value is outside this range.

force_size
Forced diameter of widget. If not set then size will be deduced from packing or from fixed widget size and meter will fill
all available space with respect to aspect ratio.

text_template
Like in Label sets text format for current value. Can be used to turn off value display.

label
Large label above center of meter.

sublabel
Small label below center of meter.

bg_color
Background color of meter.

Integrator Manuelle V2.5, 2013-03-04
89 /244

z0_color, z1_color, z2_color
Colors of different value zones. Defaults are green, yellow and red. For description of zones see z+_border

properties.

z0_border, z1_border
Define up bounds of color zones. By default only one zone is enabled. If you want more then one zone set z0_border
and z1_border to desired values so zone 0 will fill from min to first border, zone 1 will fill from first to second border
and zone 2 — from last border to max. Borders are set as values in range min-max.

20

i] 100
62.6 \»

..

Example HAL Meters:

11.6.15 Gremlin tool path preview for .ngc files

Gremlin is a plot preview widget similar to the Axis preview window. It assumes a running LinuxCNC environment like Axis or
Touchy. To connect to it, inspects the INI_FILE_NAME environment variable. Gremlin displays the current .ngc file - it does
monitor for changes and reloads the ngc file if the file name in Axis/Touchy changes. If you run it in a GladeVCP application
when LinuxCNC is not running, you might get a traceback because the Gremlin widget can’t find LinuxCNC status, like the
current file name.

Gremlin does not export any HAL pins. It has the following properties:
view
may be any of x, v, z, p (perspective) . Defaults to z view.

enable_dro
boolean; whether to draw a DRO on the plot or not. Defaults to True.

Integrator Manuelle V2.5, 2013-03-04
90/ 244

Example:

11.6.16 Animated function diagrams: HAL widgets in a bitmap

For some applications it might be desirable to have background image - like a functional diagram - and position widgets at
appropriate places in that diagram. A good combination is setting a bitmap background image, like from a .png file, making the
gladevcp window fixed-size, and use the glade Fixed widget to position widgets on this image.

The code for the below example can be found in configs/gladevcp/animated-backdrop:

Integrator Manuelle V2.5, 2013-03-04
91 /244

11.7 Action Widgets reference

GladeVcp includes a collection of "canned actions" called EMC Action Widgets for the Glade user interface editor. Other than
HAL widgets, which interact with HAL pins, EMC Actions interact with LinuxCNC and the G-code interpreter.

EMC Action Widgets are derived from the Gtk.Action widget. The Action widget in a nutshell:

* it is an object available in Glade
* it has no visual appearance by itself

* it’s purpose: associate a visible, sensitive Ul component like menu, toolbutton, button with a command. See these widget’s
General— Related Action property.

* the "canned action" will be executed when the associated UI component is triggered (button press, menu click..)

* it provides an easy way to execute commands without resorting to Python programming.

The appearance of EMC Actions in Glade is roughly as follows:

Integrator Manuelle V2.5, 2013-03-04
92 /244

| v EMC Actions |

QO < <l pmwm m = 3
Q =<l > 3 m 5 |

Tooltip hovers provide a description.

11.7.1 EMC Action widgets

EMC Action widgets are one-shot type widgets. They implement a single action and are for use in simple buttons, menu entries
or radio/check groups.

11.7.2 EMC ToggleAction widgets

These are bi-modal widgets. They implement two actions or use a second (usually pressed) state to indicate that currently an
action is running. Toggle actions are aimed for use in ToggleButtons, ToggleToolButtons or toggling menu items. A simplex
example is the ESTOP toggle button.

Currently the following widgets are available:

* The ESTOP toggle sends ESTOP or ESTOP_RESET commands to LinuxCNC depending on it’s state.
* The ON/OFF toggle sends STATE_ON and STATE_OFF commands.
¢ Pause/Resume sends AUTO_PAUSE or AUTO_RESUME commands.

The following toggle actions have only one associated command and use the pressed state to indicate that the requested operation
is running;:
* The Run toggle sends an AUTO_RUN command and waits in the pressed state until the interpreter is idle again.

* The Stop toggle is inactive until the interpreter enters the active state (is running G-code) and then allows user to send
AUTO_ABORT command.

* The MDI toggle sends given MDI command and waits for its completion in pressed inactive state.

11.7.3 The Action_MDI Toggle and Action_MDI widgets

These widgets provide a means to execute arbitrary MDI commands. The Action_MDI widget does not wait for command
completion as the Action_MDI Toggle does, which remains disabled until command complete.

11.7.4 A simple example: Execute MDI command on button press

configs/gladevcp/mdi-command-example/whoareyou.ui is a Glade Ul file which conveys the basics:

Open it in Glade and study how it’s done. Start Axis, and then start this from a terminal window with gladevcp whoareyou.ui.
Seethe hal_action_mdil Actionandit’sMDI command property - this just executes (MSG, "Hi, I’m an EMC_Action_M
so there should be a message popup in Axis like so:

Integrator Manuelle V2.5, 2013-03-04
93 /244

ing: - Contact: - ([ELUE@ZH?[E]@

Simulate Who are you?
probe contact

| :
"Hi, I'm an EMC_Action_MDI" @ﬂ

r
"Hi, I'm an EMC_Action_MDI" @ﬂ

You’ll notice that the button associated with the Action_MDI action is grayed out if the machine is off, in E-Stop or the interpreter
is running. It will automatically become active when the machine is turned on and out of E-Stop, and the program is idle.

11.7.5 Parameter passing with Action_MDI and ToggleAction_MDI widgets

Optionally, MDI command strings may have parameters substituted before they are passed to the interpreter. Parameters currently
may be names of HAL pins in the GladeVCP component. This is how it works:

* assume you have a HAL SpinBox named speed, and you want to pass it’s current value as a parameter in an MDI command.
* The HAL SpinBox will have a float-type HAL pin named speed-f (see HalWidgets description).
* To substitute this value in the MDI command, insert the HAL pin name enclosed like so: $ {pin-name}

* for the above HAL SpinBox, we could use (MSG, "The speed is: ${speed-f}") justto show what’s happening.

The example Ul file is configs/gladevcp/mdi-command-example/speed.ui. Here’s what you get when running
it:

‘Dhans @ E=]
45.0 |£

. Pass speed as
"The speed is: 45.0" @El paramter in MDI
command

11.7.6 An advanced example: Feeding parameters to an O-word subroutine
It’s perfectly OK to call an O-word subroutine in an MDI command, and pass HAL pin values as actual parameters. An example
Ulfileisin configs/gladevcp/mdi-command-example/owordsub.ui.

Place configs/gladevcp/nc_files/oword.ngc so Axis can find it, and run gladevcp owordsub.ui from a
terminal window. This looks like so:

Integrator Manuelle V2.5, 2013-03-04
94 / 244

CEEERE)
16 B

oword spin=16.000000 @ﬂ] checkbutton

oword check=0.000000 @ﬂ | togglebutton |
oword toggle=1.000000 @ﬂ 805

|:|E|:|

oword scale=80.500000 @ﬂ run O-word
sub

11.7.7 Preparing for an MDI Action, and cleaning up afterwards

The LinuxCNC G-Code interpreter has a single global set of variables, like feed, spindle speed, relative/absolute mode and
others. If you use G code commands or O-word subs, some of these variables might get changed by the command or subroutine
- for example, a probing subroutine will very likely set the feed value quite low. With no further precautions, your previous feed
setting will be overwritten by the probing subroutine’s value.

To deal with this surprising and undesirable side effect of a given O-word subroutine or G-code statement executed with an Lin-
uxCNC ToggleAction_MDI, you might associate pre-MDI and post-MDI handlers with a given LinuxCNC ToggleAction_MDI.
These handlers are optional and provide a way to save any state before executing the MDI Action, and to restore it to previous
values afterwards. The signal names are mdi-command-start and mdi-command-stop; the handler names can be set in
Glade like any other handler.

Here’s an example how a feed value might be saved and restored by such handlers (note that LinuxCNC command and status
channels are available as self.linuxcnc and self. stat through the EMC_ActionBase class:

def on_mdi_command_start (self, action, userdata=None) :
action.stat.poll ()
self.start_feed = action.stat.settings([1]

def on_mdi_command_stop(self, action, userdata=None) :
action.linuxcnc.mdi ('F%.1f’ % (self.start_feed))
while action.linuxcnc.wait_complete() == -1:
pass

Only the Action_MDI Toggle widget supports these signals.

Note
In a later release of LinuxCNC, the new M-codes M70-M72 are available which make it saving state before a subroutine call,
and restoring state on return much easier.

11.7.8 Using the LinuxCNC Stat object to deal with status changes

Many actions depend on LinuxCNC status - is it in manual, MDI or auto mode? is a program running, paused or idle? You
cannot start an MDI command while a G-code program is running, so this needs to be taken care of. Many LinuxCNC actions
take care of this themselves, and related buttons and menu entries are deactivated when the operation is currently impossible.

When using Python event handlers - which are at a lower level than Actions - one needs to take care of dealing with status
dependencies oneself. For this purpose, there’s the LinuxCNC Stat widget: to associate LinuxCNC status changes with event
handlers.

Integrator Manuelle V2.5, 2013-03-04
95/ 244

LinuxCNC Stat has no visible component - you just add it to your UI with Glade. Once added, you can associate handlers with
its following signals:

* state-related: emitted when E-Stop condition occurs, is reset, machine is turned on, or is turned off

— state—-estop
— state—estop-reset
- state-on,

- state-off
* mode-related: emitted when LinuxCNC enters that particular mode

— mode-manual
— mode-mdi

— mode—auto

* interpreter-related: emitted when the G-code interpreter changes into that mode

interp-run

— interp-idle

— interp-paused
— interp-reading
— interp-waiting
— file-loaded

— line-changed

11.8 GladeVCP Programming

11.8.1 User Defined Actions

Most widget sets, and their associated user interface editors, support the concept of callbacks - functions in user-written code
which are executed when something happens in the Ul - events like mouse clicks, characters typed, mouse movement, timer
events, window hiding and exposure and so forth.

HAL output widgets typically map input-type events like a button press to a value change of the associated HAL pin by means
of such a - predefined - callback. Within PyVCP, this is really the only type of event handling supported - doing something more
complex, like executing MDI commands to call a G-code subroutine, is not supported.

Within GladeVCP, HAL pin changes are just one type of the general class of events (called signals) in GTK+. Most widgets may
originate such signals, and the Glade editor supports associating such a signal with a Python method or function name.

If you decide to use user-defined actions, your job is to write a Python module whose class methods - or in the simple case, just
functions - can be referred to in Glade as event handlers. Glade VCP provides a way to import your module(s) at startup and will
automatically link your event handlers with the widget signals as set in the Glade UI description.

11.8.2 An example: adding custom user callbacks in Python

This is just a minimal example to convey the idea - details are laid out in the rest of this section.

GladeVCP can not only manipulate or display HAL pins, you can also write regular event handlers in Python. This could be
used, among others, to execute MDI commands. Here’s how you do it:

Write a Python module like so and save as e.g. handlers.py:

Integrator Manuelle V2.5, 2013-03-04
96 / 244

nhits = 0
def on_button_press (gtkobj,data=None) :
global nhits nhits += 1 gtkobj.set_label ("hits: %d" % nhits)

In Glade, define a button or HAL button, select the Signals tab, and in the GtkButton properties select the pressed line. Enter
on_button_press there, and save the Glade file.

Then add the option -u handlers.py to the gladevep command line. If your event handlers are spread over several files, just add
multiple -u <pyfilename> options.

Now, pressing the button should change its label since it’s set in the callback function.

What the —u flag does: all Python functions in this file are collected and setup as potential callback handlers for your Gtk
widgets - they can be referenced from Glade Signals tabs. The callback handlers are called with the particular object instance as
parameter, like the GtkButton instance above, so you can apply any GtkButton method from there.

Or do some more useful stuff, like calling an MDI command!

11.8.3 HAL value change events
HAL input widgets, like a LED, automatically associate their HAL pin state (on/off) with the optical appearance of the widget

(LED lit/dark).

Beyond this builtin functionality, one may associate a change callback with any HAL pin, including those of predefined HAL
widgets. This fits nicely with the event-driven structure of a typical widget application: every activity, be it mouse click, key,
timer expired, or the change of a HAL pin’s value, generates a callback and is handled by the same orthogonal mechanism.

For user-defined HAL pins not associated with a particular HAL widget, the signal name is value-changed. See the Adding HAL
pins section below for details.

HAL widgets come with a pre-defined signal called hal-pin-changed. See the Hal Widgets section for details.

11.8.4 Programming model

The overall approach is as follows:

¢ design your UI with Glade, and set signal handlers where you want actions associated with a widget
 write a Python module which contains callable objects (see handler models below)

* pass your module’s path name to gladevcp with the -u <module> option

* gladevcp imports the module, inspects it for signal handlers and connects them to the widget tree

* the main event loop is run.

11.8.4.1 The simple handler model

For simple tasks it’s sufficient to define functions named after the Glade signal handlers. These will be called when the corre-
sponding event happens in the widget tree. Here’s a trivial example - it assumes that the pressed signal of a Gtk Button or HAL
Button is linked to a callback called on_button_press:
nhits = 0
def on_button_press (gtkobj,data=None) :

global nhits

nhits += 1

gtkobj.set_label ("hits: $d" % nhits)

Add this function to a Python file and run as follows:
gladevcp —-u <myhandler>.py mygui.ui

Note communication between handlers has to go through global variables, which does not scale well and is positively un-
pythonic. This is why we came up with the class-based handler model.

Integrator Manuelle V2.5, 2013-03-04
97 / 244

11.8.4.2 The class-based handler model

The idea here is: handlers are linked to class methods. The underlying class(es) are instantiated and inspected during GladeVCP
startup and linked to the widget tree as signal handlers. So the task now is to write:

* one or more several class definition(s) with one or several methods, in one module or split over several modules,

* a function g