Innhold

1 Om LinuxCNC ... 1
 1.1 Programvaren .. 1
 1.2 Operativsystemet 2
 1.3 Finne hjelp ... 2
 1.3.1 IRC .. 2
 1.3.2 Epostlister 2
 1.3.3 Nettsideforum 2
 1.3.4 LinuxCNC-wiki 3
 1.3.5 Feilrapporter 3

2 Systemkrav .. 4
 2.1 Minimumskrav .. 4
 2.2 Kjerne- og versjonskrav 5
 2.2.1 «Preemt-RT» med «linuxcnc-uspace»-pakke 5
 2.2.2 RTAI med «linuxcnc»-pakke 5
 2.2.3 Xenomai med «linuxcnc-uspace»-pakke 5
 2.2.4 RTAI med linuxcnc-uspace-pakke 5
 2.3 Problematisk maskinvare 6
 2.3.1 Bærbare .. 6
 2.3.2 Skjermkort 6

3 Skaffe LinuxCNC ... 7
 3.1 Last ned avtrykket 7
 3.1.1 Normal nedlasting 7
 3.1.2 Last ned med zsnc 8
 3.1.3 Kontroller avtrykket 8
 3.2 Skriv avtrykket til en startbar enhet 9
 3.2.1 Raspberry Pi-avtrykk 9
 3.2.2 AMD-64 (x86-64, PC) Image using GUI tools 9
 3.2.3 Kommandolinje - Linux 9
Denne håndboken er under utvikling. Hvis du kan bidra med skriving, redigering eller grafisk utforming ta kontakt med et medlem av skribentgruppen eller abonner på og send epost til emc-users@lists.sourceforge.net.

© 2000-2020 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

Hvis du ikke finner bruksvilkårene så kan du bestille et eksemplar fra:

Free Software Foundation, Inc.
51 Franklin Street
Fifth Floor
Boston, MA 02110-1301 USA.

(Ved språklige avvik så er det den engelske utgaven som gjelder)

LINUX® er varemerkeregistrert av Linux Torvalds i USA og andre land. Det registrerte varemerket Linux® brukes i henhold til en underlisens fra LMI som er eksklusiv lisensinnehaveren hos Linus Torvalds som eier varemerket på verdensbasis.

LinuxCNC-prosjektet er ikke tilknyttet Debian®. Debian er varemerkeregistrert av Software in the Public Interest, Inc.

LinuxCNC-prosjektet er ikke tilknyttet UBUNTU®. UBUNTU er varemerkeregistrert av Canonical Limited.
Kapittel 1
Om LinuxCNC

1.1 Programvaren

- LinuxCNC (Tidligere kjent som “Enhanced Machine Control - EMC”) er et programvaresystem for datastyring av maskinverktøy som freemaskiner og dreiebenker, roboter (som Puma og Scara) samt andre datastyrtene maskiner opp til 9 akser.
- LinuxCNC er fri programvare med åpen kildekode. Gjeldende versjoner av LinuxCNC er i sin helhet lisensiert under GNU General Public License og Lesser GNU General Public License (GPL og LGPL).
- LinuxCNC tilbyr:
 - enkelt å gjøre seg kjent med og teste uten installasjon med en kjørbar CD,
 - enkel installasjon fra den kjørbare CD-en,
 - enkelt å bruke grafiske oppsettassistent for å raskt lage oppsett spesifikk for maskinen,
 - direkte tilgjengelig som en vanlig pakke i de siste utgavene av Debian (fra og med Bookworm) og Ubuntu (fra og med Kinetic Kudu),
 - et grafisk brukergrensesnitt (til og med flere grensesnitt å velge blant),
 - et grafisk verktoy for å lage grafiske grensesnitt (Glade),
 - en tolker for G-kode (maskinverktøyprogrammeringsspråket RS-274),
 - a realtime motion planning system with look-ahead,
 - styling av lavnivå maskinelektronikk som sensorer og motorkontrollere,
 - en easy to use breadboard layer for quickly creating a unique configuration for your machine,
 - en programvare-PLA programmerbar med PL-diagram.
- LinuxCNC tilbyr ikke funksjoner for tegning (DAK - dataassistert konstruksjon) eller å lage G-kode fra tegninger (DAP - dataassistert produksjon).
- LinuxCNC kan bevege opp til 9 akser samtidig og støtter en rekke grensesnitt.
- Kontrolleren kan håndere ekte servoe (analog eller PWM) med lukket tilbakemeldingssløyfe i LinuxCNC-programvaren på datamaskinen, eller åpen sløyfe med trinnservoer eller stepperforer.
- Motion control features include: cutter radius and length compensation, path deviation limited to a specified tolerance, lathe threading, synchronized axis motion, adaptive feedrate, operator feed override, and constant velocity control.
- Støtte for ikke-kartesiske bevegelsessystemer tilbys via tilpassede kinematikk-moduler. Tilgjengelege arkrne inkluderer heksapoder (Stewardplatformer og lignende konsepter) og systemer med roterende ledd som kan beveges slik som PUMA- eller SCARE-roboter.
- LinuxCNC kjører på Linux med sanntidsutvalder.
1.2 Operativsystemet

LinuxCNC er tilgjengelig som pakker klare til bruk for Ubuntu- og Debian-distribusjonene.

1.3 Finne hjelp

1.3.1 IRC

IRC står for Internet Relay Chat. Det er en direkte forbindelse til andre LinuxCNC-brukere. IRC-kanalen for LinuxCNC er #linuxcnc på libera.chat.

Den enkleste måten å komme på IRC er å bruke den innebygde nettleserklienten fra libera.

Litt IRC-etikette

- Still spesifikk spørsmål... Unngå spørsmål som «Kan noen hjelpe meg?».
- Hvis du er helt ny med alt dette, tenk gjennom spørsmålet ditt før du skriver det ned. Sikre at du oppgir nok informasjon til at det er mulig å forstå og svare på spørsmålet ditt.
- Ha litt tålmodighet når du venter på et svar. Noen ganger tar det litt tid å formulere et svar, eller alle kan være opptatt med å jobbe eller noe annet.
- Sett opp IRC-kontoen din med ditt unike navn slik at folk kan vite hvem du er. Hvis du bruker en javaklient, bruk det samme brukernavnet hver gang du logger inn. Dette hjelper folk å huske hvem du er samt at mange vil huske tidligere diskusjoner, noe som sparer tid for alle parter.

Fildeling

Den vanligste måten å dele filer på IRC er å laste opp filen til en av følgende eller tilsvarende tjenester og lime inn lenken:

- For filer: https://filedropper.com/, https://filefactory.com/, https://1fichier.com/

1.3.2 Epostlister

1.3.3 Nettsideforum

Dette er ganske aktivt, men demografien heller mer mot brukere enn epostlisten. Hvis du vil sikre at meldingen din blir sett av utviklerne, så bør en foretrekke epostlisten.
1.3.4 LinuxCNC-wiki

1.3.5 Feilrapporter

Rapporter feil til LinuxCNC github feilhåndtering.
Kapittel 2

Systemkrav

2.1 Minimumskrav

Mer informasjon finner du på wikisiden for LinuxCNC: Maskinvarekrav

LinuxCNC og Debian Linux bør kjøre rimelig greit på en datamaskin med følgende minimumsmaskinvarespesifikasjon. Disse tallene er ikke absolutte minimum, men gir rimelig ytelse for de fleste stegmotorsystemer.

- 700 MHz x86 prosessor (anbefalt 1.2 GHz x86 prosessor) eller Raspberry Pi 4 eller bedre.
- LinuxCNC 2.8 og senere fra den kjørbare CD-en forventer et system som håndterer 64-bit.
- 512 MB med RAM, 4 GB med grafisk brukergrensesnitt for å unngå overraskelser.
- Ingen harddisk for kjørbar CD, 8 GB eller mer for permanent installasjon.
- Grafikkort som kan levere opplysning på minst 1024x768, og som ikke bruker de godseide driverne til Nvidia eller ATI fglrx. Moderne innbakte grafikkkort er generelt ut til å være OK.
- Internett-forbindelse (ikke strengt nødvendig, men veldig nyttig for oppdateringer og for å kommunisere med LinuxCNC-fellesskapet)

Hvis du ikke planlegger å basere deg på spredning av ferdig kjørbare programmer («binære»), men tar sikte på å bidra i kildekodetreet til LinuxCNC, så er det en god sjanse for at du ønsker en ekstra datamaskin for å gjøre kompileringen. Selv om LinuxCNC og utviklingen din mest sannsynlig kan kjøres simultan med tanke på diskplass, minne og ikke minst CPU-hastighet, så vil en travel maskin ha verre forsinkelser, slik at du antagelig ikke kan kople kildekodetreet og produser spon på samme tid.
2.2 Kjerne- og versjonskrav

LinuxCNC krever en kjerne tilpasset for sanntidsbruk for å kontrollere ekte maskinvare. Derimot kan den kjøre på en vanlig kjerne i simuleringsmodus når formålet er å sjekke G-kode, teste oppsettfiler og lære systemet å kjenne. For bruk med disse kjerneversjonene så distribueres to utgaver av LinuxCNC. Pakkenavnene er «linuxcnc» og «linuxcnc-uspace».

Sanntidskjernevalgene er preempt-rt, RTAI og Xenomai.

Du kan finne kjerneversjonen for ditt system med kommandoen:

```bash
uname -a
```

Hvis du ser (som over) -rt i kjernenumnet så kører du en «preempt-rt»-kjerne og bør installere «uspace»-utgaven av LinuxCNC. Du bør også installere denne for simulert oppsett på ikkesanntidskjerner.

2.2.1 «Preemt-RT» med «linuxcnc-uspace»-pakke

2.2.2 RTAI med «linuxcnc»-pakke

2.2.3 Xenomai med «linuxcnc-uspace»-pakke

Xenomai er også støttet, men du må finne eller bygge kjernen og bygge LinuxCNC fra kildekode for å ta det i bruk.

2.2.4 RTAI med «linuxcnc-uspace»-pakke

Det er også mulig å kjøre LinuxCNC med RTAI i brukerlandmodus. Som med Xenomai må du bygge fra kildekode for å gjøre dette.
2.3 Problematisk maskinvare

2.3.1 Bærbare

Bærbare er generelt ikke egnet for programvarebasert steggenerering i sanntid. Igjen vil en lengre kjøring av Latency Test gi deg kunskapen du trenger for å vurdere egnethet.

2.3.2 Skjermkort

Hvis installasjonen din dukker opp med skjermoppløsning på 800 x 600, så har Debian mest sannsynlig ikke kjent igjen skjermkortet eller skjermen din. En kan noen ganger jobbe seg rundt dette ved å installere drivere eller lage / endre på Xorg.conf-filer.
Kapittel 3

Skaffe LinuxCNC

This section describes the recommended way to download and make a fresh install of LinuxCNC. There are also Alternate Install Methods for the adventurous. If you have an existing install that you want to upgrade, go to the Updating LinuxCNC section instead.

notat

To operate machinery LinuxCNC requires a special kernel with real-time extensions. There are three possibilities here: preempt-rt, RTAI or Xenomai. In addition there are two versions of LinuxCNC which work with these kernels. See the table below for details. However for code testing and simulation it is possible to run the linuxcnc-uspace application on a stock kernel.

Fresh installs of LinuxCNC are most easily created using the Live/Install Image. This is a hybrid ISO filesystem image that can be written to a USB storage device or a DVD and used to boot a computer. At boot time you will be given a choice of booting the “Live” system (to run LinuxCNC without making any permanent changes to your computer) or booting the Installer (to install LinuxCNC and its operating system onto your computer's hard drive).

Rammen for prosessen ser slik ut:

1. Last ned kjørbart/installeringsavtrykk.
2. Skriv avtrykket til en USB-lagringenhed eller DVD.
3. Start opp det kjørbare systemet for å teste ut LinuxCNC.
4. Start opp installasjenen for å installere LinuxCNC.

3.1 Last ned avtrykket

This section describes some methods for downloading the Live/Install image.

3.1.1 Normal nedlasting

Software for LinuxCNC to download is presented on the project’s Downloads page. Most users will aim for the disk image for Intel/AMD PCs, the URL will resemble https://www.linuxcnc.org/iso/linuxcnc_2.9.2-amd64.hybrid.iso.

For the Raspberry Pi, multiple images are provided to address differences between the RPi4 and RPi5.
3.1.2 Last ned med zsync

zsync is a download application that efficiently resumes interrupted downloads and efficiently transfers large files with small modifications (if you have an older local copy). Use zsync if you have trouble downloading the image using the Normal Download method.

zsync i Linux

1. Installer zsync med Synaptic eller, ved å kjøre følgende i en terminal

   ```
sudo apt-get install zsync
   ```

2. Kjør så denne kommandoen for å laste ned iso-en til din datamaskin

   ```
zsync https://www.linuxcnc.org/iso/linuxcnc_2.9.2-amd64.hybrid.iso
   ```


3.1.3 Kontroller avtrykket

(Dette steget er ikke nødvendig hvis du bruker zsync)

1. Etter nedlasting, kontroller sjekksummen til avtrykket for å sikre dets integritet.

   ```
md5sum linuxcnc-2.9.2-amd64.iso
   or
   sha256sum linuxcnc-2.9.2-amd64.iso
   ```

1. Sammenlign deretter disse sjekksummene

   ```
   amd64 (PC)  
   md5sum: 1815aceaac0e7861747aa34d61846e79  
   sha256sum: 08b3f59233e47c91cf1c9a85c41df48542c97b134efef7446d3060c9a3e64b  
   arm64 (Pi)  
   md5sum: 4547e8a72433efb033f0a5cf166a5cd2  
   sha256sum: ff3ba9b8dfb93bafe1e2232746655f8521a606bc0fab91bfff04ba74cc3be6bf0
   ```

 Kontroller md5sum på Windows eller Mac Windows and Mac OS X do not come with an md5sum program, but there are alternatives. More information can be found at: [How To MD5SUM](https://www.assembla.com/spaces/zsync-windows/documents)
3.2 Skriv avtrykket til en startbar enhet

The LinuxCNC Live/Install ISO Image is a hybrid ISO image which can be written directly to a USB storage device (flash drive) or a DVD and used to boot a computer. The image is too large to fit on a CD.

3.2.1 Raspberry Pi-avtrykk

The Raspberry Pi image is a complete SD card image and should be written to an SD card with the [Raspberry Pi Imager App](https://www.raspberrypi.com/software/).

3.2.2 AMD-64 (x86-64, PC) Image using GUI tools

Download and install [Balena Etcher](https://etcher.balena.io/#download-etcher) (Linux, Windows, Mac) and write the downloaded image to a USB drive.

If your image fails to boot then please also try Rufus. It looks more complicated but seems to be more compatible with various BIOSes.

3.2.3 Kommandolinje - Linux

2. Finn enhetsfilen som tilsvarer USB-flashdisken. Denne informasjonen kan finnes ved å se på utskriften fra å kjøre dmesg etter å ha koblet til enheten. /proc/partitions kan også være nyttig.
3. Bruk dd-kommandoen til å skrive avtrykket til din USB-lagringsenhet. For eksempel, hvis din lagringsenhet dukket opp som `/dev/sde`, bruk denne kommandoen:

```
dd if=linuxcnc_2.9.2-amd64.hybrid.iso of=/dev/sde
```

3.2.4 Kommandolinje - MacOS

1. Open a terminal and type

```
diskutil list
```

2. Insert the USB and note the name of the new disk that appears, eg `/dev/disk5`
3. unmount the USB. The number found above should be substituted in place of the N

```
diskutil unmountDisk /dev/diskN
```

4. Transfer the data with dd, as for Linux above. Note that the disk name has an added “r” at the beginning

```
sudo dd if=/linuxcnc_2.9.2-amd64.hybrid.iso of=/dev/rdiskN bs=1m
```
5. Note that this may take a long time to complete and there will be no feedback during the process.

Writing the image to a DVD in Linux

1. Insert a blank DVD into your burner. A CD/DVD Creator or Choose Disc Type window will pop up. Close this, as we will not be using it.
2. Browse to the downloaded image in the file browser.
3. Right click on the ISO image file and choose Write to Disc.
4. Select the write speed. It is recommended that you write at the lowest possible speed.
5. Start the burning process.
6. If a choose a file name for the disc image window pops up, just pick OK.

Writing the image to a DVD in Windows

1. Download and install Infra Recorder, a free and open source image burning program: http://infrarecorder.org/
2. Insert a blank CD in the drive and select Do nothing or Cancel if an auto-run dialog pops up.
3. Open Infra Recorder, and select the Actions menu, then Burn image.

Writing the image to a DVD in Mac OS X

1. Download the .iso file
2. Right-click on the file in the Finder window and select “Burn to disc” (The option to burn to disc will only appear if the machine has an optical drive fitted or connected)

3.3 LinuxCNC-testing

With the USB storage device plugged in or the DVD in the DVD drive, shut down the computer then turn the computer back on. This will boot the computer from the Live/Install Image and choose the Live boot option.

notat
If the system does not boot from the DVD or USB stick, it may be necessary to change the boot order in the PC BIOS.

Once the computer has booted up you can try out LinuxCNC without installing it. You can not create custom configurations or modify most system settings in a Live session, but you can (and should) run the latency test.

To try out LinuxCNC: from the Applications/CNC menu pick LinuxCNC. A dialog box will open from which you can choose one of many sample configurations. At this point it only really makes sense to pick a “sim” configuration. Some of the sample configurations include onscreen 3D simulated machines, look for “Vismach” to see these.

To see if your computer is suitable for software step pulse generation run the Latency Test as shown [here](#).

At the time of writing the Live Image is only available with the preempt-rt kernel and a matching LinuxCNC. On some hardware this might not offer good enough latency. There is an experimental version available using the RTAI realtime kernel which will often give better latency.
3.4 Installing LinuxCNC

To install LinuxCNC from the Live CD select Install (Graphical) at bootup.

3.5 Updates to LinuxCNC

With the normal install the Update Manager will notify you of updates to LinuxCNC when you go online and allow you to easily upgrade with no Linux knowledge needed. It is OK to upgrade everything except the operating system when asked to.

⚠️ advarsel
Do not upgrade the operating system to a new version if prompted to do so. You should accept OS updates however, especially security updates.

3.6 Install Problems

In rare cases you might have to reset the BIOS to default settings if during the Live CD install it cannot recognize the hard drive during the boot up.

3.7 Alternate Install Methods

The easiest, preferred way to install LinuxCNC is to use the Live/Install Image as described above. That method is as simple and reliable as we can make it, and is suitable for novice users and experienced users alike. However, this will typically replace any existing operating system. If you have files on the target PC that you want to keep, then use one of the methods described in this section.

In addition, for experienced users who are familiar with Debian system administration (finding install images, manipulating apt sources, changing kernel flavors, etc), new installs are supported on following platforms: ("amd64" means “64-bit”, and is not specific to AMD processors, it will run on any 64-bit x86 system)

<table>
<thead>
<tr>
<th>Distribusjon</th>
<th>Arkitektur</th>
<th>Kjerne</th>
<th>Pakkenavn</th>
<th>Typisk bruk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian Bookworm</td>
<td>amd64 & arm64</td>
<td>preempt-rt</td>
<td>linuxcnc-uspace</td>
<td>maskinstyring og simulering</td>
</tr>
<tr>
<td>Debian Bookworm</td>
<td>amd64</td>
<td>RTAI</td>
<td>linuxcnc</td>
<td>machine control</td>
</tr>
<tr>
<td>Debian Bullseye</td>
<td>amd64</td>
<td>preempt-rt</td>
<td>linuxcnc-uspace</td>
<td>maskinstyring og simulering</td>
</tr>
<tr>
<td>Debian Buster</td>
<td>amd64 & arm64</td>
<td>preempt-rt</td>
<td>linuxcnc-uspace</td>
<td>maskinstyring og simulering</td>
</tr>
<tr>
<td>Debian Buster</td>
<td>amd64</td>
<td>RTAI</td>
<td>linuxcnc</td>
<td>machine control</td>
</tr>
<tr>
<td>Any</td>
<td>Any</td>
<td>Vanlig</td>
<td>linuxcnc-uspace</td>
<td>simulation ONLY</td>
</tr>
</tbody>
</table>

notat
LinuxCNC v2.9 is not supported on Debian 9 or older.
Preempt-RT kernels The Preempt-rt kernels are available for Debian from the regular debian.org archive. The package is called `linux-image-rt-*`. Simply install the package in the same way as any other package from the Synaptic Package manager or with `apt-get` at the command-line.

RTAI Kernels The RTAI kernels are available for download from the linuxcnc.org debian archive. The apt source is:

- Debian Bookworm: `deb http://linuxcnc.org bookworm base`
- Debian Bullseye: `deb http://linuxcnc.org bullseye base`
- Debian Buster: `deb http://linuxcnc.org buster base`

LinuxCNC and the RTAI kernel are now only available for 64-bit OSes but there are very few surviving systems that can not run a 64-bit OS.

3.7.1 Installing on Debian Bookworm (with Preempt-RT kernel)

1. Install Debian Bookworm (Debian 12), amd64 version. You can download the installer here: https://www.debian.org/distrib/

2. After burning the iso and booting up if you don't want Gnome desktop select *Advanced Options > Alternative desktop environments* and pick the one you like. Then select *Install or Graphical Install*.

 ![advarsel]
 Do not enter a root password, if you do `sudo` is disabled and you won't be able to complete the following steps.

3. Run the following in a terminal to bring the machine up to date with the latest packages.

    ```bash
    sudo apt-get update
    sudo apt-get dist-upgrade
    ```

 ![notat]
 It is possible to download a version of LinuxCNC directly from Debian but this will install an old pre-release version, and is not recommended at this time.

4. Install the Preempt-RT kernel and modules

    ```bash
    sudo apt-get install linux-image-rt-amd64
    ```

5. Re-boot, and select the Linux 6.1.0-10-rt-amd64 kernel. The exact kernel version might be different, look for the “-rt” suffix. This might be hidden in the “Advanced options for Debian Bookworm” sub-menu in Grub. When you log in, verify that `PREEMPT RT` is reported by the following command.

    ```bash
    uname -v
    ```
6. Open Applications Menu > System > Synaptic Package Manager search for `linux-image` and right click on the original non-rt and select *Mark for Complete Removal*. Reboot. This is to force the system to boot from the RT kernel. If you prefer to retain both kernels then the other kernels need not be deleted, but grub boot configuration changes will be needed beyond the scope of this document.

7. Add the LinuxCNC Archive Signing Key to your apt keyring by downloading [the LinuxCNC installer script](https://www.linuxcnc.org/linuxcnc-install.sh) You will need to make the script executable to run it:

   ```
   chmod +x linuxcnc-install.sh
   ```

 Then you can run the installer:

   ```
   sudo ./linuxcnc-install.sh
   ```

3.7.2 Installing on Debian Bookworm (with experimental RTAI kernel)

1. This kernel and LinuxCNC version can be installed on top of the Live DVD install, or alternatively on a fresh Install of Debian Bookworm 64-bit as described above.

2. You can add the LinuxCNC Archive signing key and repository information by downloading and running the installer script as described above. If an RTAI kernel is detected it will stop before installing any packages.

3. Update the package list from linuxcnc.org

   ```
   sudo apt-get update
   ```

4. Install the new realtime kernel, RTAI and the rtai version of linuxcnc.

   ```
   sudo apt-get install linuxcnc
   ```

Reboot the machine, ensuring that the system boots from the new 5.4.258-rtai kernel.

3.7.3 Installing on Raspbian 12

Don’t do that. The latencies are too bad with the default kernel and the PREEMPT_RT (the RT is important) kernel of Debian does not boot on the Pi (as of 1/2024). Please refer to the images provided online. You can create them yourself following the scripts provided online.
Kapittel 4

LinuxCNC-kjøring

4.1 LinuxCNC-oppstart

After installation, LinuxCNC starts just like any other Linux program: run it from the terminal by issuing the command `linuxcnc`, or select it in the Applications -> CNC menu.

4.2 Configuration Launcher

When starting LinuxCNC (from the CNC menu or from the command line without specifying an INI file) the Configuration Selector dialog starts.

The Configuration Selector dialog allows the user to pick one of their existing configurations (My Configurations) or select a new one (from the Sample Configurations) to be copied to their home directory. Copied configurations will appear under My Configurations on the next invocation of the Configuration Selector.

The Configuration Selector offers a selection of configurations organized:

- *My Configurations* - User configurations located in `linuxcnc/configs` in your home directory.
- *Sample Configurations* - Sample configurations, when selected, are copied to `linuxcnc/configs`. Once a sample configuration was copied to your local directory, the launcher will offer it as *My Configurations*. The names under which these local configurations are presented correspond to the names of the directories within the `configs` directory:
 - *sim* - Configurations that include simulated hardware. These can be used for testing or learning how LinuxCNC works.
 - *by_interface* - Configurations organized by GUI.
 - *by_machine* - Oppsett organisert etter maskin.
 - *apps* - Applications that do not require starting `linuxcnc` but may be useful for testing or trying applications like PyVCP or GladeVCP.
 - *attic* - Obsolete or historical configurations.

The sim configurations are often the most useful starting point for new users and are organized around supported GUIs:

- *axis* - Keyboard and Mouse GUI
- *craftsman* - Touch Screen GUI (no longer maintained ???)
• *gmoccapy* - Touch Screen GUI
• *gscreen* - Touch Screen GUI
• *pyvcp_demo* - Python Virtual Control Panel
• *qtaxis* - Touch Screen GUI, axis lookalike
• *qtdragon* - Touch Screen GUI
• *qtdragon_hd* - Touch Screen GUI, high definition
• *qtplasmac* - Touch Screen GUI, for plasma tables
• *qqtouchy* - Touch Screen GUI
• *tklinuxcnc* - Keyboard and Mouse GUI (no longer maintained)
• *touchy* - Touch Screen GUI
• *woodpecker* - Touch Screen GUI

A GUI configuration directory may contain subdirectories with configurations that illustrate special situations or the embedding of other applications.

The *by_interface* configurations are organized around common, supported interfaces like:

• general mechatronics
• mesa
• parport
• pico
• pluto
• servotogo
• vigilant
• vitalsystems

Related hardware may be required to use these configurations as starting points for a system. *by_machine*-oppsett er organisert rundt komplette kjente systemer som:

• boss
• cooltool
• scortbot erIII
• sherline
• smithy
• tormach

A complete system may be required to use these configurations.

The *apps items* are typically either:

1. utilities that don’t require starting linuxcnc
2. demonstrations of applications that can be used with linuxcnc
• info - creates a file with system information that may be useful for problem diagnosis.
• gladevcp - Example GladeVCP applications.
• halrun - Starts halrun in an terminal.
• latency - Applications to investigate latency
 - latency-histogram-1 - histogram for single servo thread
 - latency-histogram - histogram
 - latency-test - standard test
 - latency-plot - stripchart
• parport - Applications to test parport.
• pyvcp - Example pyvcp applications.
• xhc-hb04 - Applications to test an xhc-hb04 USB wireless MPG

notat
Under the Apps directory, only applications that are usefully modified by the user are offered for copying to the user’s directory.

![LinuxCNC Configuration Selector](image)

Figur 4.1: LinuxCNC Configuration Selector

Click any of the listed configurations to display specific information about it. Double-click a configuration or click OK to start the configuration.

Select **Create Desktop Shortcut** and then click **OK** to add an icon on the Ubuntu desktop to directly launch this configuration without showing the Configuration Selector screen.
When you select a configuration from the Sample Configurations section, it will automatically place a copy of that config in the ~/linuxcnc/configs directory.

4.3 Next steps in configuration

After finding the sample configuration that uses the same interface hardware as your machine (or a simulator configuration), and saving a copy to your home directory, you can customize it according to the details of your machine. Refer to the Integrator Manual for topics on configuration.

4.4 Simulator Configurations

All configurations listed under Sample Configurations/sim are intended to run on any computer. No specific hardware is required and real-time support is not needed.

These configurations are useful for studying individual capabilities or options. The sim configurations are organized according to the graphical user interface used in the demonstration. The directory for axis contains the most choices and subdirectories because it is the most tested GUI. The capabilities demonstrated with any specific GUI may be available in other GUIs as well.

4.5 Oppsettressurser

The Configuration Selector copies all files needed for a configuration to a new subdirectory of ~/linuxcnc/configs (equivalently: /home/username/linuxcnc/configs). Each created directory will include at least one INI file (filename.ini) that is used to describe a specific configuration.

File resources within the copied directory will typically include one or more INI file (filename.ini) for related configurations and a tool table file (toolfilename.tbl). Additionally, resources may include HAL files (filename.hal, filename.tcl), a README file for describing the directory, and configuration specific information in a text file named after a specific configuration (inifilename.txt). That latter two files are displayed when using the Configuration Selector.

The supplied sample configurations may specify the parameter HALFILE (filename.hal) in the configuration INI file that are not present in the copied directory because they are found in the system HAL file library. These files can be copied to the user configuration directory and altered as required by the user for modification or test. Since the user configuration directory is searched first when finding HAL files, local modifications will then prevail.

The Configuration selector makes a symbolic link in the user configuration directory (named hallib) that points to the system HAL file library. This link simplifies copying a library file. For example, to copy the library core_sim.hal file in order to make local modifications:

```bash
cd ~/linuxcnc/configs/name_of_configuration
cp hallib/core_sim.hal core_sim.hal
```
Kapittel 5

Oppdatering av LinuxCNC

Oppdatering av LinuxCNC til en ny mindre oppdatering (med andre ord, en ny versjon i samme stabile serie, for eksempel fra 2.9.1 til 2.9.2) er en automatisk prosess hvis din PC er koblet til Internett. Du vil se en oppdateringsmelding etter en liten oppdatering sammen med andre programvareoppdateringer. Hvis du ikke har en Internett-forbindelse for PC-en din, se oppdatering uten nettverk.

5.1 Oppgradering til den nye versjonen

Dette avsnittet beskriver hvordan oppgradere LinuxCNC fra versjon 2.8.x til en 2.9.y-versjon. Den antar at du har en eksisterende 2.8-installasjon som du ønsker å oppdatere.

For å oppgradere LinuxCNC fra en versjon eldre enn 2.8 så må du først oppgradere din gamle installasjon til 2.8 og så følge disse instruksjonene for å oppgradere til den nye versjonen.

Hvis du ikke har en gammel versjon av LinuxCNC å oppgradere så er det bedre tjent med å installere en ny versjon som beskrevet i avsnittet Skaffe LinuxCNC.

For å oppgradere hovedversjoner som 2.8 til 2.9 når du har en nettforbindelse på maskinen, så må du koble ut de gamle linuxcnc.org-apt-kildene i filen /etc/apt/sources.list og legge til en ny linuxcnc.org-apt-kilde for 2.9 for så å oppgradere LinuxCNC.

Detaljene avhenger av hvilken platform du kjører på. Åpne en terminal, skriv så `lsb_release -ic` for å finne informasjon om dette:

```
lsb_release -ic
Distributor ID: Debian
Codename:      Buster
```

Du bør kjøre på Debian Buster, Bullseye eller Bookworm eller Ubuntu 20.04 ”Focal Fossa” eller nyere. LinuxCNC 2.9.y kjører ikke på eldre distribusjoner enn disse.

Du må også sjekke hvilken sanntidskjerne som brukes:

```
uname -r
6.1.0-10-rt-amd64
```
Hvis du ser (som over) - rt i kjernenavnet så kjører du en «preemt-rt»-kjerne og bør installere «uspace»-utgaven av LinuxCNC. Du bør også installere denne for simulert oppsett på ikkesanstendskjermer.

5.1.1 Apt-kildeoppsett

• Åpne Software Sources-vinduet. Prosessen for å gjøre dette varierer litt på de tre støttede platfor-
mene:
 - Debian:
 2. Klikk på Oppsett-menyen i Synaptic, klikk så på Repositories for å åpne Software Sources-
vinduet.
 - Ubuntu Precise:
 1. Click on the Dash Home icon in the top left.
 2. In the Search field, type “software”, then click on the Ubuntu Software Center icon.
 3. In the Ubuntu Software Center window, click on the Edit menu, then click on Software Sources... to open the Software Sources window.
 - Ubuntu Lucid:
 1. Click the System menu, then Administration, then Synaptic Package Manager.
 2. In Synaptic, click on the Settings menu, then click on Repositories to open the Software Sources window.

• In the Software Sources window, select the Other Software tab.
• Delete or un-check all the old linuxcnc.org entries (leave all non-linuxcnc.org lines as they are).
• Click the Add button and add a new apt line. The line will be slightly different on the different platforms:

<table>
<thead>
<tr>
<th>OS / Sanntidsversjon</th>
<th>Depot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian Buster - preempt</td>
<td>deb https://linuxcnc.org buster base 2.9-rtpreempt</td>
</tr>
<tr>
<td>Debian Buster - RTAI</td>
<td>deb https://linuxcnc.org buster base 2.9-rt</td>
</tr>
<tr>
<td>Debian Bullseye - preempt</td>
<td>deb https://linuxcnc.org bullseye base 2.9-uspace</td>
</tr>
<tr>
<td>Debian Bookworm - preempt</td>
<td>deb https://linuxcnc.org bookworm base 2.9-uspace</td>
</tr>
<tr>
<td>Debian Bookworm - RTAI</td>
<td>deb https://linuxcnc.org bookworm base 2.9-rt</td>
</tr>
</tbody>
</table>

Tabell 5.1: Tabular overview on variants of the Operating System and the corresponding configuration of the repository. The configuration can be performed in the GUI of the package manager or in the file /etc/apt/sources.list.
Click Add Source, then Close in the Software Sources window. If it pops up a window informing you that the information about available software is out-of-date, click the Reload button.

5.1.2 Upgrading to the new version

Now your computer knows where to get the new version of the software, next we need to install it. Igjen så er prosessen annerledes avhengig av platformen din.

5.1.2.1 Debian Buster, Bullseye og Bookworm

Debian uses the Synaptic Package Manager.
• Open Synaptic using the instructions in Setting apt sources above.
• Click the Reload button.
• Use the Search function to search for linuxcnc.
• The package is called “linuxcnc” for RTAI kernels and “linuxcnc-uspace” for preempt-rt.
• Click the check box to mark the new linuxcnc and linuxcnc-doc-* packages for upgrade. The package manager may select a number of additional packages to be installed, to satisfy dependencies that the new linuxcnc package has.
• Click the Apply button, and let your computer install the new package. The old linuxcnc package will be automatically upgraded to the new one.

5.1.3 Ubuntu

• Click on the Dash Home icon in the top left.
• In the Search field, type “update”, then click on the Update Manager icon.
• Click the Check button to fetch the list of packages available.
• Click the Install Updates button to install the new versions of all packages.

5.2 Updating without Network

For å oppdatere uten nettverksforbindelse så må du laste ned .deb-en og så installere den med dpkg. .dep-ene kan finnes i https://linuxcnc.org/dists/.

You have to drill down from the above link to find the correct deb for your installation. Open a terminal and type in lsb_release -ic to find the release name of your OS.

```
> lsb_release -ic
Distributor ID: Debian
Codename: bullseye
```

Pick the OS from the list then pick the major version you want like 2.9-rt for RTAI or 2.9-rtpreempt or 2.9-uspace for preempt-rt.

Next pick the type of computer you have: binary-amd64 for any 64-bit x86, binary-i386 for 32 bit, binary-armhf (32bit) or binary-arm64 (64bit) for Raspberry Pi.

Next pick the version you want from the bottom of the list like linuxcnc-uspace_2.9.2_amd64.deb (choose the latest by date). Download the deb and copy it to your home directory. You can rename the file to something a bit shorter with the file manager like linuxcnc_2.9.2.deb then open a terminal and install it with the package manager with this command:

```
sudo dpkg -i linuxcnc_2.9.2.deb
```
5.3 Oppdatering av oppsettfiler for 2.9

5.3.1 Stricter handling of pluggable interpreters

If you just run regular G-code and you don’t know what a pluggable interpreter is, then this section does not affect you.

A seldom-used feature of LinuxCNC is support for pluggable interpreters, controlled by the undocumented [TASK]INTERPRETER INI setting.

Versions of LinuxCNC before 2.9.0 used to handle an incorrect [TASK]INTERPRETER setting by automatically falling back to using the default G-code interpreter.

Since 2.9.0, an incorrect [TASK]INTERPRETER value will cause LinuxCNC to refuse to start up. Fix this condition by deleting the [TASK]INTERPRETER setting from your INI file, so that LinuxCNC will use the default G-code interpreter.

5.3.2 Canterp

If you just run regular G-code and you don’t use the canterp pluggable interpreter, then this section does not affect you.

In the extremely unlikely event that you are using canterp, know that the module has moved from /usr/lib/libcanterp.so to /usr/lib/linuxcnc/canterp.so, and the [TASK]INTERPRETER setting correspondingly needs to change from libcanterp.so to canterp.so.

5.4 Updating Configuration Files (for 2.9.y)

No changes should be necessary to configuration files when moving from 2.8.x to 2.9.y.

5.4.1 Spindle limits in the INI

It is now possible to add settings to the [SPINDLE] section of the INI file:

- MAX_FORWARD_VELOCITY = 20000 The maximum spindle speed (in rpm)
- MIN_FORWARD_VELOCITY = 3000 The minimum spindle speed (in rpm)
- MAX_REVERSE_VELOCITY = 20000 This setting will default to MAX_FORWARD_VELOCITY if omitted.
- MIN_REVERSE_VELOCITY = 3000 This setting is equivalent to MIN_FORWARD_VELOCITY but for reverse spindle rotation. It will default to the MIN_FORWARD_VELOCITY if omitted.
- INCREMENT = 200 Sets the step size for spindle speed increment / decrement commands. This can have a different value for each spindle. This setting is effective with AXIS and Touchy but note that some control screens may handle things differently.
- HOME_SEARCH_VELOCITY = 100 - Accepted but currently does nothing
- HOME_SEQUENCE = 0 - Aksepteres men gjør for tiden ingen ting

5.5 Nye HAL-komponenter

5.5.1 Ikke-sanntid

mdro mqtt-publisher pi500_vfd pmx485-test qtplasmac-cfg2prefs qtplasmac-materials qtplasmac-plasmac2qt qtplasmac-setup sim-torch svd-ps_vfd
5.5.2 Sanntid

anglejog div2 enum filter_kalman flipflop hal_parport homecomp limit_axis mesa_uart millturn scaled_s32_sums tof ton

5.6 Nye drivere

En ny GPIO-driver for enhver GPIO som støttes av gpiod-biblioteket er nå med: http://linuxcnc.org/docs/2.9/html/drivers/hal_gpio.html
Kapittel 6

Glossary

A listing of terms and what they mean. Some terms have a general meaning and several additional meanings for users, installers, and developers.

Acme Screw
A type of lead-screw that uses an Acme thread form. Acme threads have somewhat lower friction and wear than simple triangular threads, but ball-screws are lower yet. Most manual machine tools use acme lead-screws.

Axis
One of the computer controlled movable parts of the machine. For a typical vertical mill, the table is the X axis, the saddle is the Y axis, and the quill or knee is the Z axis. Angular axes like rotary tables are referred to as A, B, and C. Additional linear axes relative to the tool are called U, V, and W respectively.

AXIS(GUI)
One of the Graphical User Interfaces available to users of LinuxCNC. It features the modern use of menus and mouse buttons while automating and hiding some of the more traditional LinuxCNC controls. It is the only open-source interface that displays the entire tool path as soon as a file is opened.

GMOCCAPY (GUI)
A Graphical User Interfaces available to users of LinuxCNC. It features the use and feel of an industrial control and can be used with touch screen, mouse and keyboard. It support embedded tabs and hal driven user messages, it offers a lot of hal beens to be controlled with hardware. GMOCCAPY is highly customizable.

Backlash
The amount of “play” or lost motion that occurs when direction is reversed in a lead screw or other mechanical motion driving system. It can result from nuts that are loose on leadscrews, slippage in belts, cable slack, “wind-up” in rotary couplings, and other places where the mechanical system is not “tight”. Backlash will result in inaccurate motion, or in the case of motion caused by external forces (think cutting tool pulling on the work piece) the result can be broken cutting tools. This can happen because of the sudden increase in chip load on the cutter as the work piece is pulled across the backlash distance by the cutting tool.

Backlash Compensation
Any technique that attempts to reduce the effect of backlash without actually removing it from the mechanical system. This is typically done in software in the controller. This can correct the final resting place of the part in motion but fails to solve problems related to direction changes while in motion (think circular interpolation) and motion that is caused when external forces (think cutting tool pulling on the work piece) are the source of the motion.
Ball Screw
A type of lead-screw that uses small hardenened steel balls between the nut and screw to reduce friction. Ball-screws have very low friction and backlash, but are usually quite expensive.

Ball Nut
A special nut designed for use with a ball-screw. It contains an internal passage to re-circulate the balls from one end of the screw to the other.

CNC
Computer Numerical Control. The general term used to refer to computer control of machinery. Instead of a human operator turning cranks to move a cutting tool, CNC uses a computer and motors to move the tool, based on a part program.

Comp
A tool used to build, compile and install LinuxCNC HAL components.

Configuration(n)
A directory containing a set of configuration files. Custom configurations are normally saved in the users home/linuxcnc/configs directory. These files include LinuxCNC’s traditional INI file and HAL files. A configuration may also contain several general files that describe tools, parameters, and NML connections.

Configuration(v)
The task of setting up LinuxCNC so that it matches the hardware on a machine tool.

Coordinate Measuring Machine
A Coordinate Measuring Machine is used to make many accurate measurements on parts. These machines can be used to create CAD data for parts where no drawings can be found, when a hand-made prototype needs to be digitized for moldmaking, or to check the accuracy of machined or molded parts.

Display units
The linear and angular units used for onscreen display.

Digitalavleser
A Digital Read Out is a system of position-measuring devices attached to the slides of a machine tool, which are connected to a numeric display showing the current location of the tool with respect to some reference position. DROs are very popular on hand-operated machine tools because they measure the true tool position without backlash, even if the machine has very loose Acme screws. Some DROs use linear quadrature encoders to pick up position information from the machine, and some use methods similar to a resolver which keeps rolling over.

EDM
EDM is a method of removing metal in hard or difficult to machine or tough metals, or where rotating tools would not be able to produce the desired shape in a cost-effective manner. An excellent example is rectangular punch dies, where sharp internal corners are desired. Milling operations can not give sharp internal corners with finite diameter tools. A wire EDM machine can make internal corners with a radius only slightly larger than the wire’s radius. A sinker EDM can make internal corners with a radius only slightly larger than the radius on the corner of the sinking electrode.

EMC
The Enhanced Machine Controller. Initially a NIST project. Renamed to LinuxCNC in 2012.

EMCIO
Modulen i LinuxCNC som håndterer generell I/O, ikke relatert til selve bevegelsen til aksene.

EMCMOT
Modulen i LinuxCNC som hånderer selve bevegelsen til skjæreverktøyet. Den kjører som et sann-tidsprogram og kontrollerer motorene direkte.
Encoder
A device to measure position. Usually a mechanical-optical device, which outputs a quadrature signal. The signal can be counted by special hardware, or directly by the parport with LinuxCNC.

Feed
Relatively slow, controlled motion of the tool used when making a cut.

Feed rate
The speed at which a cutting motion occurs. In auto or MDI mode, feed rate is commanded using an F word. F10 would mean ten machine units per minute.

Feedback
A method (e.g., quadrature encoder signals) by which LinuxCNC receives information about the position of motors.

Feedrate Override
A manual, operator controlled change in the rate at which the tool moves while cutting. Often used to allow the operator to adjust for tools that are a little dull, or anything else that requires the feed rate to be "tweaked".

Flyttall
Et tall som har et desimalkomma. (12,300) Kjent som float i HAL.

G-code
Det generelle uttrykket som brukes for å referere til det vanligste programmeringsspråket for deler. Det er flere G-kodedialekter. LinuxCNC bruker RS274/NGC.

GUI
Graphical User Interface.

General
A type of interface that allows communications between a computer and a human (in most cases) via the manipulation of icons and other elements (widgets) on a computer screen.

LinuxCNC
An application that presents a graphical screen to the machine operator allowing manipulation of the machine and the corresponding controlling program.

HAL
Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of building blocks to be loaded and interconnected to assemble a complex system. Many of the building blocks are drivers for hardware devices. However, HAL can do more than just configure hardware drivers.

Home
A specific location in the machine’s work envelope that is used to make sure the computer and the actual machine both agree on the tool position.

INI file
A text file that contains most of the information that configures LinuxCNC for a particular machine.

Instance
One can have an instance of a class or a particular object. The instance is the actual object created at runtime. In programmer jargon, the "Lassie" object is an instance of the "Dog" class.

Joint Coordinates
These specify the angles between the individual joints of the machine. See also Kinematics

Jog
Manually moving an axis of a machine. Jogging either moves the axis a fixed amount for each key-press, or moves the axis at a constant speed as long as you hold down the key. In manual mode, jog speed can be set from the graphical interface.
kernel-space
Code running inside the kernel, as opposed to code running in userspace. Some realtime systems (like RTAI) run realtime code in the kernel and non-realtime code in userspace, while other realtime systems (like Preempt-RT) run both realtime and non-realtime code in userspace.

Kinematics
The position relationship between world coordinates and joint coordinates of a machine. There are two types of kinematics. Forward kinematics is used to calculate world coordinates from joint coordinates. Inverse kinematics is used for exactly the opposite purpose. Note that kinematics does not take into account, the forces, moments etc. on the machine. It is for positioning only.

Lead-screw
An screw that is rotated by a motor to move a table or other part of a machine. Lead-screws are usually either ball-screws or acme screws, although conventional triangular threaded screws may be used where accuracy and long life are not as important as low cost.

Machine units
The linear and angular units used for machine configuration. These units are specified and used in the INI file. HAL pins and parameters are also generally in machine units.

MDI
Manual Data Input. This is a mode of operation where the controller executes single lines of G-code as they are typed by the operator.

NIST
National Institute of Standards and Technology. An agency of the Department of Commerce in the United States.

NML
Neutral Message Language provides a mechanism for handling multiple types of messages in the same buffer as well as simplifying the interface for encoding and decoding buffers in neutral format and the configuration mechanism.

Offsets
An arbitrary amount, added to the value of something to make it equal to some desired value. For example, G-code programs are often written around some convenient point, such as X0, Y0. Fixture offsets can be used to shift the actual execution point of that G-code program to properly fit the true location of the vice and jaws. Tool offsets can be used to shift the “uncorrected” length of a tool to equal that tool’s actual length.

Part Program
A description of a part, in a language that the controller can understand. For LinuxCNC, that language is RS-274/NGC, commonly known as G-code.

Program Units
The linear and angular units used in a part program. The linear program units do not have to be the same as the linear machine units. See G20 and G21 for more information. The angular program units are always measured in degrees.

Python
General-purpose, very high-level programming language. Used in LinuxCNC for the Axis GUI, the StepConf configuration tool, and several G-code programming scripts.

Rapid
Fast, possibly less precise motion of the tool, commonly used to move between cuts. If the tool meets the workpiece or the fixturing during a rapid, it is probably a bad thing!

Rapid rate
The speed at which a rapid motion occurs. In auto or MDI mode, rapid rate is usually the maximum speed of the machine. It is often desirable to limit the rapid rate when testing a G-code program for the first time.
Real-time
Software that is intended to meet very strict timing deadlines. On Linux, in order to meet these requirements it is necessary to install a realtime kernel such as RTAI or Preempt-RT, and build the LinuxCNC software to run in the special real-time environment. Realtime software can run in the kernel or in userspace, depending on the facilities offered by the system.

RTAI
Real Time Application Interface, see https://www.rtai.org/, the real-time extensions for Linux that LinuxCNC can use to achieve real-time performance.

RT LINUX
See https://en.wikipedia.org/wiki/RTLinux, an older real-time extension for Linux that LinuxCNC used to use to achieve real-time performance. Obsolete, replaced by RTAI.

RTAPI
A portable interface to real-time operating systems including RTAI and POSIX pthreads with realtime extensions.

RS-274/NGC
The formal name for the language used by LinuxCNC part programs.

Servo Motor
Generally, any motor that is used with error-sensing feedback to correct the position of an actuator. Also, a motor which is specially-designed to provide improved performance in such applications.

Servo Loop
A control loop used to control position or velocity of an motor equipped with a feedback device.

Signed Integer
A whole number that can have a positive or negative sign. In HAL it is usually a s32, but could be also a s64.

Spindel
The part of a machine tool that spins to do the cutting. On a milling or drill, the spindle holds the cutting tool. On a lathe, the spindle holds the workpiece.

Spindle Speed Override
A manual, operator controlled change in the rate at which the tool rotates while cutting. Often used to allow the operator to adjust for chatter caused by the cutter’s teeth. Spindle Speed Override assumes that the LinuxCNC software has been configured to control spindle speed.

StepConf
An LinuxCNC configuration wizard. It is able to handle many step-and-direction motion command based machines. It writes a full configuration after the user answers a few questions about the computer and machine that LinuxCNC is to run on.

Stepper Motor
A type of motor that turns in fixed steps. By counting steps, it is possible to determine how far the motor has turned. If the load exceeds the torque capability of the motor, it will skip one or more steps, causing position errors.

TASK
The module within LinuxCNC that coordinates the overall execution and interprets the part program.

Tcl/Tk
A scripting language and graphical widget toolkit with which several of LinuxCNC’s GUIs and selection wizards were written.

Traverse Move
A move in a straight line from the start point to the end point.
Enheter
See “Machine Units”, “Display Units”, or “Program Units”.

Unsigned Integer
A whole number that has no sign. In HAL it is usually a \texttt{u32} but could be also a \texttt{u64}.

World Coordinates
This is the absolute frame of reference. It gives coordinates in terms of a fixed reference frame that is attached to some point (generally the base) of the machine tool.
Kapittel 7

Legal Section

Oversettelsene av denne filen som er tilgjengelig i kildekdetreet er ikke juridisk bindene.

7.1 Copyright Terms

(c) 2000-2022 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

7.2 GNU Free Documentation License

GNU Free Documentation License Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondly, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, TeXinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five). C. State on the Title page the name of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this License. I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified Version. N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents, forming one section entitled “History”; likewise combine any sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an “aggregate”, and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
Kapittel 8

Register

A
acme screw, 24
axis, 24

B
backlash, 24
backlash compensation, 24
ball nut, 25
ball screw, 25

C
CNC, 25
comp, 25
Configuration Launcher, 14
coordinate measuring machine, 25

D
display units, 25
DRO, 25

E
EDM, 25
EMC, 25
EMCIO, 25
EMCMOT, 25
coder, 26

F
feed, 26
feed rate, 26
feedback, 26
feedrate override, 26
Finne hjelp, 2

G
G-kode, 26
GUI, 24, 26

H
HAL, 26
home, 26

I
INI, 26
Instance, 26

J
jog, 26
joint coordinates, 26

K
kinematics, 27

L
lead screw, 27
LinuxCNC-kjøring, 14
loop, 28

M
machine units, 27
MDI, 27

N
NIST, 27
NML, 27

O
offsets, 27
Om LinuxCNC, 1
Opdatering av LinuxCNC, 18

P
part Program, 27
program units, 27

R
rapid, 27
rapid rate, 27
real-time, 28
RS274NGC, 28
RTAI, 28
RTAPI, 28
RTLINUX, 28

S
servo motor, 28
Signed Integer, 28
spindle, 28
stepper motor, 28
Systemkrav, 4

T
TASK, 28
Tk, 28
Traverse Move, 28

U
units, 29
Unsigned Integer, 29
Updates to LinuxCNC, 11

W
world coordinates, 29