Developer Manual V2.8.4, 2022-09-18

Developer Manual V2.8.4, 2022-09-18

Developer Manual V2.8.4, 2022-09-18 ii

Contents

1 Introduction 1
2 Code Notes 2
2.1 Intended audience e e e e 2
22 0rganization e e e e e e e e 2
2.3 Terms and definitions L e e e e 2
2.4 Architectur€ OVEIVIEW vttt et bttt e e e e e e e e e e e 3
2.5 Motion Controller Introduction 5
2.6 Block diagrams and DataFlow L 7
2.7 Homing o e 10
2.7.1 Homing state diagram e e e e e e e e e e e e e e e 10

2.7.2 Another homing diagram L e 11

2.8 Commands e e e e 11
2.8.1 ABORT 11

2.8. 1.1 Requirements o i i e e e e e e e e e 11

2.8.1.2 Results L e 12

2.82 FREE 12
2.82.1 Requirements i i e e e e e e e e e e e e e 12

2.82.2 Results e 12

2.83 TELEOP e 12
2.8.3.1 Requirements e e e e e e 12

2.83.2 Results e 12

2.84 COORD 13
2.84.1 Requirements e e e e e 13

2.84.2 Results e 13

2.8.5 ENABLE e 13
2.8.5.1 Requirements e e e 13

2.8.5.2 Results 13

2.8.6 DISABLE e 13

2.8.6.1 Requirements e 13

Developer Manual V2.8.4, 2022-09-18 iii

2.8.7

2.8.8

2.8.9

2.8.10

2.8.11

2.8.12

2.8.13

2.8.14

2.8.15

2.8.16

2.8.17

2.8.18

2.8.19

2.8.6.2 Results 13
ENABLE_AMPLIFIER e 14
2.8.7.1 Requirementso e e e e e 14
2.8.7.2 Results e e 14
DISABLE_AMPLIFIER e 14
2.8.8.1 Requirements e e e e e e e e e 14
2.8.82 Results L 14
ACTIVATE_JOINT e e e e e e e e s e e 14
2.89.1 Requirementsl 14
2.8.9.2 Results e 14
DEACTIVATE_JOINT e e e e e e e s s e s 14
2.8.10.1 Requirements o i e e e e e e e e e 14
2.8.10.2 Results L e 15
ENABLE_WATCHDOG e e e e s e e e 15
2.8.11.1 Requirements L e e e e 15
2.8.11.2 Results o 15
DISABLE_WATCHDOG e e e e s s s e e 15
2.8.12.1 Requirements o i i e e e e e e e e e e e e e e 15
2.8.12.2 Results L e 15
PAUSE . . . 15
2.8.13.1 Requirements oL e e e e e 15
2.8.13.2 Results oo 15
RESUME e 15
2.8.14.1 Requirements o i i it e e e e e e e e e e e e e e e 16
2.8.14.2 Results L e e e 16
STEP . . o e 16
2.8.15.1 Requirements e e 16
2.8.152 Results e 16
SCALE 16
2.8.16.1 Requirements i i e e e e e e e e e e e e e 16
2.8.16.2 Results e e e 16
OVERRIDE_LIMITS e s e e e e e 16
2.8.17.1 Requirements L e e e 16
2.8.17.2 Results o e 16
HOME e 17
2.8.18.1 Requirements o i e e e e e e e e e e 17
2.8.18.2 Results L e e 17
JOG_CONT . . o e e 17

2.8.19.1 Requirementsl e e e 17

Developer Manual V2.8.4, 2022-09-18 iv

29
2.10

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221

222

2.23
2.24

2.8.19.2 Results L e 17
2.8.220 JOG_INCR e e 17

2.8.20.1 Requirements e e e e 17

2.8.20.2 Results e 18
2.8.21 JOG_ABS . . . 18

2.8.21.1 Requirements o i i e e e e e e e e e e e e e 18

2.821.2 Results L e 18
2.8.22 SET_LINE e 18
2.8.23 SET_CIRCLE e e e 18
2.8.24 SET_TELEOP_VECTOR e e e e 18
2.8.25 PROBE 18
2.8.26 CLEAR_PROBE_FLAG e e s 19
2.8.27 SET_XIX . . . o o it e e 19
Backlash and Screw Error Compensationo e e e e e e e e 19
Task controller (EMCTASK) e 19
2101 State ... e e e 19
IO controller (EMCIO) e e e e 19
User Interfaces L e 20
libnml Introduction oL e e e e e e 20
LinkedList e e 21
LinkedListNode o e e e 21
SharedMemory e e e e e e e e e e e e e 21
ShmBuffer e 21
TIMer e 21
Semaphore L e e e e e e 21
CMS . 22
Configuration file format L 22
2.21.1 Bufferline L e 22
2.21.2 Typespecificconfigs L 23
2213 Processlineo e 23
2.21.4 Configuration Comments oL e e e 24
NML base class o o o o e 24
2.22.1 NMLinternals e e e e e e e 25

2.22.1.1 NML CONStIUCtOr o v v v e e it e e e e e e e e e e e e e 25

2.22.1.2 NMLread/write o e e e e 25

2.22.1.3 NMLmsg and NML relationships 25
Adding custom NML commands L 25
The Tool Table and Toolchanger e e e e e e e 26

2.24.1 Toolchanger abstractionin LinuxCNC 0 L oo 26

Developer Manual V2.8.4, 2022-09-18

2.25

2.24.1.1 Nonrandom Toolchangers

2.24.1.2 Random Toolchangers
2242 The Tool Table
2.24.3 Gcodes affecting tools
22431 TXXX
22432 M6
22433 GA43/G43.1/G49 . . .
22434 GIOLI/LI0O/LIL . . .
22435 M6l
2.24.3.6 G41/G41.1/G42/G42.1
22437 G40
2.24.4 Internal state variables
22441 10
22442 interp.
Reckoning of joints and axes
2.25.1 In the status buffer
2252 InMotion

3 NML Messages

4 Coding Style

4.1
4.2
43
4.4
45
4.6
4.7
48
49
4.10
4.11

Donoharm
TabStops

Indentation

Python coding standards

Comp coding standards

5 Building LinuxCNC

5.1

52

53

Introduction
5.1.1 Quick Start
Supported Platforms
5.2.1 Realtime
5.2.2 Non-realtime

Buildmodes

26
26
27
27
27
28
28
28
29
29
29
30
30
30
31
31
31

32

37
37
37
37
37
38
38
39
39
39
40
40

Developer Manual V2.8.4, 2022-09-18 Vi
5.3.1 Building forRunInPlace 42

5.3.1.1 src/configure argUments i e e e e e e e e e 42

5.3.1.2 makearguments Lo e e e e e e 43

5.3.2 Building Debian Packages L e 43

5.32.1 debian/configure argUmentsttt i e e e e 44

5.4 Satisfying Build Dependencies e 45

5.5 Setting up the environmento e e e e e e e e e 45
5.5.1 Increase the locked memory limit 45

5.6 Options for checkingoutthe gitrepo o 0 e e e e 46
5.6.1 ForkusonGithub e 46

6 Adding Configuration Selection Items 47
7 Contributing to LinuxCNC 48
7.1 Introduction e e 48

7.2 Communication among LinuxCNC developers 48

7.3 The LinuxCNC Source Forge project o i i i e e e e e e e e 48
7.4 The git Revision Control System o e e e e e e e e e 48
74.1 LinuxCNCofficial GItTepo o e e e 48

742 Useof gitinthe LinuxCNC projectot ittt 49

743 gittutorials 49

7.5 Overview of the process o o i e e e e e e e e e e e 49
7.6 gitconfiguration L e e e e e e e e e e e e e e 50
7.7 Effectiveuse of @it oL e e e e e 50
7.7.1 Commit CONLENES v vttt et e e e e e e e e e e e e e e e e e 50

7.7.2 Write g00d COMMIt MESSAZES .« « « . v v v v vt e et e e e e e e e e e e e e e e 50

7.7.3 Committothe properbranch L 50

7.7.4 Use multiple commits to organize changes e 51

7.7.5 Follow the style of the surroundingcode e 51

7.7.6 Simplify complicated history before sharing with fellow developers 51

7.7.7 Make sure every commit builds oL 51

7.7.8 Renaming files 51

7.7.9 Prefer "rebase” e 52

7.8 Other ways to contribUte o o e e e e e e e e e e e 52

8 Glossary 53
9 Legal Section 58
9.1 Copyright Terms o e 58
9.2 GNU Free Documentation License 0 e 58

10 Index 62

Developer Manual V2.8.4, 2022-09-18 1/63

Chapter 1

Introduction

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2020 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

The LinuxCNC project is not affiliated with Debian®. Debian is a registered trademark owned by Software in the Public Interest,
Inc.

The LinuxCNC project is not affiliated with UBUNTU®. UBUNTU is a registered trademark owned by Canonical Limited.

mailto:emc-users@lists.sourceforge.net

Developer Manual V2.8.4, 2022-09-18 2/63

Chapter 2

Code Notes

2.1 Intended audience

This document is a collection of notes about the internals of LinuxCNC. It is primarily of interest to developers, however much
of the information here may also be of interest to system integrators and others who are simply curious about how LinuxCNC
works. Much of this information is now outdated and has never been reviewed for accuracy.

2.2 Organization

There will be a chapter for each of the major components of LinuxCNC, as well as chapter(s) covering how they work together.
This document is very much a work in progress, and its layout may change in the future.

2.3 Terms and definitions

* AXIS - An axis is one of the nine degrees of freedom that define a tool position in three-dimensional Cartesian space. Those
nine axes are referred to as X, Y, Z, A, B, C, U, V, and W. The linear orthagonal coordinates X, Y, and Z determine where the tip
of the tool is positioned. The angular coordinates A, B, and C determine the tool orientation. A second set of linear orthagonal
coordinates U, V, and W allows tool motion (typically for cutting actions) relative to the previously offset and rotated axes.
Unfortunately “axis” is also sometimes used to mean a degree of freedom of the machine itself, such as the saddle, table, or
quill of a Bridgeport type milling machine. On a Bridgeport this causes no confusion, since movement of the table directly
corresponds to movement along the X axis. However, the shoulder and elbow joints of a robot arm and the linear actuators
of a hexapod do not correspond to movement along any Cartesian axis, and in general it is important to make the distinction
between the Cartesian axes and the machine degrees of freedom. In this document, the latter will be called joints, not axes.
(The GUIs and some other parts of the code may not always follow this distinction, but the internals of the motion controller
do.)

e JOINT - A joint is one of the movable parts of the machine. Joints are distinct from axes, although the two terms are sometimes
(mis)used to mean the same thing. In LinuxCNC, a joint is a physical thing that can be moved, not a coordinate in space. For
example, the quill, knee, saddle, and table of a Bridgeport mill are all joints. The shoulder, elbow, and wrist of a robot arm
are joints, as are the linear actuators of a hexapod. Every joint has a motor or actuator of some type associated with it. Joints
do not necessarily correspond to the X, Y, and Z axes, although for machines with trivial kinematics that may be the case.
Even on those machines, joint position and axis position are fundamentally different things. In this document, the terms joint
and axis are used carefully to respect their distinct meanings. Unfortunately that isn’t necessarily true everywhere else. In
particular, GUIs for machines with trivial kinematics may gloss over or completely hide the distinction between joints and
axes. In addition, the ini file uses the term axis for data that would more accurately be described as joint data, such as input
and output scaling, etc.

Developer Manual V2.8.4, 2022-09-18 3/63

* POSE - A pose is a fully specified position in 3-D Cartesian space. In the LinuxCNC motion controller, when we refer to a
pose we mean an EmcPose structure, containing six linear coordinates (X, Y, Z, U, V, and W) and three angular ones (A, B,
and C).

2.4 Architecture overview

There are four components contained in the LinuxCNC Architecture: a motion controller (EMCMOT), a discrete 1O controller
(EMCIO), a task executor which coordinates them (EMCTASK) and several text-mode and graphical User Interfaces. Each of
them will be described in the current document, both from the design point of view and from the developers point of view (where
to find needed data, how to easily extend/modify things, etc.).

Developer Manual V2.8.4, 2022-09-18

4/63

NML | oo [s7aT | €8 |
EMCTASK |
RS-274 SEQUENCING !
(GCODE) ENC ;
INTERPRETER !

e
! CARTESIAN MOTION
: FPOSITION COMMANDS STATUS
i
b !
Vo i
Vo i
o |
Vo |
[FORWARD INVERSE LIMIT & HOME | |
D] kEMATICS KINEMATICS STATUS i
i

P H
S e) |
|
1
| -
1 [
|
| -
i
RIS FN USSP RSP
1 1 I
Vo AXIS 1 5 h i
o HTERPOLATOR|— | !
: ! : |
1 ! . 1 !

I e |
L i 7 L
! - | |
| ! | |
a —
Vo SERVO \ i
1 ! 1 !
1 1 I
[UHIT UHIT i 1
n CONVERT CONVERT ! i
o | i
1 e e e I "'{""'!»""j’"
|
___ 1
[[
: ENCODER DrA LIMIT
: COUNTER CONVERTER SWITCHES
1
i
1
| POWER
! AMP
|
i
. - -
| T

\

| (([—H ‘ O
1 N AR —
1 e N s
| ~
i
i
|
1
|
|
!
|

ENCODER MOTOR

REALTIME HARDWARE DEVICES

COORDINATING

CONTROLLER
’ H .
SPINDLE | AUKILIARY
CONTROLLER CONTROLLER
COCLANT
CONTROLLER

NON-REALTIME HARDWARE DEVICES

Developer Manual V2.8.4, 2022-09-18 5/63

LinuxCNC software architecture. At the coarsest level, LinuxCNC is a hierarchy of three controllers: the task level command
handler and program interpreter, the motion controller, and the discrete I/O controller. The discrete I/O controller is implemented
as a hierarchy of controllers, in this case for spindle, coolant, and auxiliary (e.g., estop, lube) subsystems. The task controller
coordinates the actions of the motion and discrete I/O controllers. Their actions are programmed in conventional numerical
control "G and M code" programs, which are interpreted by the task controller into NML messages and sent to either the motion
or discrete I/O controllers at the appropriate times.

2.5 Motion Controller Introduction

The motion controller receives commands from user space modules via a shared memory buffer, and executes those commands
in realtime. The status of the controller is made available to the user space modules through the same shared memory area. The
motion controller interacts with the motors and other hardware using the HAL (Hardware Abstraction Layer). This document
assumes that the reader has a basic understanding of the HAL, and uses terms like HAL pins, HAL signals, etc, without explaining
them. For more information about the HAL, see the HAL Manual. Another chapter of this document will eventually go into the
internals of the HAL itself, but in this chapter, we only use the HAL API as defined in src/hal/hal.h.

6/63

Developer Manual V2.8.4, 2022-09-18

& |- -
[*T) | “ |
| i
! 0 ! 1
— | — " I
= e O Lo
LW _ i
(=1 1 ! 1
= — l———
o | " “
" o
S | P :
= | b ©
e Y o o
T e
e i o>
i o | ;o=C ¢
! | [| - =
1 I 1 —
b= o -1 Z=
| O ! - [S 1]
! | ! ! ! O =
| = | = | 1 ! — =
! | | | 1 w
5 2 = B L
i 1 1 1 1
! _U.A | I ! C 8]
o = < g
! L " [e e o =
! I | | ! =
|] ﬁ ! Lo N 2
e ______ PR i wn
! o | ! <
o T -
| i h ! | ! ! A -
! ! | [| ! P ! u
— | | — ! | P P g
! ! w | ! L o 2
_ | L " A £
1 1
8 22| |y " L Z 3
(SR N — e -— - - L I W =
T = T = ' T — i >
| w | = ! i o ! o =
" , =70 ! b P
& _ | -] " L g
L I o~ ! e o - | <C =
| I I | |
= i | ! i | ! o [iy
@ _ | _ " A =
> . | S o
| 0 Lz | |Ee| 8| BN A
o - e | 5 L =4 = o |
| o= | = = = . [i Y o = | |
= T = D= u= . T D e e e ey
1T | o= | == = , 1 = v o UM | | |
= | =9 | = =2 i ! w o S \ | 1
o i e |F = [b
L i | ! i v i
[am 1 | " | " | 1
= | | | [| | |
- | | ,) | | "
S 1 I I | I 1
" = W D% | "“ = | " "
1 =35 | == | 1 = | I
L 82 o S5 . .| - S P
ll|u|Tﬂ|l, WM.I_ - — NW!I_|_|_
" &5 [EE} | ! U_U | |
| < 5 | o= | | o | 1
1 (%] | w = | ! I !
| | | ! | !
I | | | | 1
i ” " i b
i i i .
1 .
i
1

I 1
1 |
b
1 |
| i — =
| | =
| | . m
! [=]
1
! ee 3
| — o
=
“ ESN—
i [T T o
B
- M.] I} nNn
= - F
— - a|
L V=Y ©
w
-
[a]
=
o
7]

D/A
CONVERTER

ENCODER

Ll
o
<t
! [
| oc
| <C
| pn
! — —
i
1 Wl
1 - w
= ==
- W Qe S0 -
e sE |
e = |
1 S —
" E— I A
N —] AT
i Y
! [a=] - o
" L2 =
_ o= e
i o \ | =
“ "/
1
1
"
! A o
i & A w
| _M - “ - w
S |~ 3
3] /2
© L

Developer Manual V2.8.4, 2022-09-18 7 /63

2.6 Block diagrams and Data Flow

The following figure is a block diagram of a joint controller. There is one joint controller per joint. The joint controllers work at
a lower level than the kinematics, a level where all joints are completely independent. All the data for a joint is in a single joint
structure. Some members of that structure are visible in the block diagram, such as coarse_pos, pos_cmd, and motor_pos_fb.

MINT CONTROLLER

Fegdback ta f T T— :l Ifrﬂbl-?.g.llc.

Klnematics o

|

motor-offoat

free-pos-cmd |+ Frge n:nde backlash &
rajcior EMe fTor
[hrezmman] plarer camp
free made
=
|-—_ teleap & [pos-cnd |
Commands cubk I:I:l:l‘l:luli"m-de e | e —— Qutpuk
e - - { motor-pos—emd >

home—sw'-In

Joint Controller Block Diagram The above figure shows five of the seven sets of position information that form the main data
flow through the motion controller. The seven forms of position data are as follows:

1. emcmotStatus->carte_pos_cmd - This is the desired position, in Cartesian coordinates. It is updated at the traj rate, not the
servo rate. In coord mode, it is determined by the traj planner. In teleop mode, it is determined by the traj planner? In free
mode, it is either copied from actualPos, or generated by applying forward kins to (2) or (3).

2. emcmotStatus->joints[n].coarse_pos - This is the desired position, in joint coordinates, but before interpolation. It is
updated at the traj rate, not the servo rate. In coord mode, it is generated by applying inverse kins to (1) In teleop mode, it
is generated by applying inverse kins to (1) In free mode, it is copied from (3), I think.

3. ’emcmotStatus->joints[n].pos_cmd - This is the desired position, in joint coords, after interpolation. A new set of these
coords is generated every servo period. In coord mode, it is generated from (2) by the interpolator. In teleop mode, it is
generated from (2) by the interpolator. In free mode, it is generated by the free mode traj planner.

4. emcmotStatus->joints[n].motor_pos_cmd - This is the desired position, in motor coords. Motor coords are generated by
adding backlash compensation, lead screw error compensation, and offset (for homing) to (3). It is generated the same way
regardless of the mode, and is the output to the PID loop or other position loop.

Developer Manual V2.8.4, 2022-09-18 8/63

5. emcmotStatus->joints[n].motor_pos_fb - This is the actual position, in motor coords. It is the input from encoders or other
feedback device (or from virtual encoders on open loop machines). It is "generated" by reading the feedback device.

6. emcmotStatus->joints[n].pos_fb - This is the actual position, in joint coordinates. It is generated by subtracting offset, lead
screw error compensation, and backlash compensation from (5). It is generated the same way regardless of the operating
mode.

7. emcmotStatus->carte_pos_fb - This is the actual position, in Cartesian coordinates. It is updated at the traj rate, not
the servo rate. Ideally, actualPos would always be calculated by applying forward kinematics to (6). However, forward
kinematics may not be available, or they may be unusable because one or more axes aren’t homed. In that case, the options
are: A) fake it by copying (1), or B) admit that we don’t really know the Cartesian coordinates, and simply don’t update
actualPos. Whatever approach is used, I can see no reason not to do it the same way regardless of the operating mode.
I would propose the following: If there are forward kins, use them, unless they don’t work because of unhomed axes or
other problems, in which case do (B). If no forward kins, do (A), since otherwise actualPos would never get updated.

Developer Manual V2.8.4, 2022-09-18 9/63

Developer Manual V2.8.4, 2022-09-18

10/63

2.7 Homing

Homing state diagram

@

on EMCMOT_HOMEJ(j)

shared home
switch closed
otherwise
immediate
HOME INITIAL SEARCH_START

after HOME DELAY
if home switch closed
immediate

HOME_INITIAL BACKOFF_START HOME_INITIAL_SEARCH_WAIT

ome_sw_rise
immediate

after HOME DELAY
if home switch open
immediate

after HOME_DELAY

HOME_INITIAL_BACKOFF_WAIT

search and latch are opposite direction
immediate

after HOME_DELAY

HOME_SET COARSE_POSITION

search and latch are same direction
immediate

no switch for this axis

immediate

HOME_FALL_SEARCH_START

HOME_FINAL BACKOFF_WAIT

home sw fall
immediate

after HOME_DELAY

HOME_RISE_SEARCH_START

after HOME_DELAY

HOME FALL SEARCH WAIT HOME RISE SEARCH WAIT

home sw rise home sw rise
'HOME_USE_INDEX |HOME_USE INDEX

home sw fall home sw fall

'HOME_USE_INDEX HOME USE_INDEX . .
immediate immediate immediate immediate
HOME_SET SWITCH POSITION HOME INDEX SEARCH _START
immediate

HOME INDEX SEARCH WAIT

index seen
immediate

HOME_SET INDEX POSITION

immediate

HOME_FINAL MOVE _START

after HOME_DELAY

hit limit
end of move

HOME_FINAL MOVE_WAIT

reached home position on limit

HOME_FINISHED HOME_ABORT

Developer Manual V2.8.4, 2022-09-18 11/63

2.7.2 Another homing diagram

on EMCMOT HOME(-1)

if no joints left

a joint had an error
on its way home

all joints in this
sequence reached home

2.8 Commands

This section simply lists all of the commands that can be sent to the motion module, along with detailed explanations of what
they do. The command names are defined in a large typedef enum in code, each command name starts with EMCMOT _, which
is omitted here.)

The commands are implemented by a large switch statement in the function emcmotCommandHandler(), which is called at the
servo rate. More on that function later.

There are approximately 44 commands - this list is still under construction.

2.8.1 ABORT

The ABORT command simply stops all motion. It can be issued at any time, and will always be accepted. It does not disable the
motion controller or change any state information, it simply cancels any motion that is currently in progress.'

2.8.1.1 Requirements

None. The command is always accepted and acted on immediately.

'It seems that the higher level code (TASK and above) also use ABORT to clear faults. Whenever there is a persistent fault (such as being outside the
hardware limit switches), the higher level code sends a constant stream of ABORTS to the motion controller trying to make the fault go away. Thousands of
’em. ... That means that the motion controller should avoid persistent faults. This needs to be looked into.

Developer Manual V2.8.4, 2022-09-18 12/63

2.8.1.2 Results

In free mode, the free mode trajectory planners are disabled. That results in each joint stopping as fast as its accel (decel) limit
allows. The stop is not coordinated. In teleop mode, the commanded Cartesian velocity is set to zero. I don’t know exactly what
kind of stop results (coordinated, uncoordinated, etc), but will figure it out eventually. In coord mode, the coord mode trajectory
planner is told to abort the current move. Again, I don’t know the exact result of this, but will document it when I figure it out.

2.8.2 FREE

The FREE command puts the motion controller in free mode. Free mode means that each joint is independent of all the other
joints. Cartesian coordinates, poses, and kinematics are ignored when in free mode. In essence, each joint has its own simple
trajectory planner, and each joint completely ignores the other joints. Some commands (like Joint JOG and HOME) only work
in free mode. Other commands, including anything that deals with Cartesian coordinates, do not work at all in free mode.

2.8.2.1 Requirements

The command handler applies no requirements to the FREE command, it will always be accepted. However, if any joint is in
motion (GET_MOTION_INPOS_FLAG() == FALSE), then the command will be ignored. This behavior is controlled by code
that is now located in the function set_operating_mode() in control.c, that code needs to be cleaned up. I believe the command
should not be silently ignored, instead the command handler should determine whether it can be executed and return an error if
it cannot.

2.8.2.2 Results

If the machine is already in free mode, nothing. Otherwise, the machine is placed in free mode. Each joint’s free mode trajectory
planner is initialized to the current location of the joint, but the planners are not enabled and the joints are stationary.

2.8.3 TELEOP

The TELEOP command places the machine in teleoperating mode. In teleop mode, movement of the machine is based on
Cartesian coordinates using kinematics, rather than on individual joints as in free mode. However the trajectory planner per se
is not used, instead movement is controlled by a velocity vector. Movement in teleop mode is much like jogging, except that it
is done in Cartesian space instead of joint space. On a machine with trivial kinematics, there is little difference between teleop
mode and free mode, and GUIs for those machines might never even issue this command. However for non-trivial machines like
robots and hexapods, teleop mode is used for most user commanded jog type movements.

2.8.3.1 Requirements

The command handler will reject the TELEOP command with an error message if the kinematics cannot be activated because
the one or more joints have not been homed. In addition, if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE),
then the command will be ignored (with no error message). This behavior is controlled by code that is now located in the function
set_operating_mode() in control.c. I believe the command should not be silently ignored, instead the command handler should
determine whether it can be executed and return an error if it cannot.

2.8.3.2 Results

If the machine is already in teleop mode, nothing. Otherwise the machine is placed in teleop mode. The kinematics code is
activated, interpolators are drained and flushed, and the Cartesian velocity commands are set to zero.

Developer Manual V2.8.4, 2022-09-18 13/63

28.4 COORD
The COORD command places the machine in coordinated mode. In coord mode, movement of the machine is based on Cartesian
coordinates using kinematics, rather than on individual joints as in free mode. In addition, the main trajectory planner is used

to generate motion, based on queued LINE, CIRCLE, and/or PROBE commands. Coord mode is the mode that is used when
executing a G-code program.

2.8.4.1 Requirements

The command handler will reject the COORD command with an error message if the kinematics cannot be activated because the
one or more joints have not been homed. In addition, if any joint is in motion (GET_MOTION_INPOS_FLAG() == FALSE),
then the command will be ignored (with no error message). This behavior is controlled by code that is now located in the function

set_operating_mode() in control.c. I believe the command should not be silently ignored, instead the command handler should
determine whether it can be executed and return an error if it cannot.

2.8.4.2 Results

If the machine is already in coord mode, nothing. Otherwise, the machine is placed in coord mode. The kinematics code is
activated, interpolators are drained and flushed, and the trajectory planner queues are empty. The trajectory planner is active and
awaiting a LINE, CIRCLE, or PROBE command.

2.8.5 ENABLE

The ENABLE command enables the motion controller.

2.8.5.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.5.2 Results
If the controller is already enabled, nothing. If not, the controller is enabled. Queues and interpolators are flushed. Any movement

or homing operations are terminated. The amp-enable outputs associated with active joints are turned on. If forward kinematics
are not available, the machine is switched to free mode.

2.8.6 DISABLE

The DISABLE command disables the motion controller.

2.8.6.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.6.2 Results

If the controller is already disabled, nothing. If not, the controller is disabled. Queues and interpolators are flushed. Any
movement or homing operations are terminated. The amp-enable outputs associated with active joints are turned off. If forward
kinematics are not available, the machine is switched to free mode.

Developer Manual V2.8.4, 2022-09-18 14 /63

2.8.7 ENABLE_AMPLIFIER

The ENABLE_AMPLIFIER command turns on the amp enable output for a single output amplifier, without changing anything
else. Can be used to enable a spindle speed controller.

2.8.7.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.7.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually it will set the amp enable
HAL pin true.

2.8.8 DISABLE_AMPLIFIER

The DISABLE_AMPLIFIER command turns off the amp enable output for a single amplifier, without changing anything else.
Again, useful for spindle speed controllers.

2.8.8.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.8.2 Results

Currently, nothing. (A call to the old extAmpEnable function is currently commented out.) Eventually it will set the amp enable
HAL pin false.

2.8.9 ACTIVATE_JOINT

The ACTIVATE_JOINT command turns on all the calculations associated with a single joint, but does not change the joint’s amp
enable output pin.

2.8.9.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.9.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, however, any subsequent ENABLE or
DISABLE commands will modify the joint’s amp enable pin.

2.8.10 DEACTIVATE_JOINT

The DEACTIVATE_JOINT command turns off all the calculations associated with a single joint, but does not change the joint’s
amp enable output pin.

2.8.10.1 Requirements

None. The command can be issued at any time, and will always be accepted.

Developer Manual V2.8.4, 2022-09-18 15/63

2.8.10.2 Results

Calculations for the specified joint are enabled. The amp enable pin is not changed, and subsequent ENABLE or DISABLE
commands will not modify the joint’s amp enable pin.

2.8.11 ENABLE_WATCHDOG

The ENABLE_WATCHDOG command enables a hardware based watchdog (if present).

2.8.11.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.11.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new watchdog interface may be
designed in the future.

2.8.12 DISABLE_WATCHDOG

The DISABLE_WATCHDOG command disables a hardware based watchdog (if present).

2.8.12.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.12.2 Results

Currently nothing. The old watchdog was a strange thing that used a specific sound card. A new watchdog interface may be
designed in the future.

2.8.13 PAUSE

The PAUSE command stops the trajectory planner. It has no effect in free or teleop mode. At this point I don’t know if it pauses
all motion immediately, or if it completes the current move and then pauses before pulling another move from the queue.

2.8.13.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.13.2 Results

The trajectory planner pauses.

2.8.14 RESUME

The RESUME command restarts the trajectory planner if it is paused. It has no effect in free or teleop mode, or if the planner is
not paused.

Developer Manual V2.8.4, 2022-09-18 16/63

2.8.14.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.14.2 Results

The trajectory planner resumes.

2.8.15 STEP
The STEP command restarts the trajectory planner if it is paused, and tells the planner to stop again when it reaches a specific

point. It has no effect in free or teleop mode. At this point I don’t know exactly how this works. I’'ll add more documentation
here when I dig deeper into the trajectory planner.

2.8.15.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.15.2 Results

The trajectory planner resumes, and later pauses when it reaches a specific point.

2.8.16 SCALE
The SCALE command scales all velocity limits and commands by a specified amount. It is used to implement feed rate override

and other similar functions. The scaling works in free, teleop, and coord modes, and affects everything, including homing
velocities, etc. However, individual joint velocity limits are unaffected.

2.8.16.1 Requirements

None. The command can be issued at any time, and will always be accepted.

2.8.16.2 Results

All velocity commands are scaled by the specified constant.

2.8.17 OVERRIDE_LIMITS
The OVERRIDE_LIMITS command prevents limits from tripping until the end of the next JOG command. It is normally used

to allow a machine to be jogged off of a limit switch after tripping. (The command can actually be used to override limits, or to
cancel a previous override.)

2.8.17.1 Requirements

None. The command can be issued at any time, and will always be accepted. (I think it should only work in free mode.)

2.8.17.2 Results

Limits on all joints are over-ridden until the end of the next JOG command. (This is currently broken... once an OVER-
RIDE_LIMITS command is received, limits are ignored until another OVERRIDE_LIMITS command re-enables them.)

Developer Manual V2.8.4, 2022-09-18 17 /63

2.8.18 HOME

The HOME command initiates a homing sequence on a specified joint. The actual homing sequence is determined by a number
of configuration parameters, and can range from simply setting the current position to zero, to a multi-stage search for a home
switch and index pulse, followed by a move to an arbitrary home location. For more information about the homing sequence, see
the homing section of the Integrator Manual.

2.8.18.1 Requirements

The command will be ignored silently unless the machine is in free mode.

2.8.18.2 Results

Any jog or other joint motion is aborted, and the homing sequence starts.

2.8.19 JOG_CONT

The JOG_CONT command initiates a continuous jog on a single joint. A continuous jog is generated by setting the free mode
trajectory planner’s target position to a point beyond the end of the joint’s range of travel. This ensures that the planner will move
constantly until it is stopped by either the joint limits or an ABORT command. Normally, a GUI sends a JOG_CONT command
when the user presses a jog button, and ABORT when the button is released.

2.8.19.1 Requirements

The command handler will reject the JOG_CONT command with an error message if machine is not in free mode, or if any joint
is in motion (GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command
if the joint is already at or beyond its limit and the commanded jog would make it worse.

2.8.19.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, with a target position beyond
the end of joint travel, and a velocity limit of emcmotCommand->vel. This starts the joint moving, and the move will continue
until stopped by an ABORT command or by hitting a limit. The free mode planner accelerates at the joint accel limit at the
beginning of the move, and will decelerate at the joint accel limit when it stops.

2.8.20 JOG_INCR

The JOG_INCR command initiates an incremental jog on a single joint. Incremental jogs are cumulative, in other words, issuing
two JOG_INCR commands that each ask for 0.100 inches of movement will result in 0.200 inches of travel, even if the second
command is issued before the first one finishes. Normally incremental jogs stop when they have traveled the desired distance,
however they also stop when they hit a limit, or on an ABORT command.

2.8.20.1 Requirements

The command handler will silently reject the JOG_INCR command if machine is not in free mode, or if any joint is in motion
(GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command if the joint
is already at or beyond its limit and the commanded jog would make it worse.

Developer Manual V2.8.4, 2022-09-18 18 /63

2.8.20.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the target position is increment-
ed/decremented by emcmotCommand->offset, and the velocity limit is set to emcmotCommand->vel. The free mode trajectory
planner will generate a smooth trapezoidal move from the present position to the target position. The planner can correctly handle
changes in the target position that happen while the move is in progress, so multiple JOG_INCR commands can be issued in
quick succession. The free mode planner accelerates at the joint accel limit at the beginning of the move, and will decelerate at
the joint accel limit to stop at the target position.

2.8.21 JOG_ABS

The JOG_ABS command initiates an absolute jog on a single joint. An absolute jog is a simple move to a specific location, in
joint coordinates. Normally absolute jogs stop when they reach the desired location, however they also stop when they hit a limit,
or on an ABORT command.

2.8.21.1 Requirements

The command handler will silently reject the JOG_ABS command if machine is not in free mode, or if any joint is in motion
(GET_MOTION_INPOS_FLAG() == FALSE), or if motion is not enabled. It will also silently ignore the command if the joint
is already at or beyond its limit and the commanded jog would make it worse.

2.8.21.2 Results

The free mode trajectory planner for the joint identified by emcmotCommand->axis is activated, the target position is set to
emcmotCommand->offset, and the velocity limit is set to emcmotCommand->vel. The free mode trajectory planner will generate
a smooth trapezoidal move from the present position to the target position. The planner can correctly handle changes in the target
position that happen while the move is in progress. If multiple JOG_ABS commands are issued in quick succession, each new
command changes the target position and the machine goes to the final commanded position. The free mode planner accelerates
at the joint accel limit at the beginning of the move, and will decelerate at the joint accel limit to stop at the target position.

2.8.22 SET_LINE

The SET_LINE command adds a straight line to the trajectory planner queue.
(More later)

2.8.23 SET_CIRCLE

The SET_CIRCLE command adds a circular move to the trajectory planner queue.
(More later)

2.8.24 SET_TELEOP_VECTOR

The SET_TELEOP_VECTOR command instructs the motion controller to move along a specific vector in Cartesian space.

(More later)

2.8.25 PROBE

The PROBE command instructs the motion controller to move toward a specific point in Cartesian space, stopping and recording
its position if the probe input is triggered.

(More later)

Developer Manual V2.8.4, 2022-09-18 19/63

2.8.26 CLEAR_PROBE_FLAG

The CLEAR_PROBE_FLAG command is used to reset the probe input in preparation for a PROBE command. (Question: why
shouldn’t the PROBE command automatically reset the input?)

(More later)

2.8.27 SET_xix

There are approximately 15 SET_xxx commands, where xxx is the name of some configuration parameter. It is anticipated that
there will be several more SET commands as more parameters are added. I would like to find a cleaner way of setting and reading
configuration parameters. The existing methods require many lines of code to be added to multiple files each time a parameter is
added. Much of that code is identical or nearly identical for every parameter.

2.9 Backlash and Screw Error Compensation

2.10 Task controller (EMCTASK)

2.10.1 State

Task has three possible internal states: E-stop, E-stop Reset, and Machine On.

Estop Reset /Estop

Machine Off

2.11 10 controller (EMCIO)

The I/O Controller is separate module that accepts NML commands from TASK.

It interacts with external I/O using HAL pins.

iocontrol.cc is loaded via the linuxcnc script before TASK is.

There are curently two versions of iocontrol. The second version handles toolchange hardware errors

Developer Manual V2.8.4, 2022-09-18

20/63

Curently ESTOP/Enable, coolant, lube, and tool changing are handled by

iocontrol. These are relatively low speed events, high speed coordinated I/O is handled in motion.

emctaskmain.cc sends I/O commands via taskclass.cc

Taskclass’s functions send NML messages out to iocontrol.cc

taskclass either uses the commands defined in c++ in it’s file or,

if defined, runs python based commands defined in files provided by the user.

iocontrol main loop process:

* registers for SIGTERM and SIGINT signals from the OS.

* checks to see it HAL inputs have changed

¢ checks if read_tool_inputs() indicates the tool change is finished and set emcioStatus.status

checks for I/O related NML messages

nml message numbers: from emc.hh:

#define EMC_IO_INIT_TYPE (NMLTYPE) 1601)

#define EMC_TOOL_STAT_TYPE (NMLTYPE) 1199)

#define EMC_TOOL_INIT_TYPE (NMLTYPE) 1101)

#define EMC_TOOL_HALT_TYPE (NMLTYPE) 1102)

#define EMC_TOOL_ABORT_TYPE (NMLTYPE) 1103)

#define EMC_TOOL_PREPARE_TYPE ((NMLTYPE) 1104)

#define EMC_TOOL_LOAD_TYPE (NMLTYPE) 1105)

#define EMC_TOOL_UNLOAD_TYPE (NMLTYPE) 1106)

#define EMC_TOOL_LOAD_TOOL_TABLE_TYPE (NMLTYPE) 1107)
#define EMC_TOOL_SET_OFFSET_TYPE ((NMLTYPE) 1108)
#define EMC_TOOL_SET_NUMBER_TYPE ((NMLTYPE) 1109)
#define EMC_TOOL_START_CHANGE_TYPE ((NMLTYPE) 1110)

2.12 User Interfaces

2.13 libnml Introduction

libnml is derived from the NIST rcslib without all the multi-platform support. Many of the wrappers around platform specific
code has been removed along with much of the code that is not required by LinuxCNC. It is hoped that sufficient compatibility
remains with rcslib so that applications can be implemented on non-Linux platforms and still be able to communicate with

LinuxCNC.

Developer Manual V2.8.4, 2022-09-18 21/63

This chapter is not intended to be a definitive guide to using libnml (or rcslib), instead, it will eventually provide an overview of
each C++ class and their member functions. Initially, most of these notes will be random comments added as the code scrutinized
and modified.

2.14 LinkedList

Base class to maintain a linked list. This is one of the core building blocks used in passing NML messages and assorted internal
data structures.

2.15 LinkedListNode

Base class for producing a linked list - Purpose, to hold pointers to the previous and next nodes, pointer to the data, and the size
of the data.

No memory for data storage is allocated.

2.16 SharedMemory

Provides a block of shared memory along with a semaphore (inherited from the Semaphore class). Creation and destruction of
the semaphore is handled by the SharedMemory constructor and destructor.

2.17 ShmBuffer

Class for passing NML messages between local processes using a shared memory buffer. Much of internal workings are inherited
from the CMS class.

2.18 Timer

The Timer class provides a periodic timer limited only by the resolution of the system clock. If, for example, a process needs to
be run every 5 seconds regardless of the time taken to run the process, the following code snippet demonstrates how :

main ()
{
timer = new Timer (5.0); /+ Initialize a timer with a 5 second loop =*/
while (0) {
/+ Do some process */
timer.wait (); /* Wait till the next 5 second interval =/

}

delete timer;

2.19 Semaphore

The Semaphore class provides a method of mutual exclusions for accessing a shared resource. The function to get a semaphore
can either block until access is available, return after a timeout, or return immediately with or without gaining the semaphore.
The constructor will create a semaphore or attach to an existing one if the ID is already in use.

The Semaphore::destroy() must be called by the last process only.

Developer Manual V2.8.4, 2022-09-18 22 /63

2.20 CMS

At the heart of libnml is the CMS class, it contains most of the functions used by libnml and ultimately NML. Many of the
internal functions are overloaded to allow for specific hardware dependent methods of data passing. Ultimately, everything
revolves around a central block of memory (referred to as the message buffer or just buffer). This buffer may exist as a shared
memory block accessed by other CMS/NML processes, or a local and private buffer for data being transferred by network or
serial interfaces.

The buffer is dynamically allocated at run time to allow for greater flexibility of the CMS/NML sub-system. The buffer size must
be large enough to accommodate the largest message, a small amount for internal use and allow for the message to be encoded if
this option is chosen (encoded data will be covered later). The following figure is an internal view of the buffer space.

Buffer Name [32 char]

CMS Header {
Read,
Message ID
Message Size

}

Data Space

CMS buffer The CMS base class is primarily responsible for creating the communications pathways and interfacing to the O.S.

2.21 Configuration file format

NML configuration consists of two types of line formats. One for Buffers, and a second for Processes that connect to the buffers.

2.21.1 Buffer line

The original NIST format of the buffer line is:

* B name type host size neut RPC# buffer# max_procs key [type specific configs]

* B - identifies this line as a Buffer configuration.

* name - is the identifier of the buffer.

* type - describes the buffer type - SHMEM, LOCMEM, FILEMEM, PHANTOM, or GLOBMEM.

e host - is either an IP address or host name for the NML server

Developer Manual V2.8.4, 2022-09-18 23/63

size - is the size of the buffer

neut - a boolean to indicate if the data in the buffer is encoded in a machine independent format, or raw.
RPC# - Obsolete - Place holder retained for backward compatibility only.

buffer# - A unique ID number used if a server controls multiple buffers.

max_procs - is the maximum processes allowed to connect to this buffer.

key - is a numerical identifier for a shared memory buffer

2.21.2 Type specific configs

The buffer type implies additional configuration options whilst the host operating system precludes certain combinations. In an
attempt to distill published documentation in to a coherent format, only the SHMEM buffer type will be covered.

mutex=o0s_sem - default mode for providing semaphore locking of the buffer memory.
mutex=none - Not used

mutex=no_interrupts - not applicable on a Linux system

mutex=no_switching - not applicable on a Linux system

mutex=mao split - Splits the buffer in to half (or more) and allows one process to access part of the buffer whilst a second
process is writing to another part.

TCP=(port number) - Specifies which network port to use.

UDP=(port number) - ditto

STCP=(port number) - ditto

serialPortDevName=(serial port) - Undocumented.

passwd=file_name.pwd - Adds a layer of security to the buffer by requiring each process to provide a password.
bsem - NIST documentation implies a key for a blocking semaphore, and if bsem=-1, blocking reads are prevented.
queue - Enables queued message passing.

ascii - Encode messages in a plain text format

disp - Encode messages in a format suitable for display (???)

xdr - Encode messages in External Data Representation. (see rpc/xdr.h for details).

diag - Enables diagnostics stored in the buffer (timings and byte counts ?)

2.21.3 Process line

The original NIST format of the process line is:

P name buffer type host ops server timeout master ¢_num [type specific configs]

P - identifies this line as a Process configuration.
name - is the identifier of the process.
buffer - is one of the buffers defined elsewhere in the config file.

type - defines whether this process is local or remote relative to the buffer.

Developer Manual V2.8.4, 2022-09-18 24 /63

* host - specifies where on the network this process is running.

* ops - gives the process read only, write only, or read/write access to the buffer.

* server - specifies if this process will running a server for this buffer.

* timeout - sets the timeout characteristics for accesses to the buffer.

* master - indicates if this process is responsible for creating and destroying the buffer.

* c_num - an integer between zero and (max_procs -1)

2.21.4 Configuration Comments

Some of the configuration combinations are invalid, whilst others imply certain constraints. On a Linux system, GLOBMEM is
obsolete, whilst PHANTOM is only really useful in the testing stage of an application, likewise for FILEMEM. LOCMEM is of
little use for a multi-process application, and only offers limited performance advantages over SHMEM. This leaves SHMEM as
the only buffer type to use with LinuxCNC.

The neut option is only of use in a multi-processor system where different (and incompatible) architectures are sharing a block
of memory. The likelihood of seeing a system of this type outside of a museum or research establishment is remote and is only
relevant to GLOBMEM buffers.

The RPC number is documented as being obsolete and is retained only for compatibility reasons.

With a unique buffer name, having a numerical identity seems to be pointless. Need to review the code to identify the logic.
Likewise, the key field at first appears to be redundant, and it could be derived from the buffer name.

The purpose of limiting the number of processes allowed to connect to any one buffer is unclear from existing documentation and
from the original source code. Allowing unspecified multiple processes to connect to a buffer is no more difficult to implement.

The mutex types boil down to one of two, the default “os_sem” or “mao split”. Most of the NML messages are relatively short
and can be copied to or from the buffer with minimal delays, so split reads are not essential.

Data encoding is only relevant when transmitted to a remote process - Using TCP or UDP implies XDR encoding. Whilst ASCII
encoding may have some use in diagnostics or for passing data to an embedded system that does not implement NML.

UDP protocols have fewer checks on data and allows a percentage of packets to be dropped. TCP is more reliable, but is
marginally slower.

If LinuxCNC is to be connected to a network, one would hope that it is local and behind a firewall. About the only reason to
allow access to LinuxCNC via the Internet would be for remote diagnostics - This can be achieved far more securely using other
means, perhaps by a web interface.

The exact behavior when timeout is set to zero or a negative value is unclear from the NIST documents. Only INF and positive
values are mentioned. However, buried in the source code of rcslib, it is apparent that the following applies:

timeout > 0 Blocking access until the timeout interval is reached or access to the buffer is available.
timeout = 0 Access to the buffer is only possible if no other process is reading or writing at the time.

timeout < 0 or INF Access is blocked until the buffer is available.

2.22 NML base class

Expand on the lists and the relationship between NML, NMLmsg, and the lower level cms classes.
Not to be confused with NMLmsg, RCS_STAT_MSG, or RCS_CMD_MSG.
NML is responsible for parsing the config file, configuring the cms buffers and is the mechanism for routing messages to the

correct buffer(s). To do this, NML creates several lists for:

¢ cms buffers created or connected to.

Developer Manual V2.8.4, 2022-09-18 25/63

* processes and the buffers they connect to

* along list of format functions for each message type

This last item is probably the nub of much of the malignment of libnml/rcslib and NML in general. Each message that is passed
via NML requires a certain amount of information to be attached in addition to the actual data. To do this, several formatting
functions are called in sequence to assemble fragments of the overall message. The format functions will include NML_TYPE,
MSG_TYPE, in addition to the data declared in derived NMLmsg classes. Changes to the order in which the formatting functions
are called and also the variables passed will break compatibility with rcslib if messed with - There are reasons for maintaining
reslib compatibility, and good reasons for messing with the code. The question is, which set of reasons are overriding?

2.22.1 NML internals

2.22.1.1 NML constructor

NML::NML.() parses the config file and stores it in a linked list to be passed to cms constructors in single lines. It is the function
of the NML constructor to call the relevant cms constructor for each buffer and maintain a list of the cms objects and the processes
associated with each buffer.

It is from the pointers stored in the lists that NML can interact with cms and why Doxygen fails to show the real relationships
involved.

Note

The config is stored in memory before passing a pointer to a specific line to the cms constructor. The cms constructor then
parses the line again to extract a couple of variables. .. It would make more sense to do ALL the parsing and save the variables
in a struct that is passed to the cms constructor - This would eliminate string handling and reduce duplicate code in cms.. ..

2.22.1.2 NML read/write

Calls to NML::read and NML::write both perform similar tasks in so much as processing the message - The only real variation
is in the direction of data flow.

A call to the read function first gets data from the buffer, then calls format_output(), whilst a write function would call for-
mat_input() before passing the data to the buffer. It is in format_xxx() that the work of constructing or deconstructing the
message takes place. A list of assorted functions are called in turn to place various parts of the NML header (not to be confused
with the cms header) in the right order - The last function called is emcFormat() in emc.cc.

2.22.1.3 NMLmsg and NML relationships

NMLmsg is the base class from which all message classes are derived. Each message class must have a unique ID defined (and
passed to the constructor) and also an update(*cms) function. The update() will be called by the NML read/write functions when
the NML formatter is called - The pointer to the formatter will have been declared in the NML constructor at some point. By
virtue of the linked lists NML creates, it is able to select cms pointer that is passed to the formatter and therefor which buffer is
to be used.

2.23 Adding custom NML commands

LinuxCNC is pretty awesome, but some parts need some tweaking. As you know communication is done through NML channels,
the data sent through such a channel is one of the classes defined in emc.hh (implemented in emc.cc). If somebody needs a
message type that doesn’t exist, he should follow these steps to add a new one. (The Message I added in the example is called
EMC_IO_GENERIC (inherits EMC_IO_CMD_MSG (inherits RCS_CMD_MSG)))

1. add the definition of the EMC_IO_GENERIC class to emc2/src/emc/nml_intf/emc.hh

Developer Manual V2.8.4, 2022-09-18 26 /63

2. add the type define: #define EMC_IO_GENERIC_TYPE (NMLTYPE) 1605)

a. (I chose 1605, because it was available) to emc2/src/emc/nml_intf/emc.hh
3. add case EMC_IO_GENERIC_TYPE to emcFormat in emc2/src/emc/nml_intf/emc.cc
4. add case EMC_IO_GENERIC_TYPE to emc_symbol_lookup in emc2/src/emc/nml_intf/emc.cc
5. add EMC_IO_GENERIC::update function to emc2/src/emc/nml_intf/emc.cc

Recompile, and the new message should be there. The next part is to send such messages from somewhere, and receive them in
another place, and do some stuff with it.

2.24 The Tool Table and Toolchanger

LinuxCNC interfaces with toolchanger hardware, and has an internal toolchanger abstraction. LinuxCNC manages tool informa-
tion in a tool table file.

2.24.1 Toolchanger abstraction in LinuxCNC

LinuxCNC supports two kinds of toolchanger hardware, called nonrandom and random. The ini setting [EMCIO]JRANDOM_TOOLCH/
controls which of these kinds of hardware LinuxCNC thinks it’s connected to.

2.24.1.1 Nonrandom Toolchangers

Nonrandom toolchanger hardware puts each tool back in the pocket it was originally loaded from.
Examples of nonrandom toolchanger hardware are the "manual” toolchanger, lathe tool turrents, and rack toolchangers.

When configured for a nonrandom toolchanger, LinuxCNC does not change the pocket number in the tool table file as tools are
loaded and unloaded. Internal to LinuxCNC, on tool change the tool information is copied from the tool table’s source pocket to
pocket 0 (which represents the spindle), replacing whatever tool information was previously there.

Note
In LinuxCNC configured for nonrandom toolchanger, tool 0 (TO) has special meaning: "no tool". TO may not appear in the tool
table file, and changing to TO will result in LinuxCNC thinking it's got an empty spindle.

2.24.1.2 Random Toolchangers

Random toolchanger hardware swaps the tool in the spindle (if any) with the requested tool on tool change. Thus the pocket that
a tool resides in changes as it is swapped in and out of the spindle.

An example of random toolchanger hardware is a carousel toolchanger.

When configured for a random toolchanger, LinuxCNC swaps the pocket number of the old and the new tool in the tool table file
when tools are loaded. Internal to LinuxCNC, on tool change, the tool information is swapped between the tool table’s source
pocket and pocket 0 (which represents the spindle). So after a tool change, pocket 0 in the tool table has the tool information for
the new tool, and the pocket that the new tool came from has the tool information for the old tool (the tool that was in the spindle
before the tool change), if any.

Note

In LinuxCNC configured for random toolchanger, tool 0 (TO) has no special meaning. It is treated exactly like any other tool in
the tool table. It is customary to use TO to represent "no tool" (ie, a tool with zero TLO), so that the spindle can be conveniently
emptied when needed.

Developer Manual V2.8.4, 2022-09-18 27 /63

2.24.2 The Tool Table

LinuxCNC keeps track of tools in a file called the tool table. The tool table records the following information for each tool:

tool number
An integer that uniquely identifies this tool. Tool numbers are handled differently by LinuxCNC when configured for

random and nonrandom toolchangers:

* When LinuxCNC is configured for a nonrandom toolchanger this number must be positive. TO gets special handling and
is not allowed to appear in the tool table.

* When LinuxCNC is configured for a random toolchanger this number must be non-negative. TO is allowed in the tool
table, and is usually used to represent "no tool", ie the empty pocket.

pocket number
An integer that identifies the pocket or slot in the toolchanger hardware where the tool resides. Pocket numbers are handled

differently by LinuxCNC when configured for random and nonrandom toolchangers:

* When LinuxCNC is configured for a nonrandom toolchanger, the pocket number in the tool file can be any positive
integer (pocket O is not allowed). LinuxCNC silently compactifies the pocket numbers when it loads the tool file,
so there may be a difference between the pocket numbers in the tool file and the internal pocket numbers used by
LinuxCNC-with-nonrandom-toolchanger.

* When LinuxCNC is configured for a random toolchanger, the pocket numbers in the tool file must be between 0 and
1000, inclusive. Pockets 1-1000 are in the toolchanger, pocket O is the spindle.

diameter
Diameter of the tool, in machine units.

tool length offset
Tool length offset (also called TLO), in up to 9 axes, in machine units. Axes that don’t have a specified TLO get 0.

2.24.3 Gcodes affecting tools

The gcodes that use or affect tool information are:

2.24.3.1 Txxx

Tells the toolchanger hardware to prepare to switch to a specified tool xxx.

Handled by Interp: :convert_tool_select ().

1. The machine is asked to prepare to switch to the selected tool by calling the Canon function SELECT_POCKET () with
the pocket number of the requested tool.

a. (saicanon) No-op.

b. (emccanon) Builds an EMC_TOOL_PREPARE message with the requested pocket number and sends it to Task, which
sends it on to IO. 10 gets the message and asks HAL to prepare the pocket by setting iocontrol.0.tool-prep-pocke
iocontrol.0.tool-prep—number,and iocontrol.0.tool-prepare. IO thenrepeatedly calls read_tool_
to poll the HAL pin iocontrol.0.tool-prepared, which signals from the toolchanger hardware, via HAL, to
1O that the requested tool prep is complete. When that pin goes True, IO sets emcioStatus.tool.pocketPrepped
to the requested tool’s pocket number.

2. Back in interp, settings—->selected_pocket is assigned the pocket number of the requested tool xxx.

Developer Manual V2.8.4, 2022-09-18 28 /63

2.24.3.2 M6

Tells the toolchanger to switch to the currently selected tool (selected by the previous Txxx command).

Handled by Interp: :convert_tool_change ().

1. The machine is asked to change to the selected tool by calling the Canon function CHANGE_TOOL () with settings->select

a. (saicanon) Sets sai’s _active_slot to the passed-in pocket number. Tool information is copied from the selected
pocket of of the tool table (ie, from sai’s _tools[_active_slot]) to the spindle (aka sai’s _tools[0]).

b. (emccanon) Sends an EMC_TOOL_ LOAD message to Task, which sends it to IO. IO sets emcioStatus.tool.toolInSy
to the tool number of the tool in the pocket identified by emcioStatus.tool.pocketPrepped (set by Txxx
aka SELECT_POCKET ()). It then requests that the toolchanger hardware perform a tool change, by setting the HAL
pin iocontrol.0.tool-change to True. Later, IO’s read_tool_inputs () will sense that the HAL pin
iocontrol.0.tool_changed has been set to True, indicating the toolchanger has completed the tool change.
When this happens, it calls 1oad_tool () to update the machine state.

i. load_tool () with a nonrandom toolchanger config copies the tool information from the selected pocket to
the spindle (pocket 0).

ii. load_tool () with a random toolchanger config swaps tool information between pocket O (the spindle) and
the selected pocket, then saves the tool table.

2. Back in interp, settings->current_pocket is assigned the new tool from settings->selected_pocket
(set by Txxx). The relevant numbered parameters (#5400-#5413) are updated with the new tool information from pocket
0 (spindle).

2.24.3.3 G43/G43.1/G49

Apply tool length offset. G43 uses the TLO of the currently loaded tool, or of a specified tool if the H-word is given in the block.
G43.1 gets TLO from axis-words in the block. G49 cancels the TLO (it uses O for the offset for all axes).
Handled by Interp: :convert_tool_length_offset ().

1. It starts by building an EmcPose containing the 9-axis offsets to use. For G4 3. 1, these tool offsets come from axis words

in the current block. For G4 3 these offsets come from the current tool (the tool in pocket 0), or from the tool specified by
the H-word in the block. For G49, the offsets are all 0.

2. The offsets are passed to Canon’s USE_TOOL_LENGTH_OFFSET () function.

a. (saicanon) Records the TLO in _tool_offset.

b. (emccanon) Builds an EMC_TRAJ_SET_OFFSET message containing the offsets and sends it to Task. Task copies
the offsets to emcStatus—>task.toolOffset and sends them on to Motion via an EMCMOT_SET_OFFSET
command. Motion copies the offsets to emcmotStatus->tool_offset, where it gets used to offset future
motions.

3. Backininterp, the offsets are recorded in settings—>tool_offset. The effective pocketis recordedin settings->tool
though this value is never used.

2.24.3.4 G10L1/L10/L11

Modifies the tool table.
Handled by Interp: :convert_setup_tool ().
1. Picks the tool number out of the P-word in the block and finds the pocket for that tool:

a. With a nonrandom toolchanger config this is always the pocket number in the toolchanger (even when the tool is in
the spindle).

Developer Manual V2.8.4, 2022-09-18 29/63

b. With a random toolchanger config, if the tool is currently loaded it uses pocket O (pocket O means "the spindle"), and
if the tool is not loaded it uses the pocket number in the tool changer. (This difference is important.)

2. Figures out what the new offsets should be.

3. The new tool information (diameter, offsets, angles, and orientation), along with the tool number and pocket number, are
passed to the Canon call SET_TOOL_TABLE_ENTRY().
a. (saicanon) Copy the new tool information to the specified pocket (in sai’s internal tool table, _tools).

b. (emccanon) Build an EMC_TOOL_SET_OFFSET message with the new tool information, and send it to Task, which
passes it to IO. IO updates the specified pocket in its internal copy of the tool table (emcioStatus.tool.toolTable),
and if the specified tool is currently loaded (it is compared to emcioStatus.tool.toolInSpindle) then the
new tool information is copied to pocket O (the spindle) as well. (FIXME: that’s a buglet, should only be copied on
nonrandom machines.) Finally IO saves the new tool table.

4. Back in interp, if the modified tool is currently loaded in the spindle, and if the machine is a non-random toolchanger, then
the new tool information is copied from the tool’s home pocket to pocket O (the spindle) in interp’s copy of the tool table,
settings—->tool_table. (This copy is not needed on random tool changer machines because there, tools don’t have
a home pocket and instead we just updated the tool in pocket O directly.)

5. The relevant numbered parameters (#5400-#5413) are updated from the tool information in the spindle (by copying the
information from interp’s settings—>tool_table to settings—>parameters). (FIXME: this is a buglet, the
params should only be updated if it was the current tool that was modified).

6. If the modified tool is currently loaded in the spindle, and if the config is for a nonrandom toolchanger, then the new
tool information is written to the tool table’s pocket 0 as well, via a second call to SET_TOOL_TABLE_ENTRY(). (This
second tool-table update is not needed on random toolchanger machines because there, tools don’t have a home pocket and
instead we just updated the tool in pocket O directly.)

2.24.3.5 M61

Set current tool number. This switches LinuxCNC’s internal representation of which tool is in the spindle, without actually
moving the toolchanger or swapping any tools.

Handled by Interp: :convert_tool_change ().

Canon: CHANGE_TOOL_NUMBER ()

settings->current_pocket is assigned the pocket number currently holding the tool specified by the Q-word argument.

2.24.3.6 G41/G41.1/G42/G42.1

Enable cutter radius compensation (usually called cutter comp).
Handled by Interp: :convert_cutter_compensation_on().

No Canon call, cutter comp happens in the interpreter. Uses the tool table in the expected way: if a D-word tool number is
supplied it looks up the pocket number of the specified tool number in the table, and if no D-word is supplied it uses pocket 0
(the spindle).

2.24.3.7 G40

Cancel cutter radius compensation.
Handled by Interp: :convert_cutter_compensation_off ().

No Canon call, cutter comp happens in the interpreter. Does not use the tool table.

Developer Manual V2.8.4, 2022-09-18 30/63

2.24.4 Internal state variables

This is not an exhaustive list! Tool information is spread through out LinuxCNC.

2.24.41 10
emcioStatus is of type EMC_IO_STAT

emcioStatus.tool.pocketPrepped

When IO gets the signal from HAL that the toolchanger prep is complete (after a Txxx command), this variable is set to

the pocket of the requested tool. When IO gets the signal from HAL that the tool change itself is complete (after an M6
command), this variable gets reset to -1.

emcioStatus.tool.toolInSpindle
Tool number of the tool currently installed in the spindle. Exported on the HAL pin iocontrol.0.tool-number
(s32).

emcioStatus.tool.toolTable[]

An array of CANON_TOOL_TABLE structures, CANON_POCKETS_MAX long. Loaded from the tool table file at startup
and maintained there after. Index O is the spindle, indexes 1-(CANON_POCKETS_MAX-1) are the pockets in the
toolchanger. This is a complete copy of the tool information, maintained separately from Interp’s settings.tool_table.

2.24.4.2 interp

settingsisoftype settings, whichis struct setup_struct. Definedinsrc/emc/rs274ngc/interp_internal.h

settings.selected_pocket
Pocket of the tool most recently selected by Txxx.

settings.current_pocket

Original pocket of the tool currently in the spindle. In other words: which toolchanger pocket the tool that’s currently in
the spindle was loaded from.

settings.tool_table[]

An array of tool information. The index into the array is the "pocket number" (aka "slot number"). Pocket 0 is the spindle,
pockets 1 through (CANON_POCKETS_MAX-1) are the pockets of the toolchanger.

settings.tool_offset_index
Unused. FIXME: Should probably be removed.

settings.toolchange_flag

Interp sets this to true when calling Canon’s CHANGE_TOOL() function. Itis checkedin Interp: :convert_tool_length
to decide which pocket to use for G43 (with no H-word): settings—->current_pocket if the tool change is still in
progress, pocket O (the spindle) if the tool change is complete.

settings.random_toolchanger
Set from the ini variable [EMCIO]RANDOM_TOOLCHANGER at startup. Controls various tool table handling logic.
(IO also reads this ini variable and changes its behavior based on it. For example, when saving the tool table, random
toolchanger save the tool in the spindle (pocket 0), but non-random toolchanger save each tool in its "home pocket".)

settings.tool_offset
This is an EmcPose variable.
* Used to compute position in various places.

* Sent to Motion via the EMCMOT_SET_OFFSET message. All motion does with the offsets is export them to the HAL
pinsmotion.0.tooloffset. [xyzabcuvw]. FIXME: export these from someplace closer to the tool table (io or
interp, probably) and remove the EMCMOT_SET_OFFSET message.

Developer Manual V2.8.4, 2022-09-18 31/63

settings.pockets_max
Used interchangably with CANON_POCKETS_MAX (a #defined constant, set to 1000 as of April 2020). FIXME: This
settings variable is not currently useful and should probably be removed.

settings.tool_table
This is an array of CANON_TOOL_TABLE structures (defined in src/emc/nml_intf/emctool.h), with CANON_POCKETS
entries. Indexed by "pocket number", aka "slot number". Index O is the spindle, indexes 1-(CANON_POCKETS_MAX-1)
are the pockets in the tool changer. On a random toolchanger pocket numbers are meaningful. On a nonrandom toolchanger
pockets are meaningless; the pocket numbers in the tool table file are ignored and tools are assigned to tool_table slots
sequentially.

settings.tool_change_at_g30 , settings.tool_change_quill_up , settings.tool_change_with_spindle_on
These are set from ini variables in the [EMCIO] section, and control how tool changes are performed.

2.25 Reckoning of joints and axes

2.25.1 In the status buffer

The status buffer is used by Task and the Uls.

FIXME: axis_mask and axes overspecify the number of axes

status.motion.traj.axis_mask
A bitmask with a "1" for the axes that are present and a "0" for the axes that are not present. X is bit 0, Y is bit 1, etc.
For example, a machine with X and Z axes would have an axis_mask of 0x5, an XYZ machine would have 0x7, and an
XYZB machine would have an axis_mask of 0x17.

status.motion.traj.axes (deprecated)
The value of this variable is one more than the index of the highest-numbered axis present on the machine. As in the
axis_mask, the index of X in 0, Y is 1, etc. An XZ machine has axes value of 3, as does an XYZ machine. An XYZW
machine has axes value 9. This variable is not terribly helpful, and its use is deprecated. Use axis_mask instead.

status.motion.traj. joints
A count of the number of joints the machine has. A normal lathe has 2 joints; one driving the X axis and one driving the Z
axis. An XYYZ gantry mill has 4 joints; one driving X, one driving one side of the Y, one driving the other side of the Y,
and one driving Z. An XYZA mill also has 4 joints.

status.motion.axis [EMCMOT_MAX AXIS]
An array of EMCMOT_MAX_AXIS axis structures. axis[n] is valid if (axis_mask & (1 << n)) is True. If
(axis_mask & (1 << n)) isFalse, then axis[n] does not exist on this machine and must be ignored.

status.motion. joint [EMCMOT MAX JOINTS]
An array of EMCMOT_MAX_JOINTS joint structures. joint [0] through joint [joints—1] are valid, the others do
not exist on this machine and must be ignored.

Things are not this way currently in the joints-axes branch, but deviations from this design are considered bugs. For an example
of such a bug, see the treatment of axes in src/emc/ini/initraj.cc:loadTraj(). There are undoubtedly more, and I need your help to
find them and fix them.

2.25.2 In Motion

The Motion controller realtime component first gets the number of joints from the num_joints load-time parameter. This
determines how many joints worth of HAL pins are created at startup.

Motion’s number of joints can be changed at runtime using the EMCMOT_SET_NUM_JOINTS command from Task.

The Motion controller always operates on EMCMOT_MAX_AXIS axes. It always creates nine sets of axis. «. % pins.

Developer Manual V2.8.4, 2022-09-18 32/63

Chapter 3

NML Messages

for details see src/emc/nml_intf/emc.hh

OPERATOR

EMC_OPERATOR_ERROR_TYPE
EMC_OPERATOR_TEXT_TYPE
EMC_OPERATOR_DISPLAY_TYPE

JOINT

EMC_JOINT_SET JOINT_TYPE
EMC_JOINT_SET_UNITS_TYPE
EMC_JOINT_SET_MIN_POSITION_LIMIT_ TYPE
EMC_JOINT_ SET MAX_POSITION_LIMIT TYPE
EMC_JOINT_SET_FERROR_TYPE
EMC_JOINT_SET_HOMING_PARAMS_TYPE
EMC_JOINT_SET MIN_FERROR_TYPE
EMC_JOINT_SET MAX_VELOCITY_ TYPE
EMC_JOINT_INIT_TYPE
EMC_JOINT HALT TYPE
EMC_JOINT_ABORT_TYPE
EMC_JOINT_ENABLE_TYPE

EMC_JOINT DISABLE_TYPE
EMC_JOINT_HOME_TYPE
EMC_JOINT_ACTIVATE_TYPE
EMC_JOINT_DEACTIVATE_ TYPE
EMC_JOINT_OVERRIDE_LIMITS_TYPE
EMC_JOINT_LOAD_COMP_TYPE
EMC_JOINT_SET BACKLASH_TYPE
EMC_JOINT_UNHOME_TYPE
EMC_JOINT_STAT_TYPE

AXIS

Developer Manual V2.8.4, 2022-09-18 33/63

EMC_AXIS_STAT TYPE

JOG

EMC_JOG_CONT_TYPE
EMC_JOG_INCR_TYPE
EMC_JOG_ABS_TYPE

EMC_JOG_STOP_TYPE

TRAJ

EMC_TRAJ_SET_AXES_TYPE
EMC_TRAJ SET UNITS_TYPE
EMC_TRAJ_SET_CYCLE_TIME_TYPE
EMC_TRAJ_SET_MODE_TYPE
EMC_TRAJ SET VELOCITY TYPE
EMC_TRAJ_SET_ACCELERATION_TYPE
EMC_TRAJ_SET_MAX_VELOCITY_ TYPE
EMC_TRAJ SET MAX_ACCELERATION_ TYPE
EMC_TRAJ_SET_SCALE_TYPE
EMC_TRAJ_SET_RAPID_SCALE_TYPE
EMC_TRAJ_SET _MOTION_ID TYPE
EMC_TRAJ_INIT_ TYPE
EMC_TRAJ_HALT_TYPE

EMC_TRAJ _ENABLE_TYPE

EMC_TRAJ DISABLE_TYPE
EMC_TRAJ_ABORT_TYPE

EMC_TRAJ PAUSE_TYPE
EMC_TRAJ_STEP_TYPE
EMC_TRAJ_RESUME_TYPE

EMC_TRAJ DELAY TYPE
EMC_TRAJ_LINEAR_MOVE_TYPE
EMC_TRAJ_CIRCULAR_MOVE_TYPE
EMC_TRAJ_SET_TERM COND_TYPE
EMC_TRAJ_SET_OFFSET_TYPE
EMC_TRAJ_SET_G5X_TYPE
EMC_TRAJ_SET_ HOME_TYPE
EMC_TRAJ_SET_ROTATION_TYPE
EMC_TRAJ_SET_G92_TYPE
EMC_TRAJ_CLEAR PROBE_TRIPPED FLAG_TYPE
EMC_TRAJ_PROBE_TYPE
EMC_TRAJ_SET_TELEOP_ENABLE_TYPE
EMC_TRAJ_SET_ SPINDLESYNC_TYPE
EMC_TRAJ_SET_SPINDLE_SCALE_TYPE
EMC_TRAJ_SET_FO_ENABLE_TYPE
EMC_TRAJ_SET_SO_ENABLE_TYPE
EMC_TRAJ_SET_FH ENABLE_TYPE
EMC_TRAJ_RIGID_TAP_TYPE
EMC_TRAJ_STAT TYPE

Developer Manual V2.8.4, 2022-09-18

34 /63

MOTION

EMC_MOTION_INIT TYPE
EMC_MOTION_HALT TYPE
EMC_MOTION_ABORT_TYPE
EMC_MOTION_SET_ AOUT_TYPE
EMC_MOTION_SET DOUT_TYPE
EMC_MOTION_ADAPTIVE_TYPE
EMC_MOTION_STAT TYPE

TASK

EMC_TASK_INIT TYPE
EMC_TASK_HALT TYPE
EMC_TASK_ABORT_TYPE

EMC_TASK_SET MODE_TYPE
EMC_TASK_SET_STATE_TYPE
EMC_TASK_PLAN_OPEN_TYPE
EMC_TASK_PLAN_RUN_TYPE
EMC_TASK_PLAN_READ_TYPE
EMC_TASK_PLAN_EXECUTE_TYPE
EMC_TASK_PLAN_PAUSE_TYPE
EMC_TASK_PLAN_STEP_TYPE
EMC_TASK_PLAN_RESUME_TYPE
EMC_TASK_PLAN_END_TYPE
EMC_TASK_PLAN_CLOSE_TYPE
EMC_TASK_PLAN_INIT_TYPE
EMC_TASK_PLAN_SYNCH_ TYPE
EMC_TASK_PLAN_SET_OPTIONAL_STOP_TYPE
EMC_TASK_PLAN_SET_BLOCK_DELETE_TYPE
EMC_TASK_PLAN_OPTIONAL_STOP_ TYPE
EMC_TASK_STAT_TYPE

TOOL

AUX

EMC_TOOL_INIT_TYPE
EMC_TOOL_HALT TYPE
EMC_TOOL_ABORT_TYPE
EMC_TOOL_PREPARE_TYPE
EMC_TOOL_LOAD_TYPE
EMC_TOOL_UNLOAD_TYPE
EMC_TOOL_LOAD_TOOL_TABLE_TYPE
EMC_TOOL_SET OFFSET_TYPE
EMC_TOOL_SET_NUMBER_TYPE
EMC_TOOL_START CHANGE_TYPE
EMC_TOOL_STAT TYPE

Developer Manual V2.8.4, 2022-09-18 35/63

EMC_AUX_ESTOP_ON_TYPE
EMC_AUX_ESTOP_OFF_TYPE
EMC_AUX_ESTOP_RESET_TYPE
EMC_AUX_INPUT_WAIT_TYPE
EMC_AUX_STAT TYPE

SPINDLE

EMC_SPINDLE_ON_TYPE
EMC_SPINDLE_OFF_TYPE
EMC_SPINDLE_INCREASE_TYPE
EMC_SPINDLE_DECREASE_TYPE
EMC_SPINDLE_CONSTANT_TYPE
EMC_SPINDLE_BRAKE_RELEASE_TYPE
EMC_SPINDLE_BRAKE_ENGAGE_TYPE
EMC_SPINDLE_SPEED_TYPE
EMC_SPINDLE_ORIENT_TYPE
EMC_SPINDLE_WAIT_ORIENT_COMPLETE_TYPE
EMC_SPINDLE_STAT TYPE

COOLANT

EMC_COOLANT_MIST_ON_TYPE
EMC_COOLANT_MIST_OFF_TYPE
EMC_COOLANT_FLOOD_ON_TYPE
EMC_COOLANT_FLOOD_OFF_TYPE
EMC_COOLANT_STAT_TYPE

LUBE

EMC_LUBE_ON_TYPE
EMC_LUBE_OFF_TYPE
EMC_LUBE_STAT TYPE

IO (INPUT/OUTPUT)

EMC_IO_INIT_TYPE
EMC_IO_HALT_TYPE
EMC_IO_ABORT_TYPE
EMC_IO_SET_CYCLE_TIME_TYPE
EMC_IO_STAT_TYPE
EMC_IO_PLUGIN_CALL_TYPE

Developer Manual V2.8.4, 2022-09-18 36/63

OTHER

EMC_NULL_TYPE
EMC_SET_DEBUG_TYPE
EMC_SYSTEM_CMD_TYPE
EMC_INIT TYPE

EMC_HALT TYPE
EMC_ABORT_TYPE

EMC_STAT TYPE
EMC_EXEC_PLUGIN_CALL_TYPE

Developer Manual V2.8.4, 2022-09-18 37 /63

Chapter 4

Coding Style

This chapter describes the source code style preferred by the LinuxCNC team.

4.1 Do no harm

When making small edits to code in a style different than the one described below, observe the local coding style. Rapid changes
from one coding style to another decrease code readability.

Never check in code after running “indent” on it. The whitespace changes introduced by indent make it more difficult to follow
the revision history of the file.

Do not use an editor that makes unneeded changes to whitespace (e.g., which replaces 8 spaces with a tabstop on a line not
otherwise modified, or word-wraps lines not otherwise modified)

4.2 Tab Stops

A tab stop always corresponds to 8 spaces. Do not write code that displays correctly only with a differing tab stop setting.

4.3 Indentation

Use 4 spaces per level of indentation. Combining 8 spaces into one tab is acceptable but not required.

4.4 Placing Braces

Put the opening brace last on the line, and put the closing brace first:

if (x) |
// do something appropriate
}

The closing brace is on a line of its own, except in the cases where it is followed by a continuation of the same statement, i.e. a
while in a do-statement or an else in an if-statement, like this:

Developer Manual V2.8.4, 2022-09-18 38/63

do {
// something important
} while (x > 0);

and

if (x == y) {

// do one thing
} else if (x < y) {

// do another thing
} else {

// do a third thing
}

This brace-placement also minimizes the number of empty (or almost empty) lines, which allows a greater amount of code or
comments to be visible at once in a terminal of a fixed size.

4.5 Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C programmers do not use
cute names like ThisVariableIsATemporaryCounter. A C programmer would call that variable tmp, which is much easier to write,
and not the least more difficult to understand.

However, descriptive names for global variables are a must. To call a global function foo is a shooting offense.

GLOBAL variables (to be used only if you really need them) need to have descriptive names, as do global functions. If you
have a function that counts the number of active users, you should call that count_active_users() or similar, you should not call
it cntusr().

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the compiler knows the types
anyway and can check those, and it only confuses the programmer. No wonder Microsoft makes buggy programs.

LOCAL variable names should be short, and to the point. If you have some random integer loop counter, it should probably be
called i. Calling it loop_counter is non-productive, if there is no chance of it being misunderstood. Similarly, fmp can be just
about any type of variable that is used to hold a temporary value.

If you are afraid to mix up your local variable names, you have another problem, which is called the function-growth-hormone-
imbalance syndrome. See next chapter.

4.6 Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of text (the ISO/ANSI
screen size is 80x24, as we all know), and do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and indentation level of that function. So, if you
have a conceptually simple function that is just one long (but simple) case-statement, where you have to do lots of small things
for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school student might not even
understand what the function is all about, you should adhere to the maximum limits all the more closely. Use helper functions
with descriptive names (you can ask the compiler to in-line them if you think it’s performance-critical, and it will probably do a
better job of it that you would have done).

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you’re doing something wrong.
Re-think the function, and split it into smaller pieces. A human brain can generally easily keep track of about 7 different things,
anything more and it gets confused. You know you’re brilliant, but maybe you’d like to understand what you did 2 weeks from
now.

Developer Manual V2.8.4, 2022-09-18 39/63

4.7 Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code works in a comment:
it’s much better to write the code so that the working is obvious, and it’s a waste of time to explain badly written code.

Generally, you want your comments to tell WHAT your code does, not HOW. A boxed comment describing the function, return
value, and who calls it placed above the body is good. Also, try to avoid putting comments inside a function body: if the function
is so complex that you need to separately comment parts of it, you should probably re-read the Functions section again. You
can make small comments to note or warn about something particularly clever (or ugly), but try to avoid excess. Instead, put the
comments at the head of the function, telling people what it does, and possibly WHY it does it.

If comments along the lines of /* Fix me */ are used, please, please, say why something needs fixing. When a change has been
made to the affected portion of code, either remove the comment, or amend it to indicate a change has been made and needs
testing.

4.8 Shell Scripts & Makefiles

Not everyone has the same tools and packages installed. Some people use vi, others emacs - A few even avoid having either
package installed, preferring a lightweight text editor such as nano or the one built in to Midnight Commander.

gawk versus mawk - Again, not everyone will have gawk installed, mawk is nearly a tenth of the size and yet conforms to the
Posix AWK standard. If some obscure gawk specific command is needed that mawk does not provide, than the script will break
for some users. The same would apply to mawk. In short, use the generic awk invocation in preference to gawk or mawk.

4.9 C++ Conventions

C++ coding styles are always likely to end up in heated debates (a bit like the emacs versus vi arguments). One thing is certain
however, a common style used by everyone working on a project leads to uniform and readable code.

Naming conventions: Constants either from #defines or enumerations should be in upper case through out. Rationale: Makes it
easier to spot compile time constants in the source code. e.g. EMC_MESSAGE_TYPE

Classes and Namespaces should capitalize the first letter of each word and avoid underscores. Rationale: Identifies classes,
constructors and destructors. e.g. GtkWidget

Methods (or function names) should follow the C recommendations above and should not include the class name. Rationale:
Maintains a common style across C and C++ sources. e.g. get_foo_bar()

However, boolean methods are easier to read if they avoid underscores and use an is prefix (not to be confused with methods that
manipulate a boolean). Rationale: Identifies the return value as TRUE or FALSE and nothing else. e.g. isOpen, isHomed

Do NOT use Not in a boolean name, it leads only leads to confusion when doing logical tests. e.g. isNotOnLimit or is_not_on_limit
are BAD.

Variable names should avoid the use of upper case and underscores except for local or private names. The use of global variables
should be avoided as much as possible. Rationale: Clarifies which are variables and which are methods. Public: e.g. axislimit
Private: e.g. maxvelocity_

Specific method naming conventions

The terms get and set should be used where an attribute is accessed directly. Rationale: Indicates the purpose of the function or
method. e.g. get_foo set_bar

For methods involving boolean attributes, set & reset is preferred. Rationale: As above. e.g. set_amp_enable reset_amp_fault

Math intensive methods should use compute as a prefix. Rationale: Shows that it is computationally intensive and will hog the
CPU. e.g. compute_PID

Abbreviations in names should be avoided where possible - The exception is for local variable names. Rationale: Clarity of code.
e.g. pointer is preferred over ptr compute is preferred over cmp compare is again preferred over cmp.

Developer Manual V2.8.4, 2022-09-18 40/ 63

Enumerates and other constants can be prefixed by a common type name e.g. enum COLOR { COLOR_RED, COLOR_BLUE
b

Excessive use of macros and defines should be avoided - Using simple methods or functions is preferred. Rationale: Improves
the debugging process.

Include Statements Header files must be included at the top of a source file and not scattered throughout the body. They should
be sorted and grouped by their hierarchical position within the system with the low level files included first. Include file paths
should NEVER be absolute - Use the compiler -I flag instead. Rationale: Headers may not be in the same place on all systems.

Pointers and references should have their reference symbol next to the variable name rather than the type name. Rationale:
Reduces confusion. e.g. float *x or int &i

Implicit tests for zero should not be used except for boolean variables. e.g. if (spindle_speed != 0) NOT if (spindle_speed)
Only loop control statements must be included in a for() construct. e.g. sum = 0; for (i = 0; i < 10; i++) { sum += value[i]; }
NOT for (i =0, sum =0; i < 10; i++) sum += value[i];

Likewise, executable statements in conditionals must be avoided. e.g. if (fd = open(file_name) is bad.

Complex conditional statements should be avoided - Introduce temporary boolean variables instead.

Parentheses should be used in plenty in mathematical expressions - Do not rely on operator precedence when an extra parentheses
would clarify things.

File names: C++ sources and headers use .cc and .hh extension. The use of .c and .h are reserved for plain C. Headers are for
class, method, and structure declarations, not code (unless the functions are declared inline).

4.10 Python coding standards

Use the PEP 8 style for Python code.

4.11 Comp coding standards

In the declaration portion of a .comp file, begin each declaration at the first column. Insert extra blank lines when they help group
related items.

In the code portion of a .comp file, follow normal C coding style.

http://www.python.org/dev/peps/pep-0008/

Developer Manual V2.8.4, 2022-09-18 41 /63

Chapter 5

Building LinuxCNC

5.1 Introduction

This document describes how to build the LinuxCNC software and documentation from source. This is primarily useful if you
are a developer who is modifying LinuxCNC. It can also be useful if you’re a user who is testing developer branches, though
then you also have the option of just installing Debian packages from the buildbot: http://buildbot.linuxcnc.org

5.1.1 Quick Start

For the impatient, try this:

git clone git://github.com/linuxcnc/linuxcnc.git linuxcnc-dev
cd linuxcnc-dev/src

./autogen.sh

./configure —--with-realtime=uspace

vV V. V V V

make

That will probably fail! That doesn’t make you a bad person, it just means you should read this whole document to find out how
to fix your problems. Especially the section on Satisfying Build Dependencies.

If you are running on a realtime-capable system (such as an install from the LinuxCNC Live/Install Image, see the Realtime
section below), one extra build step is needed at this time:

> sudo make setuid

After you’ve successfully built LinuxCNC it’s time to run the tests:

> source ../scripts/rip-environment
> runtests

This might fail too! Read this whole document, but especially the section on Setting up the test environment.

5.2 Supported Platforms

The LinuxCNC project targets modern Debian-based distributions, including Debian, Ubuntu, and Mint.
‘We continuously test on the platforms listed at http://buildbot.linuxcnc.org.

LinuxCNC builds on most other Linux distributions, though dependency management will be more manual and less automatic.
Patches to improve portability to new platforms are always welcome.

http://buildbot.linuxcnc.org
http://buildbot.linuxcnc.org

Developer Manual V2.8.4, 2022-09-18 42 /63

5.2.1 Realtime

LinuxCNC is a machine tool controller, and it requires a realtime platform to do this job. This version of LinuxCNC supports
three realtime platforms

RTAI
From https://www.rtai.org. A Linux kernel with the RTAI patch is available from the Debian archive at http://www.linuxcnc.org.
See Getting LinuxCNC for installation instructions.

Xenomai
From https://xenomai.org. You will have to compile or obtain a Xenomai kernel yourself.

Preempt-RT
From https://rt.wiki.kernel.org. A Linux kernel with the Preempt-RT patch is occasionally available from the Debian
archive at https://www.debian.org, and from the wayback machine at https://snapshot.debian.org.

To make use of the realtime capabilities of LinuxCNC, certain parts of LinuxCNC need to run with root priviledges. To enable
root for these parts, run this extra command after the make that builds LinuxCNC:

> sudo make setuid

5.2.2 Non-realtime
LinuxCNC can also be built and run on non-realtime platforms, such as a regular install of Debian or Ubuntu without any special
realtime kernel.

In this mode