
LinuxCNC(1) TheEnhanced Machine Controller LinuxCNC(1)

NAME
linuxcnc − LinuxCNC (The Enhanced Machine Controller)

SYNOPSIS
linuxcnc [-v] [-d] [INIFILE]

DESCRIPTION
linuxcnc is used to start LinuxCNC (The Enhanced Machine Controller). It starts the realtime system and
then initializes a number of LinuxCNC components (IO, Motion, GUI, HAL, etc). The most important
parameter isINIFILE, which specifies the configuration name you would like to run. If INIFILE is not
specified, thelinuxcnc script presents a graphical wizard to let you choose one.

OPTIONS
−v Be a little bit verbose. This causes the script to print information as it works.

−d Print lots of debug information. All executed commands are echoed to the screen. This mode is
useful when something is not working as it should.

INIFILE
The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ev er, the most important one, because it is the file that holds the configuration together. It can
adjust a lot of parameters itself, but it also tellslinuxcnc which other files to load and use.

There are several ways to specify which config to use:

Specify the absolute path to an ini, e.g.
linuxcnc /usr/local/linuxcnc/configs/sim/sim.ini

Specify a relative path from the current directory, e.g.
linuxcnc configs/sim/sim.ini

Otherwise, in the case where theINIFILE is not specified, the behavior will depend on whether
you configured linuxcnc with--enable-run-in-place. If so, the linuxcnc config chooser will
search only the configs directory in your source tree.If not (or if you are using a packaged version
of linuxcnc), it may search several directories. The config chooser is currently set to search the
path:

˜/linuxcnc/configs:/home/buildslave/emc2-buildbot/wheezy-amd64-clang/docs/build/configs

EXAMPLES
linuxcnc

linuxcnc configs/sim/sim.ini

linuxcnc /etc/linuxcnc/sample-configs/stepper/stepper_mm.ini

SEE ALSO
halcmd(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

HISTORY

LinuxCNC Documentation 2006-02-20 1

LinuxCNC(1) TheEnhanced Machine Controller LinuxCNC(1)

BUGS
None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC Enhanced Machine Controller project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2 2006-02-20 LinuxCNCDocumentation

axis-remote(1) TheEnhanced Machine Controller axis-remote(1)

NAME
axis−remote − AXIS Remote Interface

SYNOPSIS
axis−remoteOPTIONS|FILENAME

DESCRIPTION
axis−remote is a small script that triggers commands in a running AXIS GUI.Useaxis−remote −−help
for further information.

OPTIONS
−−ping, −p

Check whether AXIS is running.

−−reload, −r
Make AXIS reload the currently loaded file.

−−clear, −c
Make AXIS clear the backplot.

−−quit, −q
Make AXIS quit.

−−help, −h, −?
Display a list of valid parameters foraxis−remote.

−−mdi COMMAND , −m COMMAND
Run the MDI commandCOMMAND .

FILENAME
Load the G-code fileFILENAME .

SEE ALSO
axis(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/linuxcnc/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2007-04-01 3

AXIS(1) TheEnhanced Machine Controller AXIS(1)

NAME
axis − AXIS LinuxCNC Graphical User Interface

SYNOPSIS
axis−ini INIFILE

DESCRIPTION
axis is one of the Graphical User Interfaces (GUI) for LinuxCNC It gets run by the runscript usually.

OPTIONS
INIFILE

The ini file is the main piece of an LinuxCNC configuration. It is not the entire configuration;
there are various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, how-
ev er, the most important one, because it is the file that holds the configuration together. It can
adjust a lot of parameters itself, but it also tellsLinuxCNC which other files to load and use.

SEE ALSO
LinuxCNC(1)

Much more information about LinuxCNC and HAL is available in the LinuxCNC and HAL User Manuals,
found at /usr/share/doc/LinuxCNC/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the LinuxCNC project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4 2007-04-01 LinuxCNCDocumentation

LinuxCNC(1) LinuxCNC(1)

NAME
elbpcom − Communicate with Mesa ethernet cards

SYNOPSIS
Common options:

elbpcom [−−ip=IP] [−−port=PORT] [−−timeout=TIMEOUT]

Reading data:
elbpcom [common options] −−space=SPACE [−−info] −−address=ADDRESS−−read=LENGTH

Writing data:
elbpcom [common options] −−space=SPACE −−address=ADDRESS−−write=HEXDATA

Sending arbitrary packets:
elbpcom [common options] HEXDATA

DESCRIPTION
Read or write data from a Mesa ethernet card that uses the LBP16 protocol, such as the 7i80. This can be
useful for performing certain low-level tasks.

For more information about the meaning of each address space, see the card documentation. Incorrect use
of this utility can have neg ative effects such as changing the board’s IP address or even corrupting the
FPGA bitfile in the eeprom.For some tasks, such as updating FPGA bitfiles and setting IP addresses,
mesaflash(1) is a more appropriate tool.

If not specified, the default values are
−−ip=192.168.1.121−−port=27181−−timeout=.2

This example demonstrates reading the HOSTMOT2 identifying string from the IDROM in space 0:
$ elbpcom −−space 0 −−address 0x104 −−read 8
> 82420401
< 484f53544d4f5432

HOSTMOT2
First the request is shown in hex. Thenthe response (if any) is shown in hex. Finally, the response is
shown in ASCII, with "." replacing any non-ASCII characters. This is similar to the following invocations
of mesaflash:

$./mesaflash −−device 7i80 −−rpo 0x104
54534F48
$./mesaflash −−device 7i80 −−rpo 0x108
32544F4D

but notice its different treatment of byte order.

SEE ALSO
mesaflash(1), hostmot2(9), hm2_eth(9), Mesa’s documentation for the Anything I/O boards
〈http://www.mesanet.com〉.

LinuxCNC Documentation 2015-04-18 5

GLADEVCP(1) TheEnhanced Machine Controller GLADEVCP(1)

NAME
gladevcp − Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets

SYNOPSIS
gladevcp[−g WxH+X+Y] [−c component-name] [−u handler] [−U useroption] [−H halfile] [−d] myfile.ui

OPTIONS
−g WxH+X+Y

This sets the initial geometry of the root window. Use ’WxH’ for just size, ’+X+Y’ for just posi-
tion, or ’WxH+X+Y’ for both. Size / position use pixel units. Position is referenced from top left.

−c component-name
Usecomponent-nameas the HAL component name. If the component name is not specified, the
basename of the ui file is used.

−u handler
Instructs gladevcp to inspect the Python scripthandlerfor event handlers, and connect them to sig-
nals in the ui file.

−U useroption
gladevcp collects alluseroptionstrings and passes them to the handler init() method as a list of
strings without further inspection.

−x XID Reparent gladevcp into an existing windowXID instead of creating a new top level window.

−H halfile
gladevcp runshalfile - a list of HAL commands - by executinghalcmd −c halfileafter the HAL
component is finalized.

−d enable debug output.

−R gtkrcfile
explicitly load a gtkrc file.

−t THEME
set gtk theme. Default issystemtheme. Different panels can have different themes.

−m MAXIMUM
force panel window to maxumize. Together with the−g geometryoption one can move the panel
to a second monitor and force it to use all of the screen

−R explicitly deactivate workaround for a gtk bug which makes matches of widget and widget_class
matches in gtk theme and gtkrc files fail. Normally not needed.

SEE ALSO
GladeVCPin the LinuxCNC documentation for a description of gladevcp’s capabilities and the associated
HAL widget set, along with examples

6 2010-12-20 LinuxCNCDocumentation

gs2_vfd(1) LinuxCNC Documentation gs2_vfd(1)

NAME
gs2_vfd− HAL userspace component for Automation Direct GS2 VFD’s

SYNOPSIS
gs2_vfd[OPTIONS]

DESCRIPTION
This manual page explains thegs2_vfdcomponent. This component reads and writes to the GS2 via a mod-
bus connection.

gs2_vfdis for use with LinuxCNC

OPTIONS
−b, −−bits <n>

(default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive

−d, −−device <path>
(default /dev/ttyS0) Set the name of the serial device node to use.

−v, −−verbose
Turn on verbose mode.

−g, −−debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug
mode will cause all modbus messages to be printed in hex on the terminal.

−n, −−name <string>
(default gs2_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

−p, −−parity [even,odd,none]
(default odd) Set serial parity to even, odd, or none.

−r, −−rate <n>
(default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

−s, −−stopbits [1,2]
(default 1) Set serial stop bits to 1 or 2

−t, −−target <n>
(default 1) Set MODBUS target (slave) number. This must match the device number you set on the
GS2.

−A, −−accel−seconds <n>
(default 10.0) Seconds to accelerate the spindle from 0 to Max RPM.

−D, −−decel−seconds <n>
(default 0.0) Seconds to decelerate the spindle from Max RPM to 0. If set to 0.0 the spindle will
be allowed to coast to a stop without controlled deceleration.

−R, −−braking−resistor
This argument should be used when a braking resistor is installed on the GS2 VFD (see Appendix
A of the GS2 manual). It disables deceleration over-voltage stall prevention (see GS2 modbus
Parameter 6.05), allowing the VFD to keep braking even in situations where the motor is regener-
ating high voltage. Theregenerated voltage gets safely dumped into the braking resistor.

PINS

GS2 VFD January 1, 2009 7

gs2_vfd(1) LinuxCNC Documentation gs2_vfd(1)

<name>.DC−bus−volts (float, out)
from the VFD

<name>.at−speed (bit, out)
when drive is at commanded speed

<name>.err−reset (bit, in)
reset errors sent to VFD

<name>.firmware−revision (s32, out)
from the VFD

<name>.frequency−command (float, out)
from the VFD

<name>.frequency−out (float, out)
from the VFD

<name>.is−stopped (bit, out)
when the VFD reports 0 Hz output

<name>.load−percentage (float, out)
from the VFD

<name>.motor−RPM (float, out)
from the VFD

<name>.output−current (float, out)
from the VFD

<name>.output−voltage (float, out)
from the VFD

<name>.power−factor (float, out)
from the VFD

<name>.scale−frequency (float, out)
from the VFD

<name>.speed−command (float, in)
speed sent to VFD in RPM It is an error to send a speed faster than the Motor Max RPM as set in
the VFD

<name>.spindle−fwd (bit, in)
1 for FWD and 0 for REV sent to VFD

<name>.spindle−on (bit, in)
1 for ON and 0 for OFF sent to VFD, only on when running

<name>.spindle−rev (bit, in)
1 for ON and 0 for OFF, only on when running

<name>.status−1 (s32, out)
Drive Status of the VFD (see the GS2 manual)

<name>.status−2 (s32, out)
Drive Status of the VFD (see the GS2 manual) Note that the value is a sum of all the bits that are
on. So a 163 which means the drive is in the run mode is the sum of 3 (run) + 32 (freq set by
serial) + 128 (operation set by serial).

PARAMETERS
<name>.error−count (s32, RW)

8 January 1, 2009 GS2 VFD

gs2_vfd(1) LinuxCNC Documentation gs2_vfd(1)

<name>.loop−time (float, RW)
how often the modbus is polled (default 0.1)

<name>.nameplate−HZ (float, RW)
Nameplate Hz of motor (default 60)

<name>.nameplate−RPM (float, RW)
Nameplate RPM of motor (default 1730)

<name>.retval (s32, RW)
the return value of an error in HAL

<name>.tolerance (float, RW)
speed tolerance (default 0.01)

<name>.ack−delay (s32, RW)
number of read/write cycles before checking at−speed (default 2)

SEE ALSO
GS2 Driverin the LinuxCNC documentation for a full description of theGS2syntax

GS2 Examplesin the LinuxCNC documentation for examples using theGS2component

BUGS
AUTHOR

John Thornton

LICENSE
GPL

GS2 VFD January 1, 2009 9

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

NAME
hal_input − control HAL pins with any Linux input device, including USB HID devices

SYNOPSIS
loadusrhal_input [−KRAL] inputspec ...

DESCRIPTION
hal_input is an interface between HAL and any Linux input device, including USB HID devices. For each
device named,hal_input creates pins corresponding to its keys, absolute axes, and LEDs. At a fixed rate of
approximately 10ms, it synchronizes the device and the HAL pins.

INPUT SPECIFICATION
The inputspecmay be in one of several forms:

A string S
A substring or shell-style pattern match will be tested against the "name" of the device, the "phys"
(which gives information about how it is connected), and the "id", which is a string of the form
"Bus=... Vendor=... Product=...Version=...". You can view the name, phys, and id of attached
devices by executing less /proc/bus/input/devices. Examples:

SpaceBall
"Vendor=001f Product=0001"
serio*/input0

A numberN
This opens/dev/input/eventN. Except for devices that are always attached to the system, this
number may change over reboots or when the device is removed. For this reason, using an integer
is not recommended.

When several devices are identified by the same string, add ":N" whereN is the index of the desired device.
For example, ifMousematchesinput3 andinput10, thenMouseandMouse:0selectinput3. Specifying
mouse:1selects input10.

For devices that appear as multiple entries in /dev/input, these indices are likely to stay the same every time.
For multiple identical devices, these indices are likely to depend on the insertion order, but stay the same
across reboots as long as the devices are not moved to different ports or unplugged while the machine is
booted.

If the first character of theinputspecis a "+", thenhal_input requests exclusive access to the device. The
first device matching aninputspecis used. Any number ofinputspecs may be used.

A subset option may precede each inputspec. The subset option begins with a dash. Each letter in the sub-
set option specifies a device feature toinclude. Features that are not specified are excluded. For instance,
to export keyboard LEDs to HAL without exporting keys, use

hal_input −Lkeyboard...

DEVICE FEATURES SUPPORTED
• EV_KEY (buttons and keys). Subset−K

• EV_ABS (absolute analog inputs). Subset −A

• EV_REL (relative analog inputs). Subset −R

• EV_LED (LED outputs). Subset −L

HAL PINS AND PARAMETERS
For buttons

input.N.btn−namebit out
input.N.btn−name−not bit out

Created for each button on the device.

10 2007-02-25 LinuxCNC Documentation

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

For k eys
input.N.key−name
input.N.key−name−not

Created for each key on the device.

For absolute axes
input.N.abs−name−countss32 out
input.N.abs−name−position float out
input.N.abs−name−scaleparameter float rw
input.N.abs−name−offsetparameter float rw
input.N.abs−name−fuzz parameter s32 rw
input.N.abs−name−flat parameter s32 rw
input.N.abs−name−min parameter s32 r
input.N.abs−name−max parameter s32 r

Created for each absolute axis on the device. Device positions closer thanflat to offsetare
reported asoffset in counts, andcountsdoes not change until the device position changes by at
leastfuzz. The position is computed asposition = (counts− offset) / scale. The default value of
scaleandoffsetmap the range of the axis reported by the operating system to [−1,1]. The default
values offuzz andflat are those reported by the operating system. The values ofmin andmax are
those reported by the operating system.

For r elative axes
input.N.rel−name−countss32 out
input.N.rel−name−position float out
input.N.rel−name−resetbit in
input.N.rel−name−scaleparameter float rw
input.N.rel−name−absoluteparameter s32 rw
input.N.rel−name−precisionparameter s32 rw
input.N.rel−name−last parameter s32 rw

Created for each relative axis on the device. Aslong asreset is true,counts is reset to zero
regardless of any past or current axis movement. Otherwise,counts increases or decreases accord-
ing to the motion of the axis.counts is divided by position−scale to giveposition. The default
value ofposition is 1. There are some devices, notably scroll wheels, which return signed values
with less resolution than 32 bits. The default value ofprecision is 32. precisioncan be set to 8
for a device that returns signed 8 bit values, or any other value from 1 to 32.absolute, when set
true, ignores duplicate events with the same value. Thisallows for devices that repeat events with-
out any user action to work correctly.last shows the most recent count value returned by the
device, and is used in the implementation ofabsolute.

For L EDs
input.N.led−namebit out
input.N.led−name−invert parameter bit rw

Created for each LED on the device.

PERMISSIONS AND UDEV
By default, the input devices may not be accessible to regular users--hal_input requires read-write access,
ev en if the device has no outputs.

Different versions of udev hav eslightly different, incompatible syntaxes. For this reason, it is not possible
for this manual page to give an accurate example. Theudev(7)manual page documents the syntax used on
your Linux distribution. To view it in a terminal, the command isman 7 udev.

BUGS
The initial state of keys, buttons, and absolute axes are erroneously reported as FALSE or 0 until an event is
received for that key, button, or axis.

LinuxCNC Documentation 2007-02-25 11

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

SEE ALSO
udev(8), udev(7)

12 2007-02-25 LinuxCNC Documentation

hal_manualtoolchange(1) HALUserspace Component hal_manualtoolchange(1)

NAME
hal_manualtoolchange − HAL userspace component to enable manual tool changes.

SYNOPSIS
loadusr hal_manualtoolchange

DESCRIPTION
hal_manualtoolchange is a LinuxCNC userspace component that allows users with machines lacking auto-
matic tool changers to make manual tool changes. In use when a M6 tool change is encountered, the
motion component will stop the spindle and pause the program. The hal_manualtoolchange component
will then receive a signal from the motion component causing it to display a tool change window prompting
the user which tool number to load based on the last T− number programmed. The dialog will stay active
until the "continue" button is pressed. When the "continue" button is pressed, hal_manualtoolchange will
then signal the motion component that the tool change is complete thus allowing motion to turn the spindle
back on and resume program execution.

Additionally, The hal_manualtoolchange component includes a hal pin for a button that can be connected to
a physical button to complete the tool change and remove the window prompt (hal_manual-
toolchange.change_button).

hal_manualtoolchange can be used even when AXIS is not used as the GUI. This component is most useful
if you have presettable tools and you use the tool table.

PINS
hal_manualtoolchange.numbers32 in

Receives last programmed T− number.

hal_manualtoolchange.changebit in
Receives signal to do tool change.

hal_manualtoolchange.changedbit out
Signifies that the tool change is complete.

hal_manualtoolchange.change_buttonbit in
Pin to allow an external switch to signify that the tool change is complete.

USAGE
Normal usage is to load the component in your HAL file and net the appropriate pins from themotionand
io components. Thefollowing lines are typical in a HAL file when using the hal_manualtoolchange
userspace component.

loadusr −W hal_manualtoolchange
This will load the hal_manualtoolchange userspace component waiting for the component to be
ready before continuing.

net tool−change iocontrol.0.tool−change => hal_manualtoolchange.change
When an M6 code is run, motion setsiocontrol.0.tool−changeto high indicating a tool change.
This pin should be netted tohal_manualtoolchange.change. This causes the Tool change dialog
to be displayed on screen and wait for the user to either click the continue button on the dialog or
press an externally connected button.

net tool−changed iocontrol.0.tool−changed <= hal_manualtoolchange.changed
When the Tool change dialog’s continue button is pressed, it will set thehal_manual-
toolchange.changedpin to high, this should be netted to theiocontrol.0.tool−changedpin, indicat-
ing to the motion controller that the tool change has been completed and can continue with the
execution of the G-code program.

net tool−number iocontrol.0.tool−prep−number => hal_manualtoolchange.number
When a T− command is executed in a G-code program, the tool number will held in theiocon-
trol.0.tool−prep−number. This pin should be netted tohal_manualtoolchange.number. The value
of this pin, the tool number is displayed in the Tool change dialog to let the user know which tool
should be loaded.

LinuxCNC Documentation 04 APR 2017 13

hal_manualtoolchange(1) HALUserspace Component hal_manualtoolchange(1)

net tool−prepare−loopback iocontrol.0.tool−prepare => iocontrol.0.tool−prepared
The iocontrol.0.tool−preparepin will go true when a Tn tool prepare is requested. Since there is
not automated tool changer this pin should be netted toiocontrol.0.tool−preparedto indocate that
the tool has been prepared.

If you wish to use an external button to signal the hal_manualtoolchange component that the tool change is
complete simply bring the button into HAL (via a parport input pin or a hostmot2 gpio input or similar),
and wire it directly to thehal_manualtoolchange.change_buttonpin. For Example:

net tool−changed−btn hal_manualtoolchange.change_button <= parport.0.pin−15−in

SEE ALSO
motion(1) iocontrol(1) halcmd(1)

14 04APR 2017 LinuxCNC Documentation

hal_parport(1) HALRealtime Component hal_parport(1)

NAME
hal_parport − Realtime HAL component to communicate with one or more pc parallel ports.

SYNOPSIS
loadrt hal_parport cfg=" port_addr[type] [[port_addr[type] ...]"

DESCRIPTION
The hal_parport component is a realtime component that provides connections from HAL via halpins to the
physical pins of one or more parallel ports. It provides a read and write function to send and receive data to
the attached parallel port(s).

The hal_parport component supports up to8 physical parallel ports.

OPTIONS
cfg="port_addr [type] [[port_addr [type] ...]"

The cfg string tells hal_parport the address(es) of the parallel port(s) and whether the port(s) is/are
used as an input or output port(s). Up to eight parallel ports are supported by the component.

Theport_addr parameter of the configuration string may be either the physical base address of a
parallel port or specified as the detected parallel port via Linux parport_pc driver. In which case, a
port_addr of 0 is the first parallel port detected on the system,1 is the next, and so on.

Thetype parameter of the configuration string determines how the I/O bits of the port are used.
There are four possible options and if none is specified will default to out.

in − Sets the 8 bits of the data port to input. In this mode the parallel port has a total of 13 input
pins and 4 output pins.

out− Sets the 8 bits of the data port to output. In this mode the parallel port has a total of 5 input
pins and 12 output pins.

epp− This option is the same as setting to out, but can cause the computer to change the electrical
characteristics of the port. (See USAGE below.)

x − The option allows ports with open collectorts on the control group pins to be configured as
inputs resulting in 8 output pins and 9 input pins. (See USAGE below.)

PINS
The pins created by the hal_parport component depends on how it is configured in thecfg="" string passed
to it. (See OPTIONS.)

parport.<p>.pin−<n>−out (bit) Drives a physical output pin.

parport.<p>.pin−<n>−in (bit) Tracks a physical input pin.

parport.<p>.pin−<n>−in−not (bit) Tracks a physical input pin, but inverted.

For each pin created,<p> is the port number, and<n> is the physical pin number in the 25 pin
D−shell connector.

For each physical output pin, the driver creates a single HAL pin, for example:par-
port.0.pin−14−out.

For each physical input pin, the driver creates two HAL pins, for example:parport.0.pin−12−in
andparport.0.pin−12−in−not.

LinuxCNC Documentation 12 APR 2017 15

hal_parport(1) HALRealtime Component hal_parport(1)

The−in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The
−in−not HAL pin is inverted and is FALSE if the physical pin is high.

The following lists the input and output pins by the type setting used in the cfg="" string.

in: Pins 2,3,4,5,6,7,8,9,10,11,12,13,15 are input pins and pins 1,14,16 and 17 are output pins.

out/epp: Pins 10,11,12,13 and 15 are input pins and pins 1,2,3,4,5,6,7,8,9,14,16 and 17 are output
pins.

x: Pins 1,10,11,12,13,14,15,16 and 17 are input pins and pins 2,3,4,5,6,7,8,9 are output pins. (See
USAGE section.)

PARAMETERS
parport.<p>.pin−<n>−out−invert (bit)

Inverts an output pin.

parport.<p>.pin−<n>−out−reset (bit)
(only for out pins) TRUE if this pin should be reset when the .reset function is executed.

parport.<p>.reset−time’ (U32)
The time (in nanoseconds) between a pin is set by write and reset by the reset function if it is
enabled.

FUNCTIONS
parport.<p>.read(funct)

Reads physical input pins of port <portnum> and updates HAL −in and −in−not pins.

parport.read−all (funct)
Reads physical input pins of all ports and updates HAL −in and −in−not pins.

parport.<p>.write (funct)
Reads HAL −out pins of port <p> and updates that portâs physical output pins.

parport.write−all (funct)
Reads HAL −out pins of all ports and updates all physical output pins.

parport.<p>.reset (funct)
Waits until reset−timehas elapsed since the associated write, then resets pins to values indicated
by −out−resetand−out−invert settings. reset must be later in the same thread as write. ’If
’−out−resetis TRUE, then the reset function will set the pin to the value of−out−invert. This can
be used in conjunction with stepgenâs doublefreq to produce one step per period. The stepgen
stepspace for that pin must be set to 0 to enable doublefreq.

USAGE
The hal_parport component is a driver for the traditional PC parallel port. The port has a total of 25 physi-
cal pins of which 17 are used for signals. The original parallel port divided those pins into three groups:
data, control, and status. The data group consists of 8 output pins, the control group consists of 4 output
pins, and the status group consists of 5 input pins.

In the early 1990âs, the bidirectional parallel port was introduced, which allows the data group to be used
for output or input. The HAL driver supports the bidirectional port, and allows the user to set the data group
as either input or output. If configured asout, a port provides a total of 12 outputs and 5 inputs. If config-
ured asin, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an
external gate. On a board with open collector control pins, if configured asx, it provides 8 outputs, and 9
inputs.

In some parallel ports, the control group has push-pull drivers and cannot be used as an input.

16 12APR 2017 LinuxCNC Documentation

hal_parport(1) HALRealtime Component hal_parport(1)

Note: HAL and Open Collectors
HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors
(OC). If they are not, they cannot be used as inputs, and attempting to drive them LOW from an
external source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no
device attached, HAL should read the pin as TRUE. Next, insert a 470 ohm resistor from one of
the control pins to GND. If the resulting voltage on the control pin is close to 0V, and HAL now
reads the pin as FALSE, then you have an OC port. If the resulting voltage is far from 0V, or HAL
does not read the pin as FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates (e.g.,
74LS05).

On some computers, BIOS settings may affect whether x mode can be used. SPP mode is most
likely to work.

No other combinations are supported, and a port cannot be changed from input to output once the driver is
installed.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are
numbered starting at zero.

Loading the hal_parport component

The hal_parport driver is a real time component so it must be loaded into the real time thread with
loadrt. The configuration string describes the parallel ports to be used, and (optionally) their types.
If the configuration string does not describe at least one port, it is an error.

loadrt hal_parport cfg="port [type] [port [type] ...]"

Specifying the Port

Numbers below 16 refer to parallel ports detected by the system. This is the simplest way to con-
figure the hal_parport driver, and cooperates with the Linux parport_pc driver if it is l oaded. A port
of 0 is the first parallel port detected on the system, 1 is the next, and so on.

Basic configuration

This will use the first parallel port Linux detects:

loadrt hal_parport cfg="0"

Using the Port Address

Instead, the port address may be specified using the hex notation 0x then the address.

loadrt hal_parport cfg="0x378"

Specifying a port Type

For each parallel port handled by the hal_parport driver, a type can optionally be specified. The
type is one of in, out, epp, or x.

If the type is not specified, the default is out.

A type of epp is the same as out, but the hal_parport driver requests that the port switch into EPP
mode. The hal_parport driver does not use the EPP bus protocol, but on some systems EPP mode

LinuxCNC Documentation 12 APR 2017 17

hal_parport(1) HALRealtime Component hal_parport(1)

changes the electrical characteristics of the port in a way that may make some marginal hardware
work better. The Gecko G540âs charge pump is known to require this on some parallel ports.

See the Note above about mode x.

Example with two parallel ports

This will enable two system-detected parallel ports, the first in output mode and the second in
input mode:

loadrt hal_parport cfg="0 out 1 in"

Functions single port

You must also direct LinuxCNC to run the read and write functions.

addf parport.read−all base−thread
addf parport.write−all base−thread

Functions multiple ports

You can direct LinuxCNC to ruin the read and write functions for all the attached ports.

addf parport.0.read base−thread
addf parport.0.write base−thread

The individual functions are provided for situations where one port needs to be updated in a very
fast thread, but other ports can be updated in a slower thread to save CPU time. It is probably not a
good idea to use both an −all function and an individual function at the same time.

SEE ALSO
Parallel Port Driver (Hardware Drivers Section of LinuxCNC Docs) PCI Parallel Port Example (Hardware
Examples Section of LinuxCNC Docs)

AUTHOR
This man page written by Joe Hildreth as part of the LinuxCNC project. Most of this information was taken
from the parallel-port docs located in the Hardware Drivers section of the documentation.To the best of
my knowledge that documentation was written by Sebastian Kuzminsky and Chris Radek.

18 12APR 2017 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

NAME
halcmd − manipulate the LinuxCNC HAL from the command line

SYNOPSIS
halcmd [OPTIONS] [COMMAND[ARG]]

DESCRIPTION
halcmd is used to manipulate the HAL (Hardware Abstraction Layer) from the command line.halcmd can
optionally read commands from a file, allowing complex HAL configurations to be set up with a single
command.

If the readline library is available when LinuxCNC is compiled, thenhalcmd offers commandline editing
and completion when running interactively. Use the up arrow to recall previous commands, and press tab to
complete the names of items such as pins and signals.

OPTIONS
−I Before tearing down the realtime environment, run an interactive halcmd. halrun only. If −I is

used, it must precede all other commandline arguments.

\-f [file] Ignore commands on command line, take input fromfile instead. Iffile is not specified, take input
from stdin.

−i inifile
Use variables frominifile for substitutions. SeeSUBSTITUTION below.

\-k Keep going after failed command(s). The default is to stop and return failure if any command
fails.

\-q display errors only (default)

\-Q display nothing, execute commands silently

\-s Script-friendly mode. In this mode,showwill not output titles for the items shown. Also,module
names will be printed instead of ID codes in pin, param, and funct listings. Threads are printed on
a single line, with the thread period, FP usage and name first, followed by all of the functions in
the thread, in execution order. Signals are printed on a single line, with the type, value, and signal
name first, followed by a list of pins connected to the signal, showing both the direction and the
pin name.

−R Release the HAL mutex. Thisis useful for recovering when a HAL component has crashed while
holding the HAL mutex.

\-v display results of each command

\-V display lots of debugging junk

\-h [command]
display a help screen and exit, displays extended help oncommandif specified

COMMANDS
Commands tellhalcmd what to do. Normallyhalcmd reads a single command from the command line and
executes it. If the ’−f’ option is used to read commands from a file,halcmd reads each line of the file as a
new command. Anything following ’#’ on a line is a comment.

loadrt modname
(load realtime module) Loads a realtime HAL module calledmodname. halcmd looks for the
module in a directory specified at compile time.

In systems with realtime,halcmd calls thelinuxcnc_module_helperto load realtime modules.
linuxcnc_module_helperis a setuid program and is compiled with a whitelist of modules it is
allowed to load. This is currently just a list ofLinuxCNC -related modules. Thelinuxcnc_mod-
ule_helperexecs insmod, so return codes and error messages are those from insmod. Administra-
tors who wish to restrict which users can load theseLinuxCNC -related kernel modules can do this

LinuxCNC Documentation 2003-12-18 19

HALCMD(1) HAL User’s Manual HALCMD(1)

by setting the permissions and group onlinuxcnc_module_helperappropriately.

In systems without realtimehalcmd calls thertapi_app which creates the simulated realtime
environment if it did not yet exist, and then loads the requested component with a call to
dlopen(3).

unloadrt modname
(unload realtime module) Unloads a realtime HAL module calledmodname. If modnameis "all",
it will unload all currently loaded realtime HAL modules.unloadrt also works by execing linux-
cnc_module_helperor rtapi_app, just likeloadrt .

loadusr [flags] unix-command
(load Userspace component) Executes the given unix-command, usually to load a userspace com-
ponent. [flags] may be one or more of:

• −W to wait for the component to become ready. The component is assumed to have the same
name as the first argument of the command.

• −Wn name to wait for the component, which will have the given name.

• −w to wait for the program to exit

• −i to ignore the program return value (with −w)

waitusr name
(wait for Userspace component) Waits for user space componentnameto disconnect from HAL
(usually on exit). Thecomponent must already be loaded. Useful near the end of a HAL file to
wait until the user closes some user interface component before cleaning up and exiting.

unloadusr compname
(unload Userspace component) Unloads a userspace component calledcompname. If compname
is "all", it will unload all userspace components.unloadusr works by sending SIGTERM to all
userspace components.

unload compname
Unloads a userspace component or realtime module. Ifcompnameis "all", it will unload all
userspace components and realtime modules.

newsigsigname type
(OBSOLETE - usenet instead) (new signal) Creates a new HAL signal calledsignamethat may
later be used to connect two or more HAL component pins.typeis the data type of the new signal,
and must be one of "bit ", "s32", "u32", or "float". Fails if a signal of the same name already
exists.

delsigsigname
(deletesignal) DeletesHAL signalsigname. Any pins currently linked to the signal will be
unlinked. Fails if signamedoes not exist.

setssigname value
(set signal) Setsthe value of signalsignameto value. Fails if signamedoes not exist, if it already
has a writer, or if valueis not a legal value. Legal values depend on the signals’s type.

stypename
(signal type) Gets the type of signalname. Fails if namedoes not exist as a signal.

getssigname
(get signal) Getsthe value of signalsigname. Fails if signamedoes not exist.

linkps pinname[arrow] signame
(OBSOLETE - usenet instead) (link pin to signal) Establishs a link between a HAL component
pin pinnameand a HAL signalsigname. Any previous link topinnamewill be broken.arrow can
be "=>", "<=", "<=>", or omitted. halcmd ignores arrows, but they can be useful in command
files to document the direction of data flow. Arrows should not be used on the command line since

20 2003-12-18 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

the shell might try to interpret them.Fails if eitherpinnameor signamedoes not exist, or if they
are not the same type type.

linksp signame[arrow] pinname
(OBSOLETE - usenet instead) (link signal topin) Works likelinkps but rev erses the order of the
arguments.halcmd treats both link commands exactly the same. Use whichever you prefer.

linkpp pinname1[arrow] pinname2
(OBSOLETE - usenet instead) (link pin to pin) Shortcut forlinkps that creates the signal (named
like the first pin), then links them both to that signal.halcmd treats this just as if it were:

halcmd newsigpinname1
halcmd linksp pinname1 pinname1
halcmd linksp pinname1 pinname2

net signame pinname ...
Createsignnameto match the type ofpinnameif it does not yet exist. Then,link signameto each
pinnamein turn. Arrows may be used as inlinkps. When linking a pin to a signal for the first
time, the signal value will inherit the pin’s default value.

unlinkp pinname
(unlink pin) Breaksany previous link topinname. Fails if pinnamedoes not exist. An unlinked
pin will retain the last value of the signal it was linked to.

setpname value
(set parameter orpin) Setsthe value of parameter or pinnameto value. Fails if namedoes not
exist as a pin or parameter, if it is a parameter that is not writable, if it is a pin that is an output, if
it is a pin that is already attached to a signal, or ifvalueis not a legal value. Legal values depend
on the type of the pin or parameter. If a pin and a parameter both exist with the given name, the
parameter is acted on.

paramname= value

pinname= value
Identical tosetp. This alternate form of the command may be more convenient and readable when
used in a file.

ptype name
(parameter orpin type) Gets the type of parameter or pinname. Fails if namedoes not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

getpname
(get parameter orpin) Getsthe value of parameter or pinname. Fails if namedoes not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

addf functname threadname
(add function) Addsfunctionfunctnameto realtime threadthreadname. functnamewill run after
any functions that were previously added to the thread.Fails if eitherfunctnameor threadname
does not exist, or if they are incompatible.

delf functname threadname
(deletefunction) Removes functionfunctnamefrom realtime threadthreadname. Fails if either
functnameor threadnamedoes not exist, or iffunctnameis not currently part ofthreadname.

start Starts execution of realtime threads. Each thread periodically calls all of the functions that were
added to it with theaddf command, in the order in which they were added.

stop Stops execution of realtime threads. The threads will no longer call their functions.

LinuxCNC Documentation 2003-12-18 21

HALCMD(1) HAL User’s Manual HALCMD(1)

show[item]
Prints HAL items tostdoutin human readable format.itemcan be one of "comp" (components),
"pin", "sig" (signals), "param" (parameters), "funct" (functions), "thread", or "alias". Thetype
"all" can be used to show matching items of all the preceding types. Ifitem is omitted,showwill
print everything.

item This is equivalent toshow all [item] .

save [item]
Prints HAL items tostdoutin the form of HAL commands. These commands can be redirected to
a file and later executed usinghalcmd −f to restore the saved configuration. itemcan be one of the
following:

"comp" generates aloadrt command for realtime component.

"alias" generates analiascommand for each pin or parameter alias pairing

"sig" (or "signal") generates anewsigcommand for each signal, and "sigu" generates anewsig
command for each unlinked signal (for use withnetl andnetla).

"link " and "linka " both generatelinkps commands for each link. (linka includes arrows, while
link does not.)

"net" and "neta" both generate onenewsigcommand for each signal, followed bylinksp com-
mands for each pin linked to that signal. (neta includes arrows.)

"netl" generates onenet command for each linked signal, and "netla" (or "netal") generates a sim-
ilar command using arrows.

"param" (or "parameter) "generates onesetpcommand for each parameter.

"thread" generates oneaddf command for each function in each realtime thread.

If item is omitted (orall), savedoes the equivalent ofcomp, alias, sigu, netla, param, and
thread.

source filename.hal
Execute the commands fromfilename.hal.

alias type name alias
Assigns "alias" as a second name for the pin or parameter "name".For most operations, an alias
provides a second name that can be used to refer to a pin or parameter, both the original name and
the alias will work.

"type" must bepin or param.
"name" must be an existing name oraliasof the specified type.

unalias type alias
Removes any alias from the pin or parameter alias.
"type" must bepin or param
"alias" must be an existing name oraliasof the specified type.

list type[pattern]
Prints the names of HAL items of the specified type.
’type’ is ’comp’, ’ pin’, ’ sig’, ’ param’, ’ funct’, or
’ thread’. If ’pattern’ is specified it prints only
those names that match the pattern, which may be a

22 2003-12-18 LinuxCNC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

’shell glob’.
For ’sig’, ’ pin’ and ’param’, the first pattern may be
−tdatatypewhere datatype is the data type (e.g., ’float’)
in this case, the listed pins, signals, or parameters
are restricted to the given data type
Names are printed on a single line, space separated.

lock [all|tune|none]
Locks HAL to some degree.
none - no locking done.
tune - some tuning is possible (setp& such).
all - HAL completely locked.

unlock [all|tune]
Unlocks HAL to some degree.
tune - some tuning is possible (setp& such).
all - HAL completely unlocked.

status[type]
Prints status info about HAL.
’type’ is ’lock’, ’ mem’, or ’all’.
If ’type’ is omitted, it assumes ’all’.

help [command]
Give help information for command.
If ’command’ is omitted, list command and brief description

SUBSTITUTION
After a command is read but before it is executed, several types of variable substitution take place.

Environment Variables
Environment variables have the following formats:

$ENVVAR followed by end-of-line or whitespace

$(ENVVAR)

Inifile Variables
Inifile variables are available only when an inifile was specified with the halcmd−i flag. They hav ethe fol-
lowing formats:

[SECTION]VAR followed by end-of-line or whitespace

[SECTION](VAR)

EXAMPLES
HISTORY
BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Now includes major contributions by
several members of the project.

REPORTING BUGS
Report bugs to theLinuxCNC bug tracker〈http://sf.net/p/emc/bugs/ 〉.

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2003-12-18 23

HALCMD(1) HAL User’s Manual HALCMD(1)

SEE ALSO
halrun(1) -- a convenience script to start a realtime environment, process a .hal or a .tcl file, and optionally
start an interactive command session usinghalcmd (described here) orhaltcl(1).

24 2003-12-18 LinuxCNC Documentation

halcompile(1) TheEnhanced Machine Controller halcompile(1)

NAME
halcompile − Build, compile and install LinuxCNC HAL components

SYNOPSIS
halcompile [−−compile|−−preprocess|−−document|−−view−doc] compfile...

sudohalcompile [−−install|−−install−doc] compfile...
halcompile −−compile −−userspacecfile...

sudohalcompile −−install −−userspacecfile...
sudohalcompile −−install −−userspacepyfile...

DESCRIPTION
halcompileperforms many different functions:

• Compile.compand.c files into.soor .ko HAL realtime components (the−−compileflag)

• Compile.compand.c files into HAL userspace components (the−−compile −−userspaceflag)

• Preprocess.compfiles into.c files (the−−preprocessflag)

• Extract documentation from.compfiles into.9 manpage files (the−−documentflag)

• Display documentation from.compfiles onscreen (the−−view−docflag)

• Compile and install.comp and .c files into the proper directory for HAL realtime components (the
−−install flag), which may requiresudoto write to system directories.

• Install .c and .py files into the proper directory for HAL userspace components (the−−install
−−userspaceflag), which may requiresudoto write to system directories.

• Extract documentation from.comp files into .9 manpage files in the proper system directory (the
−−install flag), which may requiresudoto write to system directories.

• Preprocess.compfiles into.c files (the−−preprocessflag)

SEE ALSO
Halcompile HAL Component Generator in the LinuxCNC documentation for a full description of the
.compsyntax, along with examples

pydoc hal andCreating Userspace Python Componentsin the LinuxCNC documentation for documenta-
tion on the Python interface to HAL components

LinuxCNC Documentation 2007-10-17 25

HALMETER(1) HAL User’s Manual HALMETER(1)

NAME
halmeter − observe HAL pins, signals, and parameters

SYNOPSIS
halmeter [−s] [pin|sig|param name] [−g X-positon Y-position [Width]]

DESCRIPTION
halmeter is used to observe HAL (Hardware Abstraction Layer) pins, signals, or parameters. It serves the
same purpose as a multimeter does when working on physical systems.

OPTIONS
pin name

display the HAL pinname.

signame
display the HAL signalname.

param name
display the HAL parametername.

If neitherpin, sig, or param are specified, the
window starts out blank and the user must select an item to observe.

\-s small window. Non-interactive, must be used withpin, sig, or param to select the item to display.
The item name is displayed in the title bar instead of the window, and there are no "Select" or
"Exit" buttons. Handywhen you want a lot of meters in a small space.

\-g geometry position.allows one to specify the initial starting position and optionally the width of
the meter. Referenced from top left of screen in pixel units. Handy when you want to load a lot of
meters in a script with out them displaying on top of each other.

USAGE
Unless\-s is specified, there are two buttons, "Select" and "Exit". "Select" opens a dialog box to select the
item (pin, signal, or parameter) to be observed. "Exit"does what you expect.

The selection dialog has "OK" "Apply", and "Cancel" buttons. OKdisplays the selected item and closes
the dialog. "Apply" displays the selected item but keeps the selection dialog open. "Cancel" closes the dia-
log without changing the displayed item.

EXAMPLES
halmeter

Opens a meter window, with nothing initially displayed. Use the "Select" button to choose an item
to observe. Doesnot return until the window is closed.

halmeter &
Open a meter window, with nothing initially displayed. Use the "Select" button to choose an item.
Runs in the background leaving the shell free for other commands.

halmeter pin parport.0.pin−03−out&
Open a meter window, initially displaying HAL pinparport.0.pin−03−out. The "Select" button
can be used to display other items. Runs in background.

halmeter −s pinparport.0.pin−03−out&
Open a small meter window, displaying HAL pinparport.0.pin−03−out. The displayed item can-
not be changed. Runs in background.

halmeter −s pinparport.0.pin−03−out−g 100 500&
Open a small meter window, displaying HAL pinparport.0.pin−03−out. places it 100 pixels to
the left and 500 pixels down from top of screen. The displayed item cannot be changed.Runs in
background.

26 2006-03-13 LinuxCNC Documentation

HALMETER(1) HAL User’s Manual HALMETER(1)

halmeter −s pinparport.0.pin−03−out−g 100 500 400&
Open a small meter window, displaying HAL pinparport.0.pin−03−out. places it 100 pixels to
the left and 500 pixels down from top of screen.The width will be 400 pixels (270 is default) The
displayed item cannot be changed. Runs in background.

SEE ALSO
HISTORY
BUGS
AUTHOR

Original version by John Kasunich, as part of the LinuxCNC project.Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-03-13 27

HALRUN(1) HAL User’s Manual HALRUN(1)

NAME
halrun − manipulate the LinuxCNC HAL from the command line

SYNOPSIS
halrun −h

halrun [−I] [halcmd_opts] [filename[.hal|.tcl]]

halrun −T [halcmd_opts] [filename[.hal|.tcl]]

halrun −U

DESCRIPTION
halrun is a convenience script used to manipulate the HAL (Hardware Abstraction Layer) from the com-
mand line. When invoked, halrun :

Sets up the realtime environment.
Executes a command interpreter (halcmd or haltcl).
(Optionally) runs an interactive session.
Tears down the realtime environment.

If no filename is specified, an interactive session is started.
The session will usehalcmd(1) unless −T is specified in
which casehaltcl(1) will be used.

If a filename is specified and neither the −I nor the −T option
is included, the filename will be processed by the command
interpreter corresponding to the filename extension (halcmd
or haltcl). After processing, the realtime environment
will be torn down.

If a filename is specified and the −I or −T option is included,
the file is processed by the appropriate command interpreter and
then an interactive session is started forhalcmd or
haltcl according to the −I or −T option.

OPTIONS
halcmd_opts

When a .hal file is specified, thehalcmd_optsare passed tohalcmd. See the man page forhal-
cmd(1). Whena .tcl file is specified, the only valid options are:

−i inifile
−f filename[.tcl|.hal] (alternate means of specifying a file)

−I Run an interactivehalcmd session

−T Run an interactivehaltcl session.

−U Forcibly cause the realtime environment to exit. It releases the HAL mutex, requests that all HAL
components unload, and stops the realtime system.−U must be the only commandline argument.

\-h display a brief help screen and exit

EXAMPLES
HISTORY
BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC Enhanced Machine Controller project.Now
includes major contributions by several members of the project.

28 2012-01-31 LinuxCNC Documentation

HALRUN(1) HAL User’s Manual HALRUN(1)

REPORTING BUGS
Report bugs to the LinuxCNC bug tracker〈URL: http://sf.net/p/emc/bugs/〉.

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO
halcmd(1), haltcl(1)

LinuxCNC Documentation 2012-01-31 29

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

NAME
halsampler − sample data from HAL in realtime

SYNOPSIS
halsampler [options]

DESCRIPTION
sampler(9) andhalsampler are used together to sample HAL data in real time and store it in a file.sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then
begins sampling data from the HAL and storing it to the FIFO.halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS
−c CHAN

instructshalsampler to read from FIFOCHAN. FIFOs are numbered from zero, and the default
value is zero, so this option is not needed unless multiple FIFOs have been created.

−n COUNT
instructshalsampler to readCOUNT samples from the FIFO, then exit. If −n is not specified,
halsamplerwill read continuously until it is killed.

−t instructshalsampler to tag each line by printing the sample number in the first column.

FILENAME
instructshalsampler to write toFILENAME instead of to stdout.

USAGE
A FIFO must first be created by loadingsampler(9) with halcmd loadrt or aloadrt command in a .hal file.
Thenhalsamplercan be invoked to begin printing data from the FIFO to stdout.

Data is printed one line per sample.If −t was specified, the sample number is printed first. The data fol-
lows, in the order that the pins were defined in the config string.For example, if thesampler config string
was "ffbs" then a typical line of output (without−t) would look like:

123.55 33.4 0 −12

halsampler prints data as fast as possible until the FIFO is empty, then it retries at regular intervals, until it
is either killed or has printedCOUNT samples as requested by−n. Usually, but not always, data printed by
halsamplerwill be redirected to a file or piped to some other program.

The FIFO size should be chosen to absorb samples captured during any momentary disruptions in the flow
of data, such as disk seeks, terminal scrolling, or the processing limitations of subsequent program in a
pipeline. If the FIFO gets full andsampler is forced to overwrite old data,halsampler will print ’overrun’
on a line by itself to mark each gap in the sampled data.If −t was specified, gaps in the sequential sample
numbers in the first column can be used to determine exactly how many samples were lost.

The data format forhalsampler output is the same as forhalstreamer(1) input, so ’wav eforms’ captured
with halsamplercan be replayed usinghalstreamer. The−t option should not be used in this case.

EXIT STATUS
If a problem is encountered during initialization,halsamplerprints a message to stderr and returns failure.

Upon printingCOUNT samples (if−n was specified) it will shut down and return success. If it is termi-
nated before printing the specified number of samples, it returns failure. Thismeans that when−n is not
specified, it will always return failure when terminated.

SEE ALSO
sampler(9) streamer(9) halstreamer(1)

30 2006-11-18 LinuxCNC Documentation

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

HISTORY
BUGS
AUTHOR

Original version by John Kasunich, as part of the LinuxCNC project.Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-11-18 31

HALSTREAMER(1) HAL User’s Manual HALSTREAMER(1)

NAME
halstreamer − stream file data into HAL in real time

SYNOPSIS
halstreamer [options]

DESCRIPTION
streamer(9) andhalstreamer are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so thatstreamer can write
it to the HAL pins.

OPTIONS
−c CHAN

instructshalstreamer to write to FIFOCHAN. FIFOs are numbered from zero, and the default
value is zero, so this option is not needed unless multiple FIFOs have been created.

FILENAME
instructshalsampler to read fromFILENAME instead of from stdin.

USAGE
A FIFO must first be created by loadingstreamer(9) with halcmd loadrt or a loadrt command in a .hal
file. Thenhalstreamercan be invoked to begin writing data into the FIFO.

Data is read from stdin, and is almost always either redirected from a file or piped from some other pro-
gram, since keyboard input would be unable to keep up with even slow streaming rates.

Each line of input must match the pins that are attached to the FIFO, for example, if thestreamer config
string was "ffbs" then each line of input must consist of two floats, a bit, and a signed integer, in that order
and separated by whitespace.Floats must be formatted as required bystrtod(3), signed and unsigned inte-
gers must be formatted as required bystrtol (3) andstrtoul (3), and bits must be either ’0’ or ’1’.

halstreamer transfers data to the FIFO as fast as possible until the FIFO is full, then it retries at regular
intervals, until it is either killed or readsEOF from stdin. Data can be redirected from a file or piped from
some other program.

The FIFO size should be chosen to ride through any momentary disruptions in the flow of data, such as disk
seeks. Ifthe FIFO is big enough,halstreamer can be restarted with the same or a new file before the FIFO
empties, resulting in a continuous stream of data.

The data format forhalstreamer input is the same as forhalsampler(1) output, so ’wav eforms’ captured
with halsamplercan be replayed usinghalstreamer.

EXIT STATUS
If a problem is encountered during initialization,halstreamerprints a message to stderr and returns failure.

If a badly formatted line is encountered while writing to the FIFO, it prints a message to stderr, skips the
line, and continues (this behavior may be revised in the future).

Upon readingEOF from the input, it returns success. If it is terminated before the input ends, it returns
failure.

SEE ALSO
streamer(9) sampler(9) halsampler(1)

HISTORY

32 2006-11-18 LinuxCNC Documentation

HALSTREAMER(1) HAL User’s Manual HALSTREAMER(1)

BUGS
AUTHOR

Original version by John Kasunich, as part of the LinuxCNC project.Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-11-18 33

HALTCL(1) HAL User’s Manual HALTCL(1)

NAME
haltcl − manipulate the LinuxCNC HAL from the command line using a tcl interpreter.

SYNOPSIS
haltcl [−i inifile] [filename]

DESCRIPTION
haltcl is used to manipulate the HAL (Hardware Abstraction Layer) from the command line using a tcl
interpreter.haltcl can optionally read commands from a file (filename), allowing complex HAL configura-
tions to be set up with a single command.

OPTIONS
−i inifile

If specified, the inifile is read and used to create tcl global variable arrays. An array is created for
each SECTION of the inifile with elements for each ITEM in the section.

For example, if the inifile contains:
[SECTION_A]ITEM_1 = 1
[SECTION_A]ITEM_2 = 2
[SECTION_B]ITEM_1 = 10

The corresponding tcl variables are:
SECTION_A(ITEM_1) = 1
SECTION_A(ITEM_2) = 2
SECTION_B(ITEM_1) = 10

−ini inifile -- declining usage, use−i inifile

filename
If specified, the tcl commands offilename are executed. Ifno filename is specified, haltcl opens
an interactive session.

COMMANDS
haltcl includes the commands of a tcl interpreter augmented with commands for the hal language as
described forhalcmd(1). Theaugmented commands can be listed with the command:

haltcl: hal −−commands

addf alias delf delsig getp gets ptype stype help linkpp linkps linksp list loadrt loadusr lock net newsig
save setexact_for_test_suite_only setp sets show source start status stop unalias unlinkp unload unloadrt
unloadusr unlock waitusr

Tw o of the augmented commands, ’list’ and ’gets’, require special treatment to avoid conflict with tcl built-
in commands having the same names.To use these commands, precede them with the keyword ’hal’:

hal list
hal gets

REPORTING BUGS
Report bugs to the LinuxCNC bug tracker〈URL: http://sf.net/p/emc/bugs/〉.

COPYRIGHT
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

34 2012-01-31 LinuxCNC Documentation

HALTCL(1) HAL User’s Manual HALTCL(1)

SEE ALSO
halcmd(1), halrun (1)

LinuxCNC Documentation 2012-01-31 35

HALUI(1) HAL User Interface HALUI(1)

NAME
halui − observe HAL pins and command LinuxCNC through NML

SYNOPSIS
halui [−ini <path-to-ini>]

DESCRIPTION
halui is used to build a User Interface using hardware knobs and switches. It exports a big number of pins,
and acts accordingly when these change.

OPTIONS
−ini name

use thenameas the configuration file. Note: halui must find the nml file specified in the ini, usu-
ally that file is in the same folder as the ini, so it makes sense to run halui from that folder.

USAGE
When run,halui will export a large number of pins. A user can connect those to his physical knobs &
switches & leds, and when a change is noticed halui triggers an appropriate event.

halui expects the signals to be debounced, so if needed (bad knob contact) connect the physical button to a
HAL debounce filter first.

PINS
abort

halui.abort bit in
pin for clearing most errors

tool
halui.tool.length−offset.afloat out

current applied tool length offset for the A axis

halui.tool.length−offset.bfloat out
current applied tool length offset for the B axis

halui.tool.length−offset.cfloat out
current applied tool length offset for the C axis

halui.tool.length−offset.ufloat out
current applied tool length offset for the U axis

halui.tool.length−offset.vfloat out
current applied tool length offset for the V axis

halui.tool.length−offset.wfloat out
current applied tool length offset for the W axis

halui.tool.length−offset.xfloat out
current applied tool length offset for the X axis

halui.tool.length−offset.yfloat out
current applied tool length offset for the Y axis

halui.tool.length−offset.zfloat out
current applied tool length offset for the Z axis

halui.tool.number u32 out
current selected tool

spindle

36 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.spindle.brake−is−onbit out
status pin that tells us if brake is on

halui.spindle.brake−off bit in
pin for deactivating the spindle brake

halui.spindle.brake−onbit in
pin for activating the spindle brake

halui.spindle.decreasebit in
a rising edge on this pin decreases the current spindle speed by 100

halui.spindle.forward bit in
a rising edge on this pin makes the spindle go forward

halui.spindle.increasebit in
a rising edge on this pin increases the current spindle speed by 100

halui.spindle.is−onbit out
status pin telling if the spindle is on

halui.spindle.rev ersebit in
a rising edge on this pin makes the spindle go reverse

halui.spindle.runs−backwardbit out
status pin telling if the spindle is running backward

halui.spindle.runs−forward bit out
status pin telling if the spindle is running forward

halui.spindle.start bit in
a rising edge on this pin starts the spindle

halui.spindle.stopbit in
a rising edge on this pin stops the spindle

spindle override
halui.spindle−override.count−enablebit in (default:TRUE)

When TRUE, modify spindle override when counts changes.

halui.spindle−override.counts s32 in
counts X scale = spindle override percentage

halui.spindle−override.decreasebit in
pin for decreasing the SO (−=scale)

halui.spindle−override.direct−value bit in
pin to enable direct spindle override value input

halui.spindle−override.increasebit in
pin for increasing the SO (+=scale)

halui.spindle−override.scalefloat in
pin for setting the scale of counts for SO

halui.spindle−override.value float out
current FO value

program
halui.program.block−delete.is−onbit out

status pin telling that block delete is on

LinuxCNC Documentation 2006-07-22 37

HALUI(1) HAL User Interface HALUI(1)

halui.program.block−delete.offbit in
pin for requesting that block delete is off

halui.program.block−delete.onbit in
pin for requesting that block delete is on

halui.program.is−idle bit out
status pin telling that no program is running

halui.program.is−pausedbit out
status pin telling that a program is paused

halui.program.is−running bit out
status pin telling that a program is running

halui.program.optional−stop.is−onbit out
status pin telling that the optional stop is on

halui.program.optional−stop.off bit in
pin requesting that the optional stop is off

halui.program.optional−stop.onbit in
pin requesting that the optional stop is on

halui.program.pausebit in
pin for pausing a program

halui.program.resumebit in
pin for resuming a program

halui.program.run bit in
pin for running a program

halui.program.stepbit in
pin for stepping in a program

halui.program.stop bit in
pin for stopping a program (note: this pin does the same thing as halui.abort)

mode
halui.mode.autobit in

pin for requesting auto mode

halui.mode.is−autobit out
pin for auto mode is on

halui.mode.is−joint bit out
pin showing joint by joint jog mode is on

halui.mode.is−manualbit out
pin for manual mode is on

halui.mode.is−mdibit out
pin for mdi mode is on

halui.mode.is−teleopbit out
pin showing coordinated jog mode is on

halui.mode.joint bit in
pin for requesting joint by joint jog mode

halui.mode.manualbit in
pin for requesting manual mode

38 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.mode.mdibit in
pin for requesting mdi mode

halui.mode.teleopbit in
pin for requesting coordinated jog mode

mdi (optional)
halui.mdi−command−XX bit in

halui looks for ini variables named [HALUI]MDI_COMMAND, and exports a pin for each com-
mand it finds. When the pin is driven TRUE, halui runs the specified MDI command. XX is a
two digit number starting at 00. If no [HALUI]MDI_COMMAND variables are set in the ini file,
no halui.mdi−command−XX pins will be exported by halui.

mist
halui.mist.is−onbit out

pin for mist is on

halui.mist.off bit in
pin for stopping mist

halui.mist.on bit in
pin for starting mist

max−velocity
halui.max−velocity.count−enablebit in (default:TRUE)

When True, modify max velocity when halui.max−velocity.counts changes.

halui.max−velocity.countss32 in
When .count−enable is True, halui changes the max velocity in response to changes to this pin.
It’s usually connected to an MPG encoder on an operator’s panel or jog pendant.When
.count−enable is False, halui ignores this pin.

halui.max−velocity.direct−valuebit in
When this pin is True, halui commands the max velocity directly to (.counts * .scale). When this
pin is False, halui commands the max velocity in a relative way: change max velocity by an
amount equal to (change in .counts * .scale).

halui.max−velocity.increasebit in
A positive edge (a False to True transition) on this pin increases the max velocity by the value of
the .scale pin. (Note that halui always responds to this pin, independent of the .count−enable pin.)

halui.max−velocity.decreasebit in
A positive edge (a False to True transition) on this pin decreases the max velocity by the value of
the .scale pin. (Note that halui always responds to this pin, independent of the .count−enable pin.)

halui.max−velocity.scalefloat in
This pin controls the scale of changes to the max velocity. Each unit change in .counts, and each
positive edge on .increase and .decrease, changes the max velocity by .scale. The units of the
.scale pin are machine−units per second.

halui.max−velocity.valuefloat out
Current value for maximum velocity, in machine−units per second.

machine
halui.machine.is−onbit out

pin for machine is On/Off

LinuxCNC Documentation 2006-07-22 39

HALUI(1) HAL User Interface HALUI(1)

halui.machine.offbit in
pin for setting machine Off

halui.machine.onbit in
pin for setting machine On

lube
halui.lube.is−onbit out

pin for lube is on

halui.lube.off bit in
pin for stopping lube

halui.lube.onbit in
pin for starting lube

joint
halui.joint.N.has−fault bit out

status pin telling that joint N has a fault

halui.joint.N.home bit in
pin for homing joint N

halui.joint.N.is−homed bit out
status pin telling that joint N is homed

halui.joint.N.is−selectedbit out
status pin that joint N is selected

halui.joint.N.on−hard−max−limit bit out
status pin telling that joint N is on the positive hardware limit

halui.joint.N.on−hard−min−limit bit out
status pin telling that joint N is on the negative hardware limit

halui.joint.N.on−soft−max−limit bit out
status pin telling that joint N is on the positive software limit

halui.joint.N.on−soft−min−limit bit out
status pin telling that joint N is on the negative software limit

halui.joint.N.selectbit in
A rising edge on this pin selects joint N. The joint remains selected until a rising edge on a differ-
ent halui.joint.N.select pin selects a different joint. By default, joint 0 is the initially selected joint
at startup.

halui.joint.N.unhome bit in
pin for unhoming joint N

halui.joint.selectedu32 out
The number of the currently selected joint (default: joint 0).

halui.joint.selected.has−faultbit out
status pin selected joint is faulted

halui.joint.selected.homebit in
pin for homing the selected joint

halui.joint.selected.is−homedbit out
status pin telling that the selected joint is homed

halui.joint.selected.on−hard−max−limitbit out
status pin telling that the selected joint is on the positive hardware limit

40 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.joint.selected.on−hard−min−limit bit out
status pin telling that the selected joint is on the negative hardware limit

halui.joint.selected.on−soft−max−limitbit out
status pin telling that the selected joint is on the positive software limit

halui.joint.selected.on−soft−min−limitbit out
status pin telling that the selected joint is on the negative software limit

halui.joint.selected.unhomebit in
pin for unhoming the selected joint

jog
halui.jog.deadbandfloat in

pin for setting jog analog deadband (jog analog inputs smaller/slower than this are ignored)

halui.jog−speedfloat in
pin for setting jog speed for plus/minus jogging.

halui.jog.N.analogfloat in
pin for jogging the axis N using an float value (e.g. joystick)

halui.jog.N.increment float in
pin for setting the jog increment for axis N when using increment−plus/minus

halui.jog.N.increment−minusbit in
a rising edge will will make axis N jog in the negative direction by the increment amount

halui.jog.N.increment−plusbit in
a rising edge will will make axis N jog in the positive direction by the increment amount

halui.jog.N.minus bit in
pin for jogging axis N in negative direction at the halui.jog−speed velocity

halui.jog.N.plus bit in
pin for jogging axis N in positive direction at the halui.jog−speed velocity

halui.jog.selected.incrementfloat in
pin for setting the jog increment for the selected axis when using increment−plus/minus

halui.jog.selected.increment−minusbit in
a rising edge will will make the selected axis jog in the negative direction by the increment amount

halui.jog.selected.increment−plusbit in
a rising edge will will make the selected axis jog in the positive direction by the increment amount

halui.jog.selected.minusbit in
pin for jogging the selected axis in negative direction at the halui.jog−speed velocity

halui.jog.selected.plus
pin for jogging the selected axis bit in in positive direction at the halui.jog−speed velocity

flood
halui.flood.is−onbit out

pin for flood is on

halui.flood.off bit in
pin for stopping flood

halui.flood.onbit in
pin for starting flood

LinuxCNC Documentation 2006-07-22 41

HALUI(1) HAL User Interface HALUI(1)

feed override
halui.feed−override.count−enablebit in (default:TRUE)

When TRUE, modify feed override when counts changes.

halui.feed−override.counts s32 in
counts X scale = feed override percentage

halui.feed−override.decreasebit in
pin for decreasing the FO (−=scale)

halui.feed−override.direct−value bit in
pin to enable direct value feed override input

halui.feed−override.increasebit in
pin for increasing the FO (+=scale)

halui.feed−override.scalefloat in
pin for setting the scale on changing the FO

halui.feed−override.value float out
current Feed Override value

rapid override
halui.rapid−override.count−enablebit in (default:TRUE)

When TRUE, modify Rapid Override when counts changes.

halui.rapid−override.counts s32 in
counts X scale = Rapid Override percentage

halui.rapid−override.decreasebit in
pin for decreasing the Rapid Override (−=scale)

halui.rapid−override.direct−value bit in
pin to enable direct value Rapid Override input

halui.rapid−override.increasebit in
pin for increasing the Rapid Override (+=scale)

halui.rapid−override.scalefloat in
pin for setting the scale on changing the Rapid Override

halui.rapid−override.value float out
current Rapid Override value

estop
halui.estop.activate bit in

pin for setting Estop (LinuxCNC internal) On

halui.estop.is−activated bit out
pin for displaying Estop state (LinuxCNC internal) On/Off

halui.estop.resetbit in
pin for resetting Estop (LinuxCNC internal) Off

axis
halui.axis.N.pos−commandedfloat out float out

Commanded axis position in machine coordinates

halui.axis.N.pos−feedbackfloat out float out
Feedback axis position in machine coordinates

42 2006-07-22 LinuxCNC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.axis.N.pos−relativefloat out float out
Commanded axis position in relative coordinates

home
halui.home−all bit in

pin for requesting home−all (only available when a valid homing sequence is specified)

SEE ALSO
HISTORY
BUGS

none known at this time.

AUTHOR
Written by Alex Joni, as part of the LinuxCNC project. Updated by John Thornton

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-07-22 43

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

NAME
hy_gt_vfd − HAL userspace component for Huanyang GT−series VFDs

SYNOPSIS
hy_gt_vfd [OPTIONS]

DESCRIPTION
The hy_gt_vfd component interfaces a Huanyang GT−series VFD to the LinuxCNC HAL. The VFD is
connected via RS−485 serial to the LinuxCNC computer.

HARDWARE SETUP
At least some Huanyang GT VFDs must be physically modified to enable Modbus communication.

The circuit board location marked "SW1" is identified in the manual as "Switch of terminal resistor for
RS485 communication". On the only VFD I have experience with, the circuit board contained no switch at
that location, instead holding a pair of crossed jumper wires (top−left pad connected to bottom−right pad,
top−right to bottom−left). In this configuration, no Modbus communication is possible. We had to desolder
the two crossed jumper wires and re−solder them parallel to each other (top−left to bottom−left, top−right
to bottom−right).

FIRMWARE SETUP
The Huanyang GT VFD must be configure via the faceplate to talk Modbus with LinuxCNC. Consult the
Operation section of the Huanyang GT−series Inverter Manual for details. Set the following parameters:

P0.01 = 2
Set Run Command Source to Modbus serial port.

P0.03
Set Maximum Frequency to the maximum frequency you want the VFD to output, in Hz.

P0.04
Set Upper Frequence Limit to the maximum frequency you want the VFD to output, in Hz. This
should be the same as the value in P0.03.

P0.05
Set Lower Frequency Limit to the minimum frequency you want the VFD to output, in Hz.

P0.07 = 7
Set Frequency A Command Source to Modbus serial port.

P2.01 = ???
Set Motor Rated Power to the motor’s power rating in kW.

P2.02 = ???
Set Motor Rated Frequency to the motor’s max frequency in Hz.

P2.03 = ???
Set Motor Rated Speed to the motor’s speed in RPM at its rated maximum frequence.

P2.04 = ???
Set Motor Rated Voltage to the motor’s maximum voltage, in Volts.

P2.05 = ???
Set Motor Rated Current to the motor’s maximum current, in Amps.

PC.00 = 1
Set Local Address to 1. This matches the default in the hy_gt_vfd driver, change this if your setup has
special needs.

PC.01 = 5
Set Baud Rate Selection to 5 (38400 bps). This matches the default in the hy_gt_vfd driver, change
this if your setup has special needs.

0 = 1200

44 01/22/2021 LinuxCNC

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

1 = 2400
2 = 4800
3 = 9600
4 = 19200
5 = 38400

PC.02 = 0
Set Data Format (8n1 RTU). This matches the default in the hy_gt_vfd driver, change this if your setup
has special needs.

PC.03 = 1
Set Communication Delay Time to 1 ms. This is expected by the hy_gt_vfd driver.

OPTIONS
−b, −−bits N

(default 8) For Modbus communication. Set number of data bits toN. N must be between 5 and 8
inclusive.

−p, −−parity [Even,Odd,None]

(default None) For Modbus communication. Set serial parity to Even,
Odd, or None.

−r , −−rate N
(default 38400) For Modbus communication. Set baud rate toN. It is an error if the rate is not one of
the following: 1200, 2400, 4800, 9600, 19200, 38400

−s, −−stopbits [1,2]
(default 1) For Modbus communication. Set serial stop bits to 1 or 2.

−t, −−target N
(default 1) For Modbus communication. Set Modbus target (slave) number. This must match the
device number you set on the Huanyang GT VFD.

−d, −−devicePA TH
(default /dev/ttyS0) For Modbus communication. Set the name of the serial device node to use.

−v, −−verbose
Turn on verbose mode.

−S, −−motor−max−speedRPM
The motor’s max speed in RPM. This must match the motor speed value configured in VFD register
P2.03.

−F, −−max−frequencyHZ
This is the maximum output frequency of the VFD in Hz. It should correspond to the motor’s rated
max frequency, and to the maximum and upper limit output frequency configured in VFD register
P0.03 and P0.04.

−f, −−min−frequency HZ
This is the minimum output frequency of the VFD in Hz. It should correspond to the minimum output
frequency configured in VFD register P0.05.

PINS
hy_gt_vfd.period (float, in)

The period for the driver’s update cycle, in seconds. This is how frequently the driver will wake up,
check its HAL pins, and communicate with the VFD. Must be between 0.001 and 2.000 seconds.
Default: 0.1 seconds.

hy_gt_vfd.speed−cmd(float, in)
The requested motor speed, in RPM.

hy_gt_vfd.speed−fb(float, out)

LinuxCNC 01/22/2021 45

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

The motor’s current speed, in RPM, reported by the VFD.

hy_gt_vfd.at−speed(bit, out)
True when the drive is on and at the commanded speed (within 2%), False otherwise.

hy_gt_vfd.freq−cmd (float, out)
The requested output frequency, in Hz. This is set from the .speed−cmd value, and is just shown for
debugging purposes.

hy_gt_vfd.freq−fb (float, out)
The current output frequency of the VFD, in Hz. This is reported from the VFD to the driver.

hy_gt_vfd.spindle−on(bit, in)
Set this pin True to command the spindle on, at the speed requested on the .speed−cmd pin. Set this
pin False to command the spindle off.

hy_gt_vfd.output−voltage(float, out)
The voltage that the VFD is current providing to the motor, in Volts.

hy_gt_vfd.output−current (float, out)
The current that the motor is currently drawing from the VFD, in Amperes.

hy_gt_vfd.output−power (float, out)
The power that the motor is currently drawing from the VFD, in Watts.

hy_gt_vfd.dc−bus−volts(float, out)
The current voltage of the VFD’s internal DC power supply, in Volts.

hy_gt_vfd.modbus−errors(u32, out)
A count of the number of modbus communication errors between the driver and the VFD. The driver
is resilient against communication errors, but a large or growing number here indicates a problem that
should be investigated.

hy_gt_vfd.input−terminal (float, out)
The VFD’s input terminal register.

hy_gt_vfd.output−terminal (float, out)
The VFD’s output terminal register.

hy_gt_vfd.AI1 (float, out)
The VFD’s AI1 register.

hy_gt_vfd.AI2 (float, out)
The VFD’s AI2 register.

hy_gt_vfd.HDI−frequency (float, out)
The VFD’s HDI−frequency register.

hy_gt_vfd.external−counter(float, out)
The VFD’s external counter register.

hy_gt_vfd.fault−info (float, out)
The VFD’s fault info register.

ISSUES
The VFD produces the output frequency that it sends to the motor by adding a manually specified offset to
the frequency command it gets over modbus.

The manual offset is controlled by pressing the Up/Down arrows on the faceplate while the VFD is turning
the motor.

If you command a speed on the .speed−cmd pin and get a different speed reported on the .speed−fb pin,
first verify that the VFD registers listed in the FIRMWARE SETUP section above and the driver’s
command−line arguments all agree with the info on the motor’s name plate. If you still aren’t getting the
speed you expect, zero the VFD’s frequency offset by starting the motor running, then pressing the

46 01/22/2021 LinuxCNC

HY_GT_VFD(1) LinuxCNC Documentation HY_GT_VFD(1)

Up/Down buttons to zero the offset.

LinuxCNC 01/22/2021 47

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

NAME
hy_vfd − HAL userspace component for Huanyang VFDs

SYNOPSIS
hy_vfd [OPTIONS]

DESCRIPTION
This component connects the Huanyang VFD to the LinuxCNC HAL via a serial (RS-485) connection.

The Huanyang VFD must be configured via the face plate user interface to accept serial communications:

PD001 = 2
Set register PD001 (source of run commands) to 2 (communication port).

PD002 = 2
Set register PD002 (source of operating frequency) to 2 (communication port).

PD004
Set register PD004 (Base Frequency) according to motor specs. This is the rated frequency of the
motor from the motor’s name plate, in Hz.

PD005
Set register PD005 (max frequency) according to motor specs. This is the maximum frequency of
the motor’s power supply, in Hz.

PD011
Set register PD011 (min frequency) according to motor specs. This is the minimum frequency of
the motor’s power supply, in Hz.

PD141
Set register PD141 (rated motor voltage) according to motor name plate. This is the motor’s
maximum voltage, in Volts.

PD142
Set register PD142 (rated motor current) according to motor name plate. This is the motor’s
maximum current, in Amps.

PD143
Set register PD143 (Number of Motor Poles) according to motor name plate.

PD144
Set register PD144 (rated motor revolutions) according to motor name plate. This is the motor’s
speed in RPM at 50 Hz. Note: This is not the motor’s max speed (unless the max motor frequency
happens to be 50 Hz)!

PD163 = 1
Set register PD163 (communication address) to 1. This matches the default in the hy_vfd driver,
change this if your setup has special needs.

PD164 = 2
Set register PD164 (baud rate) to 2 (19200 bps). This matches the default in the hy_vfd driver,
change this if your setup has special needs.

PD165 = 3
Set register PD165 (communication data method) to 3 (8n1 RTU). Thismatches the default in the
hy_vfd driver, change this if your setup has special needs. Note that the hy_vfd driver only
supports RTU communication, not ASCII.

Consult the Huanyang instruction manual for details on using the face plate to program the VFDs registers,
and alternative values for the above registers.

48 April 25, 2015 Huanyang VFD

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

OPTIONS
−d, −−device <path>

(default /dev/ttyS0) Set the name of the serial device node to use.

−g, −−debug
Turn on debug messages. Note that if there are serial errors, this may become annoying. Debug
mode will cause all serial communication messages to be printed in hex on the terminal.

−n, −−name <string>
(default hy_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

−b, −−bits <n>
(default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive. This must
match the setting in register PD165 of the Huanyang VFD.

−p, −−parity [even,odd,none]
(default odd) Set serial parity to even, odd, or none. This must match the setting in register PD165
of the Huanyang VFD.

−r, −−rate <n>
(default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. This must match the setting in
register PD164 of the Huanyang VFD.

−s, −−stopbits [1,2]
(default 1) Set serial stop bits to 1 or 2. This must match the setting in register PD165 of the
HuanyangVFD.

−t, −−target <n>
(default 1) Set HYCOMM target (slave) number. This must match the device number you set on
the Hyanyang VFD in register PD163.

−F, −−max−frequency <n>
(default: read from VFD) If specified, program register PD005 of the VFD with the specified max
frequency of <n> Hz (and use the same max frequency in the hy_vfd driver). If not specified, read
the max frequency to use from register PD005 of the VFD.

−f, −−min−frequency <n>
(default: read from VFD) If specified, program register PD011 of the VFD with the specified
minimum frequency of <n> Hz (and use the same minimum frequency in the hy_vfd driver). If
not specified, read the minimum frequency to use from register PD011 of the VFD.

−V, −−motor−voltage <n>
(default: read from VFD) If specified, program register PD141 of the VFD with the specified max
motor voltage of <n> Volts. If not specified, read the max motor voltage from register PD141 of
the VFD.

−I, −−motor−current <n>
(default: read from VFD) If specified, program register PD142 of the VFD with the specified max
motor current of <n> Amps. If not specified, read the max motor current from register PD142 of
the VFD.

−S, −−motor−speed <n>
(default: compute from value read from VFD P144) This command-line argument is the motor’s
max speed. If specified, compute the motor’s speed at 50 Hz from this argument and from the
motor’s max frequency (from the −−max−frequency argument or from P011 if −−max−frequency
is not specified) and program register PD144 of the VFD. If not specified, read the motor’s speed
at 50 Hz from register P144 of the VFD, and use that and the max frequency to compute the
motor’s max speed.

Huanyang VFD April 25, 2015 49

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

−P, −−motor−poles <n>
(default: read value from VFD P143) This command-line argument is the number of poles in the
motor. If specified, this value is sent to the VFD’s register PD143. If not specified, the value is
read from PD143 and reported on the corresponding HAL pin.

PINS
<name>.enable

(bit, in) Enable communication from the hy_vfd driver to the VFD.

<name>.SetF
(float, out)

<name>.OutF
(float, out)

<name>.OutA
(float, out)

<name>.Rott
(float, out)

<name>.DCV
(float, out)

<name>.ACV
(float, out)

<name>.Cont
(float, out)

<name>.Tmp
(float, out)

<name>.spindle−forward
(bit, in)

<name>.spindle−rev erse
(bin, in)

<name>.spindle−on
(bin, in)

<name>.CNTR
(float, out)

<name>.CNST
(float, out)

<name>.CNST−run
(bit, out)

<name>.CNST−jog
(bit, out)

<name>.CNST−command−rf
(bit, out)

<name>.CNST−running
(bit, out)

<name>.CNST−jogging
(bit, out)

<name>.CNST−running−rf
(bit, out)

50 April 25, 2015 Huanyang VFD

hy_vfd(1) LinuxCNC Documentation hy_vfd(1)

<name>.CNST−bracking
(bit, out)

<name>.CNST−track−start
(bit, out)

<name>.speed−command
(float, in)

<name>.spindle−speed−fb
(float, out) Current spindle speed as reported by Huanyang VFD.

<name>.spindle−at−speed−tolerance
(float, in) Spindle speed error tolerance. If the actual spindle speed is within
.spindle−at−speed−tolerance of the commanded speed, then the .spindle−at−speed pin will go
True. Thedefault .spindle−at−speed−tolerance is 0.02, which means the actual speed must be
within 2% of the commanded spindle speed.

<name>.spindle−at−speed
(bit, out) True when the current spindle speed is within .spindle−at−speed−tolerance of the
commanded speed.

<name>.frequency−command
(float, out)

<name>.max−freq
(float, out)

<name>.base−freq
(float, out)

<name>.freq−lower−limit
(float, out)

<name>.rated−motor−voltage
(float, out)

<name>.rated−motor−current
(float, out)

<name>.rated−motor−rev
(float, out)

<name>.motor−poles
(u32, out)

<name>.hycomm−ok
(bit, out)

PARAMETERS
<name>.error−count

(s32, RW)

<name>.retval
(float, RW)

AUTHOR
Sebastian Kuzminsky

LICENSE
GPL

Huanyang VFD April 25, 2015 51

IOCONTROL(1) HAL Component IOCONTROL(1)

NAME
iocontrol − accepts NML I/O commands, interacts with HAL in userspace

SYNOPSIS
loadusr io [−ini inifile]

DESCRIPTION
These pins are created by the userspace IO controller, usually found in $LINUXCNC_HOME/bin/io

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more
i/o, consider using the realtime synchronized i/o provided bymotion(9) instead.

The inifile is searched for in the directory from which halcmd was run, unless an absolute path is specified.

PINS
iocontrol.0.coolant−flood

(Bit, Out) TRUE when flood coolant is requested

iocontrol.0.coolant−mist
(Bit, Out) TRUE when mist coolant is requested

iocontrol.0.emc−enable−in
(Bit, In) Should be driven FALSE when an external estop condition exists.

iocontrol.0.lube
(Bit, Out) TRUE when lube is requested. This pin gets driven True when the controller comes out
of E-stop, and when the "Lube On" command gets sent to the controller. It gets driven False when
the controller goes into E-stop, and when the "Lube Off" command gets sent to the controller.

iocontrol.0.lube_level
(Bit, In) Should be driven FALSE when lubrication tank is empty.

iocontrol.0.tool−change
(Bit, Out) TRUE when a tool change is requested

iocontrol.0.tool−changed
(Bit, In) Should be driven TRUE when a tool change is completed.

iocontrol.0.tool−number
(s32, Out) Current tool number

iocontrol.0.tool−prep−number
(s32, Out) The number of the next tool, from the RS274NGC T-word

iocontrol.0.tool−prep−pocket
(s32, Out) This is the pocket number (location in the tool storage mechanism) of the tool requested
by the most recent T-word.

52 2007-08-25 LinuxCNC Documentation

IOCONTROL(1) HAL Component IOCONTROL(1)

iocontrol.0.tool−prepare
(Bit, Out) TRUE when a Tn tool prepare is requested

iocontrol.0.tool−prepared
(Bit, In) Should be driven TRUE when a tool prepare is completed.

iocontrol.0.user−enable−out
(Bit, Out) FALSE when an internal estop condition exists

iocontrol.0.user−request−enable
(Bit, Out) TRUE when the user has requested that estop be cleared

PARAMETERS
iocontrol.0.tool−prep−index

(s32, RO) IO’s internal array index of the prepped tool requested by the most recent T-word. 0if
no tool is prepped. On Random toolchanger machines this is tool’s pocket number (ie, the same as
the tool−prep−pocket pin), on Non-random toolchanger machines this is a small integer
corresponding to the tool’s location in the internal representation of the tool table. This parameter
returns to 0 after a successful tool change (M6).

SEE ALSO
motion(9)

LinuxCNC Documentation 2007-08-25 53

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

NAME
linuxcncrsh − text-mode interface for commanding LinuxCNC over the network

SYNOPSIS
linuxcncrsh [OPTIONS] [−− LINUXCNC_OPTIONS]

DESCRIPTION
linuxcncrsh is a user interface for LinuxCNC. Instead of popping up a GUI window like axis(1) and
touchy(1) do, it processes text-mode commands that it receives via the network. A human (or a program)
can interface withlinuxcncrsh using telnet(1) or nc(1) or similar programs.

All features of LinuxCNC are available via thelinuxcncrsh interface.

OPTIONS
−p,−−port PORT_NUMBER

Specify the port for linuxcncrsh to listen on. Defaults to 5007 if omitted.

−n,−−name SERVER_NAME
Sets the server name that linuxcncrsh will use to identify itself during handshaking with a new
client. Defaults to EMCNETSVR if omitted.

−w,−−connectpw PASSWORD
Specify the connection password to use during handshaking with a new client. Notethat the
password is sent in the clear, so it can be read by anyone who can read packets on the network
between the server and the client. Defaults to EMC if omitted.

−e,−−enablepw PASSWORD
Specify the password required to enable LinuxCNC via linuxcncrsh. Note that the password is
sent in the clear, so it can be read by anyone who can read packets on the network between the
server and the client. Defaults to EMCTOO if omitted.

−s,−−sessions MAX_SESSIONS
Specify the maximum number of simultaneous connections. Defaults to −1 (no limit) if not
specified.

In addition to the options listed above, linuxcncrsh accepts an optional special LINUXCNC_OPTION at
the end:

−ini LINUXCNC_INI_FILE
LinuxCNC .ini file to use. The −ini optionmust be preceded by two dashes: "−−". Defaults to
emc.ini if omitted.

Starting linuxcncrsh
To use linuxcncrsh instead of a normal LinuxCNC GUI like axis or touch, specify it in your .ini file like
this:

[DISPLAY]

DISPLAY=linuxcncrsh

To use linuxcncrsh in addition to a normal GUI, you can either start it at the end of your .hal file, or run it
by hand in a terminal window.

To start it from hal, add a line like this to the end of your .hal file:

loadusr linuxcncrsh [OPTIONS] [−− LINUXCNC_OPTIONS]

To start it from the terminal, run linuxcncrsh manually like this:

linuxcncrsh [OPTIONS] [−− LINUXCNC_OPTIONS]

Connecting
Once LinuxCNC is up and linuxcncrsh is running, you can connect to it usingtelnet or nc or similar:

telnet HOST PORT
HOST is the hostname or IP address of the computer running linuxcncrsh, and PORT is

54 May31, 2011

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

the port it’s listening on (5007 if you did not give linuxcncrsh the −−port option).

Network protocol
linuxcncrsh accepts TCP connections on the port specified by the −−port option, or 5007 if not specified.

The client sends requests, and the linuxcncrsh server returns replies. Requests consist of a command word
followed by optional command-specific parameters. Requests and most request parameters are case
insensitive. The exceptions are passwords, file paths and text strings.

Requests to linuxcncrsh are terminated with line endings, any combination of one or more ’\r’ and ’\n’
characters. Repliesfrom linuxcncrsh are terminated with the sequence ´\r\n´.

The supported commands are as follows:

hello <password> <client> <version>
<password> must match linuxcncrsh’s connect password, or "EMC" if no −−connectpw was
supplied. Thethree arguments may not contain whitespace. If a valid password was entered the
server will respond with:

HELLO ACK <ServerName> <ServerVersion>

If an invalid password or any other syntax error occurs then the server responds with:
HELLO NAK

get <subcommand> [<parameters>]
The get command takes one of the LinuxCNC sub-commands (described in the section
LinuxCNC Subcommands, below) and zero or more additional subcommand-specific
parameters.

set <subcommand> <parameters>
The set command takes one of the LinuxCNC sub-commands (described in the section
LinuxCNC Subcommands, below) and one or more additional parameters.

quit
The quit command disconnects the associated socket connection.

shutdown
The shutdown command tells LinuxCNC to shutdown and disconnect the session. This command
may only be issued if the Hello has been successfully negotiated and the connection has control of
the CNC (seeenablesubcommand in theLinuxCNC Subcommandssection, below).

help
The help command will return help information in text format over the connection. If no
parameters are specified, it will itemize the available commands. If a command is specified, it will
provide usage information for the specified command. Help will respond regardless of whether a
"Hello" has been successsfully negotiated.

LinuxCNC Subcommands
Subcommands forgetandsetare:

echo {on|off}
With get, any on/off parameter is ignored and the current echo state is returned.With set, sets the
echo state as specified. Echo defaults to on when the connection is first established. When echo is
on, all commands will be echoed upon receipt. This state is local to each connection.

verbose {on|off}
With get, any on/off parameter is ignored and the current verbose state is returned.With set, sets
the verbose state as specified. When verbose mode is on, all set commands return positive
acknowledgement in the form SET <COMMAND> ACK, and text error messages will be issued
(FIXME: I don’t know what this means). The verbose state is local to each connection, and starts
out OFF on new connections.

enable {<passwd>|off}
The session’s enable state indicates whether the current connection is enabled to perform control

May 31, 2011 55

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

functions. With get, any parameter is ignored, and the current enable state is returned.With set
and a valid password matching linuxcncrsh’s −−enablepw (EMCTOO if not specified), the current
connection is enabled for control functions. "OFF" may not be used as a password and disables
control functions for this connection.

config [TBD]
Unused, ignore for now.

comm_mode {ascii|binary}
With get, any parameter is ignored and the current communications mode is returned.With set,
will set the communications mode to the specified mode. The ascii mode is the text request/reply
mode, the binary protocol is not currently designed or implemented.

comm_prot <version>
With get, any parameter is ignored and the current protocol version used by the server is returned.
With set, sets the server to use the specified protocol version, provided it is lower than or equal to
the highest version number supported by the server implementation.

inifile
Not currently implemented!With get, returns the string "emc.ini". Should return the full path and
file name of the current configuration inifile. Setting this does nothing.

plat
With get, returns the string "Linux".

ini <var> <section>
Not currently implemented, do not use! Should return the string value of <var> in section
<section> of the ini file.

debug <value>
With get, any parameter is ignored and the current integer value of EMC_DEBUG is returned.
Note that the value of EMC_DEBUG returned is the from the UI’s ini file, which may be different
than emc’s ini file. With set, sends a command to the EMC to set the new debug level, and sets the
EMC_DEBUG global here to the same value. This will make the two values the same, since they
really ought to be the same.

set_wait {received|done}
The set_wait setting controls the wait after receiving a command. It can be "received" (after the
command was sent and received) or "done" (after the command was done).With get, any
parameter is ignored and the current set_wait setting is returned.With set, set the set_wait setting
to the specified value.

wait {received|done}
With set, force a wait for the previous command to be received, or done.

set_timeout <timeout>
With set, set the timeout for commands to return to <timeout> seconds. Timeout is a real number.
If it’ s <= 0.0, it means wait forever. Default is 0.0, wait forever.

update {none|auto}
The update mode controls whether to return fresh or stale values for "get" requests. When the
update mode is "none" it returns stale values, when it’s "auto" it returns fresh values. Defaults to
"auto" for new connections. Setthis to "none" if you like to be confused.

error
With get, returns the current error string, or "ok" if no error.

operator_display
With get, returns the current operator display string, or "ok" if none.

operator_text
With get, returns the current operator text string, or "ok" if none.

56 May31, 2011

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

time
With get, returns the time, in seconds, from the start of the epoch. This starting time depends on
the platform.

estop {on|off}
With get, ignores any parameters and returns the current estop setting as "on" or "off". With set,
sets the estop as specified. Estop "on" means the machine is in the estop state and won’t run.

machine {on|off}
With get, ignores any parameters and returns the current machine power setting as "on" or "off".
With set, sets the machine on or off as specified.

mode {manual|auto|mdi}
With get, ignores any parameters and returns the current machine mode.With set, sets the
machine mode as specified.

mist {on|off}
With get, ignores any parameters and returns the current mist coolant setting.With set, sets the
mist setting as specified.

flood {on|off}
With get, ignores any parameters and returns the current flood coolant setting.With set, sets the
flood setting as specified.

lube {on|off}
With get, ignores any parameters and returns the current lube pump setting.With set, sets the lube
pump setting as specified.

lube_level
With get, returns the lubricant level sensor reading as "ok" or "low". With set, mocks you for
wishful thinking.

spindle {forward|r ev erse|increase|decrease|constant|off}
With get, any parameter is ignored and the current spindle state is returned as "forward", "reverse",
"increase", "decrease", or "off". With set, sets the spindle as specified. Note that "increase" and
"decrease" will cause a speed change in the corresponding direction until a "constant" command is
sent.

brake {on|off}
With get, any parameter is ignored and the current brake setting is returned.With set, the brake is
set as specified.

tool
With get, returns the id of the currently loaded tool.

tool_offset
With get, returns the currently applied tool length offset.

load_tool_table <file>
With set, loads the tool table specified by <file>.

home {0|1|2|...}
With set, homes the indicated axis.

jog_stop {0|1|2|...}
With set, stop any in-progress jog on the specified axis.

jog {0|1|2|...} <speed>
With set, jog the specified axis at <speed>; sign of speed is direction.

jog_incr {0|1|2|...} <speed> <incr>
With set, jog the indicated axis by increment <incr> at the <speed>; sign of speed is direction.

feed_override <percent>
With get, any parameter is ignored and the current feed override is returns (as a percentage of

May 31, 2011 57

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

commanded feed).With set, sets the feed override as specified.

spindle_override <percent>
With get, any parameter is ignored and the current spindle override is returned (as a percentage of
commanded speed).With set, sets the spindle override as specified.

abs_cmd_pos [{0|1|...}]
With get, returns the specified axis’ commanded position in absolute coordinates. If no axis is
specified, returns all axes’ commanded absolute position.

abs_act_pos [{0|1|...}]
With get, returns the specified axis’ actual position in absolute coordinates. If no axis is specified,
returns all axes’ actual absolute position.

rel_cmd_pos [{0|1|...}]
With get, returns the specified axis’ commanded position in relative coordinates, including tool
length offset. If no axis is specified, returns all axes’ commanded relative position.

rel_act_pos [{0|1|...}]
With get, returns the specified axis’ actual position in relative coordinates, including tool length
offset. If no axis is specified, returns all axes’ actual relative position.

joint_pos [{0|1|...}]
With get, returns the specified joint’s actual position in absolute coordinates, excluding tool length
offset. If no joint is specified, returns all joints’ actual absolute position.

pos_offset [{X|Y|Z|R|P|W}]
With get, returns the position offset associated with the world coordinate provided.

joint_limit [{0|1|...}]
With get, returns limit status of the specified joint as "ok", "minsoft", "minhard", "maxsoft", or
"maxhard". Ifno joint number is specified, returns the limit status of all joints.

joint_fault [{0|1|...}]
With get, returns the fault status of the specified joint as "ok" or "fault". If no joint number is
specified, returns the fault status of all joints.

joint_homed [{0|1|...}]
With get, returns the homed status of the specified joint as "homed" or "not". If no joint number is
specified, returns the homed status of all joints.

mdi <string>
With set, sends <string> as an MDI command.

task_plan_init
With set, initializes the program interpreter.

open <filename>
With set, opens the named file. The <filename> is opened by linuxcnc, so it should either be an
absolute path or a relative path starting in the linuxcnc working directory (the directory of the
active .ini file).

run [<StartLine>]
With set, runs the opened program. If no StartLine is specified, runs from the beginning. If a
StartLine is specified, start line, runs from that line. A start line of −1 runs in verify mode.

pause
With set, pause program execution.

resume
With set, resume program execution.

abort
With set, abort program or MDI execution.

58 May31, 2011

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

step
With set, step the program one line.

program
With get, returns the name of the currently opened program, or "none".

program_line
With get, returns the currently executing line of the program.

program_status
With get, returns "idle", "running", or "paused".

program_codes
With get, returns the string for the currently active program codes.

joint_type [<joint>]
With get, returns "linear", "angular", or "custom" for the type of the specified joint (or for all joints
if none is specified).

joint_units [<joint>]
With get, returns "inch", "mm", "cm", or "deg", "rad", "grad", or "custom", for the corresponding
native units of the specified joint (or for all joints if none is specified). The type of the axis (linear
or angular) is used to resolve which type of units are returned. The units are obtained heuristically,
based on the EMC_AXIS_STAT ::units numerical value of user units per mm or deg. For linear
joints, something close to 0.03937 is deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s
"custom". For angular joints, something close to 1.000 is deemed "deg", PI/180 is "rad", 100/90 is
"grad", otherwise it’s "custom".

program_units
Synonym for program_linear_units.

program_linear_units
With get, returns "inch", "mm", "cm", or "none", for the corresponding linear units that are active
in the program interpreter.

program_angular_units
With get, returns "deg", "rad", "grad", or "none" for the corresponding angular units that are active
in the program interpreter.

user_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the corresponding native user linear units
of the LinuxCNC trajectory level. This is obtained heuristically, based on the
EMC_TRAJ_STAT ::linearUnits numerical value of user units per mm. Something close to
0.03937 is deemed "inch", 1.000 is "mm", 0.1 is "cm", otherwise it’s "custom".

user_angular_units
Returns "deg", "rad", "grad", or "custom" for the corresponding native user angular units of the
LinuxCNC trajectory level. Like with linear units, this is obtained heuristically.

display_linear_units
With get, returns "inch", "mm", "cm", or "custom", for the linear units that are active in the
display. This is effectively the value of linearUnitConversion.

display_angular_units
With get, returns "deg", "rad", "grad", or "custom", for the angular units that are active in the
display. This is effectively the value of angularUnitConversion.

linear_unit_conversion {inch|mm|cm|auto}
With get, any parameter is ignored and the active unit conversion is returned.With set, sets the
unit to be displayed. If it’s "auto", the units to be displayed match the program units.

angular_unit_conversion {deg|rad|grad|auto}
With get, any parameter is ignored and the active unit conversion is returned.With set, sets the
units to be displayed. If it’s "auto", the units to be displayed match the program units.

May 31, 2011 59

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

probe_clear
With set, clear the probe tripped flag.

probe_tripped
With get, return the probe state - has the probe tripped since the last clear?

probe_value
With get, return the current value of the probe signal.

probe
With set, move tow ard a certain location. If the probe is tripped on the way stop motion, record the
position and raise the probe tripped flag.

teleop_enable [on|off]
With get, any parameter is ignored and the current teleop mode is returned.With set, sets the
teleop mode as specified.

kinematics_type
With get, returns the type of kinematics functions used (identity=1, serial=2, parallel=3,
custom=4).

override_limits {on|off}
With get, any parameter is ignored and the override_limits setting is returned.With set, the
override_limits parameter is set as specified. If override_limits is on, disables end of travel
hardware limits to allow jogging off of a limit. If parameters is off, then hardware limits are
enabled.

optional_stop {0|1}
With get, any parameter is ignored and the current "optional stop on M1" setting is returned.With
set, the setting is set as specified.

Example Session
This section shows an example session. Bold items are typed by you, non-bold is machine output.

The user connects to linuxcncrsh, handshakes with the server (hello), enables machine commanding from
this session (set enable), brings the machine out of estop (set estop off) and turns it on (set machine on),
homes all the axes, switches the machine to mdi mode, sends an MDI g-code command, then disconnects
and shuts down LinuxCNC.

> telnet localhost 5007
Trying 127.0.0.1...
Connected to 127.0.0.1
Escape character is ’ˆ]’.
hello EMC user−typing−at−telnet 1.0
HELLO ACK EMCNETSVR 1.1
set enable EMCTOO
set enable EMCTOO
set mode manual
set mode manual
set estop off
set estop off
set machine on
set machine on
set home 0
set home 0
set home 1
set home 1
set home 2
set home 2
set mode mdi

60 May31, 2011

linuxcncrsh(1) TheEnhanced Machine Controller linuxcncrsh(1)

set mode mdi
set mdi g0x1
set mdi g0x1
shutdown
shutdown
Connection closed by foreign host.

May 31, 2011 61

mb2hal(1) LinuxCNC Documentation mb2hal(1)

NAME
mb2hal - HAL userspace component for Modbus

SYNOPSIS
mb2hal [OPTIONS]

DESCRIPTION
MB2HAL is a generic userspace HAL component to communicate with one or more Modbus devices.

See the Documents for more information on mb2hal

AUTHOR
John Thornton

LICENSE
GPL

62 January1, 2016 Modbus to HAL

milltask(1) TheEnhanced Machine Controller milltask(1)

NAME
milltask − Userspace task controller for LinuxCNC

DESCRIPTION
milltask is an internal process of LinuxCNC. It is generally not invoked directly but by an inifile setting:
[TASK]TASK=milltask . Themilltask process creates theini.* hal pins listed below and owned by the
inihal user component. These pins may be modified while LinuxCnC is running to alter values that are
typically specified in an inifile.

The inihal pins are sampled in every task cycle, however, commands affected by their values typically use
the value present at the time when the command is processed. Such commands include all codes handled
by the interpreter (Gcodeprograms andMDI commands) and NMLjogging commands issued by a GUI
(includinghalui). Wheel joggingis implemented in the realtime motion module soinihal pin changes
(e.g., ini.*.max_velocity, ini.*.max_acceleration) may be honored as soon as altered values are propagated
to the motion module.

PINS
Per-axis pins

ini.#.backlash
Allows adjustment of[AXIS_#]BACKLASH

ini.#.max_acceleration
Allows adjustment of[AXIS_#]MAX_ACCELERATION

ini.#.max_velocity
Allows adjustment of[AXIS_#]MAX_VELOCITY

ini.#.max_limit
Allows adjustment of[AXIS_#]MAX_LIMIT

ini.#.min_limit
Allows adjustment of[AXIS_#]MIN_LIMIT

ini.#.ferror
Allows adjustment of[AXIS_#]FERROR

ini.#.min_ferror
Allows adjustment of[AXIS_#]MIN_FERROR

Global pins
ini.traj_default_acceleration

Allows adjustment of[TRAJ]DEFAULT _ACCELERATION

ini.traj_default_velocity
Allows adjustment of[TRAJ]DEFAULT _VELOCITY

ini.traj_max_acceleration
Allows adjustment of[TRAJ]MAX_ACCELERATION

ini.traj_max_velocity
Allows adjustment of[TRAJ]MAX_VELOCITY

Global pins (arc_blend trajectory planner)
ini.traj_arc_blend_enable

Allows adjustment of[TRAJ]ARC_BLEND_ENABLE

ini.traj_arc_blend_fallback_enable
Allows adjustment of[TRAJ]ARC_BLEND_FALLB ACK_ENABLE

September 30, 2014 63

milltask(1) TheEnhanced Machine Controller milltask(1)

ini.traj_arc_blend_gap_cycles
Allows adjustment of[TRAJ]ARC_OPTIMIZATION_DEPTH

ini.traj_arc_blend_optimization_depth
Allows adjustment of[TRAJ]ARC_BLEND_GAP_CYCLES

ini.traj_arc_blend_ramp_freq
Allows adjustment of[TRAJ]ARC_BLEND_RAMP_FREQ

NOTES
The inihal pins cannot be linked or set in a halfile that is specified by an inifile[HAL]HALFILE item
because they are not created untilmilltask is started. Theinihal pin values can be altered by independent
halcmd programs specified by[APPLICATION]APP items or by GUIs that support a
[HAL]POSTGUI_HALFILE .

The inifile is not automatically updated with values altered byinihal pin settingsbut can be updated using
the calibration program (emccalib.tcl) when using a[HAL]POSTGUI_HALFILE .

64 September30, 2014

moveoff_gui(1) LinuxCNC moveoff_gui(1)

NAME
moveoff_gui − a gui for the moveoff component

SYNOPSIS
moveoff_gui [−−help | −− −h | −?]

moveoff_gui [options]

DESCRIPTION
Moveoff_gui is a sample graphical user interface (GUI) for controlling a Hal moveoff component to
implement Hal-only offsets. Seethe manpage (man moveoff) for IMPORTANT limitations and
warnings.

OPTIONS
−−help | −? | −− −h

Show options and exit

−mode onpause| always
onpause: popup gui to control offsets when program paused
always: show gui to control offsets always
Default:onpause

−axesaxisnames
Letters from set of {x y z a b c u v w}
Examples: −axes x, −axes xyz, −axes xz (no spaces)
Default:xyz

−inc incrementvalue
Specify one increment value per −inc (up to 4)
Defaults: 0.001 0.01 0.10 1.0

−sizeinteger
Overall gui size is based on font size, typically 8 - 20
Default:14

−loc center | +x+y
Initial location on screen
Examples: −loc center, −loc +20+100
Default:center

−autoresume
Resume program when move-enable deasserted
Default: notused

−delaydelay secs
Delay for autoresume (allow time to restore spindle speed etc) Default:5

OTHER OPTIONS
These options are available for special cases:

LinuxCNC Documentation 2014-12-18 65

moveoff_gui(1) LinuxCNC moveoff_gui(1)

−noentry
Disables creation of entry widgets
Default: notused

−no_resume_inhibit
Disable use of resume−inhibit to controlling gui
Default: notused

−no_pause_requirement
Disable check for halui.program.is−paused
Default: notused

−no_cancel_autoresume
Useful for retracting offsets with simple external controls
Default: notused

−no_display
Use when both external controls and and external displays are in use
Default: notused

NOTES
LinuxCNC must be running.

Halui must be loaded, typical ini file setting:
[HAL]HALUI = halui .

The moveoff component must be loaded with the name ’mv’ as:
loadrt moveoff names=mv personality=number_of_axes

If the pin mv.motion−enable isnot connected when moveoff_gui is started,controls will be provided to
enable offsets and set offset values. Ifthe pinis connected,only a displayof offsets is shown and control
must be made byexternal Hal connections.

If a pin named *.resume−inhibit exists and is not connected, it will be set while offsets are applied. This
pin may be provided by the controlling linuxcnc gui in use. Use of the pin may be disabled with the option
−no_resume_inhibit.

The −autoresume option uses halui.program.resume to automatically resume program execution when the
move−enable pin is deactivated and all offsets are removed. Theresume pin is not activated until an
additional interval (−delay delay_secs) elapses. This delay interval may be useful for restarting related
equipment (a spindle motor for example) Whiletiming the delay, a popup is offered to cancel the
automatic program resumption.

USAGE
The ini file in the configuration directory must provide HALFILEs to loadrt the moveoff component,
connect its pins, and addf its read and write functions in the proper order. These steps can be done at
runtime using an existing configuration ini file and specifying a system library HALFILE
hookup_moveoff.tcl as illustrated below:

[HAL]
HALUI = halui
HALFILE = user_halfile_1
etc ...
HALFILE = user_halfile_n
HALFILE = LIB:hookup_mo veoff.tcl

66 2014-12-18 LinuxCNC Documentation

moveoff_gui(1) LinuxCNC moveoff_gui(1)

Thehookup_moveoff.tcl halfile will use ini file settings for the moveoff component control pins:

[OFFSET]
EPSILON =
WA YPOINT_SAMPLE_SECS =
WA YPOINT_THRESHOLD =
BACKTRACK_ENABLE =

Thehookup_moveoff.tcl will use ini file settings for the moveoff per-axis limits:

[AXIS_m]
OFFSET_MAX_VELOCITY =
OFFSET_MAX_ACCELERATION =
OFFSET_MAX_LIMIT =
OFFSET_MIN_LIMIT =

The moveoff_gui program should be specified in the APPLICATIONS stanza of the ini file, for example:

[APPLICATIONS]
DELAY = delay_in_secs_to_allow_hal_connections
APP = moveoff_gui −option1 −option2 ...

SEE ALSO
Simulation configurations that demonstrate the moveoff_gui and the moveoff component are located in:

configs/sim/axis/moveoff (axis-ui)
configs/sim/touchy/ngcgui (touchy-ui)

man page for the moveoff component:moveoff(9)

LinuxCNC Documentation 2014-12-18 67

PYVCP(1) TheEnhanced Machine Controller PYVCP(1)

NAME
pyvcp − Virtual Control Panel for LinuxCNC

SYNOPSIS
pyvcp [−g WxH+X+Y] [−c component−name] myfile.xml

OPTIONS
−g WxH+X+Y

This sets the initial geometry of the root window. Use ’WxH’ for just size, ’+X+Y’ for just
position, or ’WxH+X+Y’ for both. Size / position use pixel units. Position is referenced from top
left.

−c component-name
Usecomponent-nameas the HAL component name. If the component name is not specified, the
basename of the xml file is used.

SEE ALSO
Python Virtual Control Panelin the LinuxCNC documentation for a description of the xml syntax, along
with examples

68 2007-04-01 LinuxCNC Documentation

SHUTTLEXPRESS(1) HALUser’s Manual SHUTTLEXPRESS(1)

NAME
shuttlexpress − control HAL pins with the ShuttleXpress device made by Contour Design

SYNOPSIS
loadusrshuttlexpress[DEVICE ...]

DESCRIPTION
shuttlexpress is a non-realtime HAL component that interfaces Contour Design’s ShuttleXpress device with
LinuxCNC’s HAL.

If the driver is started without command-line arguments, it will probe all /dev/hidraw* device files for
ShuttleXpress devices, and use all devices found. If it is started with command-line arguments, it will only
probe the devices specified.

The ShuttleXpress has five momentary buttons, a 10 counts/revolution jog wheel with detents, and a
15-position spring-loaded outer wheel that returns to center when released.

UDEV
The shuttlexpress module needs read permission to the ShuttleXpress /dev/hidraw* device files. This can
be accomplished by adding a file/etc/udev/rules.d/99−shuttlexpress.rules, with the following contents:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0b33", ATTRS{idProduct}=="0020", MODE="0444"

The LinuxCNC Debian package installs an appropriate udev file automatically, but if you are building
LinuxCNC from source and are not using the Debian packaging you’ll need to install this file by hand.

A warning about the Jog Wheel
The ShuttleXpress device has an internal 8-bit counter for the current jog-wheel position. The shuttlexpress
driver can not know this value until the ShuttleXpress device sends its first event. Whenthe first event
comes into the driver, the driver uses the device’s reported jog-wheel position to initialize counts to 0.

This means that if the first event is generated by a jog-wheel move, that first move will be lost.

Any user interaction with the ShuttleXpress device will generate an event, informing the driver of the jog-
wheel position. So if you (for example) push one of the buttons at startup, the jog-wheel will work fine and
notice the first click.

Pins
(bit out)shuttlexpress.0.button−0

(bit out)shuttlexpress.0.button−0−not

(bit out)shuttlexpress.0.button−1

(bit out)shuttlexpress.0.button−1−not

(bit out)shuttlexpress.0.button−2

(bit out)shuttlexpress.0.button−2−not

(bit out)shuttlexpress.0.button−3

(bit out)shuttlexpress.0.button−3−not

(bit out)shuttlexpress.0.button−4

(bit out)shuttlexpress.0.button−4−not

The five buttons around the outside, starting with the

LinuxCNC Documentation 2011-01-13 69

SHUTTLEXPRESS(1) HALUser’s Manual SHUTTLEXPRESS(1)

counter-clockwise-most one.

(s32 out)shuttlexpress.0.counts

Accumulated counts from the jog wheel (the inner wheel).

(s32 out)shuttlexpress.0.spring−wheel−s32

The current deflection of the spring-wheel (the outer wheel).
It’s 0 at rest, and ranges from −7 at the counter-clockwise
extreme to +7 at the clockwise extreme.

(float out)shuttlexpress.0.spring−wheel−f

The current deflection of the spring-wheel (the outer wheel).
It’s 0.0 at rest, −1.0 at the counter-clockwise extreme, and +1.0
at the clockwise extreme. (TheShuttleXpress device reports the
spring-wheel position as an integer from −7 to +7, so this pin
reports only 15 discrete values in its range.)

70 2011-01-13 LinuxCNC Documentation

sim_pin(1) LinuxCNC sim_pin(1)

NAME
sim_pin − gui for displaying and setting multiple Hal inputs

SYNOPSIS
sim_pin name1[name2 [name3 ...]]

DESCRIPTION
If the named input is anumerical type, the gui displays:

Entry Entry widget for new value
Set Button to set new value from Entry (or use <RETURN>)
Reset Button to reset to the value present on initiation

If the input is abit type, the gui shows a single pushbutton that is controlled by the radio-button selectors:

OnePulse Pulse input to 1 for each pushbutton press
ToggleValue Toggle input for each pushbutton press
1 WhilePressedSet input to 1 while pushbutton pressed

NOTE
LinuxCNC must be running

A named item can specify apin, param, or signal. The named item must be writable:

pin IN or I/O (and not connected to a signal with a writer)
param RW
signal connected to a writable pin

USAGE
sim_pin can be used interactively from a shell command line or started automatically from a configuration
ini file.

EXAMPLE
Example for ini file usage:

[APPLICATIONS]
DELAY = 5
APP =sim_pin \

halui.machine.off \
ini.traj_arc_blend_enable \
motion−command−handler−tmax

LinuxCNC Documentation 2014-12-18 71

vfdb_vfd(1) LinuxCNC Documentation vfdb_vfd(1)

NAME
vfdb_vfd - HAL userspace component for Delta VFD-B Variable Frequency Drives

SYNOPSIS
vfdb_vfd [OPTIONS]

DESCRIPTION
This manual page explains thevfdb_vfd component. This component reads and writes to the VFD-B
device via a Modbus connection.

vfdb_vfd is for use with LinuxCNC.

QUICK START
The VFD-B ships in a configuration that can not talk to this driver. The VFD-B must be reconfigured via
the face plate by the integrator before it will work. Thissection gives a brief description of what changes
need to be made, consult your Delta VFD-B manual for more details.

Switch the VFD-B to Modbus RTU frame format:
Switch parameter 09-04 from the factory default of 0 (Ascii framing) to 3, 4, or 5 (RTU
framing). Thesetting you choose will determine several serial parameters in addition to
the Modbus framing protocol.

Set the frequency control source to be Modbus, not the keypad:
Switch parameter 02-00 from factory default of 00 (keypad control) to 5 (control from
RS-485).

Set the run/stop control source to be Modbus, not the keypad:
Switch parameter 02-01 from the factory default of 0 (control from keypad) to 3 (control
from Modbus, with Stop enabled on the keypad).

OPTIONS
−n −−name <halname>

set the HAL component name

−d −−debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfdb_vfd process.

−m −−modbus−debug
Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex
on the terminal. Also toggled by sending a USR2 signal to the vfdb_vfd process.

−I −−ini <inifilename>
take configuration from this ini file. Defaults to environment variable INI_FILE_NAME. Most
vfdb_vfd configuration comes from the ini file, not from command-line arguments.

−S −−section <section name>
take configuration from this section in the ini file. Defaults to ’VFD-B’.

−r −−report−device
report device propertiers on console at startup

INI CONFIG VARIABLES
DEBUG

Set to a non-zero value to enable general debug output from the VFD-B driver. Optional.

MODBUS_DEBUG
Set to a non-zero value to enable modbus debug output from the VFD-B driver. Optional.

72 September19, 2009 VFD-B VFD

vfdb_vfd(1) LinuxCNC Documentation vfdb_vfd(1)

DEVICE
Serial port device file to use for Modbus communication with the VFD-B. Defaults to
’/dev/ttyS0’.

BAUD Modbus baud rate. Defaults to 19200.

BITS Modbus data bits. Defaults to 8.

PARITY
Modbus parity. Defaults to Even. Accepts’Even’, ’Odd’, or ’None’.

STOPBITS
Modbus stop bits. Defaults to 1.

TARGET
Modbus target number of the VFD-B to speak to. Defaults to 1.

POLLCYCLES
Only read the less important variables from the VFD-B once in this many poll cycles. Defaults to
10.

RECONNECT_DELAY
If the connection to the VFD-B is broken, wait this many seconds before reconnecting. Defaults
to 1.

MOTOR_HZ, MOTOR_RPM
The frequency of the motor (in Hz) and the corresponding speed of the motor (in RPM). This
information is provided by the motor manufacturer, and is generally printed on the motor’s name
plate.

PINS
<name>.at−speed (bit, out)

True when drive is at commanded speed (seespeed−tolerancebelow)

<name>.enable (bit, in)
Enable the VFD. If False, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.frequency−command (float, out)
Current target frequency in HZ as set through speed−command (which is in RPM), from the VFD.

<name>.frequency−out (float, out)
Current output frequency of the VFD.

<name>.inverter−load−percentage (float, out)
Current load report from VFD.

<name>.is−e−stopped (bit, out)
The VFD is in emergency stop status (blinking "E" on panel).

<name>.is−stopped (bit, out)
True when the VFD reports 0 Hz output.

<name>.jog−mode (bit, in)
1 for ON and 0 for OFF, enables the VFD-B ’jog mode’. Speed control is disabled. This might be
useful for spindle orientation.

<name>.max−rpm (float, out)
Actual RPM limit based on maximum frequency the VFD may generate, and the motors
nameplate values. For instance, ifnameplate−HZis 50, andnameplate−RPMis 1410, but the
VFD may generate up to 80Hz, thenmax−rpmwould read as 2256 (80*1410/50). The frequency
limit is read from the VFD at startup.To increase the upper frequency limit, the UL and FH
parameters must be changed on the panel. See the VFD-B manual for instructions how to set the
maximum frequency.

VFD-B VFD September 19, 2009 73

vfdb_vfd(1) LinuxCNC Documentation vfdb_vfd(1)

<name>.modbus−ok (bit, out)
True when the Modbus session is successfully established and the last 10 transactions returned
without error.

<name>.motor−RPM (float, out)
Estimated current RPM value, from the VFD.

<name>.motor−RPS (float, out)
Estimated current RPS value, from the VFD.

<name>.output−voltage (float, out)
From the VFD.

<name>.output−current (float, out)
From the VFD.

<name>.speed−command (float, in)
Speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in
the VFD.

<name>.spindle−on (bit, in)
1 for ON and 0 for OFF sent to VFD, only on when running.

<name>.max−speed (bit, in)
Ignore the loop-time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

<name>.status (s32, out)
Drive Status of the VFD (see the VFD manual). A bitmap.

<name>.error−count (s32, out)
Total number of transactions returning a Modbus error.

<name>.error−code (s32, out)
Most recent Error Code from VFD.

<name>.frequency−limit (float, out)
Upper limit read from VFD setup.

PARAMETERS
<name>.loop−time (float, RW)

How often the Modbus is polled (default interval 0.1 seconds).

<name>.nameplate−HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate−RPM) for a target RPM value as given by speed−command.

<name>.nameplate−RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm−limit (float, RW)
Do-not-exceed soft limit for motor RPM (defaults tonameplate−RPM).

<name>.tolerance (float, RW)
Speed tolerance (default 0.01) for determining wether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency).

USAGE
The vfdb_vfd driver takes precedence over panel control while it is enabled (see.enablepin), effectively
disabling the panel. Clearing the.enablepin re-enables the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

74 September19, 2009 VFD-B VFD

vfdb_vfd(1) LinuxCNC Documentation vfdb_vfd(1)

Exiting the vfdb_vfd driver in a controlled way will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the Delta
VFD-B, see the VFD manual.

AUTHOR
Yishin Li; based on vfd11_vfd by Michael Haberler.

LICENSE
GPL

VFD-B VFD September 19, 2009 75

vfs11_vfd(1) LinuxCNC Documentation vfs11_vfd(1)

NAME
vfs11_vfd- HAL userspace component for Toshiba-Schneider VF-S11 Variable Frequency Drives

SYNOPSIS
vfs11_vfd[OPTIONS]

DESCRIPTION
This manual page explains thevfs11_vfdcomponent. This component reads and writes to the vfs11 via a
Modbus connection.

vfs11_vfd is for use with LinuxCNC.

OPTIONS
−n −−name <halname>

set the HAL component name

−d −−debug
Turn on debugging messages. Also toggled by sending a USR1 signal to the vfs11_vfd process.

−m −−modbus−debug
Turn on Modbus debugging messages. This will cause all Modbus messages to be printed in hex
on the terminal. Also toggled by sending a USR2 signal to the vfs11_vfd process.

−I −−ini <inifilename>
take configuration from this ini file. Defaults to environment variable INI_FILE_NAME.

−S −−section <section name>
take configuration from this section in the ini file. Defaults to ’VFS11’.

−r −−report−device
report device propertiers on console at startup

PINS
<name>.acceleration−pattern (bit, in)

when true, set acceleration and deceleration times as defined in registers F500 and F501
respecitvely. Used in PID loops to choose shorter ramp times to avoid oscillation.

<name>.alarm−code (s32, out)
non-zero if drive is in alarmed state. Bitmap describing alarm information (see register FC91
description). Useerr−reset (see below) to clear the alarm.

<name>.at−speed (bit, out)
when drive is at commanded speed (seespeed−tolerancebelow)

<name>.current−load−percentage (float, out)
reported from the VFD

<name>.dc−brake (bit, in)
engage the DC brake. Also turns off spindle−on.

<name>.enable (bit, in)
enable the VFD. If false, all operating parameters are still read but control is released and panel
control is enabled (subject to VFD setup).

<name>.err−reset (bit, in)
reset errors (alarms a.k.a Trip and e-stop status). Resetting the VFD may cause a 2-second delay
until it’s rebooted and Modbus is up again.

<name>.estop (bit, in)
put the VFD into emergency-stopped status. No operation possible until cleared witherr−resetor
powercycling.

76 September19, 2009 vfs11 VFD

vfs11_vfd(1) LinuxCNC Documentation vfs11_vfd(1)

<name>.frequency−command (float, out)
current target frequency in HZ as set through speed−command (which is in RPM), from the VFD

<name>.frequency−out (float, out)
current output frequency of the VFD

<name>.inverter−load−percentage (float, out)
current load report from VFD

<name>.is−e−stopped (bit, out)
the VFD is in emergency stop status (blinking "E" on panel). Useerr−resetto reboot the VFD and
clear the e−stop status.

<name>.is−stopped (bit, out)
true when the VFD reports 0 Hz output

<name>.jog−mode (bit, in)
1 for ON and 0 for OFF, enables the VF-S11 ’jog mode’. Speed control is disabled, and the output
frequency is determined by register F262 (preset to 5Hz). This might be useful for spindle
orientation.

<name>.max−rpm (float, R)
actual RPM limit based on maximum frequency the VFD may generate, and the motors nameplate
values. For instance, ifnameplate−HZis 50, andnameplate−RPM_is 1410, but the VFD may
generate up to 80Hz, thenmax−rpmwould read as 2256 (80*1410/50). The frequency limit is
read from the VFD at startup.To increase the upper frequency limit, the UL and FH parameters
must be changed on the panel. See the VF−S11 manual for instructions how to set the maximum
frequency.

<name>.modbus−ok (bit, out)
true when the Modbus session is successfully established and the last 10 transactions returned
without error.

<name>.motor−RPM (float, out)
estimated current RPM value, from the VFD

<name>.output−current−percentage (float, out)
from the VFD

<name>.output−voltage−percentage (float, out)
from the VFD

<name>.output−voltage (float, out)
from the VFD

<name>.speed−command (float, in)
speed sent to VFD in RPM. It is an error to send a speed faster than the Motor Max RPM as set in
the VFD

<name>.spindle−fwd (bit, in)
1 for FWD and 0 for REV, sent to VFD

<name>.spindle−on (bit, in)
1 for ON and 0 for OFF sent to VFD, only on when running

<name>.spindle−rev (bit, in)
1 for ON and 0 for OFF, only on when running

<name>.max−speed (bit, in)
ignore the loop−time parameter and run Modbus at maximum speed, at the expense of higher CPU
usage. Suggested use during spindle positioning.

vfs11 VFD September 19, 2009 77

vfs11_vfd(1) LinuxCNC Documentation vfs11_vfd(1)

<name>.status (s32, out)
Drive Status of the VFD (see the TOSVERT VF-S11 Communications Function Instruction
Manual, register FD01). A bitmap.

<name>.trip−code (s32, out)
trip code if VF-S11 is in tripped state.

<name>.error−count (s32, RW)
total number of transactions returning a Modbus error

PARAMETERS
<name>.frequency−limit (float, RO)

upper limit read from VFD setup.

<name>.loop−time (float, RW)
how often the Modbus is polled (default interval 0.1 seconds)

<name>.nameplate−HZ (float, RW)
Nameplate Hz of motor (default 50). Used to calculate target frequency (together with
nameplate−RPM) for a target RPM value as given by speed−command.

<name>.nameplate−RPM (float, RW)
Nameplate RPM of motor (default 1410)

<name>.rpm−limit (float, RW)
do-not-exceed soft limit for motor RPM (defaults tonameplate−RPM).

<name>.tolerance (float, RW)
speed tolerance (default 0.01) for determining wether spindle is at speed (0.01 meaning: output
frequency is within 1% of target frequency)

USAGE
The vfs11_vfd driver takes precedence over panel control while it is enabled (see.enablepin), effectively
disabling the panel. Clearing the.enablepin re-enableds the panel. Pins and parameters can still be set, but
will not be written to the VFD untile the .enable pin is set. Operating parameters are still read while bus
control is disabled.

Exiting the vfs11_vfd driver in a controlled will release the VFD from the bus and restore panel control.

See the LinuxCNC Integrators Manual for more information. For a detailed register description of the
Toshiba VFD’s, see the "TOSVERT VF-S11 Communications Function Instruction Manual" (Toshiba
document number E6581222) and the "TOSVERT VF-S11 Instruction manual" (Toshiba document number
E6581158).

AUTHOR
Michael Haberler; based on gs2_vfd by Steve Padnos and John Thornton.

LICENSE
GPL

78 September19, 2009 vfs11 VFD

XHC-HB04(1) HAL User’s Manual XHC-HB04(1)

NAME
xhc−hb04 − User-space HAL component for the xhc-hb04 pendant.

DESCRIPTION
The xhc-hb04 component supports a common USB pendant that provides a number of pushbuttons, a
manual pulse generator (mpg or jog wheel), and a selector switch for the wheel.

There are at least two hardware versions -- one with 16 buttons and a more common one with 18 buttons.
The information herein is based on the 18 button device with a USB Vendor:Product code of 10CE:EB70.

In addition to buttons, the pendant provides an LCD display for the current stepsize multiplier (from a set
of available integer values), position (absolute and relative, labeled MC and WC respectively), feedrate
(override percent and value in units per minute), and spindle speed (override percent and value in
revolutions per minute (RPM)). The display is managed by a rotary switch that selects one of four axes for
wheel positioning, feed override, spindle override, or OFF.

The pendant display, its rotary selector switch, and the component pin names use designators x,y,z,a. While
this arrangement presumes a machine configured as XYZA, the pins can be assigned independently as
required in a HAL configuration.

UDEV
The xhc−hb04 executable needs permission for reading the pendant’s USB device. Debianpackage installs
(debs) handle this automatically but Run-In-Place (RIP) builds may need a udev rules file. This file should
be created (using sudo and a text editor) as:

/etc/udev/rules.d/99−xhc−hb04.ruleswith the single line:

ATTR{idProduct}=="eb70", ATTR{idVendor}=="10ce", MODE="0666", OWNER="root", GROUP="plugdev"

Standalone Usage
The xhc-hb04 program can be run from the command line without LinuxCNC to test a pendant in a
simulation mode. This standalone mode is used to identify the button codes produced for each button press
and to verify proper counting of the jog wheel. The identified button codes can be used to create a
button−cfg−file. When abutton−cfg−file exists, pendant operation can be verified using the −I option to
specify the file.

Usage:

$ xhc−hb04 [options]

Options
−h list command line options and exit

−I button−cfg−file (see below for file format)

−H run in real-time HAL mode (simulation mode is default)

−x wait for pendant detection before creating HAL pins.

−s n n is one of the following stepsize sequences

1: 1,10,100,1000 (default)
2: 1,5,10,20
3: 1,10,100
4: 1,5,10,20,50,100
5: 1,10,50,100,1000
The stepsize selected is always multiplied by 0.001

LinuxCNC Documentation 2015-03-06 79

XHC-HB04(1) HAL User’s Manual XHC-HB04(1)

button−cfg−file format
Standard configuration files are provided in the distribution for known button configurations:

/usr/share/linuxcnc/hallib/xhc−hb04−layout1.cfg
/usr/share/linuxcnc/hallib/xhc−hb04−layout2.cfg

or for a RIP build:
rip_base_dir/lib/hallib/xhc−hb04−layout1.cfg
rip_base_dir/lib/hallib/xhc−hb04−layout2.cfg

layout1 describes the 16 button pendant, layout2 describes the more common 18 button pendant.

The button configuration file follows the same format as ini files but should use a file suffix of .cfg.

File format:
[XHC−HB04]
BUTTON=X1:button−thename1
BUTTON=X2:button−thename2
BUTTON=X3:button−thename3
etc.

XN is the code reported for a button press and button−thenameN is the name to be assigned to the pin
created for the button.

Hal Usage
Use the −H option to specify HAL mode and other options as required:

loadusr −W xhc−hb04−H [Options]

Example:loadusr −W xhc−hb04−H −I path_to_cfg_file −s 2

Input Pins (Control)
(bit in) xhc−hb04.stepsize−upA 1 pulse on this pin changes the

stepsize to the next higher stepsize in the stepsize sequence specified in the xhc−hb04 (loadusr)
command.

(bit in) xhc−hb04.stepsize−downA 1 pulse on this pin changes the
stepsize to the next lower stepsize in the stepsize sequence specified in the xhc−hb04 (loadusr)
command.

Input Pins (to the pendant LCD display)
(float in)xhc−hb04.[xyza].pos−absoluteAbsolule position display.

(typically connect to: halui.axis.N.pos−feedback). The LCD display for pos−absolute is fixed
format with a sign, 4 number digits and 3 fraction digits (+XXXX.XXX), require: −9999.999 <=
value <= 9999.999.

(float in)xhc−hb04.[xyza].pos−relativeRelative position display.
(typically connect to: halui.axis.N.pos−relative). The LCD display for pos−relative is fixed format
with a sign, 4 number digits and 3 fraction digits (+XXXX.XXX), require: −9999.999 <= value <=
9999.999.

(float in)xhc−hb04.feed−overrideFeed−override value.
The float value is converted to a 16 bit integer and multiplied by 100 in order to display as percent,
require: 0 <= pinvalue <= 655 (typically connect to: halui.feed−override.value)

80 2015-03-06 LinuxCNC Documentation

XHC-HB04(1) HAL User’s Manual XHC-HB04(1)

(float in)xhc−hb04.feed−valueCurrent Feed-value (units/sec).
The float value is converted to a 16 bit integer and multiplied by 60 in order to display as units-
per-minute, require: 0 <= pinvalue <= 1092 (65520 units-per-minute) (typically connect to:
motion.current−vel)

(float in)xhc−hb04.spindle−overrideSpindle−override value.
The float value is converted to a 16 bit integer and multiplied by 100 in order to display as percent,
require: 0 <= pinvalue <= 655) (typically connect to: halui.spindle−override.value)

(float in)xhc−hb04.spindle−rpsSpindle speed in rps.
(revolutions per second). The float value is converted to a 16 bit integer and multiplied by 60 in
order to display as RPMs, require: 0 <= pinvalue <= 1092 (65520 RPM) (typically connect to:
motion.spindle−speed−out−rps−abs)

(bit in) xhc−hb04.inch−iconUse inch icon (default is mm)

Output Pins (Status)
(bit out)xhc−hb04.sleepingTrue when the driver receives a pendant

inactive (sleeping) message.

(bit out)xhc−hb04.jog.enable−offTrue when the pendant rotary
selector switch is in the OFF position or when the pendant is sleeping.

(bit out)xhc−hb04.enable−[xyza]True when the pendant rotary
selector switch is in the [xyza] position and not sleeping.

(bit out)xhc−hb04.enable−spindle−overrideTrue when the pendant
rotary selector switch is in the Spindle position and not sleeping. (typically connect to:
halui.spindle−override−count−enable)

(bit out)xhc−hb04.enable−feed−overrideTrue when the pendant rotary
selector switch is in the Feed position and not sleeping. (typically connect to:
halui.feed−override−count−enable)

(bit out)xhc−hb04.connectedTrue when connection to the pendant
is established over the USB interface.

(bit out)xhc−hb04.require_pendantTrue if driver started with
the −x option.

(s32 out)xhc−hb04.stepsizeCurrent stepsize in the stepsize sequence
as controlled by the stepsize−up and/or stepsize−down pins.

Output Pins (for jogging using axis.N.jog−counts)
(s32 out)xhc−hb04.jog.countsNumber of counts of the wheel since

start−up (50 counts per wheel revolution). (typicallyconnect to axis.N.jog−counts (lowpass
filtering may be helpful))

(s32 out)xhc−hb04.jog.counts−negThe value of the
xhc−hb04.jog.counts multipled by −1.

(float out)xhc−hb04.jog.scale Value is the current stepsize
multipled by 0.001. (typically connect to axis.N.jog−scale)

Experimental: Pins for halui plus/minus jogging
These pins provide some support for non−trivkins, world mode jogging.

(float in)xhc−hb04.jog.max−velocityConnect to halui.max−velocity.value

LinuxCNC Documentation 2015-03-06 81

XHC-HB04(1) HAL User’s Manual XHC-HB04(1)

(float out)xhc−hb04.jog.velocityConnect to halui.jog−speed

(bit out)xhc−hb04.jog.plus−[xyza]Connect to halui.jog.N.plus

(bit out)xhc−hb04.jog.minus−[xyza]Connect to halui.jog.N.minus

(float out)xhc−hb04.jog.incrementDebug pin -- abs(delta_pos)

Button output pins (for the 18 button, layout2 pendant)
The output bit type pins are TRUE when the button is pressed.

RO W1
(bit out) xhc−hb04.button−reset
(bit out) xhc−hb04.button−stop

RO W2
(bit out) xhc−hb04.button−goto−zero
(bit out) xhc−hb04.button−rewind
(bit out) xhc−hb04.button−start−pause
(bit out) xhc−hb04.button−probe−z

RO W3
(bit out) xhc−hb04.button−spindle
(bit out) xhc−hb04.button−half
(bit out) xhc−hb04.button−zero
(bit out) xhc−hb04.button−safe−z

RO W4
(bit out) xhc−hb04.button−home
(bit out) xhc−hb04.button−macro−1
(bit out) xhc−hb04.button−macro−2
(bit out) xhc−hb04.button−macro−3

RO W5
(bit out) xhc−hb04.button−step
(bit out) xhc−hb04.button−mode
(bit out) xhc−hb04.button−macro−6
(bit out) xhc−hb04.button−macro−7

Synthesized button pins
Additional buttons are synthesized for buttons namedzero, goto−zero, andhalf. These synthesized
buttons are active when the button is pressed AND the selector−switch is set to the corresponding axis
[xyza].

(bit out) xhc−hb04.button−zero−[xyza]
(bit out) xhc−hb04.button−goto−zero−[xyza]
(bit out) xhc−hb04.button−half−[xyza]

DEBUGGING
For debugging USB activity, use environmental variable LIBUSB_DEBUG:

export LIBUSB_DEBUG=[2 | 3 | 4]; xhc−hb04 [options]
2:warning, 3:info, 4:debug

82 2015-03-06 LinuxCNC Documentation

XHC-HB04(1) HAL User’s Manual XHC-HB04(1)

Sim Configs
The distribution includes several simulation configurations in the directory:

/usr/share/doc/linuxcnc/examples/sample−configs/sim/axis/xhc−hb04/
or for a RIP build:

rip_base_dir/configs/sim/axis/xhc−hb04/

These configurations use a distribution-provided script (xhc−hb04.tcl) to configure the pendant and make
necessary HAL connections according to a number of ini file settings. The script uses an additional HAL
component (xhc_hb04_util) to provide common functionality and includes support for a standard method
for the start-pause button.

The settings available include:
1) specify button−cfg−file for standard layout1 or layout2
2) select axes (up to 4 axes from set of x y z a b c u v w)
3) implement per-axis filtering coeficients
4) implement per-axis acceleration for mpg jogging
5) implement per-axis scale settings
6) select normal or velocity based jog modes
7) select stepsize sequence
8) option to initialize pin for inch or mm display icon
9) option to require pendant on startup

The sim configs illustrate button connections that:
1) connect pendant stepsize−up button to the step input pin.
2) connect buttons to halui.* pins
3) connect buttons to motion.* pins

Another script is included to monitor the pendant and report loss of USB connectivity. See the README
and .txt files in the above directory for usage.

Note: The sim configs use the axis gui but the scripts are available with any HAL configuration or gui. The
same scripts can be used to adapt the xhc−hb04 to existing configurations provided that the halui, motion,
and axis.N pins needed are not otherwise claimed. Instructions are included in README file in the
directory named above.

Use halcmd to display the pins and signals used by the xhc−hb04.tcl script:
halcmd show pin xhc−hb04 (show all xhc−hb04 pins)
halcmd show pin pendant_util (show all pendant_util pins)
halcmd show sig pendant: (show all pendant signals)

Author
Frederick Rible (frible@teaser.fr)

LinuxCNC Documentation 2015-03-06 83

intro(3hal) HAL intro(3hal)

NAME
hal − Introduction to the HAL API

DESCRIPTION
HAL stands for Hardware Abstraction Layer, and is used by LinuxCNC to transfer realtime data to and
from I/O devices and other low-level modules.

hal.h defines the API and data structures used by the HAL. This file is included in both realtime and non-
realtime HAL components. HAL uses the RTPAI real time interface, and the #define symbols RTAPI and
ULAPI are used to distinguish between realtime and non-realtime code. The API defined in this file is
implemented in hal_lib.c and can be compiled for linking to either realtime or user space HAL components.

The HAL is a very modular approach to the low lev el parts of a motion control system. The goal of the
HAL is to allow a systems integrator to connect a group of software components together to meet whatever
I/O requirements he (or she) needs. This includes realtime and non-realtime I/O, as well as basic motor
control up to and including a PID position loop. What these functions have in common is that they all
process signals. In general, a signal is a data item that is updated at regular intervals. For example, a PID
loop gets position command and feedback signals, and produces a velocity command signal.

HAL is based on the approach used to design electronic circuits. In electronics, off-the-shelf components
like integrated circuits are placed on a circuit board and their pins are interconnected to build whatever
overall function is needed. The individual components may be as simple as an op-amp, or as complex as a
digital signal processor. Each component can be individually tested, to make sure it works as designed.
After the components are placed in a larger circuit, the signals connecting them can still be monitored for
testing and troubleshooting.

Like electronic components, HAL components have pins, and the pins can be interconnected by signals.

In the HAL, asignalcontains the actual data value that passes from one pin to another. When a signal is
created, space is allocated for the data value. Apin on the other hand, is a pointer, not a data value. When
a pin is connected to a signal, the pin’s pointer is set to point at the signal’s data value. Thisallows the
component to access the signal with very little run-time overhead. (Ifa pin is not linked to any signal, the
pointer points to a dummy location, so the realtime code doesn’t hav eto deal with null pointers or treat
unlinked variables as a special case in any way.)

There are three approaches to writing a HAL component. Those that do not require hard realtime
performance can be written as a single user mode process. Components that need hard realtime
performance but have simple configuration and init requirements can be done as a single kernel module,
using either pre-defined init info, or insmod-time parameters. Finally, complex components may use both a
kernel module for the realtime part, and a user space process to handle ini file access, user interface
(possibly including GUI features), and other details.

HAL uses the RTAPI/ULAPI interface. IfRTAPI is #defined hal_lib.c would generate a kernel module
hal_lib.o that is insmoded and provides the functions for all kernel module based components. The same
source file compiled with the ULAPI #define would make a user space hal_lib.o that is staticlly linked to
user space code to make user space executables. Thevariable lists and link information are stored in a
block of shared memory and protected with mutexes, so that kernel modules and any of sev eral user mode
programs can access the data.

REALTIME CONSIDERATIONS
For an explanation of realtime considerations, seeintro(3rtapi) .

84 2006-10-12 LinuxCNC Documentation

intro(3hal) HAL intro(3hal)

HAL STATUS CODES
Except as noted in specific manual pages, HAL returns negative errno values for errors, and nonnegative
values for success.

SEE ALSO
intro(3rtapi)

LinuxCNC Documentation 2006-10-12 85

hal_add_funct_to_thread(3hal) HAL hal_add_funct_to_thread(3hal)

NAME
hal_add_funct_to_thread − cause a function to be executed at regular intervals

SYNTAX
int hal_add_funct_to_thread(const char *funct_name, const char *thread_name,

int position)

int hal_del_funct_from_thread(const char *funct_name, const char *thread_name)

ARGUMENTS
funct_name

The name of the function

thread_name
The name of the thread

position
The desired location within the thread. This determines when the function will run, in relation to
other functions in the thread.A positive number indicates the desired location as measured from
the beginning of the thread, and a negative is measured from the end. So +1 means this function
will become the first one to run, +5 means it will be the fifth one to run, −2 means it will be next to
last, and −1 means it will be last. Zero is illegal.

DESCRIPTION
hal_add_funct_to_threadadds a function exported by a realtime HAL component to a realtime thread.
This determines how often and in what order functions are executed.

hal_del_funct_from_thread removes a function from a thread.

RETURN VALUE
Returns a HAL status code.

REALTIME CONSIDERATIONS
Call only from realtime init code, not from user space or realtime code.

SEE ALSO
hal_thread_new(3hal), hal_export_funct(3hal)

86 2006-10-12 LinuxCNC Documentation

hal_create_thread(3hal) HAL hal_create_thread(3hal)

NAME
hal_create_thread − Create a HAL thread

SYNTAX
int hal_create_thread(const char *name, unsigned longperiod, int uses_fp)

int hal_thread_delete(const char *name)

ARGUMENTS
name The name of the thread

period The interval, in nanoseconds, between iterations of the thread

uses_fpMust be nonzero if a function which uses floating-point will be attached to this thread.

DESCRIPTION
hal_create_threadestablishes a realtime thread that will execute one or more HAL functions periodically.

All thread periods are rounded to integer multiples of the hardware timer period, and the timer period is
based on the first thread created. Threads must be created in order, from the fastest to the slowest. HAL
assigns decreasing priorities to threads that are created later, so creating them from fastest to slowest results
in rate monotonic priority scheduling.

hal_delete_threaddeletes a previously created thread.

REALTIME CONSIDERATIONS
Call only from realtime init code, not from user space or realtime code.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal)

LinuxCNC Documentation 2006-10-12 87

hal_exit(3hal) HAL hal_exit(3hal)

NAME
hal_exit − Shut down HAL

SYNTAX
int hal_exit(intcomp_id)

ARGUMENTS
comp_id

A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_exit shuts down and cleans up HAL and RTAPI. It must be called prior to exit by any module that
calledhal_init .

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns a HAL status code.

88 2006-10-12 LinuxCNC Documentation

hal_export_funct(3hal) HAL hal_export_funct(3hal)

NAME
hal_export_funct − create a realtime function callable from a thread

SYNTAX
typedef void(*hal_funct_t)(void *arg, longperiod)

int hal_export_funct(const char *name, hal_funct_tfunct, void *arg, int uses_fp, int reentrant, int comp_id)

ARGUMENTS
name The name of the function.

funct The pointer to the function

arg The argument to be passed as the first parameter offunct

uses_fpNonzero if the function uses floating-point operations, including assignment of floating point
values with "=".

reentrant
If reentrant is non-zero, the function may be preempted and called again before the first call
completes. Otherwise,it may only be added to one thread.

comp_id
A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_export_funct makes a realtime function provided by a component available to the system. A
subsequent call tohal_add_funct_to_threadcan be used to schedule the execution of the function as
needed by the system.

When this function is placed on a HAL thread, and HAL threads are started,funct is called repeatedly with
two arguments:void *arg is the same value that was given to hal_export_funct, and long periodis the
interval between calls in nanoseconds.

Each call to the function should do a small amount of work and return.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

LinuxCNC Documentation 2006-10-12 89

hal_init(3hal) HAL hal_init(3hal)

NAME
hal_init − Sets up HAL and RTAPI

SYNTAX

int hal_init(const char *modname)

ARGUMENTS
modname

The name of this hal module

DESCRIPTION
hal_init sets up HAL and RTAPI. It must be called by any module that intends to use the API, before any
other RTAPI calls.

modnamemust point to a string that identifies the module. The string may be no longer than
HAL_NAME_LEN characters.

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to hal and rtapi APIs.
On failure, returns a HAL error code.

90 2006-10-12 LinuxCNC Documentation

hal_malloc(3hal) HAL hal_malloc(3hal)

NAME
hal_malloc − Allocate space in the HAL shared memory area

SYNTAX

void *hal_malloc(long intsize)

ARGUMENTS
size Gives the size, in bytes, of the block

DESCRIPTION
hal_mallocallocates a block of memory from the main HAL shared memory area. It should be used by all
components to allocate memory for HAL pins and parameters. It allocates ‘size’ bytes, and returns a
pointer to the allocated space, or NULL (0) on error. The returned pointer will be properly aligned for any
type HAL supports.A component should allocate during initialization all the memory it needs.

The allocator is very simple, and there is no ‘free’. The entire HAL shared memory area is freed when the
last component callshal_exit. This means that if you continuously install and remove one component
while other components are present, you eventually will fill up the shared memory and an install will fail.
Removing all components completely clears memory and you start fresh.

RETURN VALUE
A pointer to the allocated space, which is properly aligned for any variable HAL supports. Returns NULL
on error.

LinuxCNC Documentation 2006-10-12 91

hal_param_alias(3hal) HAL hal_param_alias(3hal)

NAME
hal_param_alias − create an alternate name for a param

SYNTAX
int hal_param_alias(const char *original_name, const char *alias);

ARGUMENTS
original_name

The original name of the param

alias The alternate name that may be used to refer to the param, or NULL to remove any alternate
name.

DESCRIPTION
A param may have two names: the original name (the one that was passed to ahal_param_newfunction)
and an alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,
in some cases it is sensible to create aliases directly in a component. These cases include the case where a
param is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_pin_alias(3)

92 2006-10-12 LinuxCNC Documentation

hal_param_new(3hal) HAL hal_param_new(3hal)

NAME
hal_param_new − Create a HAL parameter

SYNTAX

int hal_param_bit_new(const char *name, hal_param_dir_tdir, hal_bit_t * data_addr, int
comp_id)

int hal_param_float_new(const char *name, hal_param_dir_tdir, hal_float_t *data_addr, int
comp_id)

int hal_param_u32_new(const char *name, hal_param_dir_tdir, hal_u32_t *data_addr, int
comp_id)

int hal_param_s32_new(const char *name, hal_param_dir_tdir, hal_s32_t *data_addr, int
comp_id)

int hal_param_bit_newf(hal_param_dir_tdir, hal_bit_t * data_addr, int comp_id, const char *fmt,
...)

int hal_param_float_newf(hal_param_dir_tdir, hal_float_t *data_addr, int comp_id, const char
* fmt, ...)

int hal_param_u32_newf(hal_param_dir_tdir, hal_u32_t *data_addr, int comp_id, const char
* fmt, ...)

int hal_param_s32_newf(hal_param_dir_tdir, hal_s32_t *data_addr, int comp_id, const char
* fmt, ...)

int hal_param_new(const char *name, hal_type_ttype, hal_param_dir_tdir, void *data_addr, int
comp_id)

ARGUMENTS
name The name to give to the created parameter

dir The direction of the parameter, from the viewpoint of the component. It may be one ofHAL_RO ,
or HAL_RW A component may assign a value to any parameter, but other programs (such as
halcmd) may only assign a value to a parameter that isHAL_RW .

data_addr
The address of the data, which must lie within memory allocated byhal_malloc.

LinuxCNC Documentation 2006-10-12 93

hal_param_new(3hal) HAL hal_param_new(3hal)

comp_id
A HAL component identifier returned by an earlier call tohal_init .

fmt, ... A printf-style format string and arguments

type The type of the parameter, as specified inhal_type_t(3hal).

DESCRIPTION
Thehal_param_newfamily of functions create a newparamobject.

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

94 2006-10-12 LinuxCNC Documentation

parport(3hal) HAL parport(3hal)

NAME
hal_parport − portable access to PC-style parallel ports

SYNTAX
#include "hal_parport.h"

int hal_parport_get(int comp_id, hal_parport_t *port, unsigned shortbase, unsigned shortbase_hi,
unsigned intmodes)

void hal_parport_release(hal_parport_t *port)

ARGUMENTS
comp_id

A HAL component identifier returned by an earlier call tohal_init .

port A pointer to a hal_parport_t structure

base The base address of the port (if port >= 16) or the linux port number of the port (if port < 16)

base_hi
The "high" address of the port (location of the ECP registers), 0 to use a probed high address, or
−1 to disable the high address

modes Advise the driver of the desired port modes, from <linux/parport.h>. If a linux-detected port does
not provide the requested modes, a warning is printed with rtapi_print_msg. This does not make
the port request fail, because unfortunately, many systems that have working EPP parports are not
detected as such by Linux.

DESCRIPTION
hal_parport_get allocates a parallel port for exclusive use of the named hal component. The port must be
released withhal_parport_releasebefore the component exits withhal_exit.

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used.
Otherwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no
high address is detected, port−>base_hi is 0.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;
unsigned short base_hi;
.... // and further unspecified fields

} hal_parport_t;

RETURN VALUE
hal_parport_get returns a HAL status code. On success,port is filled out with information about the
allocated port. On failure, the contents ofport are undefined except that it is safe (but not required) to pass
this port tohal_parport_release.

hal_parport_releasedoes not return a value. Italways succeeds.

NOTES
In new code, prefer use of rtapi_parport to hal_parport.

LinuxCNC Documentation 2006-10-12 95

hal_pin_alias(3hal) HAL hal_pin_alias(3hal)

NAME
hal_pin_alias − create an alternate name for a pin

SYNTAX
int hal_pin_alias(const char *original_name, const char *alias);

ARGUMENTS
original_name

The original name of the pin

alias The alternate name that may be used to refer to the pin, or NULL to remove any alternate name.

DESCRIPTION
A pin may have two names: the original name (the one that was passed to ahal_pin_newfunction) and an
alias.

Usually, aliases are for the convenience of users and should be created and destroyed via halcmd. However,
in some cases it is sensible to create aliases directly in a component. These cases include the case where a
pin is renamed, to preserve compatibility with old versions.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_param_alias(3)

96 2006-10-12 LinuxCNC Documentation

hal_pin_new(3hal) HAL hal_pin_new(3hal)

NAME
hal_pin_new − Create a HAL pin

SYNTAX

int hal_pin_bit_new(const char *name, hal_pin_dir_tdir, hal_bit_t ** data_ptr_addr, int
comp_id)

int hal_pin_float_new(const char *name, hal_pin_dir_tdir, hal_float_t ** data_ptr_addr, int
comp_id)

int hal_pin_u32_new(const char *name, hal_pin_dir_tdir, hal_u32_t **data_ptr_addr, int
comp_id)

int hal_pin_s32_new(const char *name, hal_pin_dir_tdir, hal_s32_t **data_ptr_addr, int
comp_id)

int hal_pin_bit_newf(hal_pin_dir_tdir, hal_bit_t ** data_ptr_addr, int comp_id, const char *fmt,
...)

int hal_pin_float_newf(hal_pin_dir_tdir, hal_float_t ** data_ptr_addr, int comp_id, const char
* fmt, ...)

int hal_pin_u32_newf(hal_pin_dir_tdir, hal_u32_t **data_ptr_addr, int comp_id, const char
* fmt, ...)

int hal_pin_s32_newf(hal_pin_dir_tdir, hal_s32_t **data_ptr_addr, int comp_id, const char
* fmt, ...)

int hal_pin_new(const char *name, hal_type_ttype, hal_pin_dir_tdir, void **data_ptr_addr, int
comp_id)

ARGUMENTS
name The name of the pin

dir

The direction of the pin, from the viewpoint of the component. It may be one ofHAL_IN ,
HAL_OUT , or HAL_IO . Any number ofHAL_IN or HAL_IO pins may be connected to the
same signal, but at most oneHAL_OUT pin is permitted.A component may assign a value to a
pin that isHAL_OUT or HAL_IO , but may not assign a value to a pin that isHAL_IN .

LinuxCNC Documentation 2006-10-12 97

hal_pin_new(3hal) HAL hal_pin_new(3hal)

data_ptr_addr
The address of the pointer-to-data, which must lie within memory allocated byhal_malloc.

comp_id
A HAL component identifier returned by an earlier call tohal_init .

fmt,
A printf-style format string and arguments

type
The type of the param, as specified inhal_type_t(3hal).

DESCRIPTION
Thehal_pin_newfamily of functions create a newpin object. Oncea pin has been created, it can be linked
to a signal object usinghal_link . A pin contains a pointer, and the component that owns the pin can
dereference the pointer to access whatever signal is linked to the pin. (If no signal is linked, it points to a
dummy signal.)

There are functions for each of the data types that the HAL supports. Pins may only be linked to signals of
the same type.

RETURN VALUE
Returns 0 on success, or a negative errno value on failure.

SEE ALSO
hal_type_t(3hal), hal_link(3hal)

98 2006-10-12 LinuxCNC Documentation

funct(3hal) HAL funct(3hal)

NAME
hal_ready − indicates that this component is ready

SYNTAX

hal_ready(intcomp_id)

ARGUMENTS
comp_id

A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_ready indicates that this component is ready (has created all its pins, parameters, and functions). This
must be called in any realtime HAL component before itsrtapi_app_init exits, and in any userspace
component before it enters its main loop.

RETURN VALUE
Returns a HAL status code.

LinuxCNC Documentation 2006-10-12 99

hal_set_constructor(3hal) HAL hal_set_constructor(3hal)

NAME
hal_set_constructor − Set the constructor function for this component

SYNTAX
typedef int (*hal_constructor_t)(const char *prefix, const char *arg); int hal_set_constructor(intcomp_id,

hal_constructor_tconstructor)

ARGUMENTS
comp_idA HAL component identifier returned by an earlier call tohal_init .

prefixThe prefix to be given to the pins, parameters, and functions in the new instance

arg An argument that may be used by the component to customize this istance.

DESCRIPTION
As an experimental feature in HAL 2.1, components may beconstructable. Such a component may create
pins and parameters not only at the time the module is loaded, but it may create additional pins and
parameters, and functions on demand.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
halcmd(1)

100 2006-10-12 LinuxCNC Documentation

hal_set_lock(3hal) HAL hal_set_lock(3hal)

NAME
hal_set_lock, hal_get_lock − Set or get the HAL lock level

SYNTAX
int hal_set_lock(unsigned charlock_type)

int hal_get_lock()

ARGUMENTS
lock_type

The desired lock type, which may be a bitwise combination of:HAL_LOCK_LOAD ,
HAL_LOCK_CONFIG , HAL_LOCK_PARAMS , or HAL_LOCK_PARAMS .
HAL_LOCK_NONE or 0 locks nothing, andHAL_LOCK_ALL locks e verything.

DESCRIPTION
RETURN VALUE

hal_set_lockReturns a HAL status code.hal_get_lockreturns the current HAL lock level or a HAL status
code.

LinuxCNC Documentation 2006-10-12 101

hal_signal_new(3hal) HAL hal_signal_new(3hal)

NAME
hal_signal_new, hal_signal_delete, hal_link, hal_unlink − Manipulate HAL signals

SYNTAX
int hal_signal_new(const char *signal_name, hal_type_ttype)

int hal_signal_delete(const char *signal_name)

int hal_link(const char *pin_name, const char *signal_name)

int hal_unlink(const char *pin_name)

ARGUMENTS
signal_name

The name of the signal

pin_name
The name of the pin

type The type of the signal, as specified inhal_type_t(3hal).

DESCRIPTION
hal_signal_newcreates a new signal object. Once a signal has been created, pins can be linked to it with
hal_link . The signal object contains the actual storage for the signal data. Pin objects linked to the signal
have pointers that point to the data. ’name’ is the name of the new signal. Itmay be no longer than
HAL_NAME_LEN characters. If there is already a signal with the same name the call will fail.

hal_link links a pin to a signal. If the pin is already linked to the desired signal, the command succeeds. If
the pin is already linked to some other signal, it is an error. In either case, the existing connection is not
modified. (Use’hal_unlink’ to break an existing connection.) If the signal already has other pins linked to
it, they are unaffected - one signal can be linked to many pins, but a pin can be linked to only one signal.

hal_unlink unlinks any signal from the specified pin.

hal_signal_deletedeletes a signal object. Any pins linked to the object are unlinked.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

102 2006-10-12 LinuxCNC Documentation

hal_start_threads(3hal) HAL hal_start_threads(3hal)

NAME
hal_start_threads − Allow HAL threads to begin executing

SYNTAX
int hal_start_threads()

int hal_stop_threads()

ARGUMENTS
DESCRIPTION

hal_start_threadsstarts all threads that have been created. This is the point at which realtime functions
start being called.

hal_stop_threadsstops all threads that were previously started byhal_start_threads. It should be called
before any component that is part of a system exits.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal), hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

LinuxCNC Documentation 2006-10-12 103

hal_type_t(3hal) HAL hal_type_t(3hal)

NAME
hal_type_t − typedefs for HAL datatypes

DESRCIPTION
typedef ...hal_bool;

A type which may have a value of 0 or nonzero.

typedef ...hal_bit_t;
A volatile type which may have a value of 0 or nonzero.

typedef ...hal_s32_t;
A volatile type which may have a value from −2147483648 to 2147483647.

typedef ...hal_u32_t;
A volatile type which may have a value from 0 to 4294967295.

typedef ...hal_float_t;
A volatile floating-point type, which typically has the same precision and range as the C type
double.

typedef ...real_t;
A nonvolatile floating-point type with at least as much precision ashal_float_t.

typedef ...ireal_t;
A nonvolatile unsigned integral type the same size ashal_float_t.

typedef enumhal_type_t;

HAL_BIT
Corresponds to the typehal_bit_t.

HAL_FLO AT
Corresponds to the typehal_float_t.

HAL_S32
Corresponds to the typehal_s32_t.

HAL_U32
Corresponds to the typehal_u32_t.

NOTES
hal_bit_t is typically a typedef to an integer type whose range is larger than just 0 and 1. When testing the
value of ahal_bit_t, nev er compare it to 1. Prefer one of the following:

• if(b)

• if(b != 0)

It is often useful to refer to a type that can represent all the values as a hal type, but without the volatile
qualifier. The following types correspond with the hal types:

hal_bit_t int

hal_s32_t __s32

hal_u32_t __u32

hal_float_t hal_real_t

Take care not to use the typess32andu32. These will compile in kernel modules but not in userspace, and
not for "realtime components" when using simulated (userspace) realtime.

104 2006-10-12 LinuxCNC Documentation

hal_type_t(3hal) HAL hal_type_t(3hal)

SEE ALSO
hal_pin_new(3hal), hal_param_new(3hal)

LinuxCNC Documentation 2006-10-12 105

undocumented(3hal) HAL undocumented(3hal)

NAME
undocumented − undocumented functions in HAL

SEE ALSO
The header filehal.h. Most hal functions have documentation in that file.

106 2006-10-12 LinuxCNC Documentation

intro(3rtapi) RTAPI intro(3rtapi)

NAME
rtapi − Introduction to the RTAPI API

DESCRIPTION
RTAPI is a library providing a uniform API for several real time operating systems. As of LinuxCNC 2.7,
POSIX threads and RTAI are supported.

HEADER FILES
rtapi.h

The filertapi.h defines the RTAPI for both realtime and non-realtime code. This is a change from Rev 2,
where the non-realtime (user space) API was defined in ulapi.h and used different function names. The
symbols RTAPI and ULAPI are used to determine which mode is being compiled, RTAPI for realtime and
ULAPI for non-realtime.

rtapi_math.h
The file rtapi_math.h defines floating-point functions and constants. It should be used instead of <math.h>
in rtapi real-time components.

rtapi_string.h
The file rtapi_string.h defines string-related functions. It should be used instead of <string.h> in rtapi real-
time components.

rtapi_byteorder.h
This file defines the preprocessor macros RTAPI_BIG_ENDIAN, RTAPI_LITTLE_ENDIAN, and
RTAPI_FLOAT_BIG_ENDIAN as true or false depending on the characteristics of the target system. It
should be used instead of<endian.h>(userspace) or<linux/byteorder.h> (kernel space).

rtapi_limits.h
This file defines the minimum and maximum value of some fundamental integral types, such as INT_MIN
and INT_MAX. This should be used instead of<limits.h> because that header file is not available to
kernel modules.

REALTIME CONSIDERATIONS
Userspace code

Certain functions are not available in userspace code. This includes functions that perform direct device
access such asrtapi_inb(3) .

Init/cleanup code
Certain functions may only be called from realtime init/cleanup code. This includes functions that perform
memory allocation, such asrtapi_shmem_new(3).

Realtime code
Only a few functions may be called from realtime code. This includes functions that perform direct device
access such asrtapi_inb(3) . It excludes most Linux kernel APIs such as do_gettimeofday(3) and many
rtapi APIs such as rtapi_shmem_new(3).

Simulator
For an RTAPI module to be buildable in the "sim" environment (fake realtime system without special
privileges), it must not useany linux kernel APIs, and must not use the RTAPI APIs for direct device

LinuxCNC Documentation 2006-10-02 107

intro(3rtapi) RTAPI intro(3rtapi)

access such asrtapi_inb(3) . This automatically includes any hardware device drivers, and also devices
which use Linux kernel APIs to do things like create special devices or entries in the/proc filesystem.

RTAPI STATUS CODES
Except as noted in specific manual pages, RTAPI returns negative errno values for errors, and nonnegative
values for success.

108 2006-10-02 LinuxCNC Documentation

rtapi_app_exit(3rtapi) HAL rtapi_app_exit(3rtapi)

NAME
rtapi_app_exit − User-provided function to shut down a component

SYNTAX
#include <rtapi_app.h>

void rtapi_app_exit(void) {...}

ARGUMENTS
None

DESCRIPTION
The body ofrtapi_app_exit, which is provided by the component author, generally consists of a call to
rtapi_exit or hal_exit, preceded by other component-specific shutdown code.

This code is called when unloading a component which successfully initialized (i.e., returned zero from its
rtapi_app_main). It is not called when the component did not successfully initialize.

RETURN CODE
None.

REALTIME CONSIDERATIONS
Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_main(3rtapi) , rtapi_exit(3rtapi) , hal_exit(3hal)

LinuxCNC Documentation 2008-05-26 109

rtapi_app_main(3rtapi) HAL rtapi_app_main(3rtapi)

NAME
rtapi_app_main − User-provided function to initialize a component

SYNTAX
#include <rtapi_app.h>

int rtapi_app_main(void) { ...}

ARGUMENTS
None

DESCRIPTION
The body ofrtapi_app_main, which is provided by the component author, generally consists of a call to
rtapi_init or hal_init, followed by other component-specific initialization code.

RETURN VALUE
Return 0 for success. Return a negative errno value (e.g., −EINVAL) on error. Existing code also returns
RTAPI or HAL error values, but using negative errno values gives better diagnostics from insmod.

REALTIME CONSIDERATIONS
Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_exit(3rtapi) , rtapi_init(3rtapi) , hal_init(3hal)

110 2008-05-26 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_atomic − subset of C11 <stdatomic.h>

SYNTAX
#include <rtapi_atomic.h>

enum memory_order { ... };

#define atomic_store(obj, desired)...

#define atomic_store_explicit(obj, desired, order)...

#define atomic_load(obj)...

#define atomic_load_explicit(obj, order)...

ARGUMENTS
volatile A* obj

A pointer to a volatile object that is the destination of the store or the source of the load. The
pointer must have an appropriate type and alignment such that the underlying store or load
operation itself is atomic; at a minimum, a properly aligned "int" may be assumed to be such a
type. Impropersize or alignment are undiagnosed errors.

C desired
The value to be stored in the object. "*obj = desired" must be well-formed.

memory_order order
The required memory ordering semantic.

DESCRIPTION
This header provides at least the subset of C11’s <stdatomic.h> given above. When there is an ordering
requirement for multiple values read or written in RTAPI shared memory areas by other threads of
execution, including the values of HAL pins and parameters, these functions (or function-like macros) are
the only way to ensure the ordering requirement is obeyed. Otherwise,according to architecture-specific
rules, loads and stores may be reordered from their normal source code order.

For example, to leave a message in a shared memory area from one thread and retrieve it from another, the
writer must use an atomic store for the "message is complete" variable, and the reader must use an atomic
load when checking that variable:

// producer
*message = 42;
atomic_store_explicit(message_ready, 1, memory_order_release);

// consumer
while(atomic_load_explicit(message_ready, memory_order_acquire) == 0) sched_yield();
printf("message was %d\n", *message); // must print 42

REALTIME CONSIDERATIONS
May be called from any code.

RETURN VALUE
atomic_loadandatomic_load_explicitreturn the value pointed to by theobj argument.

atomic_storeandatomic_store_explicithave no return value.

LinuxCNC Documentation 2006-10-12 111

funct(3rtapi) RTAPI funct(3rtapi)

SEE ALSO
<stdatomic.h>(C11),<rtapi_bitops.h> (for other atomic memory operations supported by rtapi)

112 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_bool.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_bool.h>

DESCRIPTION
Includes either <stdbool.h> or <linux/types.h> as appropriate, to obtain suitable declarations of "bool",
"true" and "false".

REALTIME CONSIDERATIONS
None.

NOTES
Also permitted in C++ programs, where including it has no effect.

LinuxCNC Documentation 2014-06-28 113

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_byteorder.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_byteorder.h>

RTAPI_BIG_ENDIAN
Defined to 1 if the platform is big-endian, 0 otherwise

RTAPI_LITTLE_ENDIAN
Defined to 1 if the platform is little-endian, 0 otherwise

RTAPI_FLOAT_BIG_ENDIAN
Defined to 1 if the platform double-precision value is big-endian, 0 otherwise.

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_byteorder_register always succeeds)

REALTIME CONSIDERATIONS
May be used at any time.

RETURN VALUE
As in Linux.

SEE ALSO

114 2014-06-28 LinuxCNC Documentation

rtapi_clock_set_period(3rtapi) RTAPI rtapi_clock_set_period(3rtapi)

NAME
rtapi_clock_set_period − set the basic time interval for realtime tasks

SYNTAX

rtapi_clock_set_period(long intnsec)

ARGUMENTS
nsec The desired basic time interval for realtime tasks.

DESCRIPTION
rtapi_clock_set_periodsets the basic time interval for realtime tasks. All periodic tasks will run at an
integer multiple of this period. The first call tortapi_clock_set_periodwith nsecgreater than zero will
start the clock, usingnsecas the clock period in nano-seconds. Due to hardware and RTOS limitations, the
actual period may not be exactly what was requested. On success, the function will return the actual clock
period if it is available, otherwise it returns the requested period. If the requested period is outside the lim-
its imposed by the hardware or RTOS, it returns−EINVAL and does not start the clock. Once the clock is
started, subsequent calls with non-zeronsecreturn−EINVAL and have no effect. Calling
rtapi_clock_set_periodwith nsecset to zero queries the clock, returning the current clock period, or zero
if the clock has not yet been started.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE
The actual period provided by the RTOS, which may be different than the requested period, or a RTAPI sta-
tus code.

LinuxCNC Documentation 2006-10-12 115

rtapi_delay(3rtapi) RTAPI rtapi_delay(3rtapi)

NAME
rtapi_delay − Busy-loop for short delays

SYNTAX
void rtapi_delay(long intnsec)

void rtapi_delay_max()

ARGUMENTS
nsec The desired delay length in nanoseconds

DESCRIPTION
rtapi_delay is a simple delay. It is intended only for short delays, since it simply loops, wasting CPU
cycles.

rtapi_delay_max returns the max delay permitted (usually approximately 1/4 of the clock period). Any
call to rtapi_delay requesting a delay longer than the max will delay for the max time only.

rtapi_delay_maxshould be called before usingrtapi_delay to make sure the required delays can be
achieved. Theactual resolution of the delay may be as good as one nano-second, or as bad as a several
microseconds.

REALTIME CONSIDERATIONS
May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
rtapi_delay_max returns the maximum delay permitted.

SEE ALSO
rtapi_clock_set_period(3rtapi)

116 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_device.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_device.h>

struct rtapi_device;

int rtapi_dev_set_name(struct rtapi_device *dev, const char *name, ...);

int rtapi_device_register(struct rtapi_device *dev);

int rtapi_device_unregister(struct rtapi_device *dev);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE
As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 117

rtapi_div_u64(3rtapi) RTAPI rtapi_div_u64(3rtapi)

NAME
rtapi_div_u64 − unsigned division of a 64-bit number by a 32-bit number

SYNTAX
__u64 rtapi_div_u64_rem(__u64dividend, __u32divisor, __u32 *remainder)

__u64 rtapi_div_u64(__u64dividend, __u32divisor)

__s64 rtapi_div_s64(__s64dividend, __s32divisor)

__s64 rtapi_div_s64_rem(__s64dividend, __s32divisor, __s32 *remainder)

ARGUMENTS
dividend

The value to be divided

divisor The value to divide by

remainder
Pointer to the location to store the remainder. This may not be a NULL pointer. If the remainder
is not desired, callrtapi_div_u64 or rtapi_div_s64.

DESCRIPTION
Perform integer division (and optionally compute the remainder) with a 64-bit dividend and 32-bit divisor.

RETURN VALUE
The result of integer division ofdividend / divisor. In versions with theremainderargument, the remainder
is stored in the pointed-to location.

NOTES
If the result of the division does not fit in the return type, the result is undefined.

This function exists because in kernel space the use of the division operator on a 64-bit type can lead to an
undefined symbol such as __umoddi3 when the module is loaded.

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks.Av ailable in userspace components.

118 2006-10-12 LinuxCNC Documentation

rtapi_exit(3rtapi) RTAPI rtapi_exit(3rtapi)

NAME
rtapi_exit − Shut down RTAPI

SYNTAX

int rtapi_exit(intmodule_id)

ARGUMENTS
module_id

An rtapi module identifier returned by an earlier call tortapi_init .

DESCRIPTION
rtapi_exit shuts down and cleans up the RTAPI. It must be called prior to exit by any module that called
rtapi_init .

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
Returns a RTAPI status code.

LinuxCNC Documentation 2006-10-12 119

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_firmware.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_firmware.h>

struct rtapi_firmware;

int rtapi_request_firmware(const struct rtapi_firmware **fw,
const char *name, struct rtapi_device *device);

void rtapi_release_firmware(const struct rtapi_firmware *fw);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE
As in Linux.

SEE ALSO

120 2014-06-28 LinuxCNC Documentation

rtapi_get_time(3rtapi) HAL rtapi_get_time(3rtapi)

NAME
rtapi_get_time − get the current time

SYNTAX
long long rtapi_get_time()

long long rtapi_get_clocks()

DESCRIPTION
rtapi_get_time returns the current time in nanoseconds. Depending on the RTOS, this may be time since
boot, or time since the clock period was set, or some other time. Its absolute value means nothing, but it is
monotonically increasing and can be used to schedule future events, or to time the duration of some activ-
ity. Returns a 64 bit value. Theresolution of the returned value may be as good as one nano-second, or as
poor as several microseconds. May be called from init/cleanup code, and from within realtime tasks.

rtapi_get_clocksreturns the current time in CPU clocks. It is fast, since it just reads the TSC in the CPU
instead of calling a kernel or RTOS function. Ofcourse, times measured in CPU clocks are not as conve-
nient, but for relative measurements this works fine. Its absolute value means nothing, but it is monotoni-
cally increasing and can be used to schedule future events, or to time the duration of some activity. (on
SMP machines, the two TSC’s may get out of sync, so if a task reads the TSC, gets swapped to the other
CPU, and reads again, the value may decrease.RTAPI tries to force all RT tasks to run on one CPU.)
Returns a 64 bit value. Theresolution of the returned value is one CPU clock, which is usually a few
nanoseconds to a fraction of a nanosecond.

Note thatlong longmath may be poorly supported on some platforms, especially in kernel space. Also note
that rtapi_print() will NOT print long longs. Mosttime measurements are relative, and should be done like
this:

deltat = (long int)(end_time − start_time);
where end_time and start_time are longlong values returned from rtapi_get_time, and deltat is an ordinary
long int (32 bits). This will work for times up to a second or so, depending on the CPU clock frequency. It
is best used for millisecond and microsecond scale measurements though.

RETURN VALUE
Returns the current time in nanoseconds or CPU clocks.

NOTES
Certain versions of the Linux kernel provide a global variablecpu_khz. Computing

deltat = (end_clocks − start_clocks) / cpu_khz:
gives the duration measured in milliseconds. Computing

deltat = (end_clocks − start_clocks) * 1000000 / cpu_khz:
gives the duration measured in nanoseconds for deltas less than about 9 trillion clocks (e.g., 3000 seconds
at 3GHz).

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in userspace compo-
nents.

LinuxCNC Documentation 2006-10-12 121

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_gfp.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_gfp.h>

enum rtapi_gfp_e;

RTAPI_GFP_xxx

typedef ... rtapi_gfp_t;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE
As in Linux.

SEE ALSO

122 2014-06-28 LinuxCNC Documentation

rtapi_init(3rtapi) RTAPI rtapi_init(3rtapi)

NAME
rtapi_init − Sets up RTAPI

SYNTAX

int rtapi_init(const char *modname)

ARGUMENTS
modname

The name of this rtapi module

DESCRIPTION
rtapi_init sets up the RTAPI. It must be called by any module that intends to use the API, before any other
RTAPI calls.

modnamecan optionally point to a string that identifies the module. The string will be truncated at
RTAPI_NAME_LEN characters. Ifmodnameis NULL , the system will assign a name.

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to rtapi_xxx_new,
rtapi_xxx_delete, and rtapi_exit. On failure, returns an RTAPI error code.

LinuxCNC Documentation 2006-10-12 123

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_io.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_io.h>

unsigned char rtapi_inb(unsigned short int port);

unsigned short rtapi_inw(unsigned short int port);

unsigned int rtapi_inl(unsigned short int port);

unsigned void rtapi_inb(unsigned char value, unsigned short int port);

unsigned void rtapi_inw(unsigned short value, unsigned short int port);

unsigned void rtapi_inl(unsigned int value, unsigned short int port);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction excep-
tions in userspace components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE
As in Linux.

SEE ALSO

124 2014-06-28 LinuxCNC Documentation

rtapi_is(3rtapi) RTAPI rtapi_is(3rtapi)

NAME
rtapi_is − details of rtapi configuration

SYNTAX
int rtapi_is_kernelspace()

int rtapi_is_realtime()

DESCRIPTION
rtapi_is_kernelspace()returns nonzero when rtapi modules run in kernel space (e.g., under rtai) and zero
when they run in userpace (e.g., under uspace).

rtapi_is_realtime() returns nonzero when capable of running with realtime guarantees.For rtai, this
always returns nonzero (but actually loading realtime modules will fail if not running under the appropriate
kernel). For uspace, this returns nonzero when the running kernel indicates it is capable of realtime perfor-
mance. Ifrtapi_app is not setuid root, this returns nonzero even thoughrtapi_app will not be able to
obtain realtime scheduling or hardware access, so e.g., attempting toloadrt a hardware driver will fail.

REALTIME CONSIDERATIONS
May be called from userspace or from realtime setup code.rtapi_is_realtime() may perform filesystem
I/O.

RETURN VALUE
Zero for false, nonzero for true.

LinuxCNC Documentation 2006-10-12 125

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_list.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_list.h>

struct rtapi_list_head;

void rtapi_list_add(struct rtapi_list_head *new_, struct rtapi_list_head *head);

void rtapi_list_add_tail(struct rtapi_list_head *new_, struct rtapi_list_head *head);

void rtapi_list_del(struct rtapi_list_head *entry);

void RTAPI_INIT_LIST_HEAD(struct rtapi_list_head *entry);

rtapi_list_for_each(pos, head) { ... }

rtapi_list_entry(ptr, type, member)

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call from init/cleanup code and from realtime tasks. These functions will cause illegal instruction excep-
tions in userspace components, as well as in uspace rtapi_app when it is not setuid root.

RETURN VALUE
As in Linux.

SEE ALSO

126 2014-06-28 LinuxCNC Documentation

rtapi_module_param(3rtapi) RTAPI rtapi_module_param(3rtapi)

NAME
rtapi_module_param − Specifying module parameters

SYNTAX
RTAPI_MP_INT(var, description)

RTAPI_MP_LONG(var, description)

RTAPI_MP_STRING(var, description)

RTAPI_MP_ARRAY_INT(var, num, description)

RTAPI_MP_ARRAY_LONG(var, num, description)

RTAPI_MP_ARRAY_STRING(var, num, description)

MODULE_LICENSE(license)

MODULE_AUTHOR(author)

MODULE_DESCRIPTION(description)

EXPORT_FUNCTION(function)

ARGUMENTS
var The variable where the parameter should be stored

description
A short description of the parameter or module

num The maximum number of values for an array parameter

license The license of the module, for instance "GPL"

author The author of the module

function
The pointer to the function to be exported

DESCRIPTION
These macros are portable ways to declare kernel module parameters. They must be used in the global
scope, and are not followed by a terminating semicolon. They must be used after the associated variable or
function has been defined.

NOTES
EXPORT_FUNCTION makes a symbol available for use by a subsequently loaded component. It is unre-
lated to hal functions, which are described in hal_export_funct(3hal)

Interpretation of license strings
MODULE_LICENSE follows the kernel’s definition of license strings. Notably, "GPL" indicates "GNU
General Public License v2or later". (emphasisours).

LinuxCNC Documentation 2006-10-12 127

rtapi_module_param(3rtapi) RTAPI rtapi_module_param(3rtapi)

"GPL"
GNU General Public License v2 or later

"GPL v2"
GNU General Public License v2

"GPL and additional rights"
GNU General Public License v2 rights and more

"Dual BSD/GPL"
GNU General Public License v2 or BSD license choice

"Dual MIT/GPL"
GNU General Public License v2 or MIT license choice

"Dual MPL/GPL"
GNU General Public License v2 or Mozilla license choice

"Proprietary"
Non-free products

It is still good practice to include a license block which indicates the author, copyright date, and disclaimer
of warranty as recommended by the GNU GPL.

REALTIME CONSIDERATIONS
Not available in userspace code.

128 2006-10-12 LinuxCNC Documentation

rtapi_mutex(3rtapi) RTAPI rtapi_mutex(3rtapi)

NAME
rtapi_mutex − Mutex-related functions

SYNTAX

int rtapi_mutex_try(unsigned long *mutex)

void rtapi_mutex_get(unsigned long *mutex)

void rtapi_mutex_give(unsigned long *mutex)

ARGUMENTS
mutex A pointer to the mutex.

DESCRIPTION
rtapi_mutex_try makes a non-blocking attempt to get the mutex. If the mutex is available, it returns 0,
and the mutex is no longer available. Otherwise,it returns a nonzero value.

rtapi_mutex_getblocks until the mutex is available.

rtapi_mutex_give releases a mutex acquired byrtapi_mutex_try or rtapi_mutex_get.

REALTIME CONSIDERATIONS
rtapi_mutex_giveandrtapi_mutex_try may be used from user, init/cleanup, and realtime code.

rtapi_mutex_getmay not be used from realtime code.

RETURN VALUE
rtapi_mutex_try returns 0 for if the mutex was claimed, and nonzero otherwise.

rtapi_mutex_getandrtapi_mutex_gif have no return value.

LinuxCNC Documentation 2006-10-12 129

rtapi_outb(3rtapi) RTAPI rtapi_outb(3rtapi)

NAME
rtapi_outb, rtapi_inb − Perform hardware I/O

SYNTAX
void rtapi_outb(unsigned charbyte, unsigned intport)

unsigned char rtapi_inb(unsigned intport)

ARGUMENTS
port The address of the I/O port

byte The byte to be written to the port

DESCRIPTION
rtapi_outb writes a byte to a hardware I/O port.rtapi_inb reads a byte from a hardware I/O port.

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks. Not available in userspace compo-
nents.

RETURN VALUE
rtapi_inb returns the byte read from the given I/O port

NOTES
The I/O address should be within a region previously allocated byrtapi_request_region. Otherwise,
another real-time module or the Linux kernel might attempt to access the I/O region at the same time.

SEE ALSO
rtapi_region(3rtapi)

130 2006-10-12 LinuxCNC Documentation

parport(3rtapi) RTAPI parport(3rtapi)

NAME
rtapi_parport − portable access to PC-style parallel ports

SYNTAX
#include "rtapi_parport.h"

int rtapi_parport_get (const char *module_name, rtapi_parport_t *port, unsigned shortbase, unsigned
shortbase_hi, unsigned intmodes)

void rtapi_parport_release(rtapi_parport_t *port)

ARGUMENTS
module_name

By convention, the name of the RTAPI module or HAL component using the parport.

port A pointer to a rtapi_parport_t structure

base The base address of the port (if port >= 16) or the linux port number of the port (if port < 16)

base_hi
The "high" address of the port (location of the ECP registers), 0 to use a probed high address, or
−1 to disable the high address

modes Advise the driver of the desired port modes, from <linux/parport.h>. If a linux-detected port does
not provide the requested modes, a warning is printed with rtapi_print_msg. This does not make
the port request fail, because unfortunately, many systems that have working EPP parports are not
detected as such by Linux.

DESCRIPTION
rtapi_parport_get allocates a parallel port for exclusive use of the named hal component. If successful,
access the port with I/O calls such as rtapi_inb at address based at thebaseor base_hiaddresses. Theport
must be released withrtapi_parport_releasebefore the component exits withrtapi_exit .

HIGH ADDRESS PROBING
If the port is a parallel port known to Linux, and Linux detected a high I/O address, this value is used. Oth-
erwise, if base+0x400 is not registered to any device, it is used. Otherwise, no address is used. If no high
address is detected, port−>base_hi is 0.

PARPORT STRUCTURE
typedef struct
{

unsigned short base;
unsigned short base_hi;
.... // and further unspecified fields

} r tapi_parport_t;

RETURN VALUE
rtapi_parport_get returns a HAL status code. On success,port is filled out with information about the
allocated port. On failure, the contents ofport are undefined except that it is safe (but not required) to pass
this port tortapi_parport_release.

rtapi_parport_releasedoes not return a value. Italways succeeds.

NOTES
In new code, prefer use of rtapi_parport to rtapi_parport.

LinuxCNC Documentation 2006-10-12 131

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_pci.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_pci.h>

struct rtapi_pci_device_id { ... };

struct rtapi_pci_resource { ... };

struct rtapi_pci_dev { . .. };

struct rtapi_pci_driver { . .. };

const char *rtapi_pci_name(const struct rtapi_pci_dev *pdev);

int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

void rtapi__iomem *rtapi_pci_ioremap_bar(struct rtapi_pci_dev *pdev, int bar);

int rtapi_pci_register_driver(struct rtapi_pci_driver *driver);

void rtapi_pci_unregister_driver(struct rtapi_pci_driver *driver);

int rtapi_pci_enable_device(struct rtapi_pci_dev *dev);

int rtapi_pci_disable_device(struct rtapi_pci_dev *dev);

#define rtapi_pci_resource_start(dev, bar) ...

#define rtapi_pci_resource_end(dev, bar) ...

#define rtapi_pci_resource_flags(dev, bar) ...

#define rtapi_pci_resource_len(dev,bar)

void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)

void rtapi_pci_set_drvdata(struct rtapi_pci_dev *pdev, void *data)

void rtapi_iounmap(volatile void *addr);

struct rtapi_pci;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_pci_register always succeeds)

REALTIME CONSIDERATIONS
Typically, these functions may be called from realtime init/cleanup code.

RETURN VALUE
As in Linux.

SEE ALSO

132 2014-06-28 LinuxCNC Documentation

rtapi_print(3rtapi) RTAPI rtapi_print(3rtapi)

NAME
rtapi_print, rtapi_print_msg − print diagnostic messages

SYNTAX

void rtapi_print(const char *fmt, ...)

void rtapi_print_msg(int level, const char *fmt, ...)

typedef void(*rtapi_msg_handler_t)(msg_level_t level, const char *msg);

void rtapi_set_msg_handler(rtapi_msg_handler_thandler);

rtapi_msg_handler_trtapi_set_msg_handler(void);

ARGUMENTS
level A message level: One ofRTAPI_MSG_ERR, RTAPI_MSG_WARN , RTAPI_MSG_INFO , or

RTAPI_MSG_DBG.

handler
A function to call fromrtapi_print or rtapi_print_msg to actually output the message.

fmt

... Other arguments are as forprintf(3).

DESCRIPTION
rtapi_print andrtapi_print_msg work like the standard C printf functions, except that a reduced set of
formatting operations are supported.

Depending on the RTOS, the default may be to print the message to stdout, stderr, a kernel log, etc. In
RTAPI code, the action may be changed by a call tortapi_set_msg_handler. A NULL argument to
rtapi_set_msg_handlerrestores the default handler.rtapi_msg_get_handlerreturns the current handler.
When the message came fromrtapi_print , level is RTAPI_MSG_ALL.

rtapi_print_msg works like rtapi_print but only prints iflevel is less than or equal to the current message
level.

REALTIME CONSIDERATIONS
rtapi_print andrtapi_print_msg May be called from user, init/cleanup, and realtime code.
rtapi_get_msg_handlerandrtapi_set_msg_handlermay be called from realtime init/cleanup code. A
message handler passed tortapi_set_msg_handlermay only call functions that can be called from real-
time code.

RETURN VALUE
None.

LinuxCNC Documentation 2006-10-12 133

rtapi_print(3rtapi) RTAPI rtapi_print(3rtapi)

SEE ALSO
rtapi_set_msg_level(3rtapi) , rtapi_get_msg_level(3rtapi) , printf(3)

134 2006-10-12 LinuxCNC Documentation

rtapi_prio(3rtapi) RTAPI rtapi_prio(3rtapi)

NAME
rtapi_prio − thread priority functions

SYNTAX
int rtapi_prio_highest()

int rtapi_prio_lowest()

int rtapi_prio_next_higher(intprio)

int rtapi_prio_next_lower(intprio)

ARGUMENTS
prio A value returned by a priorrtapi_prio_xxx call

DESCRIPTION
Thertapi_prio_xxxx functions provide a portable way to set task priority. The mapping of actual priority
to priority number depends on the RTOS. Prioritiesrange fromrtapi_prio_lowest to rtapi_prio_highest,
inclusive. To use this API, use one of two methods:

1) Set your lowest priority task tortapi_prio_lowest, and for each task of the next lowest priority, set
their priorities tortapi_prio_next_higher(pr evious).

2) Set your highest priority task tortapi_prio_highest, and for each task of the next highest priority,
set their priorities tortapi_prio_next_lower(pr evious).

N.B. A high priority task will pre-empt or interrupt a lower priority task. Linux is always the lowest prior-
ity!

REALTIME CONSIDERATIONS
Call these functions only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an opaque real-time priority number.

SEE ALSO
rtapi_task_new(3rtapi)

LinuxCNC Documentation 2006-10-12 135

rtapi_region(3rtapi) RTAPI rtapi_region(3rtapi)

NAME
rtapi_region − functions to manage I/O memory regions

SYNTAX

void *rtapi_request_region(unsigned longbase, unsigned long intsize, const char *name)

void rtapi_release_region(unsigned longbase, unsigned long intsize)

ARGUMENTS
base The base address of the I/O region

size The size of the I/O region

name The name to be shown in /proc/ioports

DESCRIPTION
rtapi_request_regionreserves I/O memory starting atbaseand going forsizebytes.

REALTIME CONSIDERATIONS
May be called from realtime init/cleanup code only.

RETURN VALUE
rtapi_request_regionreturns NULL if the allocation fails, and a non-NULL value otherwise.

rtapi_release_regionhas no return value.

136 2006-10-12 LinuxCNC Documentation

rtapi_set_msg_level(3rtapi) RTAPI rtapi_set_msg_level(3rtapi)

NAME
rtapi_get_msg_level, rtapi_set_msg_level − Get or set the logging level

SYNTAX

int rtapi_set_msg_level(int level)

int rtapi_get_msg_level()

ARGUMENTS
level The desired logging level

DESCRIPTION
Get or set the RTAPI message level used byrtapi_print_msg . Depending on the RTOS, this level may
apply to a single RTAPI module, or it may apply to a group of modules.

REALTIME CONSIDERATIONS
May be called from user, init/cleanup, and realtime code.

RETURN VALUE
rtapi_set_msg_level returns a status code, andrtapi_get_msg_level returns the current level.

SEE ALSO
rtapi_print_msg(3rtapi)

LinuxCNC Documentation 2006-10-12 137

rtapi_shmem(3rtapi) RTAPI rtapi_shmem(3rtapi)

NAME
rtapi_shmem − Functions for managing shared memory blocks

SYNTAX

int rtapi_shmem_new(intkey, int module_id, unsigned long intsize)

int rtapi_shmem_delete(intshmem_id, int module_id)

int rtapi_shmem_getptr(intshmem_id, void ** ptr)

ARGUMENTS
key Identifies the memory block.Ke y must be nonzero. All modules wishing to use the same memory

must use the same key.

module_id
Module identifier returned by a prior call tortapi_init .

size The desired size of the shared memory block, in bytes

ptr The pointer to the shared memory block. Note that the block may be mapped at a different
address for different modules.

DESCRIPTION
rtapi_shmem_newallocates a block of shared memory.key identifies the memory block, and must be non-
zero. Allmodules wishing to access the same memory must use the same key. module_idis the ID of the
module that is making the call (see rtapi_init). The block will be at leastsizebytes, and may be rounded
up. Allocatingmany small blocks may be very wasteful. Whena particular block is allocated for the first
time, the first 4 bytes are zeroed. Subsequent allocations of the same block by other modules or processes
will not touch the contents of the block. Applications can use those bytes to see if they need to initialize
the block, or if another module already did so. On success, it returns a positive integer ID, which is used
for all subsequent calls dealing with the block. On failure it returns a negative error code.

rtapi_shmem_deletefrees the shared memory block associated withshmem_id. module_idis the ID of the
calling module. Returns a status code.

rtapi_shmem_getptrsets*ptr to point to shared memory block associated withshmem_id.

REALTIME CONSIDERATIONS
rtapi_shmem_getptrmay be called from user code, init/cleanup code, or realtime tasks.

rtapi_shmem_newandrtapi_shmem_detemay not be called from realtime tasks.

RETURN VALUE

138 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_slab.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_slab.h>

void *rtapi_kmalloc(size_t size, gfp_t g);

void *rtapi_kzalloc(size_t size, gfp_t g);

void *rtapi_krealloc(size_t size, gfp_t g);

void rtapi_kfree(void *);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE
As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 139

rtapi_snprintf(3rtapi) RTAPI rtapi_snprintf(3rtapi)

NAME
rtapi_snprintf, rtapi_vsnprintf − Perform snprintf-like string formatting

SYNTAX

int rtapi_snprintf(char *buf, unsigned long intsize, const char *fmt, ...)

int rtapi_vsnprintf(char *buf, unsigned long intsize, const char *fmt, va_listapfB)

ARGUMENTS
As for snprintf(3)or vsnprintf(3).

DESCRIPTION
These functions work like the standard C printf functions, except that a reduced set of formatting operations
are supported.

In particular: formatting of long long values is not supported.Formatting of floating-point values is done as
though with %A even when other formats like %f are specified.

REALTIME CONSIDERATIONS
May be called from user, init/cleanup, and realtime code.

RETURN VALUE
The number of characters written tobuf.

SEE ALSO
printf(3)

140 2006-10-12 LinuxCNC Documentation

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_stdint.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_stdint.h>

typedef ... rtapi_s8;

typedef ... rtapi_s16;

typedef ... rtapi_s32;

typedef ... rtapi_s64;

typedef ... rtapi_u8;

typedef ... rtapi_u16;

typedef ... rtapi_u32;

typedef ... rtapi_u64;

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
None.

RETURN VALUE
As in Linux.

SEE ALSO

LinuxCNC Documentation 2014-06-28 141

funct(3rtapi) RTAPI funct(3rtapi)

NAME
rtapi_string.h − RTAPI wrappers for linux kernel functionality

SYNTAX
#include <rtapi_string.h>

char **rtapi_argv_split(rtapi_gfp_t g, const char *argstr, int *argc);

void rtapi_argv_free(char **argv);

char *rtapi_kstrdup(const char *s, rtapi_gfp_t t);

DESCRIPTION
In kernel space, each rtapi_xxx or RTAPI_XXX identifier is mapped to the underlying kernel functionality,
if available.

In userspace, or in kernels where the underlying functionality is not provided by a kernel, generally another
implementation--possibly with reduced functionality--is provided. (For example, the userspace implemen-
tation for rtapi_device_register always succeeds)

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE
As in Linux.

SEE ALSO

142 2014-06-28 LinuxCNC Documentation

rtapi_task_new(3rtapi) RTAPI rtapi_task_new(3rtapi)

NAME
rtapi_task_new − create a realtime task

SYNTAX
int rtapi_task_new(void (*taskcode)(void*), void *arg, int prio, unsigned longstacksize, int

uses_fp)

int rtapi_task_delete(inttask_id)

ARGUMENTS
taskcode

A pointer to the function to be called when the task is started

arg An argument to be passed to thetaskcodefunction when the task is started

prio A task priority value returned byrtapi_prio_xxxx

uses_fpA flag that tells the OS whether the task uses floating point or not.

task_id A task ID returned by a previous call tortapi_task_new

DESCRIPTION
rtapi_task_newcreates but does not start a realtime task. The task is created in the "paused" state.To
start it, call eitherrtapi_task_start for periodic tasks, orrtapi_task_resumefor free-running tasks.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
On success, returns a positive integer task ID. This ID is used for all subsequent calls that need to act on
the task. On failure, returns an RTAPI status code.

SEE ALSO
rtapi_prio(3rtapi) , rtapi_task_start(3rtapi) , rtapi_task_wait(3rtapi) , rtapi_task_resume(3rtapi)

LinuxCNC Documentation 2006-10-12 143

rtapi_task_pause(3rtapi) RTAPI rtapi_task_pause(3rtapi)

NAME
rtapi_task_pause, rtapi_task_resume − pause and resume real-time tasks

SYNTAX
void rtapi_task_pause(inttask_id)

void rtapi_task_resume(inttask_id)

ARGUMENTS
task_id An RTAPI task identifier returned by an earlier call tortapi_task_new.

DESCRIPTION
rtapi_task_resumestarts a task in free-running mode. The task must be in the "paused" state.

A f ree running task runs continuously until either:

1) It is prempted by a higher priority task. It will resume as soon as the higher priority task releases
the CPU.

2) It calls a blocking function, likertapi_sem_take. It will resume when the function unblocks.

3) It is returned to the "paused" state byrtapi_task_pause. May be called from init/cleanup code,
and from within realtime tasks.

rtapi_task_pausecauses a task to stop execution and change to the "paused" state. The task can
be free-running or periodic. Note thatrtapi_task_pausemay called from any task, or from init or
cleanup code, not just from the task that is to be paused. The task will resume execution when
eitherrtapi_task_resumeor rtapi_task_start (depending on whether this is a free-running or
periodic task) is called.

REALTIME CONSIDERATIONS
May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
An RTAPI status code.

SEE ALSO
rtapi_task_new(3rtapi), rtapi_task_start(3rtapi)

144 2006-10-12 LinuxCNC Documentation

rtapi_task_self(3rtapi) RTAPI rtapi_task_self(3rtapi)

NAME
rtapi_task_self − Retrieve ID of current task

SYNTAX
void rtapi_task_self()

DESCRIPTION
rtapi_task_self retrieves the current task, or −EINVAL if not in a realtime task (e.g., in startup or shutdown
code).

REALTIME CONSIDERATIONS
May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
The task number previously returned byrtapi_task_newor −EINVAL.

SEE ALSO
rtapi_task_new(3rtapi)

LinuxCNC Documentation 2015-04-18 145

rtapi_task_start(3rtapi) RTAPI rtapi_task_start(3rtapi)

NAME
rtapi_task_start − start a realtime task in periodic mode

SYNTAX
int rtapi_task_start(inttask_id, unsigned longperiod_nsec)

ARGUMENTS
task_id A task ID returned by a previous call tortapi_task_new

period_nsec
The clock period in nanoseconds between iterations of a periodic task

DESCRIPTION
rtapi_task_start starts a task in periodic mode. The task must be in thepausedstate.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an RTAPI status code.

SEE ALSO
rtapi_task_new(3rtapi), rtapi_task_pause(3rtapi), rtapi_task_resume(3rtapi)

146 2006-10-12 LinuxCNC Documentation

rtapi_task_wait(3rtapi) RTAPI rtapi_task_wait(3rtapi)

NAME
rtapi_task_wait − suspend execution of this periodic task

SYNTAX
void rtapi_task_wait()

DESCRIPTION
rtapi_task_wait suspends execution of the current task until the next period. The task must be periodic. If
not, the result is undefined.

REALTIME CONSIDERATIONS
Call only from within a periodic realtime task

RETURN VALUE
None

SEE ALSO
rtapi_task_start(3rtapi) , rtapi_task_pause(3rtapi)

LinuxCNC Documentation 2006-10-12 147

undocumented(3rtapi) RTAPI undocumented(3rtapi)

NAME
undocumented − undocumented functions in RTAPI

SEE ALSO
The header filertapi.h. Most rtapi functions have documentation in that file.

148 2006-10-12 LinuxCNC Documentation

ABS(9) HAL Component ABS(9)

NAME
abs − Compute the absolute value and sign of the input signal

SYNOPSIS
loadrt abs [count=N|names=name1[,name2...]]

FUNCTIONS
abs.N (requires a floating-point thread)

PINS
abs.N.in float in

Analog input value

abs.N.out float out
Analog output value, always positive

abs.N.signbit out
Sign of input, false for positive, true for negative

abs.N.is-positivebit out
TRUE if input is positive, FALSE if input is 0 or negative

abs.N.is-negativebit out
TRUE if input is negative, FALSE if input is 0 or positive

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 149

ABS_S32(9) HAL Component ABS_S32(9)

NAME
abs_s32 − Compute the absolute value and sign of the input signal

SYNOPSIS
loadrt abs_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
abs-s32.N

PINS
abs-s32.N.in s32 in

input value

abs-s32.N.out s32 out
output value, always non-negative

abs-s32.N.signbit out
Sign of input, false for positive, true for negative

abs-s32.N.is-positivebit out
TRUE if input is positive, FALSE if input is 0 or negative

abs-s32.N.is-negativebit out
TRUE if input is negative, FALSE if input is 0 or positive

LICENSE
GPL

150 2021-01-22 LinuxCNC Documentation

AND2(9) HAL Component AND2(9)

NAME
and2 − Two-input AND gate

SYNOPSIS
loadrt and2 [count=N|names=name1[,name2...]]

FUNCTIONS
and2.N

PINS
and2.N.in0 bit in
and2.N.in1 bit in
and2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=TRUE in1=TRUE
out=TRUE

Otherwise,
out=FALSE

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 151

AT_PID(9) HAL Component AT_PID(9)

NAME
at_pid − proportional/integral/derivative controller with auto tuning

SYNOPSIS
loadrt at_pid [num_chan=num| names=name1[,name2...]]

DESCRIPTION
at_pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback
loops for servo motors and other closed-loop applications.

at_pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chanargument when the module is loaded. Alternatively, specifynames=and unique names sepa-
rated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, the default value is three.

If debug is set to 1 (the default is 0), some additional HAL parameters will be exported, which might be
useful for tuning, but are otherwise unnecessary.

at_pid has a built in auto tune mode. It works by setting up a limit cycle to characterize the process. From
this,Pgain/Igain/Dgainor Pgain/Igain/FF1can be determined using Ziegler-Nichols. When usingFF1,
scaling must be set so thatoutput is in user units per second.

During auto tuning, thecommand input should not change. The limit cycle is setup around the commanded
position. No initial tuning values are required to start auto tuning. Onlytune−cycles, tune−effort and
tune−modeneed be set before starting auto tuning. When auto tuning completes, the tuning parameters
will be set. If running from LinuxCNC, the FERROR setting for the axis being tuned may need to be loos-
ened up as it must be larger than the limit cycle amplitude in order to avoid a following error.

To perform auto tuning, take the following steps. Move the axis to be tuned, to somewhere near the center
of it’s travel. Settune−cycles(the default value should be fine in most cases) andtune−mode. Set
tune−effort to a small value. Setenableto true. Settune−modeto true. Settune−start to true. If no oscil-
lation occurs, or the oscillation is too small, slowly increasetune−effort. Auto tuning can be aborted at
any time by settingenableor tune−modeto false.

NAMING
The names for pins, parameters, and functions are prefixed as:
pid.N. for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Thepid.N. format is shown in the following descriptions.

FUNCTIONS
pid.N.do−pid−calcs(uses floating-point)

Does the PID calculations for control loopN.

PINS
pid.N.commandfloat in

The desired (commanded) value for the control loop.

pid.N.feedbackfloat in
The actual (feedback) value, from some sensor such as an encoder.

152 2007-05-12 LinuxCNC Documentation

AT_PID(9) HAL Component AT_PID(9)

pid.N.error float out
The difference between command and feedback.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.enablebit in
When true, enables the PID calculations. When false,output is zero, and all internal integrators,
etc, are reset.

pid.N.tune−modebit in
When true, enables auto tune mode. When false, normal PID calculations are performed.

pid.N.tune−start bit io
When set to true, starts auto tuning. Cleared when the auto tuning completes.

PARAMETERS
pid.N.Pgainfloat rw

Proportional gain. Resultsin a contribution to the output that is the error multiplied byPgain.

pid.N.Igain float rw
Integral gain. Resultsin a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error
(errorI) of 0.2, and ifIgain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float rw
Derivative gain. Resultsin a contribution to the output that is the rate of change (derivative) of the
error multiplied byDgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and ifDgain is 5, the derivative term would
add 0.25 to the output.

pid.N.biasfloat rw
bias is a constant amount that is added to the output. In most cases it should be left at zero. How-
ev er, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically.bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum2 block.

pid.N.FF0 float rw
Zero order feed-forward term. Produces a contribution to the output that isFF0 multiplied by the
commanded value. For position loops, it should usually be left at zero.For velocity loops,FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float rw
First order feed-forward term. Produces a contribution to the output thatFF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float rw
Second order feed-forward term. Produces a contribution to the output that isFF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia.For velocity loops, it should usually be
left at zero.

pid.N.deadbandfloat rw
Defines a range of "acceptable" error. If the absolute value oferror is less thandeadband, it will
be treated as if the error is zero. When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When

LinuxCNC Documentation 2007-05-12 153

AT_PID(9) HAL Component AT_PID(9)

the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the
edge of the deadband. (SeeBUGS.)

pid.N.maxoutput float rw
Output limit. The absolute value of the output will not be permitted to exceedmaxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

pid.N.maxerror float rw
Limit on the internal error variable used for P, I, and D. Can be used to prevent highPgainvalues
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change). Not normally needed, but can be useful when tuning non-linear
systems.

pid.N.maxerrorD float rw
Limit on the error derivative. The rate of change of error used by theDgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect ofDgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorI float rw
Limit on error integrator. The error integrator used by theIgain term will be limited to this value,
unless it is zero. Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdDfloat rw
Limit on command derivative. The command derivative used byFF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

pid.N.maxcmdDDfloat rw
Limit on command second derivative. The command second derivative used byFF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.tune−typeu32 rw
When set to 0,Pgain/Igain/Dgainare caclulated. When set to 1,Pgain/Igain/FF1are calculated.

pid.N.tune−cyclesu32 rw
Determines the number of cycles to run to characterize the process.tune−cyclesactually sets the
number of half cycles. More cycles results in a more accurate characterization as the average of all
cycles is used.

pid.N.tune−effort float rw
Determines the effor used in setting up the limit cycle in the process.tune−effort should be set to
a positive value less thanmaxoutput. Start with something small and work up to a value that
results in a good portion of the maximum motor current being used. The smaller the value, the
smaller the amplitude of the limit cycle.

pid.N.errorI float ro (only if debug=1)
Integral of error. This is the value that is multiplied byIgain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied byDgain to produce the Derivative term of
the output.

pid.N.commandDfloat ro (only if debug=1)
Derivative of command. Thisis the value that is multiplied byFF1 to produce the first order feed-
forward term of the output.

154 2007-05-12 LinuxCNC Documentation

AT_PID(9) HAL Component AT_PID(9)

pid.N.commandDDfloat ro (only if debug=1)
Second derivative of command. Thisis the value that is multiplied byFF2 to produce the second
order feed-forward term of the output.

pid.N.ultimate−gain float ro (only if debug=1)
Determined from process characterization.ultimate−gain is the ratio oftune−effort to the limit
cycle amplitude multipled by 4.0 divided by Pi.pid.N.ultimate−period float ro (only if debug=1)
Determined from process characterization.ultimate−period is the period of the limit cycle.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband. This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version ofat_pid. How-
ev er, the default behavior should not be changed.

LinuxCNC Documentation 2007-05-12 155

AXISTEST(9) HAL Component AXISTEST(9)

NAME
axistest − Used to allow testing of an axis. Used IN PNCconf

SYNOPSIS
loadrt axistest [count=N|names=name1[,name2...]]

FUNCTIONS
axistest.N.update (requires a floating-point thread)

PINS
axistest.N.jog-minus bit in

Drive TRUE to jog the axis in its minus direction

axistest.N.jog-plus bit in
Drive TRUE to jog the axis in its positive direction

axistest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

axistest.N.maxvelfloat in
Maximum velocity

axistest.N.amplitude float in
Approximate amplitude of positions to command during ’run’

axistest.N.dir s32 in
Direction from central point to test: 0 = both, 1 = positive, 2 = neg ative

axistest.N.position-cmdfloat out
axistest.N.position-fb float in
axistest.N.running bit out
axistest.N.run-target float out
axistest.N.run-start float out
axistest.N.run-low float out
axistest.N.run-high float out
axistest.N.pauses32 in (default:0)

pause time for each end of run in seconds

PARAMETERS
axistest.N.epsilonfloat rw (default:.001)
axistest.N.elapsedfloat r

Current value of the internal timer

LICENSE
GPL

156 2021-01-22 LinuxCNC Documentation

BIN2GRAY(9) HAL Component BIN2GRAY(9)

NAME
bin2gray − convert a number to the gray-code representation

SYNOPSIS
loadrt bin2gray [count=N|names=name1[,name2...]]

DESCRIPTION
Converts a number into gray-code

FUNCTIONS
bin2gray.N

PINS
bin2gray.N.in u32 in

binary code in

bin2gray.N.out u32 out
gray code out

AUTHOR
andy pugh

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 157

BIQUAD(9) HAL Component BIQUAD(9)

NAME
biquad − Biquad IIR filter

SYNOPSIS
loadrt biquad [count=N|names=name1[,name2...]]

DESCRIPTION
Biquad IIR filter. Implements the following transfer function: H(z) = (n0 + n1z-1 + n2z-2) / (1+ d1z-1 +
d2z-2)

FUNCTIONS
biquad.N (requires a floating-point thread)

PINS
biquad.N.in float in

Filter input.

biquad.N.out float out
Filter output.

biquad.N.enablebit in (default:0)
Filter enable. When false, the in is passed to out without any filtering. A transition from false to
true causes filter coefficients to be calculated according to parameters

biquad.N.valid bit out (default:0)
When false, indicates an error occurred when caclulating filter coefficients.

PARAMETERS
biquad.N.type u32 rw (default:0)

Filter type determines the type of filter coefficients calculated. When 0, coefficients must be
loaded directly. When 1, a low pass filter is created. When 2, a notch filter is created.

biquad.N.f0 float rw (default:250.0)
The corner frequency of the filter.

biquad.N.Q float rw (default:0.7071)
The Q of the filter.

biquad.N.d1 float rw (default:0.0)
1st-delayed denominator coef

biquad.N.d2 float rw (default:0.0)
2nd-delayed denominator coef

biquad.N.n0 float rw (default:1.0)
non-delayed numerator coef

biquad.N.n1 float rw (default:0.0)
1st-delayed numerator coef

biquad.N.n2 float rw (default:0.0)
2nd-delayed numerator coef

biquad.N.s1float rw (default:0.0)
biquad.N.s2float rw (default:0.0)

LICENSE
GPL

158 2021-01-22 LinuxCNC Documentation

BITSLICE(9) HAL Component BITSLICE(9)

NAME
bitslice − Converts an unsigned-32 input into individual bits

SYNOPSIS
loadrt bitslice [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
This component creates individual bit-outputs for each bit of an unsigned-32 input. The number of bits can
be limited by the "personality" modparam. The inverse process can be performed by the weighted_sum
HAL component.

FUNCTIONS
bitslice.N

PINS
bitslice.N.in u32 in

The input value

bitslice.N.out-MM bit out (MM=00..personality)

AUTHOR
Andy Pugh

LICENSE
GPL2+

LinuxCNC Documentation 2021-01-22 159

BITWISE(9) HAL Component BITWISE(9)

NAME
bitwise − Computes various bitwise operations on the two input values

SYNOPSIS
loadrt bitwise [count=N|names=name1[,name2...]]

FUNCTIONS
bitwise.N

PINS
bitwise.N.in0 u32 in

First input value

bitwise.N.in1 u32 in
Second input value

bitwise.N.out-and u32 out
The bitwise AND of the two inputs

bitwise.N.out-or u32 out
The bitwise OR of the two inputs

bitwise.N.out-xor u32 out
The bitwise XOR of the two inputs

bitwise.N.out-nand u32 out
The inverse of the bitwise AND

bitwise.N.out-nor u32 out
The inverse of the bitwise OR

bitwise.N.out-xnor u32 out
The inverse of the bitwise XOR

AUTHOR
Andy Pugh

LICENSE
GPL 2+

160 2021-01-22 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

NAME
bldc − BLDC and AC-servo control component

SYNOPSIS
loadrt bldc personality=P

DESCRIPTION
This component is designed as an interface between the most common forms of three-phase motor feed-
back devices and the corresponding types of drive. Howev er there is no requirement that the motor and
drive should necessarily be of inherently compatible types.

SYNOPSIS
(ignore the auto-generated SYNOPSIS above)

loadrt bldc cfg=qi6,aH
Each instance of the component is defined by a group of letters describing the input and output
types. A comma separates individual instances of the component.

Tags
Input type definitions are all lower-case.

n No motor feedback. This mode could be used to drive AC induction motors, but is also potentially useful
for creating free-running motor simulators for drive testing.

h Hall sensor input. Brushless DC motors (electronically commutated permanent magnet 3-phase motors)
typically use a set of three Hall sensors to measure the angular position of the rotor. A lower-caseh in the
cfg string indicates that these should be used.

a Absolute encoder input. (Also possibly used by some forms of Resolver conversion hardware). The pres-
ence of this tag over-rides all other inputs. Note that the component still requires to be be connected to the
rawcountsencoder pin to prevent loss of commutation on index-reset.

q Incremental (quadrature) encoder input. If this input is used then the rotor will need to be homed before
the motor can be run.

i Use the index of an incremental encoder as a home reference.

f Use a 4-bit Gray-scale patttern to determine rotor alignment. This scheme is only used on the Fanuc "Red
Cap" motors. This mode could be used to control one of these motors using a non-Fanuc drive.

Output type descriptions are all upper-case.

DefaultsThe component will always calculate rotor angle, phase angle and the absolute value of the input
value for interfacing with drives such as the Mesa 8i20. It will also default to three individual, bipolar
phase output values if no other output type modifiers are used.

B Bit level outputs. Either 3 or 6 logic-level outputs indicating which high or low gate drivers on an exter-
nal drive should be used.

6 Create 6 rather than the default 3 outputs. In the case of numeric value outputs these are separate positive
and negative drive amplitudes. Both have positive magnitude.

H Emulated Hall sensor output. This mode can be used to control a drive which expects 3x Hall signals, or
to convert between a motor with one hall pattern and a drive which expects a different one.

F Emulated Fanuc Red Cap Gray-code encoder output. This mode might be used to drive a non-Fanuc

LinuxCNC Documentation 2021-01-22 161

BLDC(9) HAL Component BLDC(9)

motor using a Fanuc drive intended for the "Red-Cap" motors.

T Force Trapezoidal mode.

OPERATING MODES
The component can control a drive in either Trapezoidal or Sinusoidal mode, but will always default to
sinusoidal if the input and output modes allow it. This can be over-ridden by theT tag. Sinusoidal commu-
tation is significantly smoother (trapezoidal commutation induces 13% torque ripple).

ROTOR HOMING.
To use an encoder for commutation a reference 0-degrees point must be found. The component uses the
convention that motor zero is the point that an unloaded motor aligns to with a positive voltage on the A (or
U) terminal and the B & C (or V and W) terminals connected together and to −ve voltage. There will be
two such positions on a 4-pole motor, 3 on a 6-pole and so on. They are all functionally equivalent as far as
driving the motor is concerned. If the motor has Hall sensors then the motor can be started in trapezoidal
commutation mode, and will switch to sinusoidal commutation when an alignment is found. If the mode is
qh then the first Hall state-transition will be used. If the mode isqhi then the encoder index will be used.
This gives a more accurate homing position if the distance in encoder counts between motor zero and
encoder index is known. To force homing to the Hall edges instead simply omit thei.

Motors without Hall sensors may be homed in synchronous/direct mode. The better of these options is to
home to the encoder zero using theiq config parameter. When theinit pin goes high the motor will rotate
(in a direction determined by there v pin) until the encoder indicates an index-latch (the servo thread runs
too slowly to rely on detecting an encoder index directly). If there is no encoder index or its location rela-
tive to motor zero can not be found, then an alternative is to usemagnetichoming using theq config. In this
mode the motor will go through an alignment sequence ending at motor zero when the init pin goes high It
will then set the final position as motor zero. Unfortunately the motor is ratherspringyin this mode and so
alignment is likely to be fairly sensitive to load.

FUNCTIONS
bldc.N (requires a floating-point thread)

PINS
bldc.N.hall1 bit in [if personality & 0x01]

Hall sensor signal 1

bldc.N.hall2 bit in [if personality & 0x01]
Hall sensor signal 2

bldc.N.hall3 bit in [if personality & 0x01]
Hall sensor signal 3

bldc.N.hall-error bit out [if personality & 0x01]
Indicates that the selected hall pattern gives inconsistent rotor position data. This can be due to the
pattern being wrong for the motor, or one or more sensors being unconnected or broken. Aconsis-
tent pattern is not neceesarily valid, but an inconsistent one can never be valid.

bldc.N.C1 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 0 input

bldc.N.C2 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 1 input

bldc.N.C4 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 2 input

162 2021-01-22 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

bldc.N.C8 bit in [if (personality & 0x10)]
Fanuc Gray-code bit 3 input

bldc.N.valuefloat in
PWM master amplitude input

bldc.N.lead-anglefloat in [if personality & 0x06] (default:90)
The phase lead between the electrical vector and the rotor position in degrees

bldc.N.revbit in
Set this pin true to reverse the motor. Neg ative PWM amplitudes will also reverse the motor and
there will generally be a Hall pattern that runs the motor in each direction too.

bldc.N.frequencyfloat in [if (personality & 0x0F) == 0]
Frequency input for motors with no feedback at all, or those with only an index (which is ignored)

bldc.N.initvalue float in [if personality & 0x04] (default:0.2)
The current to be used for the homing sequence in applications where an incremental encoder is
used with no hall-sensor feedback

bldc.N.rawcountss32 in [if personality & 0x06] (default:0)
Encoder counts input. This must be linked to the encoder rawcounts pin or encoder index resets
will cause the motor commutation to fail

bldc.N.index-enablebit io [if personality & 0x08]
This pin should be connected to the associated encoder index-enable pin to zero the encoder when
it passes index This is only used indicate to the bldc control component that an index has been
seen

bldc.N.init bit in [if (personality & 0x05) == 4]
A rising edge on this pin starts the motor alignment sequence. This pin should be connected in
such a way that the motors re-align any time that encoder monitoring has been interrupted. Typi-
cally this will only be at machine power-off. Thealignment process involves powering the motor
phases in such a way as to put the motor in a known position. The encoder counts are then stored
in theoffsetparameter. The alignment process will tend to cause a following error if it is triggered
while the axis is enabled, so should be set before the matching axis.N.enable pin. The complemen-
tary init-done pin can be used to handle the required sequencing.

Both pins can be ignored if the encoder offset is known explicitly, such as is the case with an abso-
lute encoder. In that case theoffsetparameter can be set directly in the HAL file

bldc.N.init-done bit out [if (personality & 0x05) == 4] (default:0)
Indicates homing sequence complete

bldc.N.A-value float out [if (personality & 0xF00) == 0]
Output amplitude for phase A

bldc.N.B-valuefloat out [if (personality & 0xF00) == 0]
Output amplitude for phase B

bldc.N.C-valuefloat out [if (personality & 0xF00) == 0]
Output amplitude for phase C

bldc.N.A-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase A

bldc.N.B-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase B

bldc.N.C-on bit out [if (personality & 0xF00) == 0x100]
Output bit for phase C

LinuxCNC Documentation 2021-01-22 163

BLDC(9) HAL Component BLDC(9)

bldc.N.A-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase A

bldc.N.B-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase B

bldc.N.C-high float out [if (personality & 0xF00) == 0x200]
High-side driver for phase C

bldc.N.A-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase A

bldc.N.B-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase B

bldc.N.C-low float out [if (personality & 0xF00) == 0x200]
Low-side driver for phase C

bldc.N.A-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase A

bldc.N.B-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase B

bldc.N.C-high-on bit out [if (personality & 0xF00) == 0x300]
High-side driver for phase C

bldc.N.A-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase A

bldc.N.B-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase B

bldc.N.C-low-on bit out [if (personality & 0xF00) == 0x300]
Low-side driver for phase C

bldc.N.hall1-out bit out [if (personality & 0x400)]
Hall 1 output

bldc.N.hall2-out bit out [if (personality & 0x400)]
Hall 2 output

bldc.N.hall3-out bit out [if (personality & 0x400)]
Hall 3 output

bldc.N.C1-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 0 output

bldc.N.C2-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 1 output

bldc.N.C4-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 2 output

bldc.N.C8-out bit out [if (personality & 0x800)]
Fanuc Gray-code bit 3 output

bldc.N.phase-anglefloat out (default:0)
Phase angle including lead/lag angle after encoder zeroing etc. Useful for angle/current drives.
This value has a range of 0 to 1 and measures electrical revolutions. It will have two zeros for a 4
pole motor, three for a 6-pole etc

bldc.N.rotor-angle float out (default:0)
Rotor angle after encoder zeroing etc. Useful for angle/current drives which add their own phase
offset such as the 8i20. This value has a range of 0 to 1 and measures electrical revolutions. It will
have two zeros for a 4 pole motor, three for a 6-pole etc

164 2021-01-22 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

bldc.N.out float out
Current output, including the effect of the dir pin and the alignment sequence

bldc.N.out-dir bit out
Direction output, high if /fBvalue/fR is negative XOR /fBrev/fR is true.

bldc.N.out-absfloat out
Absolute value of the input value

PARAMETERS
bldc.N.in-type s32 r (default:-1)

state machine output, will probably hide after debug

bldc.N.out-type s32 r (default:-1)
state machine output, will probably hide after debug

bldc.N.scales32 rw [if personality & 0x06] (default:512)
The number of encoder counts per rotor revolution.

bldc.N.poless32 rw [if personality & 0x06] (default:4)
The number of motor poles. The encoder scale will be divided by this value to determine the num-
ber of encoder counts per electrical revolution

bldc.N.encoder-offsets32 rw [if personality & 0x0A] (default:0)
The offset, in encoder counts, between the motor electrical zero and the encoder zero modulo the
number of counts per electrical revolution

bldc.N.offset-measureds32 r [if personality & 0x04] (default:0)
The encoder offset measured by the homing sequence (in certain modes)

bldc.N.dri ve-offsetfloat rw (default:0)
The angle, in degrees, applied to the commanded angle by the drive in degrees. This value is only
used during the homing sequence of drives with incremental encoder feedback. It is used to back-
calculate from commanded angle to actual phase angle. It is only relevant to drives which expect
rotor-angle input rather than phase-angle demand. Should be 0 for most drives.

bldc.N.output-pattern u32 rw [if personality & 0x400] (default:25)
Commutation pattern to be output in Hall Signal translation mode. See the description of /fBpat-
tern/fR for details

bldc.N.pattern u32 rw [if personality & 0x01] (default:25)
Commutation pattern to use, from 0 to 47. Default is type 25. Every plausible combination is
included. The table shows the excitation pattern along the top, and the pattern code on the left
hand side. The table entries are the hall patterns in H1, H2, H3 order. Common patterns are: 0 (30
degree commutation) and 26, its reverse. 17(120 degree). 18(alternate 60 degree). 21(300
degree, Bodine). 22 (240 degree). 25(60 degree commutation).

Note that a number of incorrect commutations will have non-zero net torque which might look as
if they work, but don’t really.

If your motor lacks documentation it might be worth trying every pattern.

LinuxCNC Documentation 2021-01-22 165

BLDC(9) HAL Component BLDC(9)

Phases, Source - Sink
pat B-A C-A C-B A-B A-C B-C
0 000 001 011 111 110 100
1 001 000 010 110 111 101
2 000 010 011 111 101 100
3 001 011 010 110 100 101
4 010 011 001 101 100 110
5 011 010 000 100 101 111
6 010 000 001 101 111 110
7 011 001 000 100 110 111
8 000 001 101 111 110 010
9 001 000 100 110 111 011
10 000 010 110 111 101 001
11 001 011 111 110 100 000
12 010 011 111 101 100 000
13 011 010 110 100 101 001
14 010 000 100 101 111 011
15 011 001 101 100 110 010
16 000 100 101 111 011 010
17 001 101 100 110 010 011
18 000 100 110 111 011 001
19 001 101 111 110 010 000
20 010 110 111 101 001 000
21 011 111 110 100 000 001
22 010 110 100 101 001 011
23 011 111 101 100 000 010
24 100 101 111 011 010 000
25 101 100 110 010 011 001
26 100 110 111 011 001 000
27 101 111 110 010 000 001
28 110 111 101 001 000 010
29 111 110 100 000 001 011
30 110 100 101 001 011 010
31 111 101 100 000 010 011
32 100 101 001 011 010 110
33 101 100 000 010 011 111
34 100 110 010 011 001 101
35 101 111 011 010 000 100
36 110 111 011 001 000 100
37 111 110 010 000 001 101
38 110 100 000 001 011 111
39 111 101 001 000 010 110
40 100 000 001 011 111 110
41 101 001 000 010 110 111
42 100 000 010 011 111 101
43 101 001 011 010 110 100
44 110 010 011 001 101 100
45 111 011 010 000 100 101
46 110 010 000 001 101 111
47 111 011 001 000 100 110

166 2021-01-22 LinuxCNC Documentation

BLDC(9) HAL Component BLDC(9)

AUTHOR
Andy Pugh

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 167

BLDC_HALL3(9) HAL Component BLDC_HALL3(9)

NAME
bldc_hall3 − 3-wire BLDC motor driver using Hall sensors and trapezoidal commutation.

SYNOPSIS
The functionality of this component is now included in the generic "bldc" component. This component is
likely to be removed in a future release

DESCRIPTION
This component produces a 3-wire bipolar output. This suits upstream drivers that interpret a negative input
as a low-side drive and positive as a high-side drive. This includes the Hostmot2 3pwmgen function, which
is likely to be the most common application of this component.

FUNCTIONS
bldc-hall3.N (requires a floating-point thread)

Interpret Hall sensor patterns and set 3-phase amplitudes

PINS
bldc-hall3.N.hall1 bit in

Hall sensor signal 1

bldc-hall3.N.hall2 bit in
Hall sensor signal 2

bldc-hall3.N.hall3 bit in
Hall sensor signal 3

bldc-hall3.N.valuefloat in
PWM master amplitude input

bldc-hall3.N.dir bit in
Forwards / reverse selection. Negative PWM amplitudes will also reverse the motor and there will
generally be a pattern that runs the motor in each direction too.

bldc-hall3.N.A-value float out
Output amplitude for phase A

bldc-hall3.N.B-valuefloat out
Output amplitude for phase B

bldc-hall3.N.C-valuefloat out
Output amplitude for phase C

PARAMETERS
bldc-hall3.N.pattern u32 rw (default:25)

Commutation pattern to use, from 0 to 47. Default is type 25. Every plausible combination is
included. The table shows the excitation pattern along the top, and the pattern code on the left
hand side. The table entries are the hall patterns in H1, H2, H3 order. Common patterns are: 0 (30
degree commutation) and 26, its reverse. 17(120 degree). 18(alternate 60 degree). 21(300
degree, Bodine). 22 (240 degree). 25(60 degree commutation).

Note that a number of incorrect commutations will have non-zero net torque which might look as
if they work, but don’t really.

If your motor lacks documentation it might be worth trying every pattern.

168 2021-01-22 LinuxCNC Documentation

BLDC_HALL3(9) HAL Component BLDC_HALL3(9)

Phases, Source - Sink
pat B-A C-A C-B A-B A-C B-C
0 000 001 011 111 110 100
1 001 000 010 110 111 101
2 000 010 011 111 101 100
3 001 011 010 110 100 101
4 010 011 001 101 100 110
5 011 010 000 100 101 111
6 010 000 001 101 111 110
7 011 001 000 100 110 111
8 000 001 101 111 110 010
9 001 000 100 110 111 011
10 000 010 110 111 101 001
11 001 011 111 110 100 000
12 010 011 111 101 100 000
13 011 010 110 100 101 001
14 010 000 100 101 111 011
15 011 001 101 100 110 010
16 000 100 101 111 011 010
17 001 101 100 110 010 011
18 000 100 110 111 011 001
19 001 101 111 110 010 000
20 010 110 111 101 001 000
21 011 111 110 100 000 001
22 010 110 100 101 001 011
23 011 111 101 100 000 010
24 100 101 111 011 010 000
25 101 100 110 010 011 001
26 100 110 111 011 001 000
27 101 111 110 010 000 001
28 110 111 101 001 000 010
29 111 110 100 000 001 011
30 110 100 101 001 011 010
31 111 101 100 000 010 011
32 100 101 001 011 010 110
33 101 100 000 010 011 111
34 100 110 010 011 001 101
35 101 111 011 010 000 100
36 110 111 011 001 000 100
37 111 110 010 000 001 101
38 110 100 000 001 011 111
39 111 101 001 000 010 110
40 100 000 001 011 111 110
41 101 001 000 010 110 111
42 100 000 010 011 111 101
43 101 001 011 010 110 100
44 110 010 011 001 101 100
45 111 011 010 000 100 101
46 110 010 000 001 101 111
47 111 011 001 000 100 110

LinuxCNC Documentation 2021-01-22 169

BLDC_HALL3(9) HAL Component BLDC_HALL3(9)

SEE ALSO
bldc_hall6 6-wire unipolar driver for BLDC motors.

AUTHOR
Andy Pugh

LICENSE
GPL

170 2021-01-22 LinuxCNC Documentation

BLEND(9) HAL Component BLEND(9)

NAME
blend − Perform linear interpolation between two values

SYNOPSIS
loadrt blend [count=N|names=name1[,name2...]]

FUNCTIONS
blend.N (requires a floating-point thread)

PINS
blend.N.in1 float in

First input. If select is equal to 1.0, the output is equal to in1

blend.N.in2 float in
Second input. If select is equal to 0.0, the output is equal to in2

blend.N.selectfloat in
Select input.For values between 0.0 and 1.0, the output changes linearly from in2 to in1

blend.N.out float out
Output value.

PARAMETERS
blend.N.openbit rw

If true, select values outside the range 0.0 to 1.0 give values outside the range in2 to in1. If false,
outputs are clamped to the the range in2 to in1

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 171

CAROUSEL(9) HAL Component CAROUSEL(9)

NAME
carousel − Orient a toolchanger carousel using various encoding schemes

SYNOPSIS
loadrt toolchange pockets=N[,N] encoding=ssss[,sss] num_sense=N[,N] bidirectional=N[,N]

pocketsThe number of pockets in each toolchanger.
Use up to 8 numbers separated by commas to create multiple carousel components.

encodingThe position encoding.
gray, binary, index or single. Default = ’gray’

num_senseThe number of position sense pins.
Default = 4.

dir Set to 1 for unidirectional or2 for bidirectional operation.
Default = bidirectional

DESCRIPTION
This component is intended to help operate various types of carousel-type toolchangers. The component
can be configured to operate with binary or gray-coded position feedback, with an individual sensor for
each tool position or with a sensor at each tool position and a separate index.

At the moment it is best-suited to Geneva-mechanism type systems where the motor is either on or off.
Both unidirectional and bidirectional systems are supported.

The number of carousel component instances created depends on the number of entries in the ’pockets’
modparam. For example

loadrt carousel pockets=10,10,8

Would create 3 carousel instances with 10, 10 and 8 pockets. The other parameters are optional. If absent
then defaults will be used. Any missing entry will assume the previous value.

When the enable pin is set to true the component will immediately set the "active" pin to true and then (for
a bidirectional instance) calculate the shortest path to the requested pocket number. The appropriate motor
direction output pin will then be set.

The component will monitor the carousel position and, when the correct position is reached, set the motor-
control pins to 0, set "active" to 0 and set "ready" to 1.

In index mode the behaviour is slightly different the first time that the "enable" pin is set; the carousel will
rotate forwards when first enabled until both the index and pulse inputs are true. If there is no pulse line at
the index position then a HAL "or2" function can be used to allow the index sensor to toggle both inputs.
Setting "enable" low does not halt the homing move, so if homing on first tool change is not needed then
the enable pin can be toggled by an axis homing pin or a script.

FUNCTIONS
carousel.N

PINS
carousel.N.pocket-numbers32 in

The pocket to move to when the .enable pin goes high

carousel.N.enablebit in
Set this pin high to start movement. Setting it low will stop movement

172 2021-01-22 LinuxCNC Documentation

CAROUSEL(9) HAL Component CAROUSEL(9)

carousel.N.activebit out
indicates that the component is active

carousel.N.ready bit out
This pin goes high when the carousel is in-position

carousel.N.sense-M bit in (M=0..personality)
Carousel position feedback pins. In ’index’ mode there will be only 2 pins. sense-0 is the index
and sense-1 is the pocket sensor.

carousel.N.motor-fwd bit out
Indicates the motor should run forwards (bigger numbers)

carousel.N.motor-revbit out
Indicates the motor should run reverse.

carousel.N.current-position s32 out
This pin indicates the current position feedback

PARAMETERS
carousel.N.states32 r (default:0)

Current component state

carousel.N.homing bit r (default:0)
Shows that homing is in progress. Only used for index mode

carousel.N.homedbit r (default:0)
Shows that homing is complete. Only used in index mode

AUTHOR
andy pugh

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 173

CHARGE_PUMP(9) HAL Component CHARGE_PUMP(9)

NAME
charge_pump − Create a square-wav efor the ’charge pump’ input of some controller boards

SYNOPSIS
loadrt charge_pump

DESCRIPTION
The ’Charge Pump’ should be added to the base thread function. When enabled the output is on for one
period and off for one period. To calculate the frequency of the output 1/(period time in seconds x 2) = hz.
For example if you have a base period of 100,000ns that is 0.0001 seconds and the formula would be
1/(0.0001 x 2) = 5,000 hz or 5 Khz. Two additional outputs are provided that run a factor of 2 and 4 slower
for hardware that requires a lower frequency.

FUNCTIONS
charge-pump

Toggle the output bit (if enabled)

PINS
charge-pump.outbit out

Square wav eif ’enable’ is TRUE or unconnected, low if ’ enable’ is FALSE

charge-pump.out-2bit out
Square wav eat half the frequency of ’out’

charge-pump.out-4bit out
Square wav eat a quarter of the frequency of ’out’

charge-pump.enablebit in (default:TRUE)
If FALSE, forces all ’out’ pins to be low

LICENSE
GPL

174 2021-01-22 LinuxCNC Documentation

CLARKE2(9) HAL Component CLARKE2(9)

NAME
clarke2 − Two input version of Clarke transform

SYNOPSIS
loadrt clarke2 [count=N|names=name1[,name2...]]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system.

clarke2 implements a special case of the Clarke transform, which only needs two of the three input phases.
In a three wire three phase system, the sum of the three phase currents or voltages must always be zero. As
a result only two of the three are needed to completely define the current or voltage.clarke2 assumes that
the sum is zero, so it only uses phases A and B of the input. Since the H (homopolar) output will always be
zero in this case, it is not generated.

FUNCTIONS
clarke2.N (requires a floating-point thread)

PINS
clarke2.N.a float in
clarke2.N.b float in

first two phases of three phase input

clarke2.N.x float out
clarke2.N.y float out

cartesian components of output

SEE ALSO
clarke3 for the general case,clarkeinv for the inverse transform.

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 175

CLARKE3(9) HAL Component CLARKE3(9)

NAME
clarke3 − Clarke (3 phase to cartesian) transform

SYNOPSIS
loadrt clarke3 [count=N|names=name1[,name2...]]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system (plus a homopolar component if the three phases
don’t sum to zero).

clarke3 implements the general case of the transform, using all three phases. If the three phases are known
to sum to zero, seeclarke2 for a simpler version.

FUNCTIONS
clarke3.N (requires a floating-point thread)

PINS
clarke3.N.a float in
clarke3.N.b float in
clarke3.N.c float in

three phase input vector

clarke3.N.x float out
clarke3.N.y float out

cartesian components of output

clarke3.N.h float out
homopolar component of output

SEE ALSO
clarke2 for the ’a+b+c=0’ case,clarkeinv for the inverse transform.

LICENSE
GPL

176 2021-01-22 LinuxCNC Documentation

CLARKEINV(9) HAL Component CLARKEINV(9)

NAME
clarkeinv − Inv erse Clarke transform

SYNOPSIS
loadrt clarkeinv [count=N|names=name1[,name2...]]

DESCRIPTION
The inverse Clarke transform can be used rotate a vector quantity and then translate it from Cartesian coor-
dinate system to a three phase system (three components 120 degrees apart).

FUNCTIONS
clarkeinv.N (requires a floating-point thread)

PINS
clarkeinv.N.x float in
clarkeinv.N.y float in

cartesian components of input

clarkeinv.N.h float in
homopolar component of input (usually zero)

clarkeinv.N.theta float in
rotation angle: 0.00 to 1.00 = 0 to 360 degrees

clarkeinv.N.a float out
clarkeinv.N.b float out
clarkeinv.N.c float out

three phase output vector

SEE ALSO
clarke2 andclarke3 for the forward transform.

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 177

CLASSICLADDER(9) HAL Component CLASSICLADDER(9)

NAME
classicladder − realtime software plc based on ladder logic

SYNOPSIS
loadrt classicladder_rt [numRungs=N] [numBits=N] [numWords=N] [numTimers=N] [numMonosta-
bles=N] [numCounters=N] [numPhysInputs=N] [numPhysOutputs=N] [numArithmExpr= N] [num-
Sections=N] [numSymbols=N] [numS32in=N] [numS32out=N] [numFloatIn=N] [numFloatOut=N]

DESCRIPTION
These pins and parameters are created by the realtimeclassicladder_rtmodule. Each period (minimum
1000000 ns), classicladder reads the inputs, evaluates the ladder logic defined in the GUI, and then writes
the outputs.

PINS
classicladder.0.in−NN IN bit

These bit signal pins map to%I NN variables in classicladder

classicladder.0.out−NN OUT bit
These bit signal pins map to%QNN variables in classicladder Output from classicladder

classicladder.0.s32in−NN IN s32
Integer input from classicladder These s32 signal pins map to%IW NN variables in classicladder

classicladder.0.s32out−NN OUT s32
Integer output from classicladder These s32 signal pins map to%QW NN variables in classiclad-
der

classicladder.0.floatin−NN IN float
Integer input from classicladder These float signal pins map to%IF NN variables in classicladder
These are truncated to S32 values internally. eg 7.5 will be 7

classicladder.0.floatout−NN OUT float
Float output from classicladder These float signal pins map to%QFNN variables in classicladder

classicladder.0.hide_gui IN bit
This bit pin hides the classicladder window, while still having the userspace code run. This is usu-
ally desirable when modbus is used, as modbus requires the userspace code to run.

PARAMETERS
classicladder.0.refresh.timeRO s32

Tells you how long the last refresh took

classicladder.0.refresh.tmaxRW s32
Tells you how long the longest refresh took

classicladder.0.ladder−stateRO s32
Tells you if the program is running or not

FUNCTIONS

178 2008-11-23 LinuxCNC Documentation

CLASSICLADDER(9) HAL Component CLASSICLADDER(9)

classicladder.0.refreshFP
The rung update rate. Add this to the servo thread. You can added it to a faster thread but it Will
update no faster than once every 1 millisecond (1000000 ns).

BUGS
See http://wiki.linuxcnc.org/cgi−bin/wiki.pl?ClassicLadder_Ver_7.124 for the latest.

SEE ALSO
Classicladderchapters in the LinuxCNC documentation for a full description of theClassicladdersyntax
and examples

http://wiki.linuxcnc.org/cgi−bin/wiki.pl?ClassicLadder_Ver_7.124

LinuxCNC Documentation 2008-11-23 179

COMP(9) HAL Component COMP(9)

NAME
comp − Two input comparator with hysteresis

SYNOPSIS
loadrt comp [count=N|names=name1[,name2...]]

FUNCTIONS
comp.N (requires a floating-point thread)

Update the comparator

PINS
comp.N.in0 float in

Inverting input to the comparator

comp.N.in1 float in
Non-inverting input to the comparator

comp.N.out bit out
Normal output. True whenin1 > in0 (see parameterhyst for details)

comp.N.equalbit out
Match output.True when difference betweenin1 andin0 is less thanhyst/2

PARAMETERS
comp.N.hyst float rw (default:0.0)

Hysteresis of the comparator (default 0.0)

With zero hysteresis, the output is true whenin1 > in0. With nonzero hysteresis, the output
switches on and off at two different values, separated by distancehyst around the point wherein1
= in0. Keep in mind that floating point calculations are never absolute and it is wise to always set
hyst if you intend to use equal

LICENSE
GPL

180 2021-01-22 LinuxCNC Documentation

CONSTANT(9) HAL Component CONSTANT(9)

NAME
constant − Use a parameter to set the value of a pin

SYNOPSIS
loadrt constant [count=N|names=name1[,name2...]]

FUNCTIONS
constant.N (requires a floating-point thread)

PINS
constant.N.out float out

PARAMETERS
constant.N.valuefloat rw

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 181

CONV_BIT_S32(9) HAL Component CONV_BIT_S32(9)

NAME
conv_bit_s32 − Convert a value from bit to s32

SYNOPSIS
loadrt conv_bit_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-bit-s32.N

Update ’out’ based on ’in’

PINS
conv-bit-s32.N.in bit in
conv-bit-s32.N.out s32 out

LICENSE
GPL

182 2021-01-22 LinuxCNC Documentation

CONV_BIT_U32(9) HAL Component CONV_BIT_U32(9)

NAME
conv_bit_u32 − Convert a value from bit to u32

SYNOPSIS
loadrt conv_bit_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-bit-u32.N

Update ’out’ based on ’in’

PINS
conv-bit-u32.N.in bit in
conv-bit-u32.N.out u32 out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 183

CONV_FLOAT_S32(9) HAL Component CONV_FLOAT_S32(9)

NAME
conv_float_s32 − Convert a value from float to s32

SYNOPSIS
loadrt conv_float_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-float-s32.N (requires a floating-point thread)

Update ’out’ based on ’in’

PINS
conv-float-s32.N.in float in
conv-float-s32.N.out s32 out
conv-float-s32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of s32

PARAMETERS
conv-float-s32.N.clamp bit rw

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

184 2021-01-22 LinuxCNC Documentation

CONV_FLOAT_U32(9) HAL Component CONV_FLOAT_U32(9)

NAME
conv_float_u32 − Convert a value from float to u32

SYNOPSIS
loadrt conv_float_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-float-u32.N (requires a floating-point thread)

Update ’out’ based on ’in’

PINS
conv-float-u32.N.in float in
conv-float-u32.N.out u32 out
conv-float-u32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of u32

PARAMETERS
conv-float-u32.N.clamp bit rw

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 185

CONV_S32_BIT(9) HAL Component CONV_S32_BIT(9)

NAME
conv_s32_bit − Convert a value from s32 to bit

SYNOPSIS
loadrt conv_s32_bit [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-bit.N

Update ’out’ based on ’in’

PINS
conv-s32-bit.N.in s32 in
conv-s32-bit.N.out bit out
conv-s32-bit.N.out-of-rangebit out

TRUE when ’in’ is not in the range of bit

PARAMETERS
conv-s32-bit.N.clamp bit rw

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

186 2021-01-22 LinuxCNC Documentation

CONV_S32_FLOAT(9) HAL Component CONV_S32_FLOAT(9)

NAME
conv_s32_float − Convert a value from s32 to float

SYNOPSIS
loadrt conv_s32_float [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-float.N (requires a floating-point thread)

Update ’out’ based on ’in’

PINS
conv-s32-float.N.in s32 in
conv-s32-float.N.out float out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 187

CONV_S32_U32(9) HAL Component CONV_S32_U32(9)

NAME
conv_s32_u32 − Convert a value from s32 to u32

SYNOPSIS
loadrt conv_s32_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-u32.N

Update ’out’ based on ’in’

PINS
conv-s32-u32.N.in s32 in
conv-s32-u32.N.out u32 out
conv-s32-u32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of u32

PARAMETERS
conv-s32-u32.N.clamp bit rw

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

188 2021-01-22 LinuxCNC Documentation

CONV_U32_BIT(9) HAL Component CONV_U32_BIT(9)

NAME
conv_u32_bit − Convert a value from u32 to bit

SYNOPSIS
loadrt conv_u32_bit [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-bit.N

Update ’out’ based on ’in’

PINS
conv-u32-bit.N.in u32 in
conv-u32-bit.N.out bit out
conv-u32-bit.N.out-of-rangebit out

TRUE when ’in’ is not in the range of bit

PARAMETERS
conv-u32-bit.N.clamp bit rw

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 189

CONV_U32_FLOAT(9) HAL Component CONV_U32_FLOAT(9)

NAME
conv_u32_float − Convert a value from u32 to float

SYNOPSIS
loadrt conv_u32_float [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-float.N (requires a floating-point thread)

Update ’out’ based on ’in’

PINS
conv-u32-float.N.in u32 in
conv-u32-float.N.out float out

LICENSE
GPL

190 2021-01-22 LinuxCNC Documentation

CONV_U32_S32(9) HAL Component CONV_U32_S32(9)

NAME
conv_u32_s32 − Convert a value from u32 to s32

SYNOPSIS
loadrt conv_u32_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-s32.N

Update ’out’ based on ’in’

PINS
conv-u32-s32.N.in u32 in
conv-u32-s32.N.out s32 out
conv-u32-s32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of s32

PARAMETERS
conv-u32-s32.N.clamp bit rw

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 191

COUNTER(9) HAL Component COUNTER(9)

NAME
counter − counts input pulses(DEPRECATED)

SYNOPSIS
loadrt counter [num_chan=N]

DESCRIPTION
counter is a deprecated HAL component and will be removed in a future release. Use theencodercompo-
nent with encoder.X.counter−mode set to TRUE.

counter is a HAL component that provides software- based counting that is useful for spindle position
sensing and maybe other things. Instead of using a real encoder that outputs quadrature, some lathes have a
sensor that generates a simple pulse stream as the spindle turns and an index pulse once per revolution.
This component simply counts up when a "count" pulse (phase−A) is received, and if reset is enabled,
resets when the "index" (phase−Z) pulse is received.

This is of course only useful for a unidirectional spindle, as it is not possible to sense the direction of rota-
tion.

counter conforms to the "canonical encoder" interface described in the HAL manual.

FUNCTIONS
counter.capture−position(uses floating-point)

Updates the counts, position and velocity outputs based on internal counters.

counter.update−counters
Samples the phase−A and phase−Z inputs and updates internal counters.

PINS
counter.N.phase−Abit in

The primary input signal. The internal counter is incremented on each rising edge.

counter.N.phase−Zbit in
The index input signal. When theindex−enablepin is TRUE and a rising edge onphase−Zis
seen,index−enableis set to FALSE and the internal counter is reset to zero.

counter.N.index−enablebit io
counter.N.resetbit io
counter.N.countssigned out
counter.N.position float out
counter.N.velocity float out

These pins function according to the canonical digital encoder interface.

counter.N.position−scalefloat rw
This parameter functions according to the canonical digital encoder interface.

counter.N.rawcountssigned ro
The internal counts value, updated fromupdate−countersand reflected in the output pins at the
next call tocapture−position.

SEE ALSO
encoder(9). in the LinuxCNC documentation.

192 2007-01-19 LinuxCNC Documentation

DDT(9) HAL Component DDT(9)

NAME
ddt − Compute the derivative of the input function

SYNOPSIS
loadrt ddt [count=N|names=name1[,name2...]]

FUNCTIONS
ddt.N (requires a floating-point thread)

PINS
ddt.N.in float in
ddt.N.out float out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 193

DEADZONE(9) HAL Component DEADZONE(9)

NAME
deadzone − Return the center if within the threshold

SYNOPSIS
loadrt deadzone [count=N|names=name1[,name2...]]

FUNCTIONS
deadzone.N (requires a floating-point thread)

Updateout based onin and the parameters.

PINS
deadzone.N.in float in
deadzone.N.out float out

PARAMETERS
deadzone.N.centerfloat rw (default:0.0)

The center of the dead zone

deadzone.N.threshhold float rw (default:1.0)
The dead zone iscenter ± (threshhold/2)

LICENSE
GPL

194 2021-01-22 LinuxCNC Documentation

DEBOUNCE(9) HAL Component DEBOUNCE(9)

NAME
debounce − filter noisy digital inputs

SYNOPSIS
loadrt debounce cfg=size[,size,...]

Creates debounce groups with the number of filters specified by (size). Every filter in the same group has
the same sample rate and delay. For example cfg=2,3 creates two filter groups with 2 filters in the first
group and 3 filters in the second group.

DESCRIPTION
The debounce filter works by incrementing a counter whenever the input is true, and decrementing the
counter when it is false. Ifthe counter decrements to zero, the output is set false and the counter ignores
further decrements. If the counter increments up to a threshold, the output is set true and the counter
ignores further increments. If the counter is between zero and the threshold, the output retains its previous
state. Thethreshold determines the amount of filtering: a threshold of 1 does no filtering at all, and a
threshold of N requires a signal to be present for N samples before the output changes state.

FUNCTIONS
debounce.G

Sample all the input pins in group G and update the output pins.

PINS
debounce.G.F.in bit in

The F’th input pin in group G.

debounce.G.F.out bit out
The F’th output pin in group G. Reflects the last "stable" input seen on the corresponding input
pin.

debounce.G.delaysigned rw
Sets the amount of filtering for all pins in group G.

LinuxCNC Documentation 2007-01-16 195

EDGE(9) HAL Component EDGE(9)

NAME
edge − Edge detector

SYNOPSIS
loadrt edge [count=N|names=name1[,name2...]]

FUNCTIONS
edge.N Produce output pulses from input edges

PINS
edge.N.in bit in
edge.N.out bit out

Goes high when the desired edge is seen on ’in’

edge.N.out-invert bit out
Goes low when the desired edge is seen on ’in’

PARAMETERS
edge.N.both bit rw (default:FALSE)

If TRUE, selects both edges. Otherwise, selects one edge according to in-edge

edge.N.in-edgebit rw (default:TRUE)
If both is FALSE, selects the one desired edge: TRUE means falling, FALSE means rising

edge.N.out-width-ns s32 rw (default:0)
Time in nanoseconds of the output pulse

edge.N.time-left-ns s32 r
Time left in this output pulse

edge.N.last-in bit r
Previous input value

LICENSE
GPL

196 2021-01-22 LinuxCNC Documentation

ENCODER(9) HAL Component ENCODER(9)

NAME
encoder − software counting of quadrature encoder signals

SYNOPSIS
loadrt encoder [num_chan=num| names=name1[,name2...]]

DESCRIPTION
encoderis used to measure position by counting the pulses generated by a quadrature encoder. As a soft-
ware-based implementation it is much less expensive than hardware, but has a limited maximum count rate.
The limit is in the range of 10KHz to 50KHz, depending on the computer speed and other factors. Ifbetter
performance is needed, a hardware encoder counter is a better choice. Some hardware-based systems can
count at MHz rates.

encodersupports a maximum of eight channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, or ifnum_chan=0is specified, the default value is three.

encoderhas a one-phase, unidirectional mode calledcounter. In this mode, thephase−Binput is ignored;
the counts increase on each rising edge ofphase−A. This mode may be useful for counting a unidirec-
tional spindle with a single input line, though the noise-resistant characteristics of quadrature are lost.

FUNCTIONS
encoder.update−counters(no floating-point)

Does the actual counting, by sampling the encoder signals and decoding the quadrature wav e-
forms. Mustbe called as frequently as possible, preferably twice as fast as the maximum desired
count rate. Operates on all channels at once.

encoder.capture−position(uses floating point)
Captures the raw counts fromupdate−countersand performs scaling and other necessary conver-
sion, handles counter rollover, etc. Can(and should) be called less frequently thanupdate−coun-
ters. Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as:
encoder.N.for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Theencoder.N.format is shown in the following descriptions.

PINS
encoder.N.counter−modebit i/o

Enables counter mode. When true, the counter counts each rising edge of the phase−A input,
ignoring the value on phase−B. This is useful for counting the output of a single channel (non-
quadrature) sensor. When false (the default), it counts in quadrature mode.

encoder.N.countss32 out
Position in encoder counts.

encoder.N.index−enablebit i/o
When true,countsandposition are reset to zero on the next rising edge ofPhase−Z. At the same
time, index−enableis reset to zero to indicate that the rising edge has occurred.

LinuxCNC Documentation 2009-04-15 197

ENCODER(9) HAL Component ENCODER(9)

encoder.N.min−speed−estimatefloat in (default: 1.0)
Determine the minimum speed at whichvelocity will be estimated as nonzero andposti-
tion−interpolated will be interpolated. The units ofmin−speed−estimateare the same as the
units ofvelocity. Setting this parameter too low will cause it to take a long time forvelocity to go
to 0 after encoder pulses have stopped arriving.

encoder.N.phase−Abit in
Quadrature input for encoder channelN.

encoder.N.phase−Bbit in
Quadrature input.

encoder.N.phase−Zbit in
Index pulse input.

encoder.N.position float out
Position in scaled units (seeposition−scale)

encoder.N.position−interpolated float out
Position in scaled units, interpolated between encoder counts. Only valid when velocity is approx-
imately constant and abovemin−speed−estimate. Do not use for position control.

encoder.N.position−scalefloat i/o
Scale factor, in counts per length unit.For example, ifposition−scaleis 500, then 1000 counts of
the encoder will be reported as a position of 2.0 units.

encoder.N.rawcountss32 out
The raw count, as determined byupdate−counters. This value is updated more frequently than
countsandposition. It is also unaffected byresetor the index pulse.

encoder.N.resetbit in
When true,countsandposition are reset to zero immediately.

encoder.N.velocity float out
Velocity in scaled units per second.encoderuses an algorithm that greatly reduces quantization
noise as compared to simply differentiating theposition output. Whenthe magnitude of the true
velocity is below min−speed−estimate, the velocity output is 0.

encoder.N.x4−modebit i/o
Enables times−4 mode. When true (the default), the counter counts each edge of the quadrature
waveform (four counts per full cycle). Whenfalse, it only counts once per full cycle. In
counter−mode, this parameter is ignored.

encoder.N.latch−input bit in
encoder.N.latch−falling bit in (default:TRUE)
encoder.N.latch−rising bit in (default:TRUE)
encoder.N.counts−latcheds32 out
encoder.N.position−latchedfloat out

Updatecounts−latchedandposition−latchedon the rising and/or falling edges oflatch−input as
indicated bylatch−rising andlatch−falling .

encoder.N.counter−modebit rw
Enables counter mode. When true, the counter counts each rising edge of the phase−A input,
ignoring the value on phase−B. This is useful for counting the output of a single channel (non-
quadrature) sensor. When false (the default), it counts in quadrature mode.encoder.N.cap-
ture−position.tmax s32 rw Maximum number of CPU cycles it took to execute this function.

PARAMETERS
The encoder component has no HAL Parameters.

198 2009-04-15 LinuxCNC Documentation

ENCODER(9) HAL Component ENCODER(9)

LinuxCNC Documentation 2009-04-15 199

ENCODER_RATIO(9) HAL Component ENCODER_RATIO(9)

NAME
encoder_ratio − an electronic gear to synchronize two axes

SYNOPSIS
loadrt encoder_ratio [num_chan=num| names=name1[,name2...]]

DESCRIPTION
encoder_ratiocan be used to synchronize two axes (like an "electronic gear"). It counts encoder pulses
from both axes in software, and produces an error value that can be used with a PID loop to make the slave
encoder track the master encoder with a specific ratio.

This module supports up to eight axis pairs. The number of pairs is set by the module parameter
num_chan. Alternatively, specifynames=and unique names separated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, the default value is one.

FUNCTIONS
encoder−ratio.sample

Read all input pins. Must be called at twice the maximum desired count rate.

encoder−ratio.update (uses floating-point)
Updates all output pins. May be called from a slower thread.

NAMING
The names for pins and parameters are prefixed as:
encoder−ratio.N.for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Theencoder−ratio.N.format is shown in the following descriptions.

PINS
encoder−ratio.N.master−A bit in
encoder−ratio.N.master−Bbit in
encoder−ratio.N.slave−A bit in
encoder−ratio.N.slave−B bit in

The encoder channels of the master and slave axes

encoder−ratio.N.enablebit in
When the enable pin is FALSE, the error pin simply reports the slave axis position, in revolutions.
As such, it would normally be connected to the feedback pin of a PID block for closed loop con-
trol of the slave axis. Normallythe command input of the PID block is left unconnected (zero), so
the slave axis simply sits still. However when the enable input goes TRUE, the error pin becomes
the slave position minus the scaled master position. The scale factor is the ratio of master teeth to
slave teeth. Asthe master moves, error becomes non-zero, and the PID loop will drive the slave
axis to track the master.

encoder−ratio.N.error float out
The error in the position of the slave (in revolutions)

PARAMETERS
encoder−ratio.N.master−pprunsigned rw
encoder−ratio.N.slave−ppr unsigned rw

The number of pulses per revolution of the master and slave axes

200 2007-01-16 LinuxCNC Documentation

ENCODER_RATIO(9) HAL Component ENCODER_RATIO(9)

encoder−ratio.N.master−teethunsigned rw
encoder−ratio.N.slave−teethunsigned rw

The number of "teeth" on the master and slave gears.

SEE ALSO
encoder(9)

LinuxCNC Documentation 2007-01-16 201

ESTOP_LATCH(9) HAL Component ESTOP_LATCH(9)

NAME
estop_latch − Software ESTOP latch

SYNOPSIS
loadrt estop_latch [count=N|names=name1[,name2...]]

DESCRIPTION
This component can be used as a part of a simple software ESTOP chain.

It has two states: "OK" and "Faulted".

The initial state is "Faulted". Whenfaulted, theout-ok output is false, thefault-out output is true, and the
watchdogoutput is unchanging.

The state changes from "Faulted" to "OK" whenall these conditions are true:

• fault-in is false

• ok-in is true

• resetchanges from false to true

When "OK", theout-ok output is true, thefault-out output is false, and thewatchdogoutput is toggling.

The state changes from "OK" to "Faulted" whenany of the following are true:

• fault-in is true

• ok-in is false

To facilitate using only a single fault source,ok-in andfault-en are both set to the non-fault-causing value
when no signal is connected.For estop-latch to ever be able to signal a fault, at least one of these inputs
must be connected.

Typically, an external fault or estop input is connected tofault-in , iocontrol.0.user-request-enableis con-
nected toreset, andok-out is connected toiocontrol.0.emc-enable-in.

In more complex systems, it may be more appropriate to use classicladder to manage the software
portion of the estop chain.

FUNCTIONS
estop-latch.N

PINS
estop-latch.N.ok-in bit in (default:true)
estop-latch.N.fault-in bit in (default:false)
estop-latch.N.resetbit in
estop-latch.N.ok-out bit out (default:false)
estop-latch.N.fault-out bit out (default:true)
estop-latch.N.watchdogbit out

LICENSE
GPL

202 2021-01-22 LinuxCNC Documentation

FEEDCOMP(9) HAL Component FEEDCOMP(9)

NAME
feedcomp − Multiply the input by the ratio of current velocity to the feed rate

SYNOPSIS
loadrt feedcomp [count=N|names=name1[,name2...]]

FUNCTIONS
feedcomp.N (requires a floating-point thread)

PINS
feedcomp.N.out float out

Proportionate output value

feedcomp.N.in float in
Reference value

feedcomp.N.enablebit in
Turn compensation on or off

feedcomp.N.vel float in
Current velocity

PARAMETERS
feedcomp.N.feedfloat rw

Feed rate reference value

NOTES
Note that if enable is false, out = in

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 203

FLIPFLOP(9) HAL Component FLIPFLOP(9)

NAME
flipflop − D type flip-flop

SYNOPSIS
loadrt flipflop [count= N|names=name1[,name2...]]

FUNCTIONS
flipflop.N

PINS
flipflop.N.data bit in

data input

flipflop.N.clk bit in
clock, rising edge writes data to out

flipflop.N.setbit in
when true, force out true

flipflop.N.resetbit in
when true, force out false; overrides set

flipflop.N.out bit io
output

LICENSE
GPL

204 2021-01-22 LinuxCNC Documentation

GANTRY(9) HAL Component GANTRY(9)

NAME
gantry − LinuxCNC HAL component for driving multiple joints from a single axis

SYNOPSIS
loadrt gantry [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
Drives multiple physical motors (joints) from a single axis input

The ‘personality’ value is the number of joints to control.Tw o is typical, but up to seven is supported (a
three joint setup has been tested with hardware).

All controlled joints track the commanded position (with a per-joint offset) unless in the process of homing.
Homing is when the commanded position is moving towards the homing switches (as determined by the
sign of search-vel) and the joint home switches are not all in the same state. When the system is homing
and a joint home switch activates, the command value sent to that joint is "frozen" and the joint offset value
is updated instead. Once all home switches are active, there are no more adjustments made to the offset
values and all joints run in lock-step once more.

For best results, set HOME_SEARCH_VEL and HOME_LATCH_VEL to the same direction and as slow
as practical. When a joint home switch trips, the commanded velocity will drop immediately from
HOME_SEARCH_VEL to zero, with no limit on acceleration.

FUNCTIONS
gantry.N.read (requires a floating-point thread)

Update position-fb and home/limit outputs based on joint values

gantry.N.write (requires a floating-point thread)
Update joint pos-cmd outputs based on position-cmd in

PINS
gantry.N.joint.MM.pos-cmdfloat out (MM=00..personality)

Per-joint commanded position

gantry.N.joint.MM.pos-fbfloat in (MM=00..personality)
Per-joint position feedback

gantry.N.joint.MM.homebit in (MM=00..personality)
Per-joint home switch

gantry.N.joint.MM.offsetfloat out (MM=00..personality)
(debugging) Per-joint offset value, updated when homing

gantry.N.position-cmdfloat in
Commanded position from motion

gantry.N.position-fb float out
Position feedback to motion

gantry.N.homebit out
Combined home signal, true if all joint home inputs are true

gantry.N.limit bit out
Combined limit signal, true if any joint home input is true

gantry.N.search-velfloat in
HOME_SEARCH_VEL from ini file

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 205

GANTRYKINS(9) HAL Component GANTRYKINS(9)

NAME
gantrykins − A kinematics module that maps one axis to multiple joints

SYNOPSIS
loadrt gantrykins coordinates=axisletters

Specifying gantry joint mapping via loadrt
Thecoordinates=parameter specifies the initial gantry joint mapping. Each axis letter is mapped to a
joint, starting from 0. Socoordinates=XYYZ maps the X axis to joint 0, the Y axis to joint 1 and 2, and
the Z axis to joint 3. If not specified, the default mapping iscoordinates=XYZABC. Coordinate letters
may be specified in uppercase or lowercase.

A note about joints and axes
LinuxCNC makes a distinction between joints and axes: a joint is something controlled by a motor, and an
axis is a coordinate you can move via G-code.You can also jog joints or jog axes.

A gantry has two joints controlling one axis, and this requires a bit of special care.

Homing always happens in joint mode (aka Free mode). The two joints of a gantry’s axis must be homed
together, so they must have the same [AXIS_n]HOME_SEQUENCE in the .ini file.

Jogging of a gantry must happen in world mode (aka Teleop mode). If you jog a gantry in joint mode (Free
mode), you will move just one of the joints, and the gantry will rack. In contrast, if you jog a gantry in
world mode (Teleop mode), it’s the axis that jogs: linuxcnc will coordinate the motion of the two joints that
make up the axis, both joints will move together, and the gantry will stay square.

The Axis GUI has provisions for jogging in joint mode (Free) and in world mode (Teleop). Usethe "$"
hotkey, or the View menu to switch between them.

Joint-mode (aka Free mode) supports continuous and incremental jogging.World-mode (aka Teleop mode)
only supports continuous jogging.

KINEMATICS
In the inverse kinematics, each joint gets the value of its corresponding axis. In the forward kinematics,
each axis gets the value of the highest numbered corresponding joint.For example, withcoordi-
nates=XYYZ the Y axis position comes from joint 2, not joint 1.

FUNCTIONS
None.

PINS
None.

PARAMETERS
gantrykins.joint− N (s32)

Specifies the axis mapped to jointN. The values 0 through 8 correspond to the axes XYZ-
ABCUVW. It is preferable to use the "coordinates=" parameter at loadrt-time rather than setting
the joint−N parameters later, because the gantrykins module prints the joint-to-axis mapping at
loadrt-time, and having that output correct is nice.

206 2010-10-12 LinuxCNC Documentation

GANTRYKINS(9) HAL Component GANTRYKINS(9)

NOTES
gantrykins must be loaded beforemotion.

SEE ALSO
Kinematicssection in the LinuxCNC documentation

LICENSE
GPL

LinuxCNC Documentation 2010-10-12 207

GEARCHANGE(9) HAL Component GEARCHANGE(9)

NAME
gearchange − Select from one two speed ranges

SYNOPSIS
The output will be a value scaled for the selected gear, and clamped to the min/max values for that gear.
The scale of gear 1 is assumed to be 1, so the output device scale should be chosen accordingly. The scale
of gear 2 is relative to gear 1, so if gear 2 runs the spindle 2.5 times as fast as gear 1, scale2 should be set to
2.5.

FUNCTIONS
gearchange.N (requires a floating-point thread)

PINS
gearchange.N.selbit in

Gear selection input

gearchange.N.speed-infloat in
Speed command input

gearchange.N.speed-outfloat out
Speed command to DAC/PWM

gearchange.N.dir-in bit in
Direction command input

gearchange.N.dir-out bit out
Direction output - possibly inverted for second gear

PARAMETERS
gearchange.N.min1 float rw (default:0)

Minimum allowed speed in gear range 1

gearchange.N.max1float rw (default:100000)
Maximum allowed speed in gear range 1

gearchange.N.min2 float rw (default:0)
Minimum allowed speed in gear range 2

gearchange.N.max2float rw (default:100000)
Maximum allowed speed in gear range 2

gearchange.N.scale2float rw (default:1.0)
Relative scale of gear 2 vs. gear 1 Since it is assumed that gear 2 is "high gear",scale2must be
greater than 1, and will be reset to 1 if set lower.

gearchange.N.rev ersebit rw (default:0)
Set to 1 to reverse the spindle in second gear

LICENSE
GPL

208 2021-01-22 LinuxCNC Documentation

gladevcp(9) HAL Component gladevcp(9)

NAME
gladevcp − displays Virtual control Panels built with GTK / GLADE

SYNOPSIS
loadusr gladevcp [−c componentname0xN] [−g WxH+Xoffset+Yoffset0xN] [−H halcmdfile] [−x win-
dowid] gladefile.glade

DESCRIPTION
gladevcp parses a glade file and displays the widgets in a window. Then calls gladevcp_makepins which
again parses the gladefile looking for specific HAL widgets then makes HAL pins and sets up updating for
them. TheHAL component name defaults to the basename of the glade file. The −x option directs glade-
vcp to reparent itself under this X window id instead of creating its own toplevel window. The −H option
passes an input file for halcmd to be run after the gladevcp component is initialized. This is used in Axis
when running gladevcp under a tab with the EMBED_TAB_NAME/EMBED_TAB_COMMAND ini file
feature.

gladevcp supports gtkbuilder or libglade files though some widgets are not fully supported in gtkbuilder
yet.

ISSUES
For now system links need to be added in the glade library folders to point to our new widgets and catalog
files. look in lib/python/gladevcp/READ_ME for details

LinuxCNC Documentation 2010-08-24 209

GRAY2BIN(9) HAL Component GRAY2BIN(9)

NAME
gray2bin − convert a gray-code input to binary

SYNOPSIS
loadrt gray2bin [count=N|names=name1[,name2...]]

DESCRIPTION
Converts a gray-coded number into the corresponding binary value

FUNCTIONS
gray2bin.N

PINS
gray2bin.N.in u32 in

gray code in

gray2bin.N.out u32 out
binary code out

AUTHOR
andy pugh

LICENSE
GPL

210 2021-01-22 LinuxCNC Documentation

HISTOBINS(9) HAL Component HISTOBINS(9)

NAME
histobins − histogram bins utility for scripts/hal-histogram

SYNOPSIS
Usage:
Read availablebins pin for the number of bins available.
Set the minvalue, binsize, and nbins pins.
Ensure nbins <= availablebins
For nbins = N, the bins are numbered: 0 ... N−1

Iterate:
Set index pin to a bin number: 0 <= index < nbins.
Read check pin and verify that check pin == index pin.
Read outputs: binvalue, pextra, nextra pins.

(binvalue is count for the indexed bin)
(pextra iscount for all inputs > maxvalue)
(nextra iscount for all bins < minvalue)

If index is out of range (index < 0 or index > maxbinnumber)
then binvalue == −1.
The input-error pin is set when input rules are violated
and updates cease.
The reset pin may be used to restart.
The input used is selected based on pintype:
pintype inputpin
------- -----------

0 input
1 input-s32
2 input-u32
3 input-bit

Additional output statistics pins:
input-min
input-max
nsamples
variance
mean

The method input pin selects an alternate variance calculation.

Maintainers note: hardcoded for MAXBINNUMBER==200

FUNCTIONS
histobins.N (requires a floating-point thread)

PINS
histobins.N.pintype u32 in
histobins.N.input float in
histobins.N.input-s32s32 in
histobins.N.input-u32 u32 in
histobins.N.input-bit bit in
histobins.N.nbins u32 in (default:20)
histobins.N.binsizefloat in (default:1)
histobins.N.minvalue float in (default:0)
histobins.N.index s32 in

LinuxCNC Documentation 2021-01-22 211

HISTOBINS(9) HAL Component HISTOBINS(9)

histobins.N.checks32 out
histobins.N.resetbit in
histobins.N.methodbit in
histobins.N.input-error bit out
histobins.N.binvalue float out
histobins.N.pextra float out
histobins.N.nextra float out
histobins.N.input-min float out
histobins.N.input-max float out
histobins.N.nsamplesu32 out
histobins.N.variancefloat out
histobins.N.meanfloat out
histobins.N.availablebins s32 out (default:200)

LICENSE
GPL

212 2021-01-22 LinuxCNC Documentation

HM2_7I43(9) HAL Component HM2_7I43(9)

NAME
hm2_7i43 − LinuxCNC HAL driver for the Mesa Electronics 7i43 EPP Anything IO board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i43 [ioaddr=N[,N...]] [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [config="str[,str...]"]

[debug_epp=N[,N...]]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode.0 means to use ioaddr +
0x400.

epp_wide[default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions. However, this may not
work on all EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp[default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm2_7i43 is a device driver that interfaces the Mesa 7i43 board with the HostMot2 firmware to the Linux-
CNC HAL. Both the 200K and the 400K FPGAs are supported.

The driver talks with the 7i43 over the parallel port, not over USB. USBcan be used to power the 7i43, but
not to talk to it. USB communication with the 7i43 will not be supported any time soon, since USB has
poor real-time qualities.

The driver programs the board’s FPGA with firmware when it registers the board with the hostmot2 driver.
The firmware to load is specified in theconfigmodparam, as described in the hostmot2(9) manpage, in the
config modparamsection.

Jumper settings
To send the FPGA configuration from the PC, the board must be configured to get its firmware from the
EPP port.To do this, jumpers W4 and W5 must both be down, ie toward the USB connector.

The board must be configured to power on whether or not the USB interface is active. This is done by set-
ting jumper W7 up, ie away from the edge of the board.

Communicating with the board
The 7i43 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is prefered, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cardsdo not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i43.You hav eto find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may
cause communication timeouts. The driver exports a parameter named hm2_7i43.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i43 board. Setting io_error back to False makes the driver start trying to

LinuxCNC Documentation 2008-05-13 213

HM2_7I43(9) HAL Component HM2_7I43(9)

communicate with the 7i43 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LICENSE
GPL

214 2008-05-13 LinuxCNC Documentation

HM2_7I90(9) HAL Component HM2_7I90(9)

NAME
hm2_7i90 − LinuxCNC HAL driver for the Mesa Electronics 7i90 EPP Anything IO board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i90 [ioaddr=N[,N...]] [ioaddr_hi=N[,N...]] [epp_wide=N[,N...]] [debug_epp=N[,N...]]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode.0 means to use ioaddr +
0x400.

epp_wide[default: 1]
Set to zero to disable the "wide EPP mode". "Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions. However, this may not
work on all EPP parallel ports.

debug_epp[default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm2_7i90 is a device driver that interfaces the Mesa 7i90 board with the HostMot2 firmware to the Linux-
CNC HAL.

The 7i90 firmware is stored on the 7i90 itself, it is not programmed by the driver at load time. The 7i90
firmware can be changed using the mesaflash program.

The driver talks with the 7i90 over the parallel port, via EPP.

Communicating with the board
The 7i90 communicates with the LinuxCNC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9. EPP 1.9 is prefered, but EPP 1.7 will work too. The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cardsdo not work. They do not meet
the EPP spec, and cannot be reliably used with the 7i90.You hav eto find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may
cause communication timeouts. The driver exports a parameter named hm2_7i90.<BoardNum>.io_error to
inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i90 board. Setting io_error back to False makes the driver start trying to commu-
nicate with the 7i90 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LICENSE
GPL

LinuxCNC Documentation 2013-10-27 215

HM2_ETH(9) HAL Component HM2_ETH(9)

NAME
hm2_eth − LinuxCNC HAL driver for the Mesa Electronics Ethernet Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_eth [config="str[,str...]"] [board_ip=ip[,ip...]] [board_mac=mac[,mac...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

board_ip [default: ""]
The IP address of the board(s), separated by commas. As shipped, the board address is
192.168.1.121.

DESCRIPTION
hm2_eth is a device driver that interfaces Mesa’s ethernet based Anything I/O boards (with the HostMot2
firmware) to the LinuxCNC HAL.

The supported boards are: 7i76E, 7I80DB, 7I80HD, 7i92, 7i93.

The board must have its hardware loaded on the board by the mesaflash(1) program.

hm2_eth is only available when linuxcnc is configured with "uspace" realtime.

INTERFACE CONFIGURATION
hm2_eth should be used on a dedicated network interface, with only a cable between the PC and the board.
Wireless and USB network interfaces are not suitable.

These instructions assume your dedicated network interface is "eth1", 192.168.1/24 is an unused private
network, that the hostmot2 board is using the default address of 192.168.1.121, that you are using Debian 7
or similar, and that you do not otherwise use iptables. If any of these are false, you will need to modify the
instructions accordingly. After following all the instructions, reboot so that the changes take effect.

It is particularly important to check that the network 192.168.1/24 is not already the private network used
by your internet router, because this is a commonly-used value. Ifyou use another network, you will also
need to reconfigure the hostmot2 card to use an IP address on that network by using the mesaflash(1) utility
and change jumper settings.Typically, you will choose one of the networks in the Private IPv4 address
space.〈http://en.wikipedia.org/wiki/IPv4#Private_networks〉 One common alternative is PC address
10.10.10.1, hostmot2 address 10.10.10.10.

Use of the dedicated ethernet interface while linuxcnc is running can cause violation of realtime guarantees.
hm2_eth will automatically mitigate most accidental causes of interference.

Configure network with static address
Add these lines to the file /etc/network/interfaces to configure eth1 with a static address:

auto eth1
iface eth1 inet static

address 192.168.1.1
hardware−irq−coalesce−rx−usecs 0

PA CKET LOSS
While ethernet is fairly resistant to electrical noise, many systems will not have 100% perfect packet recep-
tion. Thehm2_eth driver has a limited ability to deal with lost packets. Packet loss is detected by transmit-
ting an expected read or write packet count with each request, and checking the value with each read
response. Whena lost packet is detected, thepacket−error pin is asserted in that cycle, the

216 2008-05-13 LinuxCNC Documentation

HM2_ETH(9) HAL Component HM2_ETH(9)

packet−error−level pin is increased, and if it reaches a threshold then a permanent low-level I /O error is
signaled.

However, not all hm2 special functions know how to properly recover from lost packets. For instance, the
encoder special function does not properly manage the index feature when packets are lost. The author
believes that this can lead to rare failures in home-to-index, which can have sev ere consequences.

On the other hand, pid-stepper systems will run properly for extended periods of time with packet loss on
the order of .01%, as long as following error is increased enough that having stale position feedback does
not trigger a following error. Altering the HAL configuration so that during transient packet loss the pid
and motion feedback value is equal to the command value, instead of the stale feedback value, appears to
improve tuning. Thiscan be accomplished with amux2(9)component for each feedback signal, using
packet−error as the mux2sel input.

PINS
In addition to the pins documented inhostmot2(9), hm2_eth(9)creates additional pins:

(bit, out) hm2_<BoardType>.<BoardNum>.packet−error
This pin is TRUE when the most recent cycle detected a read or write error, and FALSE at other
times.

(s32, out) hm2_<BoardType>.<BoardNum>.packet−error−level
This pin shows the current error level, with higher numbers indicating a greater number of recent
detected errors. The error level is always in the range from 0 to packet−error−limit, inclusive.

(bit, out) hm2_<BoardType>.<BoardNum>.packet−error−exceeded
This pin is TRUE when the current error level is equal to the maximum, and FALSE at other
times.

PARAMETERS
In addition to the parameters documented inhostmot2(9), hm2_eth(9)creates additional parameters:

(s32, rw) hm2_<BoardType>.<BoardNum>.packet−error−decrement
The amount deducted frompacket−error−level in a cycle without detected read or write errors,
without going below zero.

(s32, rw) hm2_<BoardType>.<BoardNum>.packet−error−increment
The amount added topacket−error−level in a cycle without detected read or write errors, without
going above packet−error−limit.

(s32, rw) hm2_<BoardType>.<BoardNum>.packet−error−limit
The level at which a detected read or write error is treated as a permament error. When this error
level is reached, the board’sio−error pin becomes TRUE and the condition must be manually
reset.

(s32, rw) hm2_<BoardType>.<BoardNum>.packet−read−timeout
The length of time that must pass before a read request times out. If the value is less than or equal
to 0, it is interpreted as 80% of the thread period. If the value is less than 100, it is interpreted as a
percentage of the thread period. Otherwise, it is interpreted as a time in nanoseconds. In any case,
the timeout is never less than 100 microseconds.

Setting this value too low can cause spurious read errors. Setting it too high can cause realtime
delay errors.

LinuxCNC Documentation 2008-05-13 217

HM2_ETH(9) HAL Component HM2_ETH(9)

NOTES
hm2_eth uses an iptables chain called "hm2−eth−rules−output" to control access to the network interface
while hal is running. The chain is created if it does not exist, and a jump to it is inserted at the beginning of
the OUTPUT chain if it is not there already. If you have an existing iptables setup, you can insert a direct
jump from OUTPUT to hm2−eth−rules−output in an order appropriate to your local network.

At (normal) exit, hm2_eth will remove the rules. After a crash, you can manually clear the rules withsudo
iptables −F hm2−eth−rules−output; the rules are also removed by a reboot.

"hardware−irq−coalesce−rx−usecs" decreases time waiting to receive a packet on most systems, but on at
least some Marvel-chipset NICs it is harmful. If the line does not improve system performance, then
remove it. A reboot is required for the value to be set back to its power-on default. Thisrequires the eth-
tool package to be installed.

BUGS
Some hostmot2 functions such uart are coded in a way that causes additional latency when used with
hm2_eth.

On the 7i92, the HAL pins for the LEDs are called CR01..CR04, but the silkscreens are CR3..CR6.
Depending on the FPGA firmware, the LEDs may initially be under control of the ethernet engine. This
can be changed until power cycle with

elbpcom 01D914000000

Depending on firmware version, this driver may cause the hardware error LED to light even though the
driver and hardware are functioning normally. This will reportedly be fixed in future bitfile updates from
Mesa.

SEE ALSO
hostmot2(9), elbpcom(1)

LICENSE
GPL

218 2008-05-13 LinuxCNC Documentation

HM2_PCI(9) HAL Component HM2_PCI(9)

NAME
hm2_pci − LinuxCNC HAL driver for the Mesa Electronics PCI-based Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_pci [config="str[,str...]"]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

DESCRIPTION
hm2_pci is a device driver that interfaces Mesa’s PCI and PC-104/Plus based Anything I/O boards (with the
HostMot2 firmware) to the LinuxCNC HAL.

The supported boards are: the 5i20, 5i21, 5i22, 5i23, 5i24, and 5i25 (all on PCI); the 4i65, 4i68, and 4i69
(on PC-104/Plus), and the 3x20 (using a 6i68 or 7i68 carrier card) and 6i25 (on PCI Express).

The driver optionally programs the board’s FPGA with firmware when it registers the board with the host-
mot2 driver. The firmware to load is specified in theconfigmodparam, as described in the hostmot2(9)
manpage, in theconfig modparamsection.

SEE ALSO
hostmot2(9)

LICENSE
GPL

LinuxCNC Documentation 2008-05-13 219

HM2_SPI(9) HAL Component HM2_SPI(9)

NAME
hm2_spi − LinuxCNC HAL driver for the Mesa Electronics SPI Anything IO boards, with HostMot2
firmware.

SYNOPSIS
loadrt hm2_spi [config="str[,str...]"] [spidev_path=path[,path...]] [spidev_rate=rate[,rate...]]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

spidev_path[default: "/dev/spidev1.0"]
The path to the spi device node, a character special device in /dev

spidev_rate[default: 24000]
The desired rate of the SPI clock in kHz. If the exact specified clock is not available, a lower
clock is used. Due to shortcomings in the spidev API, it is not possible for hal to report the
actual clock used.

DESCRIPTION
hm2_spi is a device driver that interfaces Mesa’s SPI based Anything I/O boards (with the HostMot2
firmware) to the LinuxCNC HAL.

The supported boards are: 7I90HD.

The board must have a compatible firmware loaded on the board by the mesaflash(1) program.

hm2_spi is only available when linuxcnc is configured with "uspace" realtime.

INTERFACE CONFIGURATION
It is possible for one SPI bus to connect several devices; in this configuration, a master device has several
chip select lines. In order to meet realtime deadlines, hm2_spi should be used on a dedicated SPI interface
not shared with any other slaves.

REALTIME PERFORMANCE OF LINUX SPIDEV DRIVERS
As of kernel 3.8, most or all kernel SPI drivers do not achieve the high realtime response rate required for a
typical linuxcnc configuration. The driver was tested with a modified version of the spi−s3c64xx SPI driver
on the Odroid U3 platform. The patched kernel resides on github
〈https://github.com/jepler/odroid−linux/tree/odroid−3.8.13−rt〉.

SPI CLOCK RATES
The maximum SPI clock of the 7i90 is documented as 50MHz. Other elements of the data path between
HAL and the 7i90 may impose other limitations.

SEE ALSO
hostmot2(9)

LICENSE
GPL

220 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

NAME
hostmot2 − LinuxCNC HAL driver for the Mesa Electronics HostMot2 firmware.

SYNOPSIS
See the config modparam section below for Mesa card configuration. Typically hostmot2 is loaded with no
parameters unless debugging is required.

loadrt hostmot2 [debug_idrom=N] [debug_module_descriptors=N] [debug_pin_descriptors=N]
[debug_modules=N]

debug_idrom [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 IDROM header.

debug_module_descriptors[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Module Descriptors.

debug_pin_descriptors[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Pin Descriptors.

debug_modules[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Modules used.

use_serial_numbers[default: 0]
When creating HAL pins for smart-serial devices name the pins by the board serial number rather
than which board and port they are connected to.With this option set to 1 pins will have names
like hm2_8i20.1234.currentrather thanhm2_5i23.0.8i20.0.1.current. The identifier consists of
the last 4 digits of the board serial number, which is normally on a sticker on the board. This will
make configs less portable, but does mean that boards can be re-connected less carefully.

DESCRIPTION
hostmot2 is a device driver that interfaces the Mesa HostMot2 firmware to the LinuxCNC HAL. This
driver by itself does nothing, the boards that actually run the firmware require their own drivers before any-
thing can happen. Currently drivers are available for the 5i20, 5i22, 5i23, 5i25, 3x20, 4i65, and 4i68 (all
using the hm2_pci module) and the 7i43 (using the hm2_7i43 module).

The HostMot2 firmware provides modules such as encoders, PWM generators, step/dir generators, and gen-
eral purpose I/O pins (GPIOs). These things are called "Modules". The firmware is configured, at
firmware compile time, to provide zero or more instances of each of these Modules.

Board I/O Pins
The HostMot2 firmware runs on an FPGA board. The board interfaces with the computer via PCI,
PC-104/Plus, or EPP, and interfaces with motion control hardware such as servos and stepper motors via
I/O pins on the board.

Each I/O pin can be configured, at board-driver load time, to serve one of two purposes: either as a particu-
lar I/O pin of a particular Module instance (encoder, pwmgen, stepgen etc), or as a general purpose digital
I/O pin. By default all Module instances are enabled, and all the board’s pins are used by the Module
instances.

The user can disable Module instances at board-driver load time, by specifying a hostmot2 config string
modparam. Any pins which belong to Module instances that have been disabled automatically become
GPIOs.

All IO pins have some HAL presence, whether they belong to an active module instance or are full GPIOs.
GPIOs can be changed (at run-time) between inputs, normal outputs, and open drains, and have a flexible
HAL interface. IOpins that belong to active Module instances are constrained by the requirements of the
owning Module, and have a more limited interface in HAL. This is described in the General Purpose I/O
section below.

LinuxCNC Documentation 2008-05-13 221

HOSTMOT2(9) HAL Component HOSTMOT2(9)

config modparam
All the board-driver modules (hm2_pci and hm2_7i43) accept a load-time modparam of type string array,
named "config". This array has one config string for each board the driver should use. Each board’s config
string is passed to and parsed by the hostmot2 driver when the board-driver registers the board.

The config string can contain spaces, so it is usually a good idea to wrap the whole thing in double-quotes
(the " character).

The comma character (,) separates members of the config array from each other.

For example, if your control computer has one 5i20 and one 5i23 you might load the hm2_pci driver with a
HAL command (in halcmd) something like this:

loadrt hm2_pci config="firmware=hm2/5i20/SVST8_4.BIT num_encoders=3 num_pwmgens=3 num_stepgens=3,firmwar

Note: this assumes that the hm2_pci driver detects the 5i20 first and the 5i23 second. If the detection order
does not match the order of the config strings, the hostmot2 driver will refuse to load the firmware and the
board-driver (hm2_pci or hm2_7i43) will fail to load.To the best of my knowledge, there is no way to pre-
dict the order in which PCI boards will be detected by the driver, but the detection order will be consistent
as long as PCI boards are not moved around. Bestto try loading it and see what the detection order is.

The valid entries in the format string are:

[firmware= F]
[num_encoders=N]
[ssi_chan_N=abc%nq]
[biss_chan_N=abc%nq]
[fanuc_chan_N=abc%nq]
[num_resolvers=N]
[num_pwmgens=N]
[num_3pwmgens=N]
[num_stepgens=N]
[stepgen_width=N]
[num_sserials=N]
[sserial_port_0=00000000]
[num_leds=N]
[enable_raw]

firmwar e [optional]
Load the firmware specified by F into the FPGA on this board. If no "firmware=F" string is spec-
ified, the FPGA will not be re-programmed but may continue to run a previously downloaded
firmware.

The requested firmware F is fetched by udev. udev searches for the firmware in the system’s
firmware search path, usually /lib/firmware. Ftypically has the form "hm2/<BoardType>/file.bit";
a typical value for F might be "hm2/5i20/SVST8_4.BIT". The hostmot2 firmware files are sup-
plied by the hostmot2−firmware packages, available from linuxcnc.org and can normally be
installed by entering the command "sudo apt−get install hostmot2−firmware−5i23" to install the
support files for the 5i23 for example.

The 5i25 / 6i25 come pre-programmed with firmware and no "firmware=" string should be used
with these cards. To change the firmware on a 5i25 or 6i25 the "mesaflash" utility should be used
(available from Mesa). It is perfectly valid and reasonable to load these cards with no config string
at all.

222 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

num_dplls [optional, default: −1]
The hm2dpll is a phase-locked loop timer module which may be used to trigger certain types of
encoder. This parameter can be used to disable the hm2dpll by setting the number to 0. There is
only ever one module of this type, with 4 timer channels, so the other valid numbers are −1
(enable all) and 1, both of which end up meaning the same thing.

num_encoders[optional, default: −1]
Only enable the first N encoders. If N is −1, all encoders are enabled. If N is 0, no encoders are
enabled. IfN is greater than the number of encoders available in the firmware, the board will fail
to register.

ssi_chan_N[optional, default: ""]
Specifies how the bit stream from a Synchronous Serial Interface device will be interpreted. There
should be an entry for each device connected. Only channels with a format specifier will be
enabled. (as the software can not guess data rates and bit lengths)

biss_chan_N[optional, default: ""]
As for ssi_chan_N, but for BiSS devices

fanuc_chan_N[optional, default: ""]
Specifies how the bit stream from a Fanuc absolute encoder will be interpreted. There should be an
entry for each device connected. Only channels with a format specifier will be enabled. (as the
software can not guess data rates and bit lengths)

num_resolvers[optional, default: −1]
Only enable the first N resolvers. If N = −1 then all resolvers are enabled. This module does not
work with generic resolvers (unlike the encoder module which works with any encoder). At the
time of writing the Hostmot2 Resolver function only works with the Mesa 7i49 card.

num_pwmgens[optional, default: −1]
Only enable the first N pwmgens. If N is −1, all pwmgens are enabled. If N is 0, no pwmgens are
enabled. IfN is greater than the number of pwmgens available in the firmware, the board will fail
to register.

num_3pwmgens[optional, default: −1]
Only enable the first N Three-phase pwmgens. If N is −1, all 3pwmgens are enabled. If N is 0, no
pwmgens are enabled. If N is greater than the number of pwmgens available in the firmware, the
board will fail to register.

num_stepgens[optional, default: −1]
Only enable the first N stepgens. If N is −1, all stepgens are enabled. If N is 0, no stepgens are
enabled. IfN is greater than the number of stepgens available in the firmware, the board will fail
to register.

stepgen_width[optional, default: 2]
Used to mask extra, unwanted, stepgen pins. Stepper drives typically require only two
pins (step and dir) but the Hostmot2 stepgen can drive up to 8 output pins for specialised
applications (depending on firmware). This parameter applies to all stepgen instances.
Unused, masked pins will be available as GPIO.

num_sserials[optional, default: -1]
Only enable the first N of the Smart Serial modules on the FPGA board. If N is −1, then
all Smart Serial modules will be enabled. If N=0 then no Smart Serial modules will be
enabled.

sserial_port_N (N = 0 .. 3)[optional, default: 00000000 for all ports]
Up to 32 Smart Serial devices can be connected to a Mesa Anything IO board depending
on the firmware used and the number of physical connections on the board. These are
arranged in 1-4 ports of 1 to 8 channels.
Some Smart Serial (SSLBP) cards offer more than one load-time configuration, for
example all inputs, or all outputs, or offering additional analogue input on some digital

LinuxCNC Documentation 2008-05-13 223

HOSTMOT2(9) HAL Component HOSTMOT2(9)

pins.
To set the modes for port 0 use, for examplesserial_port_0=0120xxxx
A ’ 0’in the string sets the corresponding port to mode 0, 1 to mode 1, and so on up to
mode 9. An "x" in any position disables that channel and makes the corresponding FPGA
pins available as GPIO.
The string can be up to 8 characters long, and if it defines more modes than there are
channels on the port then the extras are ignored. Channel numbering is left to right so the
example above would set sserial device 0.0 to mode 0, 0.2 to mode2 and disable channels
0.4 onwards.
The sserial driver will auto-detect connected devices, no further configuration should be
needed. Unconnected channels will default to GPIO, but the pin values will vary semi-
randomly during boot when card-detection runs, to it is best to actively disable any chan-
nel that is to be used for GPIO.

num_bspis[optional, default: −1]
Only enable the first N Buffered SPI drivers. If N is −1 then all the drivers are enabled.
Each BSPI driver can address 16 devices.

num_leds[optional, default: −1]
Only enable the first N of the LEDs on the FPGA board. If N is −1, then HAL pins for all
the LEDs will be created. If N=0 then no pins will be added.

enable_raw[optional]
If specified, this turns on a raw access mode, whereby a user can peek and poke the
firmware from HAL. See Raw Mode below.

dpll
The hm2dpll module has pins like "hm2_<BoardType>.<BoardNum>.dpll" It is likely that the
pin-count will decrease in the future and that some pins will become parameters. This module is a
phase-locked loop that will synchronise itself with the thread in which the hostmot2 "read" func-
tion is installed and will trigger other functions that are allocated to it at a specified time before or
after the "read" function runs. This can be applied to the three absolute encoder types, quadrature
encoders and stepgen. In the case of the absolute encoders this allows the system to trigger a data
transmission just prior to the time when the HAL driver reads the data. In the case of stepgens and
quadrature encoders the timers can be used to reduce position sampling jitter. This is especially
valuable with the ethernet-interfaced cards.

Pins:

(float, in) hm2_<BoardType>.<BoardNum>.dpll.NN.timer−us
This pin sets the triggering offset of the associated timer. There are 4 timers numbered 01
to 04, represented by the NN digits in the pin name. The units are micro-seconds. Gen-
erally the value will be negative, so that some action is undertaken by the fpga prior to the
execution of the main hostmot2 read.

For stepgen and quadrature encoders, the value needs to be more than the maximum vari-
ation between read times. −100 will suffice for most systems, and −50 will work on sys-
tems with good performance and latency.

For serial encoders, the value also needs to include the time it takes to transfer the abso-
lute encoder position.For instance, if 50 bits must be read at 500kHz then subtract an
additional 50/500kHz = 100uS to get a starting value of −200.

(float, in) hm2_<BoardType>.<BoardNum>.dpll.base−freq−khz
This pin sets the base frequency of the phase-locked loop. by default it will be set to the
nominal frequency of the thread in which the PLL is running and wil not normally need

224 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

to be changed.

(float, out) hm2_<BoardType>.<BoardNum>.dpll.phase−error−us
Indicates the phase eror of the DPLL. If the number cycles by a large amount it is likely
that the PLL has failed to achieve lock and adjustments will need to be made.

(u32, in) hm2_<BoardType>.<BoardNum>.dpll.time−const
The filter time-constant for the PLL. The default value is a compromise between insensi-
tivity to single-cycle variations and being resilient to changes to the Linux
CLOCK_MONOTONIC timescale, which can instantly change by up to Â±500ppm from
its nominal value, usually by timekeeping software like ntpd and ntpdate. Default 2000
(0x7d0)

(u32, in) hm2_<BoardType>.<BoardNum>.dpll.plimit
Sets the phase adjustment limit of the PLL. If the value is zero then the PLL will free-run
at the base frequency independent of the servo thread rate. This is probably not what you
want. Default 4194304 (0x400000) Units not known...

(u32, out) hm2_<BoardType>.<BoardNum>.dpll.ddsize
Used internally by the driver, likely to disappear.

(u32, in) hm2_<BoardType>.<BoardNum>.dpll.prescale
Prescale factor for the rate generator. Default 1.

encoder
Encoders have names like ""hm2_<BoardType>.<BoardNum>.encoder.<Instance>".".
"Instance" is a two-digit number that corresponds to the HostMot2 encoder instance number.
There are "num_encoders" instances, starting with 00.

So, for example, the HAL pin that has the current position of the second encoder of the first 5i20
board is: hm2_5i20.0.encoder.01.position (this assumes that the firmware in that board is config-
ured so that this HAL object is available)

Each encoder uses three or four input IO pins, depending on how the firmware was compiled.
Three-pin encoders use A, B, and Index (sometimes also known as Z).Four-pin encoders use A,
B, Index, and Index-mask.

The hm2 encoder representation is similar to the one described by the Canonical Device Interface
(in the HAL General Reference document), and to the software encoder component. Each encoder
instance has the following pins and parameters:

Pins:

(s32 out) count
Number of encoder counts since the previous reset.

(float out) position
Encoder position in position units (count / scale).

(float out) velocity
Estimated encoder velocity in position units per second.

LinuxCNC Documentation 2008-05-13 225

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(bit in) reset
When this pin is TRUE, the count and position pins are set to 0. (The value of the veloc-
ity pin is not affected by this.) The driver does not reset this pin to FALSE after resetting
the count to 0, that is the user’s job.

(bit in/out) index−enable
When this pin is set to True, the count (and therefore also position) are reset to zero on
the next Index (Phase−Z) pulse. At the same time, index−enable is reset to zero to indi-
cate that the pulse has occurred.

(s32 out) rawcounts
Total number of encoder counts since the start, not adjusted for index or reset.

Parameters:

(float r/w) scale
Converts from ’count’ units to ’position’ units.

(bit r/w) index−invert
If set to True, the rising edge of the Index input pin triggers the Index event (if
index−enable is True). If set to False, the falling edge triggers.

(bit r/w) index−mask
If set to True, the Index input pin only has an effect if the Index−Mask input pin is True
(or False, depending on the index−mask−invert pin below).

(bit r/w) index−mask−invert
If set to True, Index−Mask must be False for Index to hav ean effect. If set to False, the
Index−Mask pin must be True.

(bit r/w) counter−mode
Set to False (the default) for Quadrature. Set to True for Step/Dir (in which case Step is
on the A pin and Dir is on the B pin).

(bit r/w) filter
If set to True (the default), the quadrature counter needs 15 clocks to register a change on
any of the three input lines (any pulse shorter than this is rejected as noise). If set to
False, the quadrature counter needs only 3 clocks to register a change. The encoder sam-
ple clock runs at 33 MHz on the PCI AnyIO cards and 50 MHz on the 7i43.

(float r/w) vel−timeout
When the encoder is moving slower than one pulse for each time that the driver reads the
count from the FPGA (in the hm2_read() function), the velocity is harder to estimate.
The driver can wait several iterations for the next pulse to arrive, all the while reporting
the upper bound of the encoder velocity, which can be accurately guessed. This parame-
ter specifies how long to wait for the next pulse, before reporting the encoder stopped.
This parameter is in seconds.

226 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(s32 r/w) hm2_XiXX.N.encoder.timer−number (default: −1)
Sets the hm2dpll timer instance to be used to latch encoder counts.A setting of −1 does
not latch encoder counts.A setting of 0 latches at the same time as the main hostmot2
write. A setting of 1..4 uses a time offset from the main hostmot2 write according to the
dpll’s timer−us setting.

Typically, timer−us should be a negative number with a magnitude larger than the largest
latency (e.g., −100 for a system with mediocre latency, −50 for a system with good
latency).

If no DPLL module is present in the FPGA firmware, or if the encoder module does not
support DPLL, then this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces fol-
lowing errors.

Synchronous Serial Interface (SSI)
(Not to be confused with the Smart Serial Interface)

One pin is created for each SSI instance regardless of data format: (bit, in)
hm2_XiXX.NN.ssi.MM.data−incomplete This pin will be set "true" if the module was still trans-
ferring data when the value was read. When this problem exists there will also be a limited number
of error messages printed to the UI. This pin should be used to monitor whether the problem has
been addressed by config changes. Solutions to the problem dpend on whether the encoder read is
being triggered by the hm2dpll phase-locked-loop timer (described above) or by the trig-
ger−encoders function (described below).

The names of the pins created by the SSI module will depend entirely on the format string for each
channel specified in the loadrt command line.A typical format string might be
ssi_chan_0=error%1bposition%24g

This would interpret the LSB of the bit-stream as a bit-type pin named "error" and the next 24 bits
as a Gray-coded encoder counter. The encoder-related HAL pins would all begin with "position".

There should be no spaces in the format string, as this is used as a delimiter by the low-level code.

The format consists of a string of alphanumeric characters that will form the HAL pin names, fol-
lowed by a % symbol, a bit-count and a data type. All bits in the packet must be defined, even if
they are not used. There is a limit of 64 bits in total.

The valid format characters and the pins they create are:

p: (Pad). Does not create any pins, used to ignore sections of the bit stream that are not required.

b: (Boolean).
(bit, out) hm2_XiXX.N.ssi.MM.<name>. If any bits in the designated field width are

non-zero then the HAL pin will be "true".
(bit, out) hm2_XiXX.N.ssi.MM.<name>−not. An inverted version of the above, the

HAL pin will be "true" if all bits in the field are zero.

u: (Unsigned)
(float, out) hm2_XiXX.N.ssi.MM.<name>. The value of the bits interpeted as an

unsigned integer then scaled such that the pin value will equal the scalemax parameter
value when all bits are high. (for example if the field is 8 bits wide and the scalmax
parameter was 20 then a value of 255 would return 20, and 0 would return 0.

LinuxCNC Documentation 2008-05-13 227

HOSTMOT2(9) HAL Component HOSTMOT2(9)

s: (Signed)
(float, out) hm2_XiXX.N.ssi.MM.<name>. The value of the bits interpreted as a 2s

complement signed number then scaled similarly to the unsigned variant, except symmet-
rical around zero.

f: (bitField)
(bit, out) hm2_XiXX.N.ssi.MM.<name>−NN. The value of each individual bit in the

data field. NN starts at 00 up to the number of bits in the field.
(bit, out) hm2_XiXX.N.ssi.MM.<name>−NN−not. An inverted version of the individual

bit values.

e: (Encoder)
(s32, out) hm2_XiXX.N.ssi.MM.<name>.count. The lower 32 bits of the total encoder
counts. This value is reset both by the ...reset and the ...index−enable pins.
(s32, out) hm2_XiXX.N.ssi.MM.<name>.rawcounts. The lower 32 bits of the total
encoder counts. The pin is not affected by reset and index.
(float, out) hm2_XiXX.N.ssi.MM.<name>.position. The encoder position in machine
units. This is calculated from the full 64-bit buffers so will show a true value even after
the counts pins have wrapped. It is zeroed by reset and index enable.
(bit, IO) hm2_XiXX.N.ssi.MM.<name>.index−enable. When this pin is set "true" the
module will wait until the raw encoder counts next passes through an integer multiple of
the number of counts specified by counts−per−rev parameter and then it will zero the
counts and position pins, and set the index−enable pin back to "false" as a signal to the
system that "index" has been passed. this pin is used for spindle-synchronised motion
and index-homing.
(bit, in) (bit, out) hm2_XiXX.N.ssi.MM.<name>.reset. When this pin is set high the
counts and position pins are zeroed.

h: (Split encoder, high-order bits)
Some encoders (Including Fanuc) place the encoder part-turn counts and full-turn counts
in separate, non-contiguous fields. This tag defines the high-order bits of such an encoder
module. There can be only one h and one l tag per channel, the behaviour with multiple
such channels will be undefined.

l: (Split encoder, low-order bits)
Low order bits (see "h")

g: (Gray-code). This is a modifier that indicates that the following
format string is gray-code encoded. This is only valid for encoders (e, h l) and unsigned
(u) data types.

Parameters:
Tw o parameters is universally created for all SSI instances

(float r/w) hm2_XiXX.N.ssi.MM.frequency−khz
This parameter sets the SSI clock frequency. The units are kHz, so 500 will give a clock
frequency of 500,000 Hz.

(s32 r/w) hm2_XiXX.N.ssi.timer-number−num
This parameter allocates the SSI module to a specific hm2dpll timer instance. This pin is
only of use in firmwares which contain a hm2dpll function and will default to 1 in cases
where there is such a function, and 0 if there is not. The pin can be used to disable reads
of the encoder, by setting to a nonexistent timer number, or to 0.

Other parameters depend on the data types specified in the config string.

228 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

p: (Pad) No Parameters.

b: (Boolean) No Parameters.

u: (Unsigned)
(float, r/w) hm2_XiXX.N.ssi.MM.<name>.scalemax. The scaling factor for the
channel.

s: (Signed)
(float, r/w) hm2_XiXX.N.ssi.MM.<name>.scalemax. The scaling factor for the channel.

f: (bitField): No parameters.

e: (Encoder):
(float, r/w) hm2_XiXX.N.ssi.MM.<name>.scale: (float, r.w) The encoder scale in counts
per machine unit.
(u32, r/w) hm2_XiXX.N.ssi.MM.<name>.counts−per−rev (u32, r/w) Used to emulate
the index behaviour of an incemental+index encoder. This would normally be set to the
actual counts per rev of the encoder, but can be any whole number of revs. Integer divi-
sors or multimpilers of the true PPR might be useful for index-homing. Non-integer fac-
tors might be appropriate where there is a synchronous drive ratio between the encoder
and the spindle or ballscrew.

BiSS
BiSS is a bidirectional variant of SSI. Currently only a single direction is supported by LinuxCNC
(encoder to PC).

One pin is created for each BiSS instance regardless of data format:

(bit, in) hm2_XiXX.NN.biss.MM.data−incomplete This pin will be set "true" if the module was
still transferring data when the value was read. When this problem exists there will also be a lim-
ited number of error messages printed to the UI. This pin should be used to monitor whether the
problem has been addressed by config changes. Solutions to the problem dpend on whether the
encoder read is being triggered by the hm2dpll phase-locked-loop timer (described above) or by
the trigger−encoders function (described below)

The names of the pins created by the BiSS module will depend entirely on the format string for
each channel specified in the loadrt command line and follow closely the format defined above for
SSI. Currentlydata packets of up to 96 bits are supported by the LinuxCNC driver, although the
Mesa Hostmot2 module can handle 512 bit packets. It should be possible to extend the number of
packets supported by the driver if there is a requirement to do so.

Fanuc encoder.
The pins and format specifier for this module are identical to the SSI module described above,
except that at least one pre-configured format is provided. Amodparam of fanuc_chan_N=AA64
(case sensitive) will configure the channel for a Fanuc Aa64 encoder. The pins created are:
hm2_XiXX.N.fanuc.MM.batt indicatesbattery state
hm2_XiXX.N.fanuc.MM.batt−not inverted version of above
hm2_XiXX.N.fanuc.MM.comm The0-1023 absolute output for motor commutation
hm2_XXiX.N.fanuc.MM.crc TheCRC checksum. Currently HAL has no way to use
this
hm2_XiXX.N.fanuc.MM.encoder.count Encodercounts
hm2_XiXX.N.fanuc.MM.encoder.index−enable Simulated index. Set by counts−per−rev parame-
ter
hm2_XiXX.N.fanuc.MM.encoder.position Countsscaled by the ...scale parameter
hm2_XiXX.N.fanuc.MM.encoder.rawcounts Raw counts, unaffected by reset or index

LinuxCNC Documentation 2008-05-13 229

HOSTMOT2(9) HAL Component HOSTMOT2(9)

hm2_XiXX.N.fanuc.MM.encoder.reset Ifhigh/true then counts and position = 0
hm2_XiXX.N.fanuc.MM.valid Indicatesthat the absolute position is valid
hm2_XiXX.N.fanuc.MM.valid−not Inverted version

resolver
Resolvers have names like hm2_<BoardType>.<BoardNum>.resolver.<Instance>. <Instance is a
2-digit number, which for the 7i49 board will be between 00 and 05. This function only works
with the Mesa Resolver interface boards (of which the 7i49 is the only example at the time of writ-
ing). This board uses an SPI interface to the FPGA card, and will only work with the correct
firmware. Thepins allocated will be listed in the dmesg output, but are unlikely to be usefully
probed with HAL tools.

Pins:

(float, out) angle
This pin indicates the angular position of the resolver. It is a number between 0 and 1 for
each electrical rotation.

(float, out) position
Calculated from the number of complete and partial revolutions since startup, reset, or
index−reset multiplied by the scale parameter.

(float, out) velocity
Calculated from the rotational velocity and the velocity−scale parameter. The default
scale is electrical rotations per second.

(s32, out) count
This pins outputs a simulated encoder count at 2ˆ24 counts per rev (16777216 counts).

(s32, out) rawcounts
This is identical to the counts pin, except it is not reset by the ’index’ or ’reset’ pins. This
is the pin which would be linked to the bldc HAL component if the resolver was being
used to commutate a motor.

(bit, in) reset
Resets the position and counts pins to zero immediately.

(bit, in/out) index−enable
When this pin is set high the position and counts pins will be reset the next time the
resolver passes through the zero position. At the same time the pin is driven low to indi-
cate to connected modules that the index has been seen, and that the counters have been
reset.

(bit, out) error
Indicates an error in the particular channel. If this value is "true" then the reported posi-
tion and velocity are invalid.

Parameters:

230 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(float, read/write) scale
The position scale, in machine units per resolver electrical revolution.

(float, read/write) velocity−scale
The conversion factor between resolver rotation speed and machine velocity. A value of 1
will typically give motor speed in rps, a value of 0.01666667 will give (approximate)
RPM.

(u32, read/write) index−divisor (default 1)
The resolver component emulates an index at a fixed point in the sin/cos cycle. Some
resolvers have multiple cycles per rev (often related to the number of pole-pairs on the
attached motor). LinuxCNC requires an index once per revolution for proper threading
etc. Thisparameter should be set to the number of cycles per rev of the resolver. CAU-
TION: Which pseudo-index is used will not necessarily be consistent between LinuxCNC
runs. Do not expect to re-start a thread after restarting LinuxCNC. It is not appropriate to
use this parameter for index-homing of axis drives.

(float, read/write) excitation−khz
This pin sets the excitation frequency for the resolver. This pin is module-level rather than
instance-level as all resolvers share the same excitation frequency.
Valid values are 10 (˜10kHz), 5 (˜5kHz) and 2.5 (˜2.5kHz). The actual frequency
depends on the FPGA frequency, and they correspond to CLOCK_LOW/5000,
CLOCK_LOW/10000 and CLOCK_LOW/20000 respectively. The parameter will be set
to the closest available of the three frequencies.
A value of −1 (the default) indicates that the current setting should be retained.

pwmgen
pwmgens have names like "hm2_<BoardType>.<BoardNum>.pwmgen.<Instance>". "Instance"
is a two-digit number that corresponds to the HostMot2 pwmgen instance number. There are
’num_pwmgens’ instances, starting with 00.

So, for example, the HAL pin that enables output from the fourth pwmgen of the first 7i43 board
is: hm2_7i43.0.pwmgen.03.enable (this assumes that the firmware in that board is configured so
that this HAL object is available)

In HM2, each pwmgen uses three output IO pins: Not−Enable, Out0, and Out1.

The function of the Out0 and Out1 IO pins varies with output−type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component. Each pwmgen
instance has the following pins and parameters:

Pins:

(bit input) enable
If true, the pwmgen will set its Not−Enable pin false and output its pulses. If ’enable’ is
false, pwmgen will set its Not−Enable pin true and not output any signals.

(float input) value
The current pwmgen command value, in arbitrary units.

LinuxCNC Documentation 2008-05-13 231

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Parameters:

(float rw) scale
Scaling factor to convert ’value’ from arbitrary units to duty cycle: dc = value / scale.
Duty cycle has an effective range of −1.0 to +1.0 inclusive, anything outside that range
gets clipped. The default scale is 1.0.

(s32 rw) output−type
This emulates the output_type load-time argument to the software pwmgen component.
This parameter may be changed at runtime, but most of the time you probably want to set
it at startup and then leave it alone. Acceptedvalues are 1 (PWM on Out0 and Direction
on Out1), 2 (Up on Out0 and Down on Out1), 3 (PDM mode, PDM on Out0 and Dir on
Out1), and 4 (Direction on Out0 and PWM on Out1, "for locked antiphase").

In addition to the per-instance HAL Parameters listed above, there are a couple of HAL
Parameters that affect all the pwmgen instances:

(u32 rw) pwm_frequency
This specifies the PWM frequency, in Hz, of all the pwmgen instances running in the
PWM modes (modes 1 and 2). This is the frequency of the variable-duty-cycle wav e. Its
effective range is from 1 Hz up to 193 kHz. Note that the max frequency is determined
by the ClockHigh frequency of the Anything IO board; the 5i20 and 7i43 both have a 100
MHz clock, resulting in a 193 kHz max PWM frequency. Other boards may have differ-
ent clocks, resulting in different max PWM frequencies. If the user attempts to set the
frequency too high, it will be clipped to the max supported frequency of the board. Fre-
quencies below about 5 Hz are not terribly accurate, but above 5 Hz they’re pretty close.
The default pwm_frequency is 20,000 Hz (20 kHz).

(u32 rw) pdm_frequency
This specifies the PDM frequency, in Hz, of all the pwmgen instances running in PDM
mode (mode 3). This is the "pulse slot frequency"; the frequency at which the pdm gen-
erator in the AnyIO board chooses whether to emit a pulse or a space. Each pulse (and
space) in the PDM pulse train has a duration of 1/pdm_frequency seconds. For example,
setting the pdm_frequency to 2e6 (2 MHz) and the duty cycle to 50% results in a 1 MHz
square wav e, identical to a 1 MHz PWM signal with 50% duty cycle. Theeffective range
of this parameter is from about 1525 Hz up to just under 100 MHz. Note that the max
frequency is determined by the ClockHigh frequency of the Anything IO board; the 5i20
and 7i43 both have a 100 MHz clock, resulting in a 100 Mhz max PDM frequency. Other
boards may have different clocks, resulting in different max PDM frequencies. If the user
attempts to set the frequency too high, it will be clipped to the max supported frequency
of the board. The default pdm_frequency is 20,000 Hz (20 kHz).

3ppwmgen
Three-Phase PWM generators (3pwmgens) are intended for controlling the high-side and low-side
gates in a 3-phase motor driver. The function is included to support the Mesa motor controller
daughter-cards but can be used to control an IGBT or similar driver directly. 3pwmgens have
names like "hm2_<BoardType>.<BoardNum>.3pwmgen.<Instance>" where <Instance> is a
2-digit number. There will be num_3pwmgens instances, starting at 00. Each instance allocates 7
output and one input pins on the Mesa card connectors. Outputs are: PWM A, PWM B, PWM C,
/PWM A, /PWM B, /PWM C, Enable. The first three pins are the high side drivers, the second
three are their complementary low-side drivers. The enable bit is intended to control the servo
amplifier. The input bit is a fault bit, typically wired to over-current detection. When set the PWM

232 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

generator is disabled. The three phase duty-cycles are individually controllable from −Scale to
+Scale. Notethat 0 corresponds to a 50% duty cycle and this is the inialization value.

Pins:

(float input) A−value, B−value, C−value: The PWM command value for each phase, limited to +/−
"scale". Defaults to zero which is 50% duty cycle on high-side and low-sidepins (but see the
"deadtime" parameter)

(bit input) enable
When high the PWM is enabled as long as the fault bit is not set by the external fault
input pin. When low the PWM is disabled, with both high- side and low-side drivers low.
This is not the same as 0 output (50% duty cycle on both sets of pins) or negative full
scale (where the low side drivers are "on" 100% of the time)

(bit output) fault
Indicates the status of the fault bit. This output latches high once set by the physical fault
pin until the "enable" pin is set to high.

Parameters:

(u32 rw) deadtime
Sets the dead-time between the high-side driver turning off and the low-side driver turn-
ing on and vice-versa. Deadtime is subtracted from on time and added to off time sym-
metrically. For example with 20 kHz PWM (50 uSec period), 50% duty cycle and zero
dead time, the PWM and NPWM outputs would be square wav es (NPWM being inverted
from PWM) with high times of 25 uS. With the same settings but 1 uS of deadtime, the
PWM and NPWM outputs would both have high times of 23 uS (25 − (2X 1 uS), 1 uS
per edge). The value is specified in nS and defaults to a rather conservative 5000nS. Set-
ting this parameter to too low a value could be both expensive and dangerous as if both
gates are open at the same time there is effectively a short circuit accross the supply.

(float rw) scale
Sets the half-scale of the specified 3-phase PWM generator. PWM values from −scale to
+scale are valid. Default is +/− 1.0

(bit rw) fault−invert
Sets the polarity of the fault input pin. A value of 1 means that a fault is triggered with
the pin high, and 0 means that a fault it triggered when the pin is pulled low. Default 0,
fault = low so that the PWM works with the fault pin unconnected.

(u32 rw) sample−time
Sets the time during the cycle when an ADC pulse is generated.0 = start of PWM cycle
and 1 = end. Not currently useful to LinuxCNC. Default 0.5.

In addition the per-instance parameters above there is the following parameter that affects
all instances

(u32 rw) frequency
Sets the master PWM frequency. Maximum is approx 48kHz, minimum is 1kHz. Defaults
to 20kHz.

LinuxCNC Documentation 2008-05-13 233

HOSTMOT2(9) HAL Component HOSTMOT2(9)

stepgen
stepgens have names like "hm2_<BoardType>.<BoardNum>.stepgen.<Instance>". "Instance"is
a two-digit number that corresponds to the HostMot2 stepgen instance number. There are
’num_stepgens’ instances, starting with 00.

So, for example, the HAL pin that has the current position feedback from the first stepgen of the
second 5i22 board is: hm2_5i22.1.stepgen.00.position−fb (this assumes that the firmware in that
board is configured so that this HAL object is available)

Each stepgen uses between 2 and 6 IO pins. The signals on these pins depends on the step_type
parameter (described below).

The stepgen representation is modeled on the stepgen software component. Each stepgen instance
has the following pins and parameters:

Pins:

(float input) position−cmd
Target position of stepper motion, in arbitrary position units. This pin is only used when
the stepgen is in position control mode (control−type=0).

(float input) velocity−cmd
Target velocity of stepper motion, in arbitrary position units per second. This pin is only
used when the stepgen is in velocity control mode (control−type=1).

(s32 output) counts
Feedback position in counts (number of steps).

(float output) position−fb
Feedback position in arbitrary position units. This is similar to "counts/position_scale",
but has finer than step resolution.

(float output) velocity−fb
Feedback velocity in arbitrary position units per second.

(bit input) enable
This pin enables the step generator instance. When True, the stepgen instance works as
expected. WhenFalse, no steps are generated and velocity−fb goes immediately to 0. If
the stepgen is moving when enable goes false it stops immediately, without obeying the
maxaccel limit.

(bit input) control−type
Switches between position control mode (0) and velocity control mode (1). Defaults to
position control (0).

Parameters:

(float r/w) position−scale
Converts from counts to position units. position = counts / position_scale

234 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(float r/w) maxvel
Maximum speed, in position units per second. If set to 0, the driver will always use the
maximum possible velocity based on the current step timings and position−scale. The
max velocity will change if the step timings or position−scale changes. Defaults to 0.

(float r/w) maxaccel
Maximum acceleration, in position units per second per second. Defaults to 1.0. If set to
0, the driver will not limit its acceleration at all - this requires that the position−cmd or
velocity−cmd pin is driven in a way that does not exceed the machine’s capabilities. This
is probably what you want if you’re going to be using the LinuxCNC trajectory planner to
jog or run G-code.

(u32 r/w) steplen
Duration of the step signal, in nanoseconds.

(u32 r/w) stepspace
Minimum interval between step signals, in nanoseconds.

(u32 r/w) dirsetup
Minimum duration of stable Direction signal before a step begins, in nanoseconds.

(u32 r/w) dirhold
Minimum duration of stable Direction signal after a step ends, in nanoseconds.

(u32 r/w) step_type
Output format, like the step_type modparam to the software stegen(9) component.0 =
Step/Dir, 1 = Up/Down, 2 = Quadrature, 3+ = table-lookup mode. In this mode the
step_type parameter determines how long the step sequence is. Additionally the step-
gen_width parameter in the loadrt config string must be set to suit the number of pins per
stepgen required. Any stepgen pins above this number will be available for GPIO. This
mask defaults to 2. The maximum length is 16. Note that Table mode is not enabled in
all firmwares but if you see GPIO pins between the stepgen instances in the dmesg/log
hardware pin list then the option may be available.

In Quadrature mode (step_type=2), the stepgen outputs one complete Gray cycle (00 â 01
â 11 â 10 â 00) for each "step" it takes. In table mode up to 6 IO pins are individually con-
trolled in an arbitrary sequence up to 16 phases long.

(u32 r/w) table−data−N
There are 4 table−data−N parameters, table−data−0 to table−data−3. These each contain
4 bytes corresponding to 4 stages in the step sequence. For example table−data−0 =
0x00000001 would set stepgen pin 0 (always called "Step" in the dmesg output) on the
first phase of the step sequence, and table−data−4 = 0x20000000 would set stepgen pin 6
("Table5Pin" in the dmesg output) on the 16th stage of the step sequence.

(s32 r/w) hm2_XiXX.N.stepgen.timer−number (default: −1)
Sets the hm2dpll timer instance to be used to latch stepgen counts.A setting of −1 does
not latch encoder counts.A setting of 0 latches at the same time as the main hostmot2
write. A setting of 1..4 uses a time offset from the main hostmot2 write according to the
dpll’s timer−us setting.

LinuxCNC Documentation 2008-05-13 235

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Typically, timer−us should be a negative number with a magnitude larger than the largest
latency (e.g., −100 for a system with mediocre latency, −50 for a system with good
latency).

If no DPLL module is present in the FPGA firmware, or if the stepgen module does not
support DPLL, then this pin is not created.

When available, this feature should typically be enabled. Doing so generally reduces fol-
lowing errors.

Smart Serial Interface
The Smart Serial Interface allows up to 32 different devices such as the Mesa 8i20 2.2kW 3-phase
drive or 7i64 48-way IO cards to be connected to a single FPGA card. The driver auto-detects the
connected hardware port, channel and device type. Devices can be connected in any order to any
active channel of an active port. (seethe config modparam definition above).

For full details of the smart-serial devices seeman sserial.

BSPI
The BSPI (Buffered SPI) driver is unusual in that it does not create any HAL pins. Instead the
driver exports a set of functions that can be used by a sub-driver for the attached hardware. Typi-
cally these would be written in the "comp"

pre-processing language: see http://linuxcnc.org/docs/html/hal/comp.html or man halcompile for
further details. See man mesa_7i65 and the source of mesa_7i65.comp for details of a typical sub-
driver. See man hm2_bspi_setup_chan, man hm2_bspi_write_chan, man
hm2_tram_add_bspi_frame, man hm2_allocate_bspi_tram, man hm2_bspi_set_read_funtion and
man hm2_bspi_set_write_function for the exported functions.

The names of the available channels are printed to standard output during the driver loading
process and take the form hm2_<board name>.<board index>.bspi.<index> For example
hm2_5i23.0.bspi.0

UART
The UART driver also does not create any HAL pins, instead it declares two simple read/write
functions and a setup function to be utilised by user-written code.Typically this would be written
in the "comp" pre-processing language: see http://linuxcnc.org/docs/html/hal/comp.html or man
halcompile for further details. See man mesa_uart and the source of mesa_uart.comp for details of
a typical sub-driver. See man hm2_uart_setup_chan, man hm2_uart_send, man hm2_uart_read
and man hm2_uart_setup.

The names of the available uart channels are printed to standard output during the driver loading
process and take the form hm2_<board name>.<board index>uart.<index> For example
hm2_5i23.0.uart.0

General Purpose I/O
I/O pins on the board which are not used by a module instance are exported to HAL as "full"
GPIO pins. Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains,
and have a HAL interface that exposes this flexibility. IO pins that are owned by an active module
instance are constrained by the requirements of the owning module, and have a restricted HAL
interface.

GPIOs have names like "hm2_<BoardType>.<BoardNum>.gpio.<IONum>". IONumis a three-
digit number. The mapping from IONum to connector and pin-on-that-connector is written to the

236 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

syslog when the driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.

So, for example, the HAL pin that has the current inverted input value read from GPIO 012 of the
second 7i43 board is: hm2_7i43.1.gpio.012.in−not (this assumes that the firmware in that board is
configured so that this HAL object is available)

The HAL parameter that controls whether the last GPIO of the first 5i22 is an input or an output is:
hm2_5i22.0.gpio.095.is_output (this assumes that the firmware in that board is configured so that
this HAL object is available)

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in
the Canonical Device Interface (part of the HAL General Reference document). Each GPIO can
have the following HAL Pins:

(bit out) in & in_not
State (normal and inverted) of the hardware input pin. Both full GPIO pins and IO pins
used as inputs by active module instances have these pins.

(bit in) out
Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins
have this pin.

Each GPIO can have the following Parameters:

(bit r/w) is_output
If set to 0, the GPIO is an input. The IO pin is put in a high-impedance state (weakly
pulled high), to be driven by other devices. Thelogic value on the IO pin is available in
the "in" and "in_not" HAL pins. Writes to the "out" HAL pin have no effect. If this
parameter is set to 1, the GPIO is an output; its behavior then depends on the
"is_opendrain" parameter. Only full GPIO pins have this parameter.

(bit r/w) is_opendrain
This parameter only has an effect if the "is_output" parameter is true. If this parameter is
false, the GPIO behaves as a normal output pin: the IO pin on the connector is driven to
the value specified by the "out" HAL pin (possibly inverted), and the value of the "in" and
"in_not" HAL pins is undefined. If this parameter is true, the GPIO behaves as an open-
drain pin. Writing 0 to the "out" HAL pin drives the IO pin low, writing 1 to the "out"
HAL pin puts the IO pin in a high-impedance state. In this high-impedance state the IO
pin floats (weakly pulled high), and other devices can drive the value; the resulting value
on the IO pin is available on the "in" and "in_not" pins. Only full GPIO pins and IO pins
used as outputs by active module instances have this parameter.

(bit r/w) invert_output
This parameter only has an effect if the "is_output" parameter is true. If this parameter is
true, the output value of the GPIO will be the inverse of the value on the "out" HAL pin.
Only full GPIO pins and IO pins used as outputs by active module instances have this
parameter.

led
Creates HAL pins for the LEDs on the FPGA board.

Pins:

LinuxCNC Documentation 2008-05-13 237

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(bit in) CR<NN>
The pins are numbered from CR01 upwards with the name corresponding to the PCB
silkscreen. Setting the bit to "true" or 1 lights the led.

Watchdog
The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use
it. TheHAL representation of the watchdog is named "hm2_<BoardType>.<Board-
Num>.watchdog".

The watchdog starts out asleep and inactive. Once you access the board the first time by running
the hm2 write() HAL function (see below), the watchdog wakes up. From them on it must be pet-
ted periodically or it will bite. Pet the watchdog by running the hm2 write() HAL function.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances
and become high-impedance inputs (pulled high), and all communication with the board stops.
The state of the HostMot2 firwmare modules is not disturbed (except for the configuration of the
IO Pins). Encoder instances keep counting quadrature pulses, and pwm- and step-generators keep
generating signals (which are *not* relayed to the motors, because the IO Pins have become
inputs).

Resetting the watchdog (by clearing the has_bit pin, see below) resumes communication and resets
the I/O pins to the configuration chosen at load-time.

If the firmware includes a watchdog, the following HAL objects will be exported:

Pins:

(bit in/out) has_bit
True if the watchdog has bit, False if the watchdog has not bit. If the watchdog has bit
and the has_bit bit is True, the user can reset it to False to resume operation.

Parameters:

(u32 read/write) timeout_ns
Watchdog timeout, in nanoseconds. This is initialized to 5,000,000 (5 milliseconds) at
module load time. If more than this amount of time passes between calls to the hm2
write() function, the watchdog will bite.

Raw Mode
If the "enable_raw" config keyword is specified, some extra debugging pins are made available in
HAL. The raw mode HAL pin names begin with "hm2_<BoardType>.<BoardNum>.raw".

With Raw mode enabled, a user may peek and poke the firmware from HAL, and may dump the
internal state of the hostmot2 driver to the syslog.

Pins:

(u32 in) read_address
The bottom 16 bits of this is used as the address to read from.

(u32 out) read_data
Each time the hm2_read() function is called, this pin is updated with the value at
.read_address.

238 2008-05-13 LinuxCNC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(u32 in) write_address
The bottom 16 bits of this is used as the address to write to.

(u32 in) write_data
This is the value to write to .write_address.

(bit in) write_strobe
Each time the hm2_write() function is called, this pin is examined. Ifit is True, then
value in .write_data is written to the address in .write_address, and .write_strobe is set
back to False.

(bit in/out) dump_state
This pin is normally False. Ifit gets set to True the hostmot2 driver will write its repre-
sentation of the board’s internal state to the syslog, and set the pin back to False.

Setting up Smart Serial devices
See man setsserial for the current way to set smart-serial eeprom parameters.

FUNCTIONS
hm2_<BoardType>.<BoardNum>.read−request

On boards with long turn around time for reads (at the time of writing, this applies only to
ethernet boards), this function sends a read request. When multiple boards are used, this
can reduce the servo thread execution time. In this case, the appropriate thread order
would be
addf hm2_7i80.0.read−request
addf hm2_7i80.1.read−request
addf hm2_7i80.0.read
addf hm2_7i80.1.read
which causes the read request to be sent to board 1 before waiting for the response to the
read request to arrive from board 0.

hm2_<BoardType>.<BoardNum>.read
This reads the encoder counters, stepgen feedbacks, and GPIO input pins from the FPGA.

hm2_<BoardType>.<BoardNum>.write
This updates the PWM duty cycles, stepgen rates, and GPIO outputs on the FPGA. Any
changes to configuration pins such as stepgen timing, GPIO inversions, etc, are also
effected by this function.

hm2_<BoardType>.<BoardNum>.read_gpio
Read the GPIO input pins. Note that the effect of this function is a subset of the effect of
the .read() function described above. Normally only .read() is used. The only reason to
call this function is if you want to do GPIO things in a faster-than-servo thread. (This
function is not available on the 7i43 due to limitations of the EPP bus.)

hm2_<BoardType>.<BoardNum>.write_gpio
Write the GPIO control registers and output pins. Note that the effect of this function is a
subset of the effect of the .write() function described above. Normally only .write() is
used. Theonly reason to call this function is if you want to do GPIO things in a faster-
than-servo thread. (Thisfunction is not available on the 7i43 due to limitations of the
EPP bus.)

hm2_<BoardType>.<BoardNum>.trigger−encoders
This function will only appear if the firmware contains a BiSS, Fanuc or SSI encoder
module and if the firmare does not contain a hm2dpll module (qv) or if the modparam

LinuxCNC Documentation 2008-05-13 239

HOSTMOT2(9) HAL Component HOSTMOT2(9)

contains num_dplls=0. This function should be inserted first in the thread so that the
encoder data is ready when the mainhm2_XiXX.NN.read function runs. An error mes-
sage will be printed if the encoder read is not finished in time. It may be possible to avoid
this by increasing the data rate. If the problem persists and if "stale" data is acceptable
then the function may be placed later in the thread, allowing a full servo cycle for the data
to be transferred from the devices. If available it is better to use the synchronous hm2dpll
triggering function.

SEE ALSO
hm2_7i43(9)
hm2_pci(9)
Mesa’s documentation for the Anything I/O boards, at <http://www.mesanet.com>

LICENSE
GPL

240 2008-05-13 LinuxCNC Documentation

HYPOT(9) HAL Component HYPOT(9)

NAME
hypot − Three-input hypotenuse (Euclidean distance) calculator

SYNOPSIS
loadrt hypot [count=N|names=name1[,name2...]]

FUNCTIONS
hypot.N (requires a floating-point thread)

PINS
hypot.N.in0 float in
hypot.N.in1 float in
hypot.N.in2 float in
hypot.N.out float out

out = sqrt(in0ˆ2 + in1ˆ2 + in2ˆ2)

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 241

ILOWPASS(9) HAL Component ILOWPASS(9)

NAME
ilowpass − Low-pass filter with integer inputs and outputs

SYNOPSIS
loadrt ilowpass [count=N|names=name1[,name2...]]

DESCRIPTION
While it may find other applications, this component was written to create smoother motion while jogging
with an MPG.

In a machine with high acceleration, a short jog can behave almost like a step function. By putting the
ilowpasscomponent between the MPG encodercountsoutput and the axis jog-counts input, this can be
smoothed.

Choosescaleconservatively so that during a single session there will never be more than about 2e9/scale
pulses seen on the MPG. Choosegain according to the smoothing level desired. Divide the axis.N.jog-
scale values byscale.

FUNCTIONS
ilowpass.N (requires a floating-point thread)

Update the output based on the input and parameters

PINS
ilowpass.N.in s32 in
ilowpass.N.out s32 out

out tracksin*scalethrough a low-pass filter ofgain per period.

PARAMETERS
ilowpass.N.scalefloat rw (default:1024)

A scale factor applied to the output value of the low-pass filter.

ilowpass.N.gain float rw (default:.5)
Together with the period, sets the rate at which the output changes. Useful range is between 0 and
1, with higher values causing the input value to be tracked more quickly. For instance, a setting of
0.9 causes the output value to go 90% of the way towards the input value in each period

AUTHOR
Jeff Epler <jepler@unpythonic.net>

LICENSE
GPL

242 2021-01-22 LinuxCNC Documentation

INTEG(9) HAL Component INTEG(9)

NAME
integ − Integrator with gain pin and windup limits

SYNOPSIS
loadrt integ [count=N|names=name1[,name2...]]

FUNCTIONS
integ.N (requires a floating-point thread)

PINS
integ.N.in float in
integ.N.gain float in (default:1.0)
integ.N.out float out

The discrete integral of ’gain * in’ since ’reset’ was deasserted

integ.N.resetbit in
When asserted, set out to 0

integ.N.max float in (default:1e20)
integ.N.min float in (default:-1e20)

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 243

INVERT(9) HAL Component INVERT(9)

NAME
invert − Compute the inverse of the input signal

SYNOPSIS
The output will be the mathematical inverse of the input, ieout = 1/in. The parameterdeadbandcan be
used to control how close to 0 the denominator can be before the output is clamped to 0.deadbandmust
be at least 1e-8, and must be positive.

FUNCTIONS
invert.N (requires a floating-point thread)

PINS
invert.N.in float in

Analog input value

invert.N.out float out
Analog output value

PARAMETERS
invert.N.deadbandfloat rw

Theout will be zero ifin is between -deadbandand +deadband

LICENSE
GPL

244 2021-01-22 LinuxCNC Documentation

JOYHANDLE(9) HAL Component JOYHANDLE(9)

NAME
joyhandle − sets nonlinear joypad movements, deadbands and scales

SYNOPSIS
loadrt joyhandle [count=N|names=name1[,name2...]]

DESCRIPTION
The componentjoyhandle uses the following formula for a non linear joypad movements:

y = (scale * (a*xˆpower + b*x)) + offset

The parameters a and b are adjusted in such a way, that the function starts at (deadband,offset) and ends at
(1,scale+offset).

Negative values will be treated point symetrically to origin. Values −deadband < x < +deadband will be set
to zero.

Values x > 1 and x < −1 will be skipped to±(scale+offset). Invert transforms the function to a progressive
movement.

With power one can adjust the nonlinearity (default = 2). Default for deadband is 0.

Valid values are: power >= 1.0 (reasonable values are 1.x .. 4-5, take higher power-values for higher dead-
bands (>0.5), if you want to start with a nearly horizontal slope), 0 <= deadband < 0.99 (reasonable 0.1).

An additional offset component can be set in special cases (default = 0).

All values can be adjusted for each instance separately.

FUNCTIONS
joyhandle.N (requires a floating-point thread)

PINS
joyhandle.N.in float in
joyhandle.N.out float out

PARAMETERS
joyhandle.N.power float rw (default:2.0)
joyhandle.N.deadbandfloat rw (default:0.)
joyhandle.N.scalefloat rw (default:1.)
joyhandle.N.offsetfloat rw (default:0.)
joyhandle.N.inversebit rw (default:0)

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 245

KINS(9) HAL Component KINS(9)

NAME
kins − kinematics definitions for LinuxCNC

SYNOPSIS
loadrt trivkins

loadrt rotatekins

loadrt tripodkins

loadrt genhexkins

loadrt maxkins

loadrt genserkins

loadrt pumakins

loadrt scarakins

DESCRIPTION
Rather than exporting HAL pins and functions, these components provide the forward and inverse kinemat-
ics definitions for LinuxCNC.

trivkins − Trivial Kinematics
There is a 1:1 correspondence between joints and axes. Moststandard milling machines and lathes use the
trivial kinematics module.

rotatekins − Rotated Kinematics
The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.

tripodkins − Tripod Kinematics
The joints represent the distance of the controlled point from three predefined locations (the motors), giving
three degrees of freedom in position (XYZ)

tripodkins.Bx
tripodkins.Cx
tripodkins.Cy

The location of the three motors is (0,0), (Bx,0), and (Cx,Cy)

genhexkins − Hexapod Kinematics
Gives six degrees of freedom in position and orientation (XYZABC). The location of base and platform
joints is defined by hal parameters. The forward kinematics iteration is controlled by hal pins.

genhexkins.base.N.x
genhexkins.base.N.y
genhexkins.base.N.z
genhexkins.platform.N.x
genhexkins.platform.N.y
genhexkins.platform.N.z

Parameters describing theNth joint’s coordinates.
genhexkins.convergence−criterion

Minimum error value that ends iterations with converged solution.
genhexkins.limit−iterations

Limit of iterations, if exceeded iterations stop with no convergence.
genhexkins.max−error

Maximum error value, if exceeded iterations stop with no convergence.
genhexkins.last−iterations

Number of iterations spent for the last forward kinematics solution.
genhexkins.max−iterations

Maximum number of iterations spent for a converged solution during current session.

246 2014-12-22 LinuxCNC Documentation

KINS(9) HAL Component KINS(9)

maxkins − 5-axis kinematics example
Kinematics for Chris Radek’s tabletop 5 axis mill named ’max’ with tilting head (B axis) and horizintal
rotary mounted to the table (C axis). Provides UVW motion in the rotated coordinate system. The source
file, maxkins.c, may be a useful starting point for other 5-axis systems.

genserkins − generalized serial kinematics
Kinematics that can model a general serial-link manipulator with up to 6 angular joints.

The kinematics use Denavit-Hartenberg definition for the joint and links. The DH definitions are the ones
used by John J Craig in "Introduction to Robotics: Mechanics and Control" The parameters for the manipu-
lator are defined by hal pins.

genserkins.A−N
genserkins.ALPHA−N
genserkins.D−N

Parameters describing theNth joint’s geometry.

pumakins − kinematics for puma typed robots
Kinematics for a puma-style robot with 6 joints

pumakins.A2
pumakins.A3
pumakins.D3
pumakins.D4

Describe the geometry of the robot

scarakins − kinematics for SCARA-type robots
scarakins.D1

Vertical distance from the ground plane to the center of the inner arm.

scarakins.D2
Horizontal distance between joint[0] axis and joint[1] axis, ie. the length of the inner arm.

scarakins.D3
Vertical distance from the center of the inner arm to the center of the outer arm. May be positive
or negative depending on the structure of the robot.

scarakins.D4
Horizontal distance between joint[1] axis and joint[2] axis, ie. the length of the outer arm.

scarakins.D5
Vertical distance from the end effector to the tooltip. Positive means the tooltip is lower than the
end effector, and is the normal case.

scarakins.D6
Horizontal distance from the centerline of the end effector (and the joints 2 and 3 axis) and the
tooltip. Zeromeans the tooltip is on the centerline. Non-zero values should be positive, if neg a-
tive they introduce a 180 degree offset on the value of joint[3].

SEE ALSO
Kinematicssection in the LinuxCNC documentation

LinuxCNC Documentation 2014-12-22 247

KNOB2FLOAT(9) HAL Component KNOB2FLOAT(9)

NAME
knob2float − Convert counts (probably from an encoder) to a float value

SYNOPSIS
loadrt knob2float [count=N|names=name1[,name2...]]

FUNCTIONS
knob2float.N (requires a floating-point thread)

PINS
knob2float.N.countss32 in

Counts

knob2float.N.enablebit in
When TRUE, output is controlled by count, when FALSE, output is fixed

knob2float.N.scalefloat in
Amount of output change per count

knob2float.N.out float out
Output value

PARAMETERS
knob2float.N.max-out float rw (default:1.0)

Maximum output value, further increases in count will be ignored

knob2float.N.min-out float rw (default:0.0)
Minimum output value, further decreases in count will be ignored

LICENSE
GPL

248 2021-01-22 LinuxCNC Documentation

LATENCYBINS(9) HAL Component LATENCYBINS(9)

NAME
latencybins − comp utility for scripts/latency-histogram

SYNOPSIS
Usage:
Read availablebins pin for the number of bins available.
Set the maxbinnumber pin for the number of± bins.
Ensure maxbinnumber <= availablebins
For maxbinnumber = N, the bins are numbered:

−N ... 0 ... + N bins
(the −0 bin is not populated)
(total effective bins = 2*maxbinnumber +1)

Set nsbinsize pin for the binsize (ns)
Iterate:
Set index pin to a bin number: 0 <= index <= maxbinnumber.
Read check pin and verify that check pin == index pin.
Read output pins:

pbinvalue is count for bin = +index
nbinvalue is count for bin = −index
pextra iscount for all bins > maxbinnumber
nextra iscount for all bins < maxbinnumber
latency-min is max negative latency
latency-max is max positive latency

If index is out of range (index < 0 or index > maxbinnumber)
then pbinvalue = nbinvalue = −1.
The reset pin may be used to restart.
The latency pin outputs the instantaneous latency.

Maintainers note: hardcoded for MAXBINNUMBER==1000

FUNCTIONS
latencybins.N

PINS
latencybins.N.maxbinnumber s32 in (default:1000)
latencybins.N.index s32 in
latencybins.N.resetbit in
latencybins.N.nsbinsizes32 in
latencybins.N.checks32 out
latencybins.N.latencys32 out
latencybins.N.latency-maxs32 out
latencybins.N.latency-min s32 out
latencybins.N.pbinvalue s32 out
latencybins.N.nbinvalue s32 out
latencybins.N.pextra s32 out
latencybins.N.nextra s32 out
latencybins.N.variances32 out
latencybins.N.availablebins s32 out (default:1000)

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 249

LCD(9) HAL Component LCD(9)

NAME
lcd − Stream HAL data to an LCD screen

SYNOPSIS
loadrt lcd fmt_strings=""Plain Text %4.4f\nAnd So on|Second Page, Next Inst""

FUNCTIONS
lcd (requires a floating-point thread). All LCD instances are updated by the

same function.

PINS
lcd.NN.out (u32) out

The output byte stream is sent via this pin. One character is sent every thread invocation. There in
no handshaking provided.

lcd.NN.page.PP.arg.NN (float/s32/u32/bit) in
The input pins have types matched to the format string specifiers.

lcd.NN.page_num(u32) in
Selects the page number. Multiple layouts may be defined, and this pin switches between them.

lcd.NN.contrast (float) in
Attempts to set the contrast of the LCD screen using the byte sequence ESC C and then a value
from 0x20 to 0xBF. (matching the Mesa 7i73). The value should be between 0 and 1.

PARAMETERS
lcd.NN.decimal−separator(u32) rw

Sets the decimal separator used for floating point numbers. The default value is 46 (0x2E) which
corresponds to ".". If a comma is required then set this parameter to 44 (0x2C).

DESCRIPTION
lcd takes format strings much like those used in C and many other languages in the printf and scanf func-
tions and their variants.

The component was written specifically to support the Mesa 7i73 pendant controller, howev er it may be of
use streaming data to other character devices and, as the output format mimics the ADM3 terminal format,
it could be used to stream data to a serial device. Perhaps even a genuine ADM3. The strings contain a
mixture of text values which are displayed directly, "escaped" formatting codes and numerical format
descriptors. For a detailed description of formatting codes see: http://en.wikipedia.org/wiki/Printf

The component can be configured to display an unlimited number of differently-formatted pages, which
may be selected with a HAL pin.

Escaped codes
\n Inserts a clear-to-end, carriage return and line feed character. This will still linefeed and clear
ev en if an automatic wrap has occurred (lcd has no knowledge of the width of the lcd display.) To
print in the rightmost column it is necessary to allow the format to wrap and omit the \n code.

\t Inserts a tab (actually 4 spaces in the current version rather than a true tab.)

\NN inserts the character defined by the hexadecimal code NN.

\\ Inserts a literal \.

Numerical formats

lcd differs slightly from the standard printf conventions. One significant difference is that width

250 2012-09-17 LinuxCNC Documentation

LCD(9) HAL Component LCD(9)

limits are strictly enforced to prevent the LCD display wrapping and spoiling the layout. The field
width includes the sign character so that negative numbers will often have a smaller valid range
than positive. Numbers that do not fit in the specified width are displayed as a line of asterisks
(********).

Each format begins with a "%" symbol. (For a literal % use "%%"). Immediately after the % the
following modifiers may be used:

" " (space) Pad the number to the specified width with spaces. This is the default and is not strictly
necessary.

"0" Pad the number to the specified width with the numeral 0.

"+" Force display of a + symbol before positive numbers. This (like the − sign) will appear imme-
diately to the left of the digits for a space-padded number and in the extreme left position for a
0-padded number.

"1234567890" A numerical entry (other than the leading 0 above) defines the total number of
characters to display including the decimal separator and the sign. Whilst this number can be as
many digits as required the maximum field width is 20 characters. The inherent precison of the
"double" data type means that more than 14 digits will tend to show errors in the least significant
digits. The integer data types will never fill more than 10 decimal digits.

Following the width specifier should be the decimal specifier. This can only be a full-stop charac-
ter (.) as the comma (,) is used as the instance separator. Currently lcd does not access the locale
information to determine the correct separator and thedecimal−separatorparameter should be
used.

Following the decimal separator should be a number that determines how many places of decimals
to display. This entry is ignored in the case of integer formats.

All the above modifiers are optional, but to specify a decimal precision the decimal point must pre-
cede the precision. For example %.3f.
The default decimal precision is 4.

The numerical formats supported are:

%f %F (for example, %+09.3f) These create a floating-point type HAL pin. The example would
be displayed in a 9-character field, with 3 places of decimals, . as a decimal separator, padded to
the left with 0s and with a sign displayed for both positive and negative. Conversely a plain %f
would be 6 digits of decimal, variable format width, with a sign only shown for negative numbers.
both %f and %F create exactly the same format.

%i %d (For example %+ 4d) Creates a signed (s32) HAL pin. The example would display the
value at a fixed 4 characters, space padded, width including the + giving a range of +999 to −999.
%i and %d create identical output.

%u (for example %08u) Creates an unsigned (u32) HAL pin. The example would be a fixed 8
characters wide, padded with zeros.

%x, %X Creates an unsigned (u32) HAL pin and displays the value in Hexadecimal. Both%x
and %X display capital letters for digits ABCDEF. A width may be specified, though the u32 HAL
type is only 8 hex digits wide.

LinuxCNC Documentation 2012-09-17 251

LCD(9) HAL Component LCD(9)

%o Creates an unsigned (u32) pin and displays the value in Octal.

%c Creates a u32 HAL pin and displays the character corresponding to the value of the pin. Val-
ues less than 32 (space) are suppressed. A width specifier may be used, for example %20c might
be used to create a complete line of one character.

%b This specifier has no equivalent in printf. It creates a bit (boolean) type HAL pin. The b
should be followed by two characters and the display will show the first of these when the pin is
true, and the second when false. Note that the characters follow, not precede the "b", unlike the
case with other formats. The characters may be "escaped" Hex values. For example "%b\FF " will
display a solid black block if true, and a space if false and "%b\7F\7E" would display right-arrow
for false and left-arrow for true. An unexpected value of ’E’ indicates a formatting error.

PagesThe page separator is the "|" (pipe) character. (if the actual character is needed then \7C may
be used). A "Page" in this context refers to a separate format which may be displayed on the same
display.

InstancesThe instance separator is the comma. This creates a completely separate lcd instance,
for example to drive a second lcd display on the second 7i73. The use of comma to separate
instances is built in to the modparam reading code so not even escaped commas "\," can be used. A
comma may be displayed by using the \2C sequence.

AUTHOR
Andy Pugh

LICENSE
GPL

252 2012-09-17 LinuxCNC Documentation

LIMIT1(9) HAL Component LIMIT1(9)

NAME
limit1 − Limit the output signal to fall between min and max

SYNOPSIS
loadrt limit1 [count= N|names=name1[,name2...]]

FUNCTIONS
limit1.N (requires a floating-point thread)

PINS
limit1.N.in float in
limit1.N.out float out

PARAMETERS
limit1.N.min float rw (default:-1e20)
limit1.N.max float rw (default:1e20)

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 253

LIMIT2(9) HAL Component LIMIT2(9)

NAME
limit2 − Limit the output signal to fall between min and max and limit its slew rate to less than maxv per
second. Whenthe signal is a position, this means that position and velocity are limited.

SYNOPSIS
loadrt limit2 [count= N|names=name1[,name2...]]

FUNCTIONS
limit2.N (requires a floating-point thread)

PINS
limit2.N.in float in
limit2.N.out float out
limit2.N.load bit in

When TRUE, immediately setout to in, ignoring maxv

PARAMETERS
limit2.N.min float rw (default:-1e20)
limit2.N.max float rw (default:1e20)
limit2.N.maxv float rw (default:1e20)

LICENSE
GPL

254 2021-01-22 LinuxCNC Documentation

LIMIT3(9) HAL Component LIMIT3(9)

NAME
limit3 − Follow input signal while obeying limits

SYNOPSIS
Limit the output signal to fall between min and max, limit its slew rate to less than maxv per second, and
limit its second derivative to less than maxa per second squared. When the signal is a position, this means
that the position, velocity, and acceleration are limited.

FUNCTIONS
limit3.N (requires a floating-point thread)

PINS
limit3.N.in float in
limit3.N.out float out
limit3.N.load bit in (default:0)

When TRUE, immediately setout to in, ignoring maxv and maxa

limit3.N.min float in (default:-1e20)
limit3.N.max float in (default:1e20)
limit3.N.maxv float in (default:1e20)
limit3.N.maxafloat in (default:1e20)
limit3.N.smooth-stepsu32 in (default:2)

Smooth out acceleration this many periods before reaching input or max/min limit. Higher values
avoid oscillation, but will accelerate slightly more slowly.

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 255

LINCURVE(9) HAL Component LINCURVE(9)

NAME
lincurve − one-dimensional lookup table

SYNOPSIS
loadrt lincur ve [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
This component can be used to map any floating-point input to a floating-point output. Typical uses would
include linearisation of thermocouples, defining PID gains that vary with external factors or to substitute for
any mathematical function where absolute accuracy is not required.

The component can be thought of as a 2-dimensional graph of points in (x,y) space joined by straight lines.
The input value is located on the x axis, followed up until it touches the line, and the output of the compo-
nent is set to the corresponding y-value.

The (x,y) points are defined by the x-val-NN and y-val-NN parameters which need to be set in the HAL file
using "setp" commands.

The maximum number if (x,y) points supported is 16.

For input values less than the x-val-00 breakpoint the y-val-00 is returned.For x greater than the largest x-
val-NN the yval corresponding to x-max is returned (ie, no extrapolation is performed.)

Sample usage: loadrt lincurve count=3 personality=4,4,4 for a set of three 4-element graphs.

FUNCTIONS
lincur ve.N (requires a floating-point thread)

PINS
lincur ve.N.in float in

The input value

lincur ve.N.out float out
The output value

lincur ve.N.out-io float io
The output value, compatible with PID gains

PARAMETERS
lincur ve.N.x-val-MM float rw (MM=00..personality)

axis breakpoints

lincur ve.N.y-val-MM float rw (MM=00..personality)
output values to be interpolated

AUTHOR
Andy Pugh

LICENSE
GPL

256 2021-01-22 LinuxCNC Documentation

LOGIC(9) HAL Component LOGIC(9)

NAME
logic − LinuxCNC HAL component providing configurable logic functions

SYNOPSIS
loadrt logic [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
General ‘logic function’ component. Can perform ‘and’, ‘or’ and ‘xor’ of up to 16 inputs.

Determine the proper value for ‘personality’ by adding the inputs and outputs then convert to hex:

• The number of input pins, usually from 2 to 16

• 256 (0x100) if the ‘and’ output is desired

• 512 (0x200) if the ‘or’ output is desired

• 1024 (0x400) if the ‘xor’ (exclusive or) output is desired

Outputs can be combined, for example 2 + 256 + 1024 = 1282 converted to hex would be 0x502 and would
have two inputs and have both ‘xor’ and ‘and’ outputs.

FUNCTIONS
logic.N

PINS
logic.N.in-MM bit in (MM=00..personality & 0xff)
logic.N.and bit out [if personality & 0x100]
logic.N.or bit out [if personality & 0x200]
logic.N.xor bit out [if personality & 0x400]

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 257

LOWPASS(9) HAL Component LOWPASS(9)

NAME
lowpass − Low-pass filter

SYNOPSIS
loadrt lowpass [count=N|names=name1[,name2...]]

FUNCTIONS
lowpass.N (requires a floating-point thread)

PINS
lowpass.N.in float in
lowpass.N.out float out

out += (in - out) * gain

lowpass.N.load bit in
When TRUE, copyin to out instead of applying the filter equation.

PARAMETERS
lowpass.N.gain float rw

NOTES
gain pin setting

The digital filter implemented is equivalent to a unity-gain continuous-time single-pole low-pass filter that
is preceded by a zero-order-hold and sampled at a fixed period.For a pole at-a (radians/seconds) the corre-
sponding continuous-time lowpass filter LaPlace transfer function is:

H(s) = a/(s + a)

For a sampling periodT (seconds), the gain for this Hal lowpass component is:

gain = 1 - eˆ(-a * T)

e = 2.71828 https://en.wikipedia.org/wiki/E_(mathematical_constant)

Examples:
T = 0.001 seconds (typical servo thread period)
a = (2*pi*100) (100Hzbandwith single pole)

gain = 0.466

T = 0.001 seconds (typical servo thread period)
a = (2*pi*10) (10Hzbandwith single pole)

gain = 0.0609

T = 0.001 seconds (typical servo thread period)
a = (2*pi*1) (1Hz bandwith single pole)

gain = 0.0063

LICENSE
GPL

258 2021-01-22 LinuxCNC Documentation

LUT5(9) HAL Component LUT5(9)

NAME
lut5 − Arbitrary 5-input logic function based on a look-up table

SYNOPSIS
loadrt lut5 [count=N|names=name1[,name2...]]

DESCRIPTION
lut5 constructs a logic function with up to 5 inputs using alook-up table. The value forfunction can be
determined by writing the truth table, and computing the sum ofall theweightsfor which the output value
would be TRUE. Theweights are hexadecimal not decimal so hexadecimal math must be used to sum the
weights. A wiki page has a calculator to assist in computing the proper value for function.

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?Lut5

Note that LUT5 will generate any of the 4,294,967,296 logical functions of 5 inputs soAND, OR, NAND,
NOR, XOR and every other combinatorial function is possible.

Example Functions
A 5-inputandfunction is TRUE only when all the inputs are true, so the correct value forfunction is
0x80000000.

A 2-inputor function would be the sum of0x2+ 0x4+ 0x8, so the correct value forfunction is 0xe.

A 5-inputor function is TRUE whenever any of the inputs are true, so the correct value forfunction is
0xfffffffe . Because every weight except0x1 is true the function is the sum of every line except the first one.

A 2-inputxor function is TRUE whenever exactly one of the inputs is true, so the correct value forfunction
is 0x6. Only in-0 andin-1 should be connected to signals, because if any other bit isTRUE then the output
will be FALSE.

LinuxCNC Documentation 2021-01-22 259

LUT5(9) HAL Component LUT5(9)

Weights for each line of truth table
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Weight

0 0 0 0 0 0x1
0 0 0 0 1 0x2
0 0 0 1 0 0x4
0 0 0 1 1 0x8
0 0 1 0 0 0x10
0 0 1 0 1 0x20
0 0 1 1 0 0x40
0 0 1 1 1 0x80
0 1 0 0 0 0x100
0 1 0 0 1 0x200
0 1 0 1 0 0x400
0 1 0 1 1 0x800
0 1 1 0 0 0x1000
0 1 1 0 1 0x2000
0 1 1 1 0 0x4000
0 1 1 1 1 0x8000
1 0 0 0 0 0x10000
1 0 0 0 1 0x20000
1 0 0 1 0 0x40000
1 0 0 1 1 0x80000
1 0 1 0 0 0x100000
1 0 1 0 1 0x200000
1 0 1 1 0 0x400000
1 0 1 1 1 0x800000
1 1 0 0 0 0x1000000
1 1 0 0 1 0x2000000
1 1 0 1 0 0x4000000
1 1 0 1 1 0x8000000
1 1 1 0 0 0x10000000
1 1 1 0 1 0x20000000
1 1 1 1 0 0x40000000
1 1 1 1 1 0x80000000

FUNCTIONS
lut5.N

PINS
lut5.N.in-0 bit in
lut5.N.in-1 bit in
lut5.N.in-2 bit in
lut5.N.in-3 bit in
lut5.N.in-4 bit in
lut5.N.out bit out

PARAMETERS
lut5.N.function u32 rw

LICENSE
GPL

260 2021-01-22 LinuxCNC Documentation

MAJ3(9) HAL Component MAJ3(9)

NAME
maj3 − Compute the majority of 3 inputs

SYNOPSIS
loadrt maj3 [count=N|names=name1[,name2...]]

FUNCTIONS
maj3.N

PINS
maj3.N.in1 bit in
maj3.N.in2 bit in
maj3.N.in3 bit in
maj3.N.out bit out

PARAMETERS
maj3.N.invert bit rw

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 261

MATCH8(9) HAL Component MATCH8(9)

NAME
match8 − 8-bit binary match detector

SYNOPSIS
loadrt match8 [count=N|names=name1[,name2...]]

FUNCTIONS
match8.N

PINS
match8.N.in bit in (default:TRUE)

cascade input - if false, output is false regardless of other inputs

match8.N.a0bit in
match8.N.a1bit in
match8.N.a2bit in
match8.N.a3bit in
match8.N.a4bit in
match8.N.a5bit in
match8.N.a6bit in
match8.N.a7bit in
match8.N.b0 bit in
match8.N.b1 bit in
match8.N.b2 bit in
match8.N.b3 bit in
match8.N.b4 bit in
match8.N.b5 bit in
match8.N.b6 bit in
match8.N.b7 bit in
match8.N.out bit out

true only if in is true and a[m] matches b[m] for m = 0 thru 7

LICENSE
GPL

262 2021-01-22 LinuxCNC Documentation

MATRIX_KB(9) HAL Component MATRIX_KB(9)

NAME
matrix_kb − Convert integers to HAL pins. Optionally scan a matrix of IO ports to create those integers.

SYNOPSIS
loadrt matrix_kb config=RxCs,RxCs... names=name1,name2...

Creates a component configured for R rows and N columns of matrix keyboard.

If the s option is specified then a set of output rows will be cyclically toggled, and a set of input columns
will be scanned.

Thenamesparameter is optional, but if used then the HAL pins and functions will use the specified names
rather than the default ones. This can be useful for readbility and 2-pass HAL parsing.

There must be no spaces in the parameter lists.

DESCRIPTION
This component was written to convert matrix keyboard scancodes into HAL pins. However, it might also
find uses in converting integers from 0 to N into N HAL pins.

The component can work in two ways, and the HAL pins created vary according to mode.

In the default mode the component expects to be given a scan code from a separate driver but could be any
integer from any source. Most typically this will be the keypad scancode from a Mesa 7i73. The default
codes for keyup and keydown are based on the Mesa 7i73 specification with 0x40 indicating a keydown and
0x80 a keyup event.
If using the 7i73 it is important to match the keypad size jumpers with the HAL component. Valid configs
for the 7i73 are 4x8 and 8x8. Note that the component will only work properly with the version 12 (0xC)
7i73 firmware. The firmware version is visible on the component parameters in HAL.

In the optional scan-generation mode thematrix_kb.N.keycodepin changes to an output pin and a set of
output row pins and input column pins are created. These need to be connected to physical inputs and out-
puts to scan the matrix and return values to HAL. Note thenegative−logic parameter described below, this
will need to be set on the most common forms of inputs which float high when unconnected.

In both modes a set of HAL output pins are created corresponding to each node of the matrix.

FUNCTIONS
matrix_kb.N

Perform all requested functions. Should be run in a slow thread for effective debouncing.

PINS
matrix_kb.N.col−CC−in bit in

The input pin corresponding to column C.

matrix_kb.N.key.rRcC bit out
The pin corresponding to the key at row R column C of the matrix.

matrix_kb.N.keycodeunsigned in or out depending on mode.
This pin should be connected to the scancode generator if hardware such as a 7i73 is being used.
In this mode it is an input pin. In the internally-generated scanning mode this pin is an output, but
will not normally be connected.matrix_kb.N.row−RR−out bit out The row scan drive
pins.Should be connected to external hardware pins connected to the keypad.

LinuxCNC Documentation 2013-03-24 263

MATRIX_KB(9) HAL Component MATRIX_KB(9)

PARAMETERS
matrix_kb.N.key_rollover unsigned r/w (default 2)

With most matrix keyboards the scancodes are only unambiguous with 1 or 2 keys pressed. With
more keys pressed phantom keystrokes can appear. Some keyboards are optimised to reduce this
problem, and some have internal diodes so that any number of keys may be pressed simultane-
ously. Increase the value of this parameter if such a keyboard is connected, or if phantom key-
strokes are more acceptable than only two keys being active at one time.

matrix_kb.N.negative−logic bit r/w (default 1) only in scan mode
When no keys are pressed a typical digital input will float high. The input will then be pulled low
by the keypad when the corresponding poll line is low. Set this parameter to 0 if the IO in use
requires one row at a time to be high, and a high input corresponds to a button press.

264 2013-03-24 LinuxCNC Documentation

MESSAGE(9) HAL Component MESSAGE(9)

NAME
message − Display a message

SYNOPSIS
loadrt message [count=N|names=name1[,name2...]] [messages=N]

messages
The messages to display. These should be listed, comma-delimited, inside a single set of
quotes. See the "Description" section for an example. Ifthere are more messages than
"count" or "names" then the excess will be ignored. If there are fewer messages than "count"
or "names" then an error will be raised and the component will not load.

DESCRIPTION
Allows HAL pins to trigger a message. Example hal commands:
loadrt message names=oillow,oilpressure,inverterfail messages="Slideway oil low,No oil pressure,Spindle
inverter fault"
addf oillow servo-thread
addf oilpressure servo-thread
addf inverterfail servo-thread

setp oillow.edge 0 #this pin should be active low
net no-oil classicladder.0.out-21 oillow.trigger
net no-pressure classicladder.0.out-22 oilpressure.trigger
net no-inverter classicladder.0.out-23 inverterfail.trigger

When any pin goes active, the corresponding message will be displayed.

FUNCTIONS
message.N

Display a message

PINS
message.N.trigger bit in (default:FALSE)

signal that triggers the message

message.N.force bit in (default:FALSE)
A FALSE->TRUE transition forces the message to be displayed again if the trigger is active

PARAMETERS
message.N.edgebit rw (default:TRUE)

Selects the desired edge: TRUE means falling, FALSE means rising

LICENSE
GPL v2

LinuxCNC Documentation 2021-01-22 265

MINMAX(9) HAL Component MINMAX(9)

NAME
minmax − Track the minimum and maximum values of the input to the outputs

SYNOPSIS
loadrt minmax [count=N|names=name1[,name2...]]

FUNCTIONS
minmax.N (requires a floating-point thread)

PINS
minmax.N.in float in
minmax.N.resetbit in

When reset is asserted, ’in’ is copied to the outputs

minmax.N.max float out
minmax.N.min float out

LICENSE
GPL

266 2021-01-22 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

NAME
motion − accepts NML motion commands, interacts with HAL in realtime

SYNOPSIS
loadrt motmod [base_period_nsec=period] [base_thread_fp=0 or 1] [servo_period_nsec=period]
[traj_period_nsec=period] [num_joints=[0-9]] ([num_dio=[1-64]] [num_aio=[1-64]])

DESCRIPTION
By default, the base thread does not support floating point. Software stepping, software encoder counting,
and software pwm do not use floating point.base_thread_fpcan be used to enable floating point in the
base thread (for example for brushless DC motor control).

These pins and parameters are created by the realtimemotmod module. This module provides a HAL inter-
face for LinuxCNC’s motion planner. Basicallymotmod takes in a list of waypoints and generates a nice
blended and constraint-limited stream of joint positions to be fed to the motor drives.

Optionally the number of Digital I/O is set with num_dio. The number of Analog I/O is set with num_aio.
The default is 4 each.

Pin names starting with "axis" are actually joint values, but the pins and parameters are still called "axis.N".
They are read and updated by the motion-controller function.

PINS
axis.N.amp−enable−outOUT BIT

TRUE if the amplifier for this joint should be enabled

axis.N.amp−fault−in IN BIT
Should be driven TRUE if an external fault is detected with the amplifier for this joint

axis.N.home−sw−inIN BIT
Should be driven TRUE if the home switch for this joint is closed

axis.N.homing OUT BIT
TRUE if the joint is currently homing

axis.N.index−enableIO BIT
Should be attached to the index−enable pin of the joint’s encoder to enable homing to index pulse

axis.N.is−unlockedIN BIT
If the axis is a locked rotary the unlocked sensor should be connected to this pin

axis.N.jog−countsIN S32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

axis.N.jog−enableIN BIT
When TRUE (and in manual mode), any change to "jog−counts" will result in motion. When false,
"jog−counts" is ignored.

LinuxCNC Documentation 2007-08-25 267

MOTION(9) HAL Component MOTION(9)

axis.N.jog−scaleIN FLOAT
Sets the distance moved for each count on "jog−counts", in machine units.

axis.N.jog−vel−modeIN BIT
When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog−scale units for each count, regardless of how long that might take. When TRUE, the wheel
operates in velocity mode - motion stops when the wheel stops, even if that means the commanded
motion is not completed.

axis.N.joint−pos−cmdOUT FLOAT
The joint (as opposed to motor) commanded position. There may be several offsets between the
joint and motor coordinates: backlash compensation, screw error compensation, and home offsets.

axis.N.joint−pos−fb OUT FLOAT
The joint feedback position. This value is computed from the actual motor position minus joint
offsets. Useful for machine visualization.

axis.N.motor−pos−cmdOUT FLOAT
The commanded position for this joint.

axis.N.motor−pos−fb IN FLOAT
The actual position for this joint.

axis.N.neg−lim−sw−inIN BIT
Should be driven TRUE if the negative limit switch for this joint is tripped.

axis.N.pos−lim−sw−inIN BIT
Should be driven TRUE if the positive limit switch for this joint is tripped.

axis.N.unlock OUT BIT
TRUE if the axis is a locked rotary and a move is commanded.

motion.adaptive−feedIN FLOAT
When adaptive feed is enabled with M52 P1, the commanded velocity is multiplied by this value.
This effect is multiplicative with the NML-level feed override value and motion.feed−hold.

motion.analog−in−NN IN FLOAT
These pins are used by M66 Enn wait-for-input mode.

motion.analog−out−NN OUT FLOAT
These pins are used by M67-68.

motion.coord−error OUT BIT
TRUE when motion has encountered an error, such as exceeding a soft limit

motion.coord−modeOUT BIT
TRUE when motion is in "coordinated mode", as opposed to "teleop mode"

268 2007-08-25 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

motion.current−vel OUT FLOAT
Current cartesian velocity

motion.digital−in−NN IN BIT
These pins are used by M66 Pnn wait-for-input mode.

motion.digital−out−NN OUT BIT
These pins are controlled by the M62 through M65 words.

motion.distance−to−goOUT FLOAT
Distance remaining in the current move

motion.enableIN BIT
If this bit is driven FALSE, motion stops, the machine is placed in the "machine off" state, and a
message is displayed for the operator. For normal motion, drive this bit TRUE.

motion.feed−holdIN BIT
When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

motion.feed−inhibit IN BIT
When this pin is TRUE, machine motion is inhibited (this includes jogs, programmed feeds, and
programmed rapids, aka traverse moves).

If the machine is performing a spindle synchronized move when this pin goes TRUE, the spindle
synchronized motion will finish, and any following moves will be inhibited (this is to prevent dam-
age to the machine, the tool, or the work piece).

If the machine is in the middle of a (non-spindle synchronized) move when this pin goes TRUE,
the machine will decelerate to a stop at the maximum allowed acceleration rate.

Motion resumes when this pin goes FALSE.

motion.in−position OUT BIT
TRUE if the machine is in position (ie, not currently moving towards the commanded position).

motion.probe−input IN BIT
G38.n uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

motion.program−line OUT S32
The current program line while executing. Zero if not running or between lines while single step-
ping.

motion.requested−velOUT FLOAT
The current requested velocity in user units per second. This value is the F-word setting from the
G-code file, possibly reduced to accomodate machine velocity and acceleration limits. The value
on this pin does not reflect the feed override or any other adjustments.

LinuxCNC Documentation 2007-08-25 269

MOTION(9) HAL Component MOTION(9)

motion.spindle−at−speedIN BIT
Motion will pause until this pin is TRUE, under the following conditions: before the first feed
move after each spindle start or speed change; before the start of every chain of spindle-synchro-
nized moves; and if in CSS mode, at every rapid->feed transition.

motion.spindle−brakeOUT BIT
TRUE when the spindle brake should be applied

motion.spindle−forward OUT BIT
TRUE when the spindle should rotate forward

motion.spindle−index−enableI/O BIT
For correct operation of spindle synchronized moves, this signal must be hooked to the
index−enable pin of the spindle encoder.

motion.spindle−inhibit IN BIT
When TRUE, the spindle speed is set and held to 0.

motion.spindle−onOUT BIT
TRUE when spindle should rotate

motion.spindle−rev erseOUT BIT
TRUE when the spindle should rotate backward

motion.spindle−revs IN FLOAT
For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder.

motion.spindle−speed−inIN FLOAT
Actual spindle speed feedback in revolutions per second; used for G96 (constant surface speed)
and G95 (feed per revolution) modes.

motion.spindle−speed−outOUT FLOAT
Desired spindle speed in rotations per minute

motion.spindle−speed−out−absOUT FLOAT
Desired spindle speed in rotations per minute, always positive reg ardless of spindle direction.

motion.spindle−speed−out−rpsOUT float
Desired spindle speed in rotations per second

motion.spindle−speed−out−rps−absOUT float
Desired spindle speed in rotations per second, always positive reg ardless of spindle direction.

motion.spindle−orient−angleOUT FLOAT
Desired spindle orientation for M19. Value of the M19 R word parameter plus the value of the
[RS274NGC]ORIENT_OFFSET ini parameter.

270 2007-08-25 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

motion.spindle−orient−modeOUT BIT
Desired spindle rotation mode. Reflects M19 P parameter word.

motion.spindle−orient OUT BIT
Indicates start of spindle orient cycle. Set by M19. Cleared by any of M3,M4,M5. If spindle−ori-
ent−fault is not zero during spindle−orient true, the M19 command fails with an error message.

motion.spindle−is−orientedIN BIT
Acknowledge pin for spindle−orient. Completes orient cycle. If spindle−orient was true when
spindle−is−oriented was asserted, the spindle−orient pin is cleared and the spindle−locked pin is
asserted. Also, the spindle−brake pin is asserted.

motion.spindle−orient−fault IN S32
Fault code input for orient cycle. Any value other than zero will cause the orient cycle to abort.

motion.spindle−lockedOUT BIT
Spindle orient complete pin. Cleared by any of M3,M4,M5.

motion.teleop−modeOUT bit

motion.tooloffset.xOUT FLOAT

motion.tooloffset.yOUT FLOAT

motion.tooloffset.zOUT FLOAT

motion.tooloffset.aOUT FLOAT

motion.tooloffset.bOUT FLOAT

motion.tooloffset.cOUT FLOAT

motion.tooloffset.uOUT FLOAT

motion.tooloffset.vOUT FLOAT

motion.tooloffset.wOUT FLOAT
Current tool offset in all 9 axes.

DEBUGGING PINS
Many of the pins below serve as debugging aids, and are subject to change or removal at any time.

axis.N.activeOUT BIT
TRUE when this joint is active

axis.N.backlash−corr OUT FLOAT
Backlash or screw compensation raw value

LinuxCNC Documentation 2007-08-25 271

MOTION(9) HAL Component MOTION(9)

axis.N.backlash−filt OUT FLOAT
Backlash or screw compensation filtered value (respecting motion limits)

axis.N.backlash−velOUT FLOAT
Backlash or screw compensation velocity

axis.N.coarse−pos−cmdOUT FLOAT

axis.N.error OUT BIT
TRUE when this joint has encountered an error, such as a limit switch closing

axis.N.f−error OUT FLOAT
The actual following error

axis.N.f−error−lim OUT FLOAT
The following error limit

axis.N.f−errored OUT BIT
TRUE when this joint has exceeded the following error limit

axis.N.faulted OUT BIT

axis.N.free−pos−cmdOUT FLOAT
The "free planner" commanded position for this joint.

axis.N.free−tp−enableOUT BIT
TRUE when the "free planner" is enabled for this joint

axis.N.free−vel−lim OUT FLOAT
The velocity limit for the free planner

axis.N.homedOUT BIT
TRUE if the joint has been homed

axis.N.in−position OUT BIT
TRUE if the joint is using the "free planner" and has come to a stop

axis.N.joint−vel−cmd OUT FLOAT
The joint’s commanded velocity

axis.N.kb−jog−activeOUT BIT

axis.N.neg−hard−limit OUT BIT
The negative hard limit for the joint

272 2007-08-25 LinuxCNC Documentation

MOTION(9) HAL Component MOTION(9)

axis.N.pos−hard−limit OUT BIT
The positive hard limit for the joint

axis.N.wheel−jog−activeOUT BIT

motion.motion−enabledOUT BIT

motion.motion−type OUT S32
These values are from src/emc/nml_intf/motion_types.h

0: Idle (no motion)

1: Traverse

2: Linear feed

3: Arc feed

4: Tool change

5: Probing

6: Rotary axis indexing

motion.on−soft−limit OUT BIT

motion.program−line OUT S32

motion.teleop−modeOUT BIT
TRUE when motion is in "teleop mode", as opposed to "coordinated mode"

PARAMETERS
Many of the parameters serve as debugging aids, and are subject to change or removal at any time.

motion−command−handler.time

motion−command−handler.tmax

motion−controller.time

motion−controller.tmax
Show information about the execution time of these HAL functions in CPU cycles

motion.debug−*
These values are used for debugging purposes.

motion.servo.last−period
The number of CPU cycles between invocations of the servo thread. Typically, this number
divided by the CPU speed gives the time in seconds, and can be used to determine whether the
realtime motion controller is meeting its timing constraints

LinuxCNC Documentation 2007-08-25 273

MOTION(9) HAL Component MOTION(9)

FUNCTIONS
Generally, these functions are both added to the servo-thread in the order shown.

motion−command−handler
Processes motion commands coming from user space

motion−controller
Runs the LinuxCNC motion controller

BUGS
This manual page is horribly incomplete.

SEE ALSO
iocontrol(1)

274 2007-08-25 LinuxCNC Documentation

MOVEOFF(9) HAL Component MOVEOFF(9)

NAME
moveoff − Component for Hal-only offsets

SYNOPSIS
loadrt moveoff [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
The moveoff component is used to offset joint positions using custom Hal connections. Implementing an
offset-while-program-is-paused functionality is supported with appropriate connections for the input pins.
Nine joints are supported.

The axis offset pin values (offset-in-M) are continuously applied (respecting limits on value, velocity, and
acceleration) to the output pins (offset-current-M, pos-plusoffset-M, fb-minusoffset-M) when both enabling
input pins (apply-offsets and move-enable) are TRUE. Thetwo enabling inputs are anded internally. A
warning pin is set and a message issued if the apply-offsets pin is deasserted while offsets are applied. The
warning pin remains TRUE until the offsets are removed or the apply-offsets pin is set.

Typically, the move-enable pin is connected to external controls and the apply-offsets pin is connected to
halui.program.is-paused (for offsets only while paused) or set to TRUE (for continuously applied offsets).

Applied offsets areautomatically returned to zero (respecting limits) when either of the enabling inputs is
deactivated. Thezero value tolerance is specified by the epsilon input pin value.

Waypoints are recorded when the moveoff componenent is enabled.Waypoints are managed with the way-
point-sample-secs and waypoint-threshold pins. When the backtrack-enable pin is TRUE, the auto-return
path follows the recorded waypoints. Whenthe memory available for waypoints is exhausted, offsets are
frozen and the waypoint-limit pin is asserted. This restriction applies regardless of the state of the back-
track-enable pin. An enabling pin must be deasserted to allow a return to the original (non-offset position).

Backtracking through waypoints results inslowermovement rates as the moves are point-to-point respect-
ing velocity and acceleration settings. The velocity and acceleration limit pins can be managed dynami-
cally to control offsets at all times.

When backtrack-enable is FALSE, the auto-return move is NOT coordinated, each axis returns to zero at its
own rate. Ifa controlled path is wanted in this condition, each axis should be manually returned to zero
before deasserting an enabling pin.

The waypoint-sample-secs, waypoint-threshold, and epsilon pins are evaluated only when the component is
idle.

The offsets-applied output pin is provided to indicate the current state to a GUI so that program resumption
can be managed. If the offset(s) are non-zero when the apply-offsets pin is deasserted (for example when
resuming a program when offsetting during a pause), offsets are returned to zero (respecting limits) and an
Error message is issued.

Caution: If offsets are enabled and applied and the machine is turned off for any reason, anyexternal Hal
logic that manages the enabling pins and the offset-in-M inputs is responsible for their state when the
machine is subsequently turned on again.

This Hal-only means of offsetting is typically not known to LinuxCNC nor available in GUI preview dis-
plays. No protection is provided for offset moves that exceed soft limits managed by LinuxCNC. Since
soft limits are not honored, an offset move may encounter hard limits (orCRASH if there are no limit
switches). Useof the offset-min-M and offset-max-M inputs to limit travel is recommended. Triggering a
hard limit will turn off the machine -- seeCaution above.

The offset-in-M values may be set with inifile settings, controlled by a GUI, or managed by other Hal

LinuxCNC Documentation 2021-01-22 275

MOVEOFF(9) HAL Component MOVEOFF(9)

components and connections. Fixed values may be appropriate in simple cases where the direction and
amount of offset is well-defined but a control method is required to deactivate an enabling pin in order to
return offsets to zero. GUIs may provide means for users to set, increment, decrement, and accumulate off-
set values for each axis and may set offset-in-M values to zero before deasserting an enabling pin.

The default values for accel, vel, min, max, epsilon, waypoint-sample-secs, and waypoint-threshold may
not be suitable for any particular application. This Hal component is unaware of limits enforced elsewhere
by LinuxCNC. Users should test usage in a simulator application and understand all hazardsbeforeuse on
hardware.

The module personality item sets the number of joints supported (default==3, maximum is 9).

Use of the names= option for naming isrequired for compatibility with the gui provided as scripts/move-
off_gui:
loadrt moveoff names=mv personality=number_of_joints

man moveoff_gui for more information

EXAMPLES
Example simulator configs that demonstrate the moveoff component and a simple gui (scripts/moveoff_gui)
are located in configs/sim/axis/moveoff. The axis gui is used for the demonstrations and the configs can be
adapted for other guis like touchy and gscreen. An example with the touchy gui is provided in con-
figs/sim/touchy/ngcgui/.

FUNCTIONS
moveoff.N.read-inputs (requires a floating-point thread)

Read all inputs

moveoff.N.write-outputs (requires a floating-point thread)
Write computed offset outputs (offset-current-M, pos-plusoffset-M, fb-minusoffset-M). All other
outputs are updated by read-inputs()

PINS
moveoff.N.power-onbit in

Connect to motion.motion-enabled

moveoff.N.move-enablebit in
Enable offsets (Enabling requires apply-offset TRUE also)

moveoff.N.apply-offsetsbit in
Enable offsets (Enabling requires move-enable TRUE also)

moveoff.N.backtrack-enablebit in (default:1)
Enable backtrack on auto-return

moveoff.N.epsilonfloat in (default:0.0005)
When enabling pins are deactivated, return to un-offsetted position within epsilon units.Warning:
values that are too small in value may cause overshoot, Aminimum value of 0.0001 issilently
enforced

moveoff.N.waypoint-threshold float in (default:0.02)
Minimum distance (in a single axis) for a new waypoint

moveoff.N.waypoint-sample-secsfloat in (default:0.02)
Minimum sample interval (in seconds) for a new waypoint

276 2021-01-22 LinuxCNC Documentation

MOVEOFF(9) HAL Component MOVEOFF(9)

moveoff.N.warning bit out
Set TRUE if apply-offsets is deasserted while offset-applied is TRUE

moveoff.N.offset-appliedbit out
TRUE if one or more offsets are applied

moveoff.N.waypoint-limit bit out (default:0)
Indicates waypoint limit reached (motion ceases), an enabling pin must be deasserted to initiate
return to original position

moveoff.N.waypoint-ct s32 out
Waypoint count (for debugging)

moveoff.N.waypoint-percent-useds32 out
Percent of available waypoints used

moveoff.N.offset-in-M float in (M=0..personality)
Joint offset input value

moveoff.N.pos-M float in (M=0..personality)
Joint position (typ: axis.0.motor-pos-cmd)

moveoff.N.fb-M float in (M=0..personality)
Joint feedback (typ from encoder and input to pid controller (pid.feedback))

moveoff.N.offset-current-M float out (M=0..personality)
Joint offset current value

moveoff.N.pos-plusoffset-M float out (M=0..personality)
Computed joint position plus offset (typically connect to pid command input)

moveoff.N.fb-minusoffset-M float out (M=0..personality)
Computed Joint feedback minus offset (typically connected to axis.0.motor-pos-fb

moveoff.N.offset-vel-M float in (M=0..personality) (default:10)
Joint offset velocity limit

moveoff.N.offset-accel-M float in (M=0..personality) (default:100)
Joint offset acceleration limit

moveoff.N.offset-min-M float in (M=0..personality) (default:-1e20)
Minimum limit for applied joint offset (typ negative)

moveoff.N.offset-max-M float in (M=0..personality) (default:1e20)
Maximum limit for applied offset (typ positive)

moveoff.N.dbg-waypoint-limit-test bit in
Debug input to test with limited number of waypoints

moveoff.N.dbg-states32 out
Debug output for current state of state machine

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 277

MULT2(9) HAL Component MULT2(9)

NAME
mult2 − Product of two inputs

SYNOPSIS
loadrt mult2 [count=N|names=name1[,name2...]]

FUNCTIONS
mult2.N (requires a floating-point thread)

PINS
mult2.N.in0 float in
mult2.N.in1 float in
mult2.N.out float out

out = in0 * in1

LICENSE
GPL

278 2021-01-22 LinuxCNC Documentation

MULTICLICK(9) HAL Component MULTICLICK(9)

NAME
multiclick − Single-, double-, triple-, and quadruple-click detector

SYNOPSIS
loadrt multiclick [count= N|names=name1[,name2...]]

DESCRIPTION
A click is defined as a rising edge on the ’in’ pin, followed by the ’in’ pin being True for at most ’max-
hold-ns’ nanoseconds, followed by a falling edge.

A double-click is defined as two clicks, separated by at most ’max-space-ns’ nanoseconds with the ’in’ pin
in the False state.

I bet you can guess the definition of triple- and quadruple-click.

You probably want to run the input signal through a debounce component before feeding it to the multiclick
detector, if the input is at all noisy.

The ’*-click’ pins go high as soon as the input detects the correct number of clicks.

The ’*-click-only’ pins go high a short while after the click, after the click separator space timeout has
expired to show that no further click is coming. This is useful for triggering halui MDI commands.

FUNCTIONS
multiclick. N

Detect single-, double-, triple-, and quadruple-clicks

PINS
multiclick. N.in bit in

The input line, this is where we look for clicks.

multiclick. N.single-clickbit out
Goes high briefly when a single-click is detected on the ’in’ pin.

multiclick. N.single-click-onlybit out
Goes high briefly when a single-click is detected on the ’in’ pin and no second click followed it.

multiclick. N.double-click bit out
Goes high briefly when a double-click is detected on the ’in’ pin.

multiclick. N.double-click-only bit out
Goes high briefly when a double-click is detected on the ’in’ pin and no third click followed it.

multiclick. N.triple-click bit out
Goes high briefly when a triple-click is detected on the ’in’ pin.

multiclick. N.triple-click-only bit out
Goes high briefly when a triple-click is detected on the ’in’ pin and no fourth click followed it.

multiclick. N.quadruple-click bit out
Goes high briefly when a quadruple-click is detected on the ’in’ pin.

multiclick. N.quadruple-click-only bit out
Goes high briefly when a quadruple-click is detected on the ’in’ pin and no fifth click followed it.

multiclick. N.states32 out

PARAMETERS
multiclick. N.invert-input bit rw (default:FALSE)

If FALSE (the default), clicks start with rising edges. If TRUE, clicks start with falling edges.

LinuxCNC Documentation 2021-01-22 279

MULTICLICK(9) HAL Component MULTICLICK(9)

multiclick. N.max-hold-nsu32 rw (default:250000000)
If the input is held down longer than this, it’s not part of a multi-click. (Default 250,000,000 ns,
250 ms.)

multiclick. N.max-space-nsu32 rw (default:250000000)
If the input is released longer than this, it’s not part of a multi-click. (Default 250,000,000 ns, 250
ms.)

multiclick. N.output-hold-ns u32 rw (default:100000000)
Positive pulses on the output pins last this long. (Default 100,000,000 ns, 100 ms.)

LICENSE
GPL

280 2021-01-22 LinuxCNC Documentation

MULTISWITCH(9) HAL Component MULTISWITCH(9)

NAME
multiswitch − This component toggles between a specified number of output bits

SYNOPSIS
loadrt multiswitch personality=P [cfg=N]

cfg cfg should be a comma-separated list of sizes for example cfg=2,4,6 would create 3 instances
of 2, 4 and 6 bits respectively.
Ignore the "personality" parameter, that is auto-generated

FUNCTIONS
multiswitch.N (requires a floating-point thread)

PINS
multiswitch.N.up bit in (default:false)

Receives signal to toggle up

multiswitch.N.down bit in (default:false)
Receives signal to toggle down

multiswitch.N.bit-MM bit out (MM=00..personality) (default:false)
Output bits

PARAMETERS
multiswitch.N.top-position u32 rw

Number of positions

multiswitch.N.position s32 rw
Current state (may be set in the HAL)

AUTHOR
ArcEye schooner30@tiscali.co.uk / Andy Pugh andy@bodgesoc.org

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 281

MUX16(9) HAL Component MUX16(9)

NAME
mux16 − Select from one of sixteen input values

SYNOPSIS
loadrt mux16 [count=N|names=name1[,name2...]]

FUNCTIONS
mux16.N (requires a floating-point thread)

PINS
mux16.N.use-graycodebit in

This signifies the input will use Gray code instead of binary. Gray code is a good choice when
using physical switches because for each increment only one select input changes at a time.

mux16.N.suppress-no-inputbit in
This suppresses changing the output if all select lines are false. Thisstops unwanted jumps in out-
put between transitions of input.but make in00 unavaliable.

mux16.N.debounce-timefloat in
sets debouce time in seconds.eg. .10 = a tenth of a second input must be stable this long before
outputs changes. This helps to ignore ’noisy’ switches.

mux16.N.selM bit in (M=0..3)
Together, these determine whichinN value is copied toout.

mux16.N.out-f float out
mux16.N.out-ss32 out

Follows the value of one of theinN values according to the fourselvalues and whether use-gray-
code is active. The s32 value will be trunuated and limited to the max and min values of signed
values.

sel3=FALSE, sel2=FALSE, sel1=FALSE, sel0=FALSE
out follows in0

sel3=FALSE, sel2=FALSE, sel1=FALSE, sel0=TRUE
out follows in1

etc.

mux16.N.inMM float in (MM=00..15)
array of selectable outputs

PARAMETERS
mux16.N.elapsedfloat r

Current value of the internal debounce timer
for debugging.

mux16.N.selecteds32 r
Current value of the internal selection variable after conversion
for debugging

LICENSE
GPL

282 2021-01-22 LinuxCNC Documentation

MUX2(9) HAL Component MUX2(9)

NAME
mux2 − Select from one of two input values

SYNOPSIS
loadrt mux2 [count=N|names=name1[,name2...]]

FUNCTIONS
mux2.N (requires a floating-point thread)

PINS
mux2.N.selbit in
mux2.N.out float out

Follows the value of in0 if sel is FALSE, or in1 if sel is TRUE

mux2.N.in1 float in
mux2.N.in0 float in

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 283

MUX4(9) HAL Component MUX4(9)

NAME
mux4 − Select from one of four input values

SYNOPSIS
loadrt mux4 [count=N|names=name1[,name2...]]

FUNCTIONS
mux4.N (requires a floating-point thread)

PINS
mux4.N.sel0bit in
mux4.N.sel1bit in

Together, these determine whichinN value is copied toout.

mux4.N.out float out
Follows the value of one of theinN values according to the twoselvalues

sel1=FALSE, sel0=FALSE
out follows in0

sel1=FALSE, sel0=TRUE
out follows in1

sel1=TRUE, sel0=FALSE
out follows in2

sel1=TRUE, sel0=TRUE
out follows in3

mux4.N.in0 float in
mux4.N.in1 float in
mux4.N.in2 float in
mux4.N.in3 float in

LICENSE
GPL

284 2021-01-22 LinuxCNC Documentation

MUX8(9) HAL Component MUX8(9)

NAME
mux8 − Select from one of eight input values

SYNOPSIS
loadrt mux8 [count=N|names=name1[,name2...]]

FUNCTIONS
mux8.N (requires a floating-point thread)

PINS
mux8.N.sel0bit in
mux8.N.sel1bit in
mux8.N.sel2bit in

Together, these determine whichinN value is copied toout.

mux8.N.out float out
Follows the value of one of theinN values according to the threeselvalues

sel2=FALSE, sel1=FALSE, sel0=FALSE
out follows in0

sel2=FALSE, sel1=FALSE, sel0=TRUE
out follows in1

sel2=FALSE, sel1=TRUE, sel0=FALSE
out follows in2

sel2=FALSE, sel1=TRUE, sel0=TRUE
out follows in3

sel2=TRUE, sel1=FALSE, sel0=FALSE
out follows in4

sel2=TRUE, sel1=FALSE, sel0=TRUE
out follows in5

sel2=TRUE, sel1=TRUE, sel0=FALSE
out follows in6

sel2=TRUE, sel1=TRUE, sel0=TRUE
out follows in7

mux8.N.in0 float in
mux8.N.in1 float in
mux8.N.in2 float in
mux8.N.in3 float in
mux8.N.in4 float in
mux8.N.in5 float in
mux8.N.in6 float in
mux8.N.in7 float in

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 285

MUX_GENERIC(9) HAL Component MUX_GENERIC(9)

NAME
mux_generic − choose one from several input values

SYNOPSIS
loadrt mux_generic config="bb8,fu12...."

FUNCTIONS
mux−gen.NN Depending on the data types can run in either a floating

point or non-floating point thread.

PINS
mux−gen.NN.suppress−no−inputbit in

This suppresses changing the output if all select lines are false. Thisstops unwanted jumps in out-
put between transitions of input.but makes in00 unavaliable.

mux−gen.NN.debounce−usunsigned in
sets debouce time in microseconds.eg. 100000 = a tenth of a second. The selection inputs must
be stable this long before the output changes. This helps to ignore ’noisy’ switches.

mux−gen.NN.sel−bitMM bit in (M=0..N)

mux−gen.NN.sel−int unsigned in
Together, these determine whichinN value is copied tooutput. The bit pins are interpreted as
binary bits, and the result is simply added on to the integer pin input. It is expected that either one
or the other would normally be used. Hower, the possibility exists to use a higher-order bit to
"shift" the values set by the integer pin. The sel−bit pins are only created when the size of the
mux_gen component is an integer power of two. Thiscomponent (unlike mux16) does not offer
the option of decoding gray-code, however the same effect can be achieved by arranging the order
of the input values to suit.

mux−gen.NN.out−[bit/float/s32/u32]variable-type out
Follows the value of one of theinN values according to the selection bits and/or the selection num-
ber. Values will be converted/truncated according to standard C rules. This means, for example
that a float input greater than 2147483647 will give an S32 output of −2147483648.

mux−gen.NN.in−[bit/float/s32/u32]−MM variable-type in
The possible output values that are selected by the selection pins.

PARAMETERS
mux−gen.N.elapsedfloat r

Current value of the internal debounce timer for debugging.

mux−gen.N.selecteds32 r
Current value of the internal selection variable after conversion for debugging. Possibly useful for
setting up gray-code switches.

DESCRIPTION
This component is a more general version of the other multiplexing components. It allows the creation of
arbitrary-size multiplexers (up to 1024 entries) and also supports differing data types on the input and out-
put pins. The configuration string is a comma-separated list of code-letters and numbers, such as
"bb4,fu12" This would create a 4-element bit-to-bit mux and a 12-element float-to-unsigned mux. The code
letters are b = bit, f = float, s = signed integer, u = unsigned integer. The first letter code is the input type,
the second is the output type. The codes are not case-sensitive. The order of the letters is significant but the
position in the string is not. Do not insert any spaces in the config string. Any non-zero float value will be

286 2013-05-27 LinuxCNC Documentation

MUX_GENERIC(9) HAL Component MUX_GENERIC(9)

converted to a "true" output in bit form. Be wary that float datatypes can be very, very, close to zero and not
actually be equal to zero.

Each mux has its own HAL function and must be added to a thread separately. If neither input nor output is
of type float then the function is base-thread (non floating-point) safe. Any mux_generic with a floating
point input or output can only be added to a floating-point thread.

LICENSE
GPL

AUTHOR
Andy Pugh

LinuxCNC Documentation 2013-05-27 287

NEAR(9) HAL Component NEAR(9)

NAME
near − Determine whether two values are roughly equal.

SYNOPSIS
loadrt near [count=N|names=name1[,name2...]]

FUNCTIONS
near.N (requires a floating-point thread)

PINS
near.N.in1 float in
near.N.in2 float in
near.N.out bit out

out is true if in1 andin2 are within a factor ofscale(i.e., for in1 positive, in1/scale <= in2 <=
in1*scale), OR if their absolute difference is no greater thandifference (i.e., |in1-in2| <= differ-
ence).out is false otherwise.

PARAMETERS
near.N.scalefloat rw (default:1)
near.N.differencefloat rw (default:0)

LICENSE
GPL

288 2021-01-22 LinuxCNC Documentation

NOT(9) HAL Component NOT(9)

NAME
not − Inverter

SYNOPSIS
loadrt not [count=N|names=name1[,name2...]]

FUNCTIONS
not.N

PINS
not.N.in bit in
not.N.out bit out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 289

OFFSET(9) HAL Component OFFSET(9)

NAME
offset − Adds an offset to an input, and subtracts it from the feedback value

SYNOPSIS
loadrt offset [count=N|names=name1[,name2...]]

FUNCTIONS
offset.N.update-output (requires a floating-point thread)

Updated the output value by adding the offset to the input

offset.N.update-feedback(requires a floating-point thread)
Update the feedback value by subtracting the offset from the feedback

PINS
offset.N.offsetfloat in

The offset value

offset.N.in float in
The input value

offset.N.out float out
The output value

offset.N.fb-in float in
The feedback input value

offset.N.fb-out float out
The feedback output value

LICENSE
GPL

290 2021-01-22 LinuxCNC Documentation

ONESHOT(9) HAL Component ONESHOT(9)

NAME
oneshot − one-shot pulse generator

SYNOPSIS
loadrt oneshot [count=N|names=name1[,name2...]]

DESCRIPTION
creates a variable-length output pulse when the input changes state. This function needs to run in a thread
which supports floating point (typically the servo thread). This means that the pulse length has to be a mul-
tiple of that thread period, typically 1mS.For a similar function that can run in the base thread, and which
offers higher resolution, see "edge".

FUNCTIONS
oneshot.N (requires a floating-point thread)

Produce output pulses from input edges

PINS
oneshot.N.in bit in

Trigger input

oneshot.N.out bit out
Active high pulse

oneshot.N.out-not bit out
Active low pulse

oneshot.N.width float in (default:0)
Pulse width in seconds

oneshot.N.time-left float out
Time left in current output pulse

PARAMETERS
oneshot.N.retriggerable bit rw (default:TRUE)

Allow additional edges to extend pulse

oneshot.N.rising bit rw (default:TRUE)
Trigger on rising edge

oneshot.N.falling bit rw (default:FALSE)
Trigger on falling edge

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 291

OPTO_AC5(9) HAL Component OPTO_AC5(9)

NAME
opto_ac5 − Realtime driver for opto22 PCI-AC5 cards

SYNOPSIS
loadrt opto_ac5 [portconfig0=0xN] [portconfig1=0xN]

DESCRIPTION
These pins and parameters are created by the realtimeopto_ac5module. Theportconfig0 and portconfig1
variables are used to configure the two ports of each card. The first 24 bits of a 32 bit number represent the
24 i/o points of each port. The lowest (rightmost) bit would be HAL pin 0 which is header connector pin
47. Then next bit to the left would be HAL pin 1, header connector pin 45 and so on, untill bit 24 would be
HAL pin 23 , header connector pin 1. "1" bits represent output points. So channel 0..11 as inputs and
12..23 as outputs would be represented by (in binary) 111111111111000000000000 which is 0xfff000 in
hexadecimal. Thatis the number you would use Eg. loadrt opto_ac5 portconfig0=0xfff000

If no portconfig variable is specified the default configuration is 12 inputs then 12 outputs.

Up to 4 boards are supported. Boards are numbered starting at 0.

Portnumber can be 0 or 1. Port 0 is closes to the card bracket.

PINS
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in−[PINNUMBER] OUT bit
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in−[PINNUMBER]−not OUT bit

Connect a hal bit signal to this pin to read an i/o point from the card. The PINNUMBER repre-
sents the position in the relay rack. Eg. PINNUMBER 0 is position 0 in a opto22 relay rack and
would be pin 47 on the 50 pin header connector. The−not pin is inverted so that LOW giv es
TRUE and HIGH gives FALSE.

opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out−[PINNUMBER] IN bit
Connect a hal bit signal to this pin to write to an i/o point of the card. The PINNUMBER repre-
sents the position in the relay rack.Eg. PINNUMBER 23 is position 23 in a opto22 relay rack and
would be pin 1 on the 50 pin header connector.

opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit
Turns one of the on board LEDS on/off. LEDS are numbered 0 to 3.

PARAMETERS
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out−[PINNUMBER]−invert W bit

When TRUE, invert the meaning of the corresponding−out pin so that TRUE gives LOW and
FALSE gives HIGH.

FUNCTIONS
opto_ac5.0.digital−read

Add this to a thread to read all the input points.

opto_ac5.0.digital−write
Add this to a thread to write all the output points and LEDS.

BUGS
All boards are loaded with the same port configurations as the first board.

292 2008-08-04 LinuxCNC Documentation

OPTO_AC5(9) HAL Component OPTO_AC5(9)

SEE ALSO
http://wiki.linuxcnc.org/cgi−bin/wiki.pl?OptoPciAc5

LinuxCNC Documentation 2008-08-04 293

OR2(9) HAL Component OR2(9)

NAME
or2 − Two-input OR gate

SYNOPSIS
loadrt or2 [count=N|names=name1[,name2...]]

FUNCTIONS
or2.N

PINS
or2.N.in0 bit in
or2.N.in1 bit in
or2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=FALSE in1=FALSE
out=FALSE

Otherwise,
out=TRUE

LICENSE
GPL

294 2021-01-22 LinuxCNC Documentation

ORIENT(9) HAL Component ORIENT(9)

NAME
orient − Provide a PID command input for orientation mode based on current spindle position, target angle
and orient mode

SYNOPSIS
loadrt orient [count=N|names=name1[,name2...]]

DESCRIPTION
This component is designed to support a spindle orientation PID loop by providing a command value, and
fit with the motion spindle-orient support pins to support the M19 code.

The spindle is assumed to have stopped in an arbitrary position. The spindle encoder position is linked to
the position pin. The currentvalue of the position pin is sampled on a positive edge on theenablepin,
andcommand is computed and set as follows: floor(number of full spindle revolutions in theposition sam-
pled on positive edge) plusangle/360 (the fractional revolution) +1/-1/0 depending onmode.

Themodepin is interpreted as follows:

0: the spindle rotates in the direction with the lesser angle, which may be clockwise or counterclockwise.

1: the spindle rotates always rotates clockwise to the new angle.

2: the spindle rotates always rotates counterclockwise to the new angle.

HAL USAGE
Onmotion.spindle-orient disconnect the spindle control and connect to the orient-pid loop:

loadrt orient names=orient
loadrt pid names=orient-pid
net orient-angle motion.spindle-orient-angle orient.angle
net orient-mode motion.spindle-orient-mode orient.mode
net orient-enable motion.spindle-orient orient.enable orient-pid.enable
net spindle-pos encoder.position orient.position orient-pid.feedback
net orient-command orient.command orient-pid.command

FUNCTIONS
orient.N (requires a floating-point thread)

Updatecommandbased onenable, position, modeandangle.

PINS
orient.N.enablebit in

enable angular output for orientation mode

orient.N.modes32 in
0: rotate - shortest move; 1: always rotate clockwise; 2: always rotate counterclockwise

orient.N.position float in
spindle position input, unit 1 rev

orient.N.anglefloat in
orient target position in degrees, 0 <= angle < 360

orient.N.commandfloat out
target spindle position, input to PID command

LinuxCNC Documentation 2021-01-22 295

ORIENT(9) HAL Component ORIENT(9)

orient.N.poserr float out
in degrees - aid for PID tuning

AUTHOR
Michael Haberler

LICENSE
GPL

296 2021-01-22 LinuxCNC Documentation

PID(9) HAL Component PID(9)

NAME
pid − proportional/integral/derivative controller

SYNOPSIS
loadrt pid [num_chan=num| names=name1[,name2...]] [debug=dbg]

DESCRIPTION
pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback loops
for servo motors and other closed-loop applications.

pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chanargument when the module is loaded. Alternatively, specify names= and unique names sepa-
rated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, the default value is three. Ifdebug is set to 1 (the default is 0), some additional HAL parameters
will be exported, which might be useful for tuning, but are otherwise unnecessary.

NAMING
The names for pins, parameters, and functions are prefixed as:
pid.N. for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Thepid.N. format is shown in the following descriptions.

FUNCTIONS
pid.N.do−pid−calcs(uses floating-point) Does the PID calculations for control loopN.

PINS
pid.N.commandfloat in

The desired (commanded) value for the control loop.

pid.N.Pgainfloat in
Proportional gain. Resultsin a contribution to the output that is the error multiplied byPgain.

pid.N.Igain float in
Integral gain. Resultsin a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error
(errorI) of 0.2, and ifIgain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float in
Derivative gain. Resultsin a contribution to the output that is the rate of change (derivative) of the
error multiplied byDgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and ifDgain is 5, the derivative term would
add 0.25 to the output.

pid.N.feedbackfloat in
The actual (feedback) value, from some sensor such as an encoder.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.command−derivfloat in
The derivative of the desired (commanded) value for the control loop. If no signal is connected
then the derivative will be estimated numerically.

pid.N.feedback−derivfloat in
The derivative of the actual (feedback) value for the control loop. If no signal is connected then
the derivative will be estimated numerically. When the feedback is from a quantized position

LinuxCNC Documentation 2007-01-16 297

PID(9) HAL Component PID(9)

source (e.g., encoder feedback position), behavior of the D term can be improved by using a better
velocity estimate here, such as the velocity output of encoder(9) or hostmot2(9).

pid.N.error−pr evious−targetbit in
Use previous invocation’s target vs. current position for error calculation, like the motion con-
troller expects. Thismay make torque-mode position loops and loops requiring a large I gain eas-
ier to tune, by eliminating velocity−dependent following error.

pid.N.error float out
The difference between command and feedback.

pid.N.enablebit in
When true, enables the PID calculations. When false,output is zero, and all internal integrators,
etc, are reset.

pid.N.index−enablebit in
On the falling edge ofindex−enable, pid does not update the internal command derivative esti-
mate. Onsystems which use the encoder index pulse, this pin should be connected to the
index−enable signal. When this is not done, and FF1 is nonzero, a step change in the input com-
mand causes a single-cycle spike in the PID output. On systems which use exactly one of the
−deriv inputs, this affects the D term as well.

pid.N.biasfloat in
bias is a constant amount that is added to the output. In most cases it should be left at zero. How-
ev er, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically.bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum2 block.

pid.N.FF0 float in
Zero order feed-forward term. Produces a contribution to the output that isFF0 multiplied by the
commanded value. For position loops, it should usually be left at zero.For velocity loops,FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float in
First order feed-forward term. Produces a contribution to the output thatFF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float in
Second order feed-forward term. Produces a contribution to the output that isFF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia.For velocity loops, it should usually be
left at zero.

pid.N.deadbandfloat in
Defines a range of "acceptable" error. If the absolute value oferror is less thandeadband, it will
be treated as if the error is zero. When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When
the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the
edge of the deadband. (SeeBUGS.)

pid.N.maxoutput float in
Output limit. The absolute value of the output will not be permitted to exceedmaxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

298 2007-01-16 LinuxCNC Documentation

PID(9) HAL Component PID(9)

pid.N.maxerror float in
Limit on the internal error variable used for P, I, and D. Can be used to prevent highPgainvalues
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change). Not normally needed, but can be useful when tuning non-linear
systems.

pid.N.maxerrorD float in
Limit on the error derivative. The rate of change of error used by theDgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect ofDgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorI float in
Limit on error integrator. The error integrator used by theIgain term will be limited to this value,
unless it is zero. Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdDfloat in
Limit on command derivative. The command derivative used byFF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

pid.N.maxcmdDDfloat in
Limit on command second derivative. The command second derivative used byFF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.saturatedbit out
When true, the current PID output is saturated. That is,

output = ± maxoutput.

pid.N.saturated−sfloat out
pid.N.saturated−counts32 out

When true, the output of PID was continually saturated for this many seconds (saturated−s) or
periods (saturated−count).

PARAMETERS
pid.N.errorI float ro (only if debug=1)

Integral of error. This is the value that is multiplied byIgain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied byDgain to produce the Derivative term of
the output.

pid.N.commandDfloat ro (only if debug=1)
Derivative of command. Thisis the value that is multiplied byFF1 to produce the first order feed-
forward term of the output.

pid.N.commandDDfloat ro (only if debug=1)
Second derivative of command. Thisis the value that is multiplied byFF2 to produce the second
order feed-forward term of the output.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband. This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version ofpid. Howev er,
the default behavior should not be changed.

Negative gains may lead to unwanted behavior. It is possible in some situations that negative FF gains

LinuxCNC Documentation 2007-01-16 299

PID(9) HAL Component PID(9)

make sense, but in general all gains should be positive. If some output is in the wrong direction, negating
gains to fix it is a mistake; set the scaling correctly elsewhere instead.

300 2007-01-16 LinuxCNC Documentation

PWMGEN(9) HAL Component PWMGEN(9)

NAME
pwmgen − software PWM/PDM generation

SYNOPSIS
loadrt pwmgen output_type=type0[,type1...]

DESCRIPTION
pwmgen is used to generate PWM (pulse width modulation) or PDM (pulse density modulation) signals.
The maximum PWM frequency and the resolution is quite limited compared to hardware-based approaches,
but in many cases software PWM can be very useful. If better performance is needed, a hardware PWM
generator is a better choice.

pwmgensupports a maximum of eight channels. The number of channels actually loaded depends on the
number oftypevalues given. Thevalue of eachtypedetermines the outputs for that channel.

type 0: single output
A single output pin,pwm, whose duty cycle is determined by the input value for positive inputs,
and which is off (or atmin−dc) for negative inputs. Suitablefor single ended circuits.

type 1: pwm/direction
Tw o output pins,pwm anddir . The duty cycle onpwm varies as a function of the input value.
dir is low for positive inputs and high for negative inputs.

type 2: up/down
Tw o output pins,up anddown. For positive inputs, the PWM/PDM wav eform appears onup,
while down is low. For negative inputs, the wav eform appears ondown, while up is low. Suitable
for driving the two sides of an H-bridge to generate a bipolar output.

FUNCTIONS
pwmgen.make−pulses(no floating-point)

Generates the actual PWM wav eforms, using information computed byupdate. Must be called as
frequently as possible, to maximize the attainable PWM frequency and resolution, and minimize
jitter. Operates on all channels at once.

pwmgen.update(uses floating point)
Accepts an input value, performs scaling and limit checks, and converts it into a form usable by
make−pulsesfor PWM/PDM generation. Can (and should) be called less frequently than
make−pulses. Operates on all channels at once.

PINS
pwmgen.N.enablebit in

Enables PWM generatorN - when false, allpwmgen.N output pins are low.

pwmgen.N.valuefloat in
Commanded value. Whenvalue = 0.0, duty cycle is 0%, and whenvalue = ±scale, duty cycle is±
100%. (Subject tomin−dc andmax−dc limitations.)

pwmgen.N.pwm bit out (output types 0 and 1 only)
PWM/PDM wav eform.

pwmgen.N.dir bit out (output type 1 only)
Direction output: low for forward, high for reverse.

pwmgen.N.up bit out (output type 2 only)
PWM/PDM wav eform for positive input values, low for negative inputs.

pwmgen.N.down bit out (output type 2 only)
PWM/PDM wav eform for negative input values, low for positive inputs.

LinuxCNC Documentation 2007-01-16 301

PWMGEN(9) HAL Component PWMGEN(9)

pwmgen.N.curr−dc float out
The current duty cycle, after all scaling and limits have been applied. Range is from −1.0 to +1.0.

pwmgen.N.max−dcfloat in/out
The maximum duty cycle. Avalue of 1.0 corresponds to 100%. This can be useful when using
transistor drivers with bootstrapped power supplies, since the supply requires some low time to
recharge.

pwmgen.N.min−dc float in/out
The minimum duty cycle. Avalue of 1.0 corresponds to 100%. Note that when the pwm genera-
tor is disabled, the outputs are constantly low, reg ardless of the setting ofmin−dc.

pwmgen.N.scalefloat in/out
pwmgen.N.offsetfloat in/out

These parameters provide a scale and offset from thevalue pin to the actual duty cycle. Theduty
cycle is calculated according todc = (value/scale) + offset, with 1.0 meaning 100%.

pwmgen.N.pwm−freq float in/out
PWM frequency in Hz. Theupper limit is half of the frequency at whichmake−pulsesis invoked,
and values above that limit will be changed to the limit. Ifdither−pwm is false, the value will be
changed to the nearest integer submultiple of themake−pulsesfrequency. A value of zero pro-
duces Pulse Density Modulation instead of Pulse Width Modulation.

pwmgen.N.dither−pwm bit in/out
Because software-generated PWM uses a fairly slow timebase (several to many microseconds), it
has limited resolution.For example, ifmake−pulsesis called at a 20KHz rate, andpwm−freq is
2KHz, there are only 10 possible duty cycles. Ifdither−pwm is false, the commanded duty cycle
will be rounded to the nearest of those values. Assumingvalue remains constant, the same output
will repeat every PWM cycle. If dither−pwm is true, the output duty cycle will be dithered
between the two closest values, so that the long-term average is closer to the desired level.
dither−pwm has no effect ifpwm−freq is zero (PDM mode), since PDM is an inherently dithered
process.

302 2007-01-16 LinuxCNC Documentation

SAMPLE_HOLD(9) HAL Component SAMPLE_HOLD(9)

NAME
sample_hold − Sample and Hold

SYNOPSIS
loadrt sample_hold [count=N|names=name1[,name2...]]

FUNCTIONS
sample-hold.N

PINS
sample-hold.N.in s32 in
sample-hold.N.hold bit in
sample-hold.N.out s32 out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 303

SAMPLER(9) HALUser’s Manual SAMPLER(9)

NAME
sampler − sample data from HAL in real time

SYNOPSIS
loadrt sampler depth=depth1[,depth2...]cfg=string1[,string2...]

DESCRIPTION
samplerandhalsampler(1) are used together to sample HAL data in real time and store it in a file.sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then
begins sampling data from the HAL and storing it to the FIFO.halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS
depth=depth1[,depth2...]

sets the depth of the realtime->user FIFO thatsamplercreates to buffer the realtime data. Multi-
ple values ofdepth(separated by commas) can be specified if you need more than one FIFO (for
example if you want to sample data from two different realtime threads).

cfg=string1[,string2...]
defines the set of HAL pins thatsamplerexports and later samples data from. Onestring must be
supplied for each FIFO, separated by commas.samplerexports one pin for each character in
string. Legal characters are:

F, f (float pin)

B, b (bit pin)

S, s(s32 pin)

U, u (u32 pin)

FUNCTIONS
sampler.N

One function is created per FIFO, numbered from zero.

PINS
sampler.N.pin.M input

Pin for the data that will wind up in columnM of FIFO N (and in columnM of the output file).
The pin type depends on the config string.

sampler.N.curr−depth s32 output
Current number of samples in the FIFO. When this reachesdepthnew data will begin overwriting
old data, and some samples will be lost.

sampler.N.full bit output
TRUE when the FIFON is full, FALSE when there is room for another sample.

sampler.N.enablebit input
When TRUE, samples are captured and placed in FIFON, when FALSE, no samples are acquired.
Defaults to TRUE.

PARAMETERS
sampler.N.overruns s32 read/write

The number of times thatsamplerhas tried to write data to the HAL pins but found no room in
the FIFO. It increments whenever full is true, and can be reset by thesetpcommand.

304 2006-11-18 LinuxCNC Documentation

SAMPLER(9) HALUser’s Manual SAMPLER(9)

sampler.N.sample−nums32 read/write
A number that identifies the sample. It is automatically incremented for each sample, and can be
reset using thesetpcommand. Thesample number can optionally be printed in the first column of
the output fromhalsampler, using the−t option. (seeman 1 halsampler)

SEE ALSO
halsampler(1) streamer(9) halstreamer(1)

HISTORY
BUGS
AUTHOR

Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

LinuxCNC Documentation 2006-11-18 305

SCALE(9) HAL Component SCALE(9)

NAME
scale − LinuxCNC HAL component that applies a scale and offset to its input

SYNOPSIS
loadrt scale [count=N|names=name1[,name2...]]

FUNCTIONS
scale.N (requires a floating-point thread)

PINS
scale.N.in float in
scale.N.gain float in
scale.N.offsetfloat in
scale.N.out float out

out = in * gain + offset

LICENSE
GPL

306 2021-01-22 LinuxCNC Documentation

SELECT8(9) HAL Component SELECT8(9)

NAME
select8 − 8-bit binary match detector

SYNOPSIS
loadrt select8 [count=N|names=name1[,name2...]]

FUNCTIONS
select8.N

PINS
select8.N.sels32 in

The number of the output to set TRUE. All other outputs well be set FALSE

select8.N.outM bit out (M=0..7)
Output bits. If enable is set and the sel input is between 0 and 7, then the corresponding output bit
will be set true

PARAMETERS
select8.N.enablebit rw (default:TRUE)

Set enable to FALSE to cause all outputs to be set FALSE

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 307

SERPORT(9) HAL Component SERPORT(9)

NAME
serport − Hardware driver for the digital I/O bits of the 8250 and 16550 serial port.

SYNOPSIS
loadrt serport io=addr[,addr...]

The pin numbers refer to the 9-pin serial pinout.Keep in mind that these ports generally use rs232 volt-
ages, not 0/5V signals.

Specify the I/O address of the serial ports using the module parameterio=addr[,addr...]. These ports must
not be in use by the kernel. To free up the I/O ports after bootup, install setserial and execute a command
like:

sudo setserial /dev/ttyS0 uart none
but it is best to ensure that the serial port is never used or configured by the Linux kernel by setting a kernel
commandline parameter or not loading the serial kernel module if it is a modularized driver.

FUNCTIONS
serport.N.read

serport.N.write

PINS
serport.N.pin-1-in bit out

Also called DCD (data carrier detect); pin 8 on the 25-pin serial pinout

serport.N.pin-6-in bit out
Also called DSR (data set ready); pin 6 on the 25-pin serial pinout

serport.N.pin-8-in bit out
Also called CTS (clear to send); pin 5 on the 25-pin serial pinout

serport.N.pin-9-in bit out
Also called RI (ring indicator); pin 22 on the 25-pin serial pinout

serport.N.pin-1-in-not bit out
Inverted version of pin-1-in

serport.N.pin-6-in-not bit out
Inverted version of pin-6-in

serport.N.pin-8-in-not bit out
Inverted version of pin-8-in

serport.N.pin-9-in-not bit out
Inverted version of pin-9-in

serport.N.pin-3-out bit in
Also called TX (transmit data); pin 2 on the 25-pin serial pinout

serport.N.pin-4-out bit in
Also called DTR (data terminal ready); pin 20 on the 25-pin serial pinout

serport.N.pin-7-out bit in
Also called RTS (request to send); pin 4 on the 25-pin serial pinout

PARAMETERS
serport.N.pin-3-out-invert bit rw
serport.N.pin-4-out-invert bit rw
serport.N.pin-7-out-invert bit rw

308 2021-01-22 LinuxCNC Documentation

SERPORT(9) HAL Component SERPORT(9)

serport.N.ioaddr u32 r

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 309

SETSERIAL(9) HAL Component SETSERIAL(9)

NAME
setsserial - a utility for setting Smart Serial NVRAM parameters.

SYNOPSIS
loadrt setsserial cmd="set hm2_8i20.001f.nvmaxcurrent 750"

FUNCTIONS
None

PINS
None

USAGE
loadrt setsserial cmd="{command} {parameter/device} {value/filename}"

Commands available aresetandflash.

This utility should be used under halcmd, without LinuxCNC running or any realtime threads running.

A typical command sequence would be:

halrun
loadrt hostmot2 use_serial_numbers=1
loadrt hm2_pci config="firmware=hm2/5i23/svss8_8.bit"
show param
loadrt setsserial cmd="set hm2_8i20.001f.nvmaxcurrent 750"
exit

This example uses the option to have the hal pins and parameters labelled by the serial number of the
remote. This is not necessary but can reduce the scope for confusion. (The serial number is normally on a
sticker on the device.)

The next line loads the hm2_pci driver in the normal way. The hm2_7i43 driver should work equally well,
as should any future 7i80 driver. If the card has already been strted up and a firmware has been loaded,
then the config string may be omitted.

"show param" is optional, but provides a handy list of all the devices and parameters. It also shows the cur-
rent values of the parameters which can be useful for determining scaling. u32 pin values are always shown
in hex, but new values can be entered in decimal or hex. Use the Ox123ABC format to enter a hex value.

The next line invokes setsserial. This is run in a slightly strange way in order to have kernel-level access to
a liv e Hostmot2 config. It is basically a HAL module that always fails to load. This may lead to error mes-
sages being printed to the halcmd prompt. These can often be ignored. All the real feedback is via the
dmesg command. It is suggested to have a second terminal window open to run dmesg after each command.

On exiting there will typically be a further error message related to the driver failing to unload setsserial.
This can be ignored.

The parameter changes will not show up until the drivers are reloaded. //TODO// Add a "get" command to
avoid this problem.

Flashing Firmware To flash new firmware to an FPGA card such as the 5i25 or 5i20 the "mesaflash" util-
ity should be used. Setsserial is only useful for changing/updating the firmare on smart-serial remote such
as the 8i20. The firmware should be placed somewhere in the /lib/firmware/hm2 tree, where the Linux
firmware loading macros can find it.

The flashing routine operates in a realtime thread, and can only send prompts to the user through the kernel

310 2012-10-28 LinuxCNC Documentation

SETSERIAL(9) HAL Component SETSERIAL(9)

log (dmesg). It is most convenient to open two terminal windows, one for command entry and one to moni-
tor progress.

In the first terminal enter

tail −f /var/log/kern.log

This terminal will now display status information.

The second window will be used to enter the commands. It is important that LinuxCNC and/or HAL are not
already loaded when the process is started.To flash new firmware it is necessary to move a jumper on the
smart-serial remote drive and to switch smart-serial communication to a slower baudrate.

A typical command sequence is then
halrun
loadrt hostmot2 sserial_baudrate=115200
loadrt hm2_pci config="firmware=hm2/5i23/svss8_8.bit"
loadrt setsserial cmd="flash hm2_5i23.0.8i20.0.1 hm2/8i20/8i20T.BIN"
exit

It is not necessary (or useful) to specify a config string in a system using the 5i25 or 6i25 cards.

Note that it is necessary to exit halrun and unload the realtime environment before flashing the next card
(exit)

The correct sserial channel name to use can be seen in the dmesg output in the feedback terminal after the
loadrt hm2_pci step of the sequence.

LICENSE
GPL

LinuxCNC Documentation 2012-10-28 311

SIGGEN(9) HAL Component SIGGEN(9)

NAME
siggen − signal generator

SYNOPSIS
loadrt siggen [num_chan=num| names=name1[,name2...]]

DESCRIPTION
siggenis a signal generator that can be used for testing and other applications that need simple wav eforms.
It produces sine, cosine, triangle, sawtooth, and square wav es of variable frequency, amplitude, and offset,
which can be used as inputs to other HAL components.

siggensupports a maximum of sixteen channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Alternatively, specifynames=and unique names sepa-
rated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, the default value is one.

NAMING
The names for pins, parameters, and functions are prefixed as:
siggen.N.for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Thesiggen.N.format is shown in the following descriptions.

FUNCTIONS
siggen.N.update (uses floating-point)

Updates output pins for signal generatorN. Each time it is called it calculates a new sample. It
should be called many times faster than the desired signal frequency, to avoid distortion and alias-
ing.

PINS
siggen.N.frequencyfloat in

The output frequency for signal generatorN, in Hertz. Thedefault value is 1.0 Hertz.

siggen.N.amplitude float in
The output amplitude for signal generatorN. If offset is zero, the outputs will swing from
−amplitude to +amplitude. The default value is 1.00.

siggen.N.offsetfloat in
The output offset for signal generatorN. This value is added directly to the output signal. The
default value is zero.

siggen.N.clock bit out
The clock output. Bit type clock signal output at the commanded frequency.

siggen.N.squarefloat out
The square wav eoutput. Positive while triangle andcosineare ramping upwards, and whilesine
is negative.

siggen.N.sinefloat out
The sine output. Lagscosineby 90 degrees.

312 2007-01-16 LinuxCNC Documentation

SIGGEN(9) HAL Component SIGGEN(9)

siggen.N.cosinefloat out
The cosine output. Leadssineby 90 degrees.

siggen.N.triangle float out
The triangle wav eoutput. Rampsup whilesquare is positive, and down whilesquare is negative.
Reaches its positive and negative peaks at the same time ascosine.

siggen.N.sawtoothfloat out
The sawtooth output. Ramps upwards to its positive peak, then instantly drops to its negative peak
and starts ramping again. Thedrop occurs whentriangle andcosineare at their positive peaks,
and coincides with the falling edge ofsquare.

PARAMETERS
None

LinuxCNC Documentation 2007-01-16 313

SIM_AXIS_HARDWARE(9) HAL Component SIM_AXIS_HARDWARE(9)

NAME
sim_axis_hardware − A component to simulate home and limit switches

SYNOPSIS
loadrt sim_axis_hardware [count=N|names=name1[,name2...]]

DESCRIPTION
This component creates simulated home and limit switches based on the current position.
It currently can supply simulation for X,Y,Z and A axes.

FUNCTIONS
sim-axis-hardware.N.update (requires a floating-point thread)

PINS
sim-axis-hardware.N.Xcurrent-pos float in

The current position on the axis - eg connect to axis.0.joint-pos-fb

sim-axis-hardware.N.Ycurrent-pos float in
sim-axis-hardware.N.Zcurrent-pos float in
sim-axis-hardware.N.Acurrent-pos float in
sim-axis-hardware.N.Xhomesw-posfloat in (default:1)

The position of the home switch

sim-axis-hardware.N.Yhomesw-posfloat in (default:1)
sim-axis-hardware.N.Zhomesw-posfloat in (default:1)
sim-axis-hardware.N.Ahomesw-posfloat in (default:1)
sim-axis-hardware.N.Xmaxsw-upperfloat in

The upper range of the maximum limit switch, above this is false.

sim-axis-hardware.N.Ymaxsw-upperfloat in
sim-axis-hardware.N.Zmaxsw-upperfloat in
sim-axis-hardware.N.Amaxsw-upperfloat in
sim-axis-hardware.N.Xmaxsw-lowerfloat in

The lower range of the maximum limit switch, below this is false.

sim-axis-hardware.N.Ymaxsw-lowerfloat in
sim-axis-hardware.N.Zmaxsw-lowerfloat in
sim-axis-hardware.N.Amaxsw-lowerfloat in
sim-axis-hardware.N.Xminsw-upper float in

The upper range of the minimum limit switch, above this is false.

sim-axis-hardware.N.Yminsw-upper float in
sim-axis-hardware.N.Zminsw-upper float in
sim-axis-hardware.N.Aminsw-upper float in
sim-axis-hardware.N.Xminsw-lower float in

The lower range of the minimum limit switch, below this is false.

sim-axis-hardware.N.Yminsw-lower float in
sim-axis-hardware.N.Zminsw-lower float in
sim-axis-hardware.N.Aminsw-lower float in
sim-axis-hardware.N.Xhomesw-hystfloat in (default:.02)

range that home switch will be true +- half this to the home position

sim-axis-hardware.N.Yhomesw-hystfloat in (default:.02)
sim-axis-hardware.N.Zhomesw-hystfloat in (default:.02)
sim-axis-hardware.N.Ahomesw-hystfloat in (default:.02)

314 2021-01-22 LinuxCNC Documentation

SIM_AXIS_HARDWARE(9) HAL Component SIM_AXIS_HARDWARE(9)

sim-axis-hardware.N.Xhomesw-outbit out
Home switch for the X axis

sim-axis-hardware.N.Yhomesw-outbit out
sim-axis-hardware.N.Zhomesw-outbit out
sim-axis-hardware.N.Ahomesw-outbit out
sim-axis-hardware.N.homesw-allbit out
sim-axis-hardware.N.Xmaxsw-outbit out

Max limit switch

sim-axis-hardware.N.Xminsw-out bit out
min limit switch

sim-axis-hardware.N.Xbothsw-out bit out
True for both max and min limit switch

sim-axis-hardware.N.Ymaxsw-outbit out
sim-axis-hardware.N.Yminsw-out bit out
sim-axis-hardware.N.Ybothsw-out bit out
sim-axis-hardware.N.Zmaxsw-outbit out
sim-axis-hardware.N.Zminsw-out bit out
sim-axis-hardware.N.Zbothsw-out bit out
sim-axis-hardware.N.Amaxsw-outbit out
sim-axis-hardware.N.Aminsw-out bit out
sim-axis-hardware.N.Abothsw-out bit out
sim-axis-hardware.N.limitsw-all bit out
sim-axis-hardware.N.limitsw-homesw-allbit out

True for all limits and all home.

sim-axis-hardware.N.Xmaxsw-homesw-outbit out
sim-axis-hardware.N.Xminsw-homesw-outbit out
sim-axis-hardware.N.Xbothsw-homesw-outbit out
sim-axis-hardware.N.Ymaxsw-homesw-outbit out
sim-axis-hardware.N.Yminsw-homesw-outbit out
sim-axis-hardware.N.Ybothsw-homesw-outbit out
sim-axis-hardware.N.Zmaxsw-homesw-outbit out
sim-axis-hardware.N.Zminsw-homesw-outbit out
sim-axis-hardware.N.Zbothsw-homesw-outbit out
sim-axis-hardware.N.Amaxsw-homesw-outbit out
sim-axis-hardware.N.Aminsw-homesw-outbit out
sim-axis-hardware.N.Abothsw-homesw-outbit out
sim-axis-hardware.N.limit-offset float in (default:.01)

how much the limit switches are offset from inputed position. added to max, subracted from min

AUTHOR
Chris Morley

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 315

SIM_ENCODER(9) HAL Component SIM_ENCODER(9)

NAME
sim_encoder − simulated quadrature encoder

SYNOPSIS
loadrt sim_encoder [num_chan=num| names=name1[,name2...]]

DESCRIPTION
sim_encodercan generate quadrature signals as if from an encoder. It also generates an index pulse once
per revolution. It is mostly used for testing and simulation, to replace hardware that may not be available.
It has a limited maximum frequency, as do all software based pulse generators.

sim_encodersupports a maximum of eight channels. The number of channels actually loaded is set by the
num_chan=argument when the module is loaded. Alternatively, specifynames=and unique names sepa-
rated by commas.

Thenum_chan=andnames=specifiers are mutually exclusive. If neithernum_chan=nornames=are
specified, the default value is one.

FUNCTIONS
sim−encoder.make−pulses(no floating-point)

Generates the actual quadrature and index pulses. Mustbe called as frequently as possible, to
maximize the count rate and minimize jitter. Operates on all channels at once.

sim−encoder.update−speed(uses floating-point)
Reads thespeedcommand and other parameters and converts the data into a form that can be used
by make−pulses. Changes take effect only whenupdate−speedruns. Can(and should) be called
less frequently thanmake−pulses. Operates on all channels at once.

NAMING
The names for pins and parameters are prefixed as:
sim−encoder.N.for N=0,1,...,num−1 when usingnum_chan=num
nameN.for nameN=name1,name2,... when usingnames=name1,name2,...

Thesim−encoder.N.format is shown in the following descriptions.

PINS
sim−encoder.N.phase−Abit out

One of the quadrature outputs.

sim−encoder.N.phase−Bbit out
The other quadrature output.

sim−encoder.N.phase−Zbit out
The index pulse.

sim−encoder.N.speedfloat in
The desired speed of the encoder, in user units per per second. This is divided byscale, and the
result is used as the encoder speed in revolutions per second.

PARAMETERS

316 2007-01-16 LinuxCNC Documentation

SIM_ENCODER(9) HAL Component SIM_ENCODER(9)

sim−encoder.N.ppr u32 rw
The pulses per revolution of the simulated encoder. Note that this is pulses, not counts, per revolu-
tion. Eachpulse or cycle from the encoder results in four counts, because every edge is counted.
Default value is 100 ppr, or 400 counts per revolution.

sim−encoder.N.scalefloat rw
Scale factor for thespeedinput. Thespeedvalue is divided byscaleto get the actual encoder
speed in revolutions per second.For example, ifscaleis set to 60, thenspeedis in revolutions per
minute (RPM) instead of revolutions per second. The default value is 1.00.

LinuxCNC Documentation 2007-01-16 317

SIM_HOME_SWITCH(9) HAL Component SIM_HOME_SWITCH(9)

NAME
sim_home_switch − Simple home switch simulator

SYNOPSIS
loadrt sim_home_switch [count=N|names=name1[,name2...]]

DESCRIPTION
After tripping home switch, travel in opposite direction is required (amount set by the hysteresis pin)

FUNCTIONS
sim-home-switch.N (requires a floating-point thread)

PINS
sim-home-switch.N.cur-posfloat in

Current position (typically: axis.n.motor-pos-fb)

sim-home-switch.N.home-posfloat in (default:1)
Home switch position

sim-home-switch.N.hysteresisfloat in (default:0.1)
Trav el required to backoff (hysteresis)

sim-home-switch.N.home-swbit out
Home switch activated

LICENSE
GPL

318 2021-01-22 LinuxCNC Documentation

SIM_PARPORT(9) HAL Component SIM_PARPORT(9)

NAME
sim_parport − A component to simulate the pins of the hal_parport component

SYNOPSIS
loadrt sim_parport [count=N|names=name1[,name2...]]

DESCRIPTION
Sim_parport is used to replace the pins of a real parport without changing any of the pins names in the rest
of the config.
It has pass-through pins (ending in −fake) that allows connecting to other components.

eg pin−02−in will follow pin−02−in−fake ’s logic.
pin_01_out−fake will follo w pin_01_out (possibly modified by pin_01_out−invert)

It creates all possible pins of both ’in’ and ’out’ options of the hal_parport component.
This allows using other hardware I/O in place of the parport (without having to change the rest of the con-
fig)
or simulating hardware such as limit switches.
it’s primary use is in Stepconf for building simulated configs.
You must use the names= option to have the right pin names.
eg. names=parport.0,parport.1
The read and write functions pass the logic from pins to fake pins or vice vera
The reset function is a no operation.

FUNCTIONS
sim-parport.N.read

sim-parport.N.write

sim-parport.N.reset

PINS
sim-parport.N.pin-01-out bit in
sim-parport.N.pin-02-out bit in
sim-parport.N.pin-03-out bit in
sim-parport.N.pin-04-out bit in
sim-parport.N.pin-05-out bit in
sim-parport.N.pin-06-out bit in
sim-parport.N.pin-07-out bit in
sim-parport.N.pin-08-out bit in
sim-parport.N.pin-09-out bit in
sim-parport.N.pin-14-out bit in
sim-parport.N.pin-16-out bit in
sim-parport.N.pin-17-out bit in
sim-parport.N.pin-01-out-fakebit out
sim-parport.N.pin-02-out-fakebit out
sim-parport.N.pin-03-out-fakebit out
sim-parport.N.pin-04-out-fakebit out
sim-parport.N.pin-05-out-fakebit out
sim-parport.N.pin-06-out-fakebit out
sim-parport.N.pin-07-out-fakebit out

LinuxCNC Documentation 2021-01-22 319

SIM_PARPORT(9) HAL Component SIM_PARPORT(9)

sim-parport.N.pin-08-out-fakebit out
sim-parport.N.pin-09-out-fakebit out
sim-parport.N.pin-14-out-fakebit out
sim-parport.N.pin-16-out-fakebit out
sim-parport.N.pin-17-out-fakebit out
sim-parport.N.pin-02-in bit out
sim-parport.N.pin-03-in bit out
sim-parport.N.pin-04-in bit out
sim-parport.N.pin-05-in bit out
sim-parport.N.pin-06-in bit out
sim-parport.N.pin-07-in bit out
sim-parport.N.pin-08-in bit out
sim-parport.N.pin-09-in bit out
sim-parport.N.pin-10-in bit out
sim-parport.N.pin-11-in bit out
sim-parport.N.pin-12-in bit out
sim-parport.N.pin-13-in bit out
sim-parport.N.pin-15-in bit out
sim-parport.N.pin-02-in-fake bit in
sim-parport.N.pin-03-in-fake bit in
sim-parport.N.pin-04-in-fake bit in
sim-parport.N.pin-05-in-fake bit in
sim-parport.N.pin-06-in-fake bit in
sim-parport.N.pin-07-in-fake bit in
sim-parport.N.pin-08-in-fake bit in
sim-parport.N.pin-09-in-fake bit in
sim-parport.N.pin-10-in-fake bit in
sim-parport.N.pin-11-in-fake bit in
sim-parport.N.pin-12-in-fake bit in
sim-parport.N.pin-13-in-fake bit in
sim-parport.N.pin-15-in-fake bit in
sim-parport.N.pin-02-in-not bit out
sim-parport.N.pin-03-in-not bit out
sim-parport.N.pin-04-in-not bit out
sim-parport.N.pin-05-in-not bit out
sim-parport.N.pin-06-in-not bit out
sim-parport.N.pin-07-in-not bit out
sim-parport.N.pin-08-in-not bit out
sim-parport.N.pin-09-in-not bit out
sim-parport.N.pin-10-in-not bit out
sim-parport.N.pin-11-in-not bit out
sim-parport.N.pin-12-in-not bit out
sim-parport.N.pin-13-in-not bit out
sim-parport.N.pin-15-in-not bit out
sim-parport.N.reset-timefloat in

PARAMETERS
sim-parport.N.pin-01-out-invert bit rw
sim-parport.N.pin-02-out-invert bit rw
sim-parport.N.pin-03-out-invert bit rw
sim-parport.N.pin-04-out-invert bit rw
sim-parport.N.pin-05-out-invert bit rw
sim-parport.N.pin-06-out-invert bit rw

320 2021-01-22 LinuxCNC Documentation

SIM_PARPORT(9) HAL Component SIM_PARPORT(9)

sim-parport.N.pin-07-out-invert bit rw
sim-parport.N.pin-08-out-invert bit rw
sim-parport.N.pin-09-out-invert bit rw
sim-parport.N.pin-14-out-invert bit rw
sim-parport.N.pin-16-out-invert bit rw
sim-parport.N.pin-17-out-invert bit rw
sim-parport.N.pin-01-out-resetbit rw
sim-parport.N.pin-02-out-resetbit rw
sim-parport.N.pin-03-out-resetbit rw
sim-parport.N.pin-04-out-resetbit rw
sim-parport.N.pin-05-out-resetbit rw
sim-parport.N.pin-06-out-resetbit rw
sim-parport.N.pin-07-out-resetbit rw
sim-parport.N.pin-08-out-resetbit rw
sim-parport.N.pin-09-out-resetbit rw
sim-parport.N.pin-14-out-resetbit rw
sim-parport.N.pin-16-out-resetbit rw
sim-parport.N.pin-17-out-resetbit rw

AUTHOR
Chris Morley

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 321

SIM_SPINDLE(9) HAL Component SIM_SPINDLE(9)

NAME
sim_spindle − Simulated spindle with index pulse

SYNOPSIS
loadrt sim_spindle [count=N|names=name1[,name2...]]

FUNCTIONS
sim-spindle.N (requires a floating-point thread)

PINS
sim-spindle.N.velocity-cmdfloat in

Commanded speed

sim-spindle.N.position-fb float out
Feedback position, in revolutions

sim-spindle.N.index-enablebit io
Resetposition-fb to 0 at the next full rotation

PARAMETERS
sim-spindle.N.scalefloat rw (default:1.0)

factor applied tovelocity-cmd.

The result of ’velocity-cmd * scale’ be in rev olutions per second.For example, ifvelocity-cmd is
in revolutions/minute,scaleshould be set to 1/60 or 0.016666667.

LICENSE
GPL

322 2021-01-22 LinuxCNC Documentation

SIMPLE_TP(9) HAL Component SIMPLE_TP(9)

NAME
simple_tp − This component is a single axis simple trajectory planner, same as used for jogging in linux-
cnc.

SYNOPSIS
Used by PNCconf to allow testing of acceleration and velocity values for an axis.

FUNCTIONS
simple-tp.N.update (requires a floating-point thread)

PINS
simple-tp.N.target-posfloat in

target position to plan for.

simple-tp.N.maxvelfloat in
Maximum velocity

simple-tp.N.maxaccelfloat in
Acceleration rate

simple-tp.N.enablebit in
If disabled, planner sets velocity to zero immedately.

simple-tp.N.current-pos float out
position commanded at this point in time.

simple-tp.N.current-vel float out
velocity commanded at this moment in time.

simple-tp.N.activebit out
if active is true, the planner is requesting movement.

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 323

SPHEREPROBE(9) HAL Component SPHEREPROBE(9)

NAME
sphereprobe − Probe a pretend hemisphere

SYNOPSIS
loadrt sphereprobe [count=N|names=name1[,name2...]]

FUNCTIONS
sphereprobe.N

update probe-out based on inputs

PINS
sphereprobe.N.px s32 in
sphereprobe.N.py s32 in
sphereprobe.N.pz s32 in

rawcountsposition from software encoder

sphereprobe.N.cx s32 in
sphereprobe.N.cy s32 in
sphereprobe.N.czs32 in

Center of sphere in counts

sphereprobe.N.r s32 in
Radius of hemisphere in counts

sphereprobe.N.probe-out bit out

AUTHOR
Jeff Epler

LICENSE
GPL

324 2021-01-22 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

NAME
hostmot2 - Smart Serial LinuxCNC HAL driver for the Mesa Electronics HostMot2 Smart-Serial remote
cards

SYNOPSIS
The Mesa Smart-Serial interface is a 2.5Mbs proprietary interface between the Mesa Anything-IO cards
and a range of subsidiary devices termed "smart-serial remotes". The remote cards perform a variety of
functions, but typically they combine various classes of IO. The remot cards are self-configuring, in that
they tell the main LinuxCNC Hostmot2 driver what their pin functions are and what they should be named.

Many sserial remotes offer different pinouts depending on the mode they are started up in. This is set using
the sserial_port_N= option in the hm2_pci modparam. See the hostmot2 manpage for further details.

It is likely that this documentation will be permanently out of date.

Each Anything-IO board can attach up to 8 sserial remotes to each header (either the 5-pin headers on the
5i20/5i22/5i23/7i43 or the 25-pin connectors on the 5i25, 6i25 and 7i80). The remotes are grouped into
"ports" of up to 8 "channels". Typically each header will be a single 8 channel port, but this is not necessar-
ily always the case.

PORTS
In addition to the per-channel/device pins detailed below there are three per-port pins and three parameters.

Pins:

(bit, in) .sserial.port−N.run: Enables the specific Smart Serial module. Setting this pin low will disable all
boards on the port and puts the port in a pass-through mode where device parameter setting is possible.
This pin defaults to TRUE and can be left unconnected. However, toggling the pin low-to-high will re-
enable a faulted drive so the pin could usefully be connected to the iocontrol.0.user−enable−out pin.

(u32, ro) .run_state: Shows the state of the sserial communications state-machine. This pin will generally
show a value of 0x03 in normal operation, 0x07 in setup mode and 0x00 when the "run" pin is false.

(u32, ro) .error−count: Indicates the state of the Smart Serial error handler, see the parameters sections for
more details.

Parameters:

(u32 r/w) .fault−inc: Any over-run or handshaking error in the SmartSerial communications will increment
the .fault−count pin by the amount specified by this parameter. Default = 10.

(u32 r/w) .fault−dec: Every successful read/write cycle decrements the fault counter by this amount.
Default = 1.

(u32 r/w) .fault−lim: When the fault counter reaches this threshold the Smart Serial interface on the corre-
sponding port will be stopped and an error printed in dmesg. Together these three pins allow for control
over the degree of fault- tolerance allowed in the interface. The default values mean that if more than one
transaction in ten fails, more than 20 times, then a hard error will be raised. If the increment were to be set
to zero then no error would ever be raised, and the system would carry on regardless. Conversely setting
decrement to zero, threshold to 1 and limit to 1 means that absolutely no errors will be tolerated. (This
structure is copied directly from vehicle ECU practice)

LinuxCNC Documentation 2008-05-13 325

SSERIAL(9) HAL Component SSERIAL(9)

DEVICES
The other pins and parameters created in HAL depend on the devices detected. The following list of Smart
Serial devices is by no means exhaustive.

8i20 The 8i20 is a 2.2kW three-phase drive for brushless DC motors and AC servo motors. 8i20pins
and parameters have names like "hm2_<BoardType>.<BoardNum>.8i20.<PortNum>.<Chan-
Num>.<Pin> ", for example "hm2_5i23.0.8i20.1.3.current" would set the phase current for the
drive connected to the fourth channel of the second sserial port of the first 5i23 board. Note that
the sserial ports do not necessarily correlate in layout or number to the physical ports on the card.

Pins:

(float in) angle
The rotor angle of the motor in fractions of a fullphaserevolution. An angle of 0.5 indicates that
the motor is half a turn / 180 degrees /π radians from the zero position. The zero position is taken
to be the position that the motor adopts under no load with a poitive voltage applied to the A (or
U) phase and both B and C (or V and W) connected to −V or 0V. A 6 pole motor will have 3 zero
positions per physical rotation. Note that the 8i20 drive automatically adds the phase lead/lag
angle, and that this pin should see the raw rotor angle. There is a HAL module (bldc) which han-
dles the complexity of differing motor and drive types.

(float, in) current
The phase current command to the drive. This is scaled from −1 to +1 for forwards and reverse
maximum currents. The absolute value of the current is set by the max_current parameter.

(float, ro) voltage
The drive bus voltage in V. This will tend to show 25.6V when the drive is unpowered and the
drive will not operate below about 50V.

(float, ro) temp
The temperature of the driver in degrees C.

(u32, ro) comms
The communication status of the drive. See the manual for more details.

(bit, ro) status and fault.
The following fault/status bits are exported. For further details see the 8i20 manual.fault.U−cur-
rent / fault.U−current−not fault.V−current / fault.V−current−not fault.W−current / fault.W−cur-
rent−not fault.bus−high /fault.bus−high−not fault.bus−overv / fault.bus−overv−not
fault.bus−underv / fault.bus−underv−not fault.framingr / fault.framingr−not fault.module /
fault.module−not fault.no−enable / fault.no−enable−not fault.overcurrent / fault.overcurrent−not
fault.overrun / fault.overrun−not fault.overtemp / fault.overtemp−not fault.watchdog / fault.watch-
dog−not

status.brake−old / status.brake−old−not status.brake−on / status.brake−on−not status.bus−underv /
status.bus−underv−not status.current−lim / status.current−lim−no status.ext−reset / sta-
tus.ext−reset−not status.no−enable / status.no−enable−not status.pid−on / status.pid−on−not sta-
tus.sw−reset / status.sw−reset−not status.wd−reset / status.wd−reset−not

326 2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

Parameters:
The following parameters are exported. See the pdf documentation downloadable from Mesa for
further details
hm2_5i25.0.8i20.0.1.angle−maxlim
hm2_5i25.0.8i20.0.1.angle−minlim
hm2_5i25.0.8i20.0.1.angle−scalemax
hm2_5i25.0.8i20.0.1.current−maxlim
hm2_5i25.0.8i20.0.1.current−minlim
hm2_5i25.0.8i20.0.1.current−scalemax
hm2_5i25.0.8i20.0.1.nvbrakeoffv
hm2_5i25.0.8i20.0.1.nvbrakeonv
hm2_5i25.0.8i20.0.1.nvbusoverv
hm2_5i25.0.8i20.0.1.nvbusundervmax
hm2_5i25.0.8i20.0.1.nvbusundervmin
hm2_5i25.0.8i20.0.1.nvkdihi
hm2_5i25.0.8i20.0.1.nvkdil
hm2_5i25.0.8i20.0.1.nvkdilo
hm2_5i25.0.8i20.0.1.nvkdp
hm2_5i25.0.8i20.0.1.nvkqihi
hm2_5i25.0.8i20.0.1.nvkqil
hm2_5i25.0.8i20.0.1.nvkqilo
hm2_5i25.0.8i20.0.1.nvkqp
hm2_5i25.0.8i20.0.1.nvmaxcurrent
hm2_5i25.0.8i20.0.1.nvrembaudrate
hm2_5i25.0.8i20.0.1.swrevision
hm2_5i25.0.8i20.0.1.unitnumber

(float, rw) max_current
Sets the maximum drive current in Amps. The default value is the maximum current programmed
into the drive EEPROM. The value must be positive, and an error will be raised if a current in
excess of the drive maximum is requested.

(u32, ro) serial_number
The serial number of the connected drive. This is also shown on the label on the drive.

7i64 The 7i64 is a 24-input 24-output IO card. 7i64 pins and parameters have names like
"hm2_<BoardType>.<BoardNum>.7i64. <PortNum>.<ChanNum>.<Pin>",for example
hm2_5i23.0.7i64.1.3.output−01

Pins: (bit, in) 7i64.0.0.output−NN: Writing a 1 or TRUE to this pin will enable output driver NN.
Note that the outputs are drivers (switches) rather than voltage outputs. The LED adjacent to the
connector on the board shows the status. The output can be inverted by setting a parameter.

(bit, out) 7i64.0.0.input−NN: The value of input NN. Note that the inputs are isolated and both
pins of each input must be connected (typically to signal and the ground of the signal. This need
not be the ground of the board.)

(bit, out) 7i64.0.0.input−NN−not: An inverted copy of the corresponding input.

(float, out) 7i64.0.0.analog0 & 7i64.0.0.analog1: The two analogue inputs (0 to 3.3V) on the
board.

Parameters: (bit, rw) 7i64.0.0.output−NN−invert: Setting this parameter to 1 / TRUE will invert
the output value, such that writing 0 to .gpio.NN.out will enable the output and vice-versa.

LinuxCNC Documentation 2008-05-13 327

SSERIAL(9) HAL Component SSERIAL(9)

7i76 The 7i76 is not only a smart-serial device. It also serves as a breakout for a number of other Host-
mot2 functions. There are connections for 5 step generators (for which see the main hostmot2
manpage). The stepgen pins are associated with the 5i25 (hm2_5i25.0.stepgen.00....) whereas the
smart-serial pins are associated with the 7i76 (hm2_5i25.0.7i76.0.0.output−00).

Pins:

(float out) .7i76.0.0.analogN (modes 1 and 2 only) Analogue input values.

(float out) .7i76.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.

(bit in) .7i76.0.0.spindir: This pin provides a means to drive the spindle VFD direction terminals
on the 7i76 board.

(bit in) .7i76.0.0.spinena: This pin drives the spindle-enable terminals on the 7i76 board.

(float in) .7i76.0.0.spinout: This controls the analogue output of the 7i76. This is intended as a
speed control signal for a VFD.

(bit out) .7i76.0.0.output−NN: (NN = 0 to 15). 16 digital outputs. The sense of the signal can be
set via a parameter

(bit out) .7i76.0.0.input−NN: (NN = 0 to 31) 32 digital inputs.

(bit in) .7i76.0.0.input−NN−not: (NN = 0 to 31) An inverted copy of the inputs provided for con-
venience. The two complementary pins may be connected to different signal nets.

Parameters:

(u32 ro) .7i76.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered, and
special utils are needed to do so.

(u32 ro) .7i76.0.0.nvunitnumber: Indicates the serial number of the device and should match a
siticker on the card. This can be useful for wokring out which card is which.

(u32 ro) .7i76.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(bit rw) .7i76.0.0.output−NN−invert: Invert the sense of the corresponding output pin.

(bit rw) .7i76.0.0.spindir−invert: Invert the senseof the spindle direction pin.

(bit rw) .7i76.0.0.spinena−invert: Invert the sense of the spindle−enable pin.

(float rw) .7i76.0.0.spinout−maxlim: The maximum speed request allowable

(float rw) .7i76.0.0.spinout−minlim: The minimum speed request.

(float rw) .7i76.0.0.spinout−scalemax: The spindle speed scaling. This is the speed request which
would correspond to full-scale output from the spindle control pin. For example with a 10V drive
voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin would produce 10V
output. However, if spinout−maxlim were set to 5,000 rpm then no voltage above 5V would be
output.

328 2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

(u32 ro) .7i76.0.0.swrevision: The onboard firmware revision number. Utilities exist to update and
change this firmware.

7i77 The 7i77 is an 6-axis servo control card. The analogue outputs are smart-serial devices but the
encoders are conventional hostmot2 encoders and further details of them may be found in the host-
mot2 manpage.

Pins: (bit out) .7i77.0.0.input−NN: (NN = 0 to 31) 32 digital inputs.

(bit in) .7i77.0.0.input−NN−not: (NN = 0 to 31) An inverted copy of the inputs provided for con-
venience. The two complementary pins may be connected to different signal nets.

(bit out) .7i77.0.0.output−NN: (NN = 0 to 15). 16 digital outputs. The sense of the signal can be
set via a parameter

(bit in) .7i77.0.0.spindir: This pin provides a means to drive the spindle VFD direction terminals
on the 7i76 board.

(bit in) .7i77.0.0.spinena: This pin drives the spindle-enable terminals on the 7i76 board.

(float in) .7i77.0.0.spinout: This controls the analog output of the 7i77. This is intended as a speed
control signal for a VFD.

(bit in) .7i77.0.1.analogena: This pin drives the analog enable terminals on the 7i77 board.

(float in) .7i77.0.1.analogoutN: (N = 0 to 5) This controls the analog output of the 7i77.

Parameters: (bit rw) .7i77.0.0.output−NN−invert: Invert the sense of the corresponding output pin.

(bit rw) .7i77.0.0.spindir−invert: Invert the senseof the spindle direction pin.

(bit rw) .7i77.0.0.spinena−invert: Invert the sense of the spindle−enable pin.

(float rw) .7i77.0.0.spinout−maxlim: The maximum speed request allowable

(float rw) .7i77.0.0.spinout−minlim: The minimum speed request.

(float rw) .7i77.0.0.spinout−scalemax: The spindle speed scaling. This is the speed request which
would correspond to full-scale output from the spindle control pin. For example with a 10V drive
voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin would produce 10V
output. However, if spinout−maxlim were set to 5,000 rpm then no voltage above 5V would be
output.

(float rw) .7i77.0.0.analogoutN−maxlim: (N = 0 to 5) The maximum speed request allowable

(float rw) .7i77.0.0.analogoutN−minlim: (N = 0 to 5) The minimum speed request.

//// ***** CHECK ME ***** I’m not sure about the description on analogoutN−scalemax ////

(float rw) .7i77.0.0.analogoutN−scalemax: (N = 0 to 5) The analog speed scaling. This is the
speed request which would correspond to full-scale output from the spindle control pin. For exam-
ple with a 10V drive voltage and a 10000rpm scalemax a value of 10,000 rpm on the spinout pin
would produce 10V output. However, if spinout-maxlim were set to 5,000 rpm then no voltage
above 5V would be output.

LinuxCNC Documentation 2008-05-13 329

SSERIAL(9) HAL Component SSERIAL(9)

7i69 The 7i69 is a 48 channel digital IO card. It can be configured in four different modes: Mode 0 B
48 pins bidirectional (all outputs can be set high then driven low to work as inputs)
Mode 1 48 pins, input only
Mode 2 48 pins, all outputs
Mode 3 24 inputs and 24 outputs.

Pins: (bit in) .7i69.0.0.output−NN: Digital output. Sense can be inverted with the corresponding
Parameter

(bit out) .7i69.0.0.input−NN: Digital input

(bit out) .7i69.0.0.input−NN−not: Digital input, inverted.

Parameters:

(u32 ro) .7i69.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered, and
special utils are needed to do so.

(u32 ro) .7i69.0.0.nvunitnumber: Indicates the serial number of the device and should match a
siticker on the card. This can be useful for wokring out which card is which.

(u32 ro) .7i69.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(bit rw) .7i69.0.0.output−NN−invert: Invert the sense of the corresponding output pin.

(u32 ro) .7i69.0.0.swrevision: The onboard firmware revision number. Utilities exist to update and
change this firmware.

7i70

The 7I70 is a remote isolated 48 input card. The 7I70 inputs sense positive inputs relative to a
common field ground. Input impedance is 10K Ohms and input voltage can range from 5VDC to
32VDC. All inputs have LED status indicators. The input common field ground is galvanically
isolated from the communications link.

The 7I70 has three software selectable modes. These different modes select different sets of 7I70
data to be transferred between the host and the 7I70 during real time process data exchanges. For
high speed applications, choosing the correct mode can reduced the data transfer sizes, resulting in
higher maximum update rates.

MODE 0 Input mode (48 bits input data only
MODE 1 Input plus analog mode (48 bits input data plus 6 channels of analog data)
MODE 2 Input plus field voltage

Pins:

(float out) .7i70.0.0.analogN (modes 1 and 2 only) Analogue input values.

(float out) .7i70.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.

(bit out) .7i70.0.0.input−NN: (NN = 0 to 47) 48 digital inputs.

(bit in) .7i70.0.0.input−NN−not: (NN = 0 to 47) An inverted copy of the inputs provided for

330 2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

convenience. The two complementary pins may be connected to different signal nets.

Parameters:

(u32 ro) .7i70.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered, and
special utils are needed to do so.

(u32 ro) .7i70.0.0.nvunitnumber: Indicates the serial number of the device and should match a
siticker on the card. This can be useful for wokring out which card is which.

(u32 ro) .7i70.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(u32 ro) .7i69.0.0.swrevision: The onboard firmware revision number. Utilities exist to update and
change this firmware.

7i71

The 7I71 is a remote isolated 48 output card. The 48 outputs are 8VDC to 28VDC sourcing drivers
(common + field power) with 300 mA maximum current capability. All outputs have LED status
indicators.

The 7I71 has two software selectable modes. For high speed applications, choosing the correct
mode can reduced the data transfer sizes, resulting in higher maximum update rates

MODE 0 Output only mode (48 bits output data only)
MODE 1 Outputs plus read back field voltage

Pins:

(float out) .7i71.0.0.fieldvoltage (mode 2 only) Field voltage monitoring pin.

(bit out) .7i71.0.0.output−NN: (NN = 0 to 47) 48 digital outputs. The sense may be inverted by the
invert parameter.

Parameters:

(bit rw) .7i71.0.0.output−NN−invert: Invert the sense of the corresponding output pin.

(u32 ro) .7i71.0.0.nvbaudrate: Indicates the vbaud rate. This probably should not be altered, and
special utils are needed to do so.

(u32 ro) .7i71.0.0.nvunitnumber: Indicates the serial number of the device and should match a
siticker on the card. This can be useful for wokring out which card is which.

(u32 ro) .7i71.0.0.nvwatchdogtimeout: The sserial remote watchdog timeout. This is separate from
the Anything-IO card timeout. This is unlikley to need to be changed.

(u32 ro) .7i69.0.0.swrevision: The onboard firmware revision number. Utilities exist to update and
change this firmware.

LinuxCNC Documentation 2008-05-13 331

SSERIAL(9) HAL Component SSERIAL(9)

7i73 The 7I73 is a remote real time pendant or control panel interface.

The 7I73 supports up to four 50KHz encoder inputs for MPGs, 8 digital inputs and 6 digital out-
puts and up to a 64 Key keypad. If a smaller keypad is used, more digital inputs and outputs
become available. Up to eight 0.0V to 3.3V analog inputs are also provided. The7I73 can drive a
4 line 20 character LCD for local DRO applications.

The 7I73 has 3 software selectable process data modes. These different modes select different sets
of 7I73 data to be transferred between the host and the 7 I73 during real time process data
exchanges. For high speed applications, choosing the correct mode can reduced the data transfer
sizes, resulting in higher maximum update rates
MODE 0 I/O + ENCODER
MODE 1 I/O + ENCODER +ANALOG IN
MODE 2 I/O + ENCODER +ANALOG IN FAST DISPLAY

Pins:

(float out) .7i73.0.0.analoginN: Analogue inputs. Up to 8 channels may be available dependant on
software and hardware configuration modes. (see the pdf manual downlaodable from
www.mesanet.com)

(u32 in) .7i73.0.1.display (modes 1 and 2). Data for LCD display. This pin may be conveniently
driven by the HAL "lcd" component which allows the formatted display of the values any number
of HAL pins and textual content.

(u32 in) .7i73.0.1.display32 (mode 2 only). 4 bytes of data for LCD display. This mode is not sup-
ported by the HAL "lcd" component.

(s32 out) .7i73.0.1.encN: The position of the MPG encoder counters.

(bit out) .7i73.0.1.input−NN: Up to 24 digital inputs (dependent on config)

(bit out) .7i73.0.1.input−NN−not: Inverted copy of the digital inputs

(bit in) .7i73.0.1.output−NN: Up to 22 digital outputs (dependent on config)

Parameters:

(u32 ro) .7i73.0.1.nvanalogfilter:
(u32 ro) .7i73.0.1.nvbaudrate
(u32 ro) .7i73.0.1.nvcontrast
(u32 ro) .7i73.0.1.nvdispmode
(u32 ro) .7i73.0.1.nvencmode0
(u32 ro) .7i73.0.1.nvencmode1
(u32 ro) .7i73.0.1.nvencmode2
(u32 ro) .7i73.0.1.nvencmode3
(u32 ro) .7i73.0.1.nvkeytimer
(u32 ro) .7i73.0.1.nvunitnumber
(u32 ro) .7i73.0.1.nvwatchdogtimeout
(u32 ro) .7i73.0.1.output−00−invert

The above parameters are only settable with utility software, for further
details of their use see the Mesa manual.

332 2008-05-13 LinuxCNC Documentation

SSERIAL(9) HAL Component SSERIAL(9)

(bit rw) .7i73.0.1.output−01−invert: Invert the corresponding output bit.

(s32 ro) .7i73.0.1.swrevision: The version of firmware installed.

TODO: Add 7i77, 7i66, 7i72, 7i83, 7i84, 7i87.

LinuxCNC Documentation 2008-05-13 333

STEPGEN(9) HAL Component STEPGEN(9)

NAME
stepgen − software step pulse generation

SYNOPSIS
loadrt stepgen step_type=type0[,type1...] [ctrl_type=type0[,type1...]] [user_step_type=#,#...]

DESCRIPTION
stepgenis used to control stepper motors. The maximum step rate depends on the CPU and other factors,
and is usually in the range of 5KHz to 25KHz. If higher rates are needed, a hardware step generator is a
better choice.

stepgenhas two control modes, which can be selected on a channel by channel basis usingctrl_type. Pos-
sible values are "p" for position control, and "v" for velocity control. The default is position control, which
drives the motor to a commanded position, subject to acceleration and velocity limits.Velocity control
drives the motor at a commanded speed, again subject to accel and velocity limits. Usually, position mode
is used for machine axes. Velocity mode is reserved for unusual applications where continuous movement
at some speed is desired, instead of movement to a specific position. (Note that velocity mode replaces the
former componentfreqgen.)

stepgencan control a maximum of 16 motors. The number of motors/channels actually loaded depends on
the number oftypevalues given. Thevalue of eachtypedetermines the outputs for that channel. Position
or velocity mode can be individually selected for each channel. Both control modes support the same 16
possible step types.

By far the most common step type is ’0’, standard step and direction. Others include up/down, quadrature,
and a wide variety of three, four, and five phase patterns that can be used to directly control some types of
motor windings. (When used with appropriate buffers of course.)

Some of the stepping types are described below, but for more details (including timing diagrams) see the
stepgensection of the HAL reference manual.

type 0: step/dir
Tw o pins, one for step and one for direction.make−pulsesmust run at least twice for each step
(once to set the step pin true, once to clear it). This limits the maximum step rate to half (or less)
of the rate that can be reached by types 2-14. The parameterssteplenandstepspacecan further
lower the maximum step rate.Parametersdirsetup anddirhold also apply to this step type.

type 1: up/down
Tw o pins, one for ’step up’ and one for ’step down’. Like type 0,make−pulsesmust run twice per
step, which limits the maximum speed.

type 2: quadrature
Tw o pins, phase−A and phase−B.For forward motion, A leads B. Can advance by one step every
timemake−pulsesruns.

type 3: three phase, full step
Three pins, phase−A, phase−B, and phase−C. Three steps per full cycle, then repeats. Only one
phase is high at a time - for forward motion the pattern is A, then B, then C, then A again.

type 4: three phase, half step
Three pins, phases A through C. Six steps per full cycle. FirstA is high alone, then A and B
together, then B alone, then B and C together, etc.

types 5 through 8: four phase, full step
Four pins, phases A through D.Four steps per full cycle. Types 5 and 6 are suitable for use with
unipolar steppers, where power is applied to the center tap of each winding, and four open-collec-
tor transistors drive the ends.Types 7 and 8 are suitable for bipolar steppers, driven by two H-
bridges.

334 2007-01-16 LinuxCNC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

types 9 and 10: four phase, half step
Four pins, phases A through D. Eight steps per full cycle. Type 9 is suitable for unipolar drive,
and type 10 for bipolar drive.

types 11 and 12: five phase, full step
Five pins, phases A through E. Five steps per full cycle. SeeHAL reference manual for the pat-
terns.

types 13 and 14: five phase, half step
Five pins, phases A through E.Ten steps per full cycle. SeeHAL reference manual for the pat-
terns.

type 15: user-specified
This uses the wav eform specified by theuser_step_typemodule parameter, which may have up to
10 steps and 5 phases.

FUNCTIONS
stepgen.make−pulses(no floating-point)

Generates the step pulses, using information computed byupdate−freq. Must be called as fre-
quently as possible, to maximize the attainable step rate and minimize jitter. Operates on all chan-
nels at once.

stepgen.capture−position(uses floating point)
Captures position feedback value from the high speed code and makes it available on a pin for use
elsewhere in the system. Operates on all channels at once.

stepgen.update−freq(uses floating point)
Accepts a velocity or position command and converts it into a form usable bymake−pulsesfor
step generation. Operates on all channels at once.

PINS
stepgen.N.countss32 out

The current position, in counts, for channelN. Updated bycapture−position.

stepgen.N.position−fb float out
The current position, in length units (see parameterposition−scale). Updatedby capture−posi-
tion. The resolution ofposition−fb is much finer than a single step. If you need to see individual
steps, usecounts.

stepgen.N.enablebit in
Enables output steps - when false, no steps are generated.

stepgen.N.velocity−cmdfloat in (velocity mode only)
Commanded velocity, in length units per second (see parameterposition−scale).

stepgen.N.position−cmdfloat in (position mode only)
Commanded position, in length units (see parameterposition−scale).

stepgen.N.stepbit out (step type 0 only)
Step pulse output.

stepgen.N.dir bit out (step type 0 only)
Direction output: low for forward, high for reverse.

stepgen.N.up bit out (step type 1 only)
Count up output, pulses for forward steps.

stepgen.N.down bit out (step type 1 only)
Count down output, pulses for reverse steps.

stepgen.N.phase−Athruphase−Ebit out (step types 2-14 only)
Output bits.phase−Aandphase−Bare present for step types 2-14,phase−Cfor types 3-14,
phase−Dfor types 5-14, andphase−Efor types 11-14. Behavior depends on selected stepping

LinuxCNC Documentation 2007-01-16 335

STEPGEN(9) HAL Component STEPGEN(9)

type.

PARAMETERS
stepgen.N.frequencyfloat ro

The current step rate, in steps per second, for channelN.

stepgen.N.maxaccelfloat rw
The acceleration/deceleration limit, in length units per second squared.

stepgen.N.maxvelfloat rw
The maximum allowable velocity, in length units per second. If the requested maximum velocity
cannot be reached with the current combination of scaling andmake−pulsesthread period, it will
be reset to the highest attainable value.

stepgen.N.position−scalefloat rw
The scaling for position feedback, position command, and velocity command, in steps per length
unit.

stepgen.N.rawcountss32 ro
The position in counts, as updated bymake−pulses. (Note: this is updated more frequently than
thecountspin.)

stepgen.N.steplenu32 rw
The length of the step pulses, in nanoseconds. Measured from rising edge to falling edge.

stepgen.N.stepspaceu32 rw (step types 0 and 1 only) The minimum
space between step pulses, in nanoseconds. Measured from falling edge to rising edge. The actual
time depends on the step rate and can be much longer. If stepspaceis 0, thenstepcan be asserted
ev ery period. This can be used in conjunction withhal_parport ’s auto-resetting pins to output
one step pulse per period. In this mode,steplenmust be set for one period or less.

stepgen.N.dirsetup u32 rw (step type 0 only)
The minimum setup time from direction to step, in nanoseconds periods. Measured from change
of direction to rising edge of step.

stepgen.N.dirhold u32 rw (step type 0 only)
The minimum hold time of direction after step, in nanoseconds. Measured from falling edge of
step to change of direction.

stepgen.N.dirdelay u32 rw (step types 1 and higher only)
The minimum time between a forward step and a reverse step, in nanoseconds.

TIMING
There are five timing parameters which control the output wav eform. Nostep type uses all five, and only
those which will be used are exported to HAL. The values of these parameters are in nano-seconds, so no
recalculation is needed when changing thread periods. In the timing diagrams that follow, they are ident-
fied by the following numbers:

(1) stepgen.n.steplen

(2) stepgen.n.stepspace

(3) stepgen.n.dirhold

(4) stepgen.n.dirsetup

(5) stepgen.n.dirdelay

For step type 0, timing parameters 1 thru 4 are used. The following timing diagram shows the output wav e-
forms, and what each parameter adjusts.

_____ _____ _____
STEP ____/ _______/ _____________/ ______

| | | | | |

336 2007-01-16 LinuxCNC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

Time |-(1)-|--(2)--|-(1)-|--(3)--|-(4)-|-(1)-|
|__________________

DIR ________________________________/

For step type 1, timing parameters 1, 2, and 5 are used. The following timing diagram shows the output
waveforms, and what each parameter adjusts.

_____ _____
UP __/ _____/ ________________________________

| | | | |
Time |-(1)-|-(2)-|-(1)-|---(5)---|-(1)-|-(2)-|-(1)-|

|_____| |_____|
DOWN ______________________________/ _____/ ____

For step types 2 and higher, the exact pattern of the outputs depends on the step type (see the HAL manual
for a full listing). The outputs change from one state to another at a minimum interval ofsteplen. When a
direction change occurs, the minimum time between the last step in one direction and the first in the other
direction is the sum ofsteplenanddirdelay.

SEE ALSO
The HAL User Manual.

LinuxCNC Documentation 2007-01-16 337

STEPTEST(9) HAL Component STEPTEST(9)

NAME
steptest − Used by Stepconf to allow testing of acceleration and velocity values for an axis.

SYNOPSIS
loadrt steptest [count=N|names=name1[,name2...]]

FUNCTIONS
steptest.N (requires a floating-point thread)

PINS
steptest.N.jog-minus bit in

Drive TRUE to jog the axis in its minus direction

steptest.N.jog-plus bit in
Drive TRUE to jog the axis in its positive direction

steptest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

steptest.N.maxvelfloat in
Maximum velocity

steptest.N.maxaccelfloat in
Permitted Acceleration

steptest.N.amplitude float in
Approximate amplitude of positions to command during ’run’

steptest.N.dir s32 in
Direction from central point to test: 0 = both, 1 = positive, 2 = neg ative

steptest.N.position-cmdfloat out
steptest.N.position-fb float in
steptest.N.running bit out
steptest.N.run-target float out
steptest.N.run-start float out
steptest.N.run-low float out
steptest.N.run-high float out
steptest.N.pauses32 in (default:0)

pause time for each end of run in seconds

PARAMETERS
steptest.N.epsilonfloat rw (default:.001)
steptest.N.elapsedfloat r

Current value of the internal timer

LICENSE
GPL

338 2021-01-22 LinuxCNC Documentation

STREAMER(9) HALUser’s Manual STREAMER(9)

NAME
streamer − stream file data into HAL in real time

SYNOPSIS
loadrt streamer depth=depth1[,depth2...]cfg=string1[,string2...]

DESCRIPTION
streamerandhalstreamer(1) are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so thatstreamercan write
it to the HAL pins.

OPTIONS
depth=depth1[,depth2...]

sets the depth of the user->realtime FIFO thatstreamercreates to receive data fromhalstreamer.
Multiple values ofdepth(separated by commas) can be specified if you need more than one FIFO
(for example if you want to stream data from two different realtime threads).

cfg=string1[,string2...]
defines the set of HAL pins thatstreamerexports and later writes data to. Onestring must be
supplied for each FIFO, separated by commas.streamerexports one pin for each character in
string. Legal characters are:

F, f (float pin)

B, b (bit pin)

S, s(s32 pin)

U, u (u32 pin)

FUNCTIONS
streamer.N

One function is created per FIFO, numbered from zero.

PINS
streamer.N.pin.M output

Data from columnM of the data in FIFON appears on this pin. The pin type depends on the con-
fig string.

streamer.N.curr−depth s32 output
Current number of samples in the FIFO. When this reaches zero, new data will no longer be writ-
ten to the pins.

streamer.N.empty bit output
TRUE when the FIFON is empty, FALSE when valid data is available.

streamer.N.enablebit input
When TRUE, data from FIFON is written to the HAL pins. When false, no data is transferred.
Defaults to TRUE.

streamer.N.underruns s32 read/write
The number of times thatsamplerhas tried to write data to the HAL pins but found no fresh data
in the FIFO. It increments whenever empty is true, and can be reset by thesetpcommand.

streamer.N.clock bit input
Clock for data as specified by the clock−mode pin

LinuxCNC Documentation 2006-11-18 339

STREAMER(9) HALUser’s Manual STREAMER(9)

streamer.N.clock−modes32 input
Defines behavior of clock pin:
0 (default) free run at every iteration
1 clock on falling edge of clock pin
2 clock on rising edge of clock pin
3 clock on any edge of clock pin

SEE ALSO
halstreamer(1) sampler(9) halsampler(1)

HISTORY
BUGS

Should anenableHAL pin be added, to allow streaming to be turned on and off?

AUTHOR
Original version by John Kasunich, as part of the LinuxCNC project. Improvements by several other mem-
bers of the LinuxCNC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

340 2006-11-18 LinuxCNC Documentation

SUM2(9) HAL Component SUM2(9)

NAME
sum2 − Sum of two inputs (each with a gain) and an offset

SYNOPSIS
loadrt sum2 [count=N|names=name1[,name2...]]

FUNCTIONS
sum2.N (requires a floating-point thread)

PINS
sum2.N.in0 float in
sum2.N.in1 float in
sum2.N.out float out

out = in0 * gain0 + in1 * gain1 + offset

PARAMETERS
sum2.N.gain0float rw (default:1.0)
sum2.N.gain1float rw (default:1.0)
sum2.N.offsetfloat rw

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 341

SUPPLY(9) HAL Component SUPPLY(9)

NAME
supply − set output pins with values from parameters (obsolete)

SYNOPSIS
loadrt supply num_chan=num

DESCRIPTION
supply was used to allow the inputs of other HAL components to be manipulated for testing purposes.
When it was written, the only way to set the value of an input pin was to connect it to a signal and connect
that signal to an output pin of some other component, and then let that component write the pin value.sup-
ply was written to be that "other component". It reads values from parameters (set with the HAL command
setp) and writes them to output pins.

Sincesupply was written, thesetpcommand has been modified to allow it to set unconnected pins as well
as parameters. In addition, thesetscommand was added, which can directly set HAL signals, as long as
there are no output pins connected to them. Therefore,supply is obsolete.

supply supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Ifnumchan is not specified, the default value is one.

FUNCTIONS
supply.N.update (uses floating-point)

Updates output pins for channelN.

PINS
supply.N.q bit out

Output bit, copied from parametersupply.N.d.

supply.N._q bit out
Output bit, inverted copy of parametersupply.N.d.

supply.N.variable float out
Analog output, copied from parametersupply.N.value.

supply.N._variable float out
Analog output, equal to −1.0 times parametersupply.N.value.

supply.N.d bit rw
Data source forq and_q output pins.

supply.N.valuebit rw
Data source forvariable and_variable output pins.

342 2007-01-16 LinuxCNC Documentation

THC(9) HAL Component THC(9)

NAME
thc − Torch Height Control

SYNOPSIS
loadrt thc

DESCRIPTION
Torch Height Control Mesa THC > Encoder > LinuxCNC THC component

The Mesa THC sends a frequency based on the voltage detected to the encoder. The velocity from the
encoder is converted to volts with the velocity scale parameter inside the THC component.

The THCAD card sends a frequency at 0 volts so the scale offset parameter is used to zero the calculated
voltage.

Component Functions If enabled and torch is on and X + Y velocity is within tolerance of set speed allow
the THC to offset the Z axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.

If not enabled pass the Z position and feed back untouched.

Physical Connections
Plasma Torch Arc Voltage Signal => 6 x 487k 1% resistors => THC Arc Voltage In
THC Frequency Signal => Encoder #0, pin A (Input)
Plasma Torch Arc OK Signal => input pin
output pin => Plasma Torch Start Arc Contacts

HAL Plasma Connections
encoder.nn.velocity => thc.encoder-vel (tip voltage)
motion.spindle-on => output pin (start the arc)
thc.arc-ok <= motion.digital-in-00 <= input pin (arc ok signal)

HAL Motion Connections
thc.requested-vel <= motion.requested-vel
thc.current-vel <= motion.current-vel

FUNCTIONS
thc (requires a floating-point thread)

PINS
thc.encoder-velfloat in

Connect to hm2_5i20.0.encoder.00.velocity

thc.current-vel float in
Connect to motion.current-vel

thc.requested-velfloat in
Connect to motion.requested-vel

thc.volts-requestedfloat in
Tip Volts current_vel >= min_velocity requested

LinuxCNC Documentation 2021-01-22 343

THC(9) HAL Component THC(9)

thc.vel-tol float in
Velocity Tolerance (Corner Lock)

thc.torch-on bit in
Connect to motion.spindle-on

thc.arc-ok bit in
Arc OK from Plasma Torch

thc.enablebit in
Enable the THC, if not enabled Z position is passed through

thc.z-pos-infloat in
Z Motor Position Command in from axis.n.motor-pos-cmd

thc.z-pos-outfloat out
Z Motor Position Command Out

thc.z-fb-out float out
Z Position Feedback to Axis

thc.volts float out
The Calculated Volts

thc.vel-statusbit out
When the THC thinks we are at requested speed

thc.offset-valuefloat out
The Current Offset

PARAMETERS
thc.vel-scalefloat rw

The scale to convert the Velocity signal to Volts

thc.scale-offsetfloat rw
The offset of the velocity input at 0 volts

thc.velocity-tol float rw
The deviation percent from planned velocity

thc.voltage-tolfloat rw
The deviation of Tip Voltage before correction takes place

thc.correction-vel float rw
The amount of change in user units per period to move Z to correct

AUTHOR
John Thornton

LICENSE
GPLv2 or greater

344 2021-01-22 LinuxCNC Documentation

THCUD(9) HAL Component THCUD(9)

NAME
thcud − Torch Height Control Up/Down Input

SYNOPSIS
loadrt thcud

DESCRIPTION
Torch Height Control This THC takes either an up or a down input from a THC

If enabled and torch is on and X + Y velocity is within tolerance of set speed allow the THC to offset the Z
axis as needed to maintain voltage.

If enabled and torch is off and the Z axis is moving up remove any correction at a rate not to exceed the rate
of movement of the Z axis.

If enabled and torch is off and there is no correction pass the Z position and feed back untouched.

If not enabled pass the Z position and feed back untouched.

Typical Physical Connections using a Parallel Port
Parallel Pin 12 <= THC controller Plasma Up
Parallel Pin 13 <= THC controller Plasma Down
Parallel Pin 15 <= Plasma Torch Arc Ok Signal
Parallel Pin 16 => Plasma Torch Start Arc Contacts

HAL Plasma Connections
net torch-up thcud.torch-up <= parport.0.pin-12-in
net torch-down thcud.torch-down <= parport.0.pin-13-in
net torch-on motion.spindle-on => parport.0.pin-16-out (start the arc)
net arc-ok thcud.arc-ok <= motion.digital-in-00 <= parport.0.pin-15-in (arc ok signal)

HAL Motion Connections
net requested-vel thcud.requested-vel <= motion.requested-vel
net current-vel thcud.current-vel <= motion.current-vel

Pyvcp Connections In the xml file you need something like:

<pyvcp>
<checkbutton>
<text>"THC Enable"</text>
<halpin>"thc-enable"</halpin>

</checkbutton>
</pyvcp>

Connect the Pyvcp pins in the postgui.hal file like this:

net thc-enable thcud.enable <= pyvcp.thc-enable

FUNCTIONS
thcud (requires a floating-point thread)

LinuxCNC Documentation 2021-01-22 345

THCUD(9) HAL Component THCUD(9)

PINS
thcud.torch-up bit in

Connect to an input pin

thcud.torch-down bit in
Connect to input pin

thcud.current-vel float in
Connect to motion.current-vel

thcud.requested-velfloat in
Connect to motion.requested-vel

thcud.torch-on bit in
Connect to motion.spindle-on

thcud.arc-ok bit in
Arc Ok from Plasma Torch

thcud.enablebit in
Enable the THC, if not enabled Z position is passed through

thcud.z-pos-infloat in
Z Motor Position Command in from axis.n.motor-pos-cmd

thcud.z-pos-outfloat out
Z Motor Position Command Out

thcud.z-fb-out float out
Z Position Feedback to Axis

thcud.cur-offset float out
The Current Offset

thcud.vel-statusbit out
When the THC thinks we are at requested speed

thcud.removing-offsetbit out
Pin for testing

PARAMETERS
thcud.velocity-tol float rw

The deviation percent from planned velocity

thcud.correction-vel float rw
The Velocity to move Z to correct

AUTHOR
John Thornton

LICENSE
GPLv2 or greater

346 2021-01-22 LinuxCNC Documentation

THREADS(9) HAL Component THREADS(9)

NAME
threads − creates hard realtime HAL threads

SYNOPSIS
loadrt threads name1=nameperiod1=period[fp1=<0|1>] [<thread-2-info>] [<thread-3-info>]

DESCRIPTION
threads is used to create hard realtime threads which can execute HAL functions at specific intervals. It is
not a true HAL component, in that it does not export any functions, pins, or parameters of its own. Onceit
has created one or more threads, the threads stand alone, and thethreadscomponent can be unloaded with-
out affecting them. In fact, it can be unloaded and then reloaded to create additional threads, as many times
as needed.

threadscan create up to three realtime threads. Threads must be created in order, from fastest to slowest.
Each thread is specified by three arguments.name1is used to specify the name of the first thread (thread
1). period1 is used to specify the period of thread 1 in nanoseconds. Bothnameandperiodare required.
The third argument,fp1 is optional, and is used to specify if thread 1 will be used to execute floating point
code. Ifnot specified, it defaults to1, which means that the thread will support floating point. Specify0 to
disable floating point support, which saves a small amount of execution time by not saving the FPU con-
text. For additional threads,name2, period2, fp2, name3, period3, and fp3 work exactly the same. If
more than three threads are needed, unload threads, then reload it to create more threads.

FUNCTIONS
None

PINS
None

PARAMETERS
None

BUGS
The existence ofthreadsmight be considered a bug. Ideally, creation and deletion of threads would be
done directly withhalcmd commands, such as "newthreadname period", "delthread name", or similar.
However, limitations in the current HAL implementation require thread creation to take place in kernel
space, and loading a component is the most straightforward way to do that.

LinuxCNC Documentation 2007-01-16 347

THREADTEST(9) HAL Component THREADTEST(9)

NAME
threadtest − LinuxCNC HAL component for testing thread behavior

SYNOPSIS
loadrt threadtest [count=N|names=name1[,name2...]]

FUNCTIONS
threadtest.N.increment

threadtest.N.reset

PINS
threadtest.N.count u32 out

LICENSE
GPL

348 2021-01-22 LinuxCNC Documentation

TIME(9) HAL Component TIME(9)

NAME
time − Time on in Hours, Minutes, Seconds

SYNOPSIS
loadrt time [count=N|names=name1[,name2...]]

DESCRIPTION
Time

When either the time.N.start or time.N.pause bits goes true the cycle timer resets and starts to time until
time.N.start AND time.N.pause go false. When the time.N.pause bit goes true timing is paused until
time.N.pause goes false. If you connect time.N.start to halui.program.is-running and leave time.N.pause
unconnected the timer will reset during a pause. See the example connections below for more information.

Time returns the hours, minutes, and seconds that time.N.start is true.

Sample pyVCP code to display the hours:minutes:seconds.

<pyvcp>
<hbox>
<label>
<text>"Cycle Time"</text>
("Helvetica",14)

</label>
<u32>

<halpin>"time-hours"</halpin>
("Helvetica",14)
<format>"2d"</format>

</u32>
<label>
<text>":"</text>
("Helvetica",14)

</label>
<u32>

<halpin>"time-minutes"</halpin>
("Helvetica",14)
<format>"2d"</format>

</u32>
<label>
<text>":"</text>
("Helvetica",14)

</label>
<u32>

<halpin>"time-seconds"</halpin>
("Helvetica",14)
<format>"2d"</format>

</u32>
</hbox> </pyvcp>

In your post-gui.hal file you might use one of the following to connect this timer:

For a new config:

loadrt time
addf time.0 servo-thread
net cycle-timer time.0.start<= halui.program.is-running

LinuxCNC Documentation 2021-01-22 349

TIME(9) HAL Component TIME(9)

net cycle-timer-pause time.0.pause<= halui.program.is-paused
net cycle-seconds pyvcp.time-seconds <= time.0.seconds
net cycle-minutes pyvcp.time-minutes <= time.0.minutes
net cycle-hours pyvcp.time-hours <= time.0.hours

Previous to this version if you wanted the timer to continue running
during a pause instead of resetting, you had to use a HAL NOT component
to invert the halui.program.is-idle pin and connect to time.N.start as
shown below:

loadrt time
loadrt not
addf time.0 servo-thread
addf not.0 servo-thread
net prog-running not.0.in <= halui.program.is-idle
net cycle-timer time.0.start <= not.0.out
net cycle-seconds pyvcp.time-seconds <= time.0.seconds
net cycle-minutes pyvcp.time-minutes <= time.0.minutes
net cycle-hours pyvcp.time-hours <= time.0.hours

For those who have this setup already, you can simply add a net connecting
time.N.pause to halui.program.is-paused:

net cycle-timer-pause time.0.pause <= halui.program.is-paused

FUNCTIONS
time.N (requires a floating-point thread)

PINS
time.N.start bit in

Timer On

time.N.pausebit in (default:0)
Pause

time.N.secondsu32 out
Seconds

time.N.minutesu32 out
Minutes

time.N.hours u32 out
Hours

AUTHOR
John Thornton, itaib, Moses McKnight

LICENSE
GPL

350 2021-01-22 LinuxCNC Documentation

TIMEDELAY(9) HAL Component TIMEDELAY(9)

NAME
timedelay − The equivalent of a time-delay relay

SYNOPSIS
loadrt timedelay [count=N|names=name1[,name2...]]

FUNCTIONS
timedelay.N (requires a floating-point thread)

PINS
timedelay.N.in bit in
timedelay.N.out bit out

Follows the value ofin after applying the delayson-delayandoff-delay.

timedelay.N.on-delayfloat in (default:0.5)
The time, in seconds, for whichin must betrue beforeout becomestrue

timedelay.N.off-delay float in (default:0.5)
The time, in seconds, for whichin must befalsebeforeout becomesfalse

timedelay.N.elapsedfloat out
Current value of the internal timer

AUTHOR
Jeff Epler, based on works by Stephen Wille Padnos and John Kasunich

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 351

TIMEDELTA(9) HAL Component TIMEDELTA(9)

NAME
timedelta − LinuxCNC HAL component that measures thread scheduling timing behavior

SYNOPSIS
loadrt timedelta [count=N|names=name1[,name2...]]

FUNCTIONS
timedelta.N

PINS
timedelta.N.out s32 out
timedelta.N.err s32 out (default:0)
timedelta.N.min s32 out (default:0)
timedelta.N.max s32 out (default:0)
timedelta.N.jitter s32 out (default:0)
timedelta.N.avg-err float out (default:0)
timedelta.N.resetbit in

LICENSE
GPL

352 2021-01-22 LinuxCNC Documentation

TOGGLE(9) HAL Component TOGGLE(9)

NAME
toggle − ’push-on, push-off’ f rom momentary pushbuttons

SYNOPSIS
loadrt toggle [count=N|names=name1[,name2...]]

FUNCTIONS
toggle.N

PINS
toggle.N.in bit in

button input

toggle.N.out bit io
on/off output

PARAMETERS
toggle.N.debounceu32 rw (default:2)

debounce delay in periods

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 353

TOGGLE2NIST(9) HAL Component TOGGLE2NIST(9)

NAME
toggle2nist − toggle button to nist logic

SYNOPSIS
loadrt toggle2nist [count=N|names=name1[,name2...]]

DESCRIPTION
toggle2nist can be used with a momentary push button connected to a toggle component to control a device
that has separate on and off inputs and has an is-on output. If in changes states via the toggle output
If is-on is true then on is false and off is true.
If is-on is false the on true and off is false.

FUNCTIONS
toggle2nist.N

PINS
toggle2nist.N.in bit in
toggle2nist.N.is-onbit in
toggle2nist.N.on bit out
toggle2nist.N.off bit out

LICENSE
GPL

354 2021-01-22 LinuxCNC Documentation

TRISTATE_BIT(9) HAL Component TRISTATE_BIT(9)

NAME
tristate_bit − Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS
loadrt tristate_bit [count= N|names=name1[,name2...]]

FUNCTIONS
tristate-bit.N

If enableis TRUE, copyin to out.

PINS
tristate-bit.N.in bit in

Input value

tristate-bit.N.out bit io
Output value

tristate-bit.N.enablebit in
When TRUE, copy in to out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 355

TRISTATE_FLOAT(9) HAL Component TRISTATE_FLOAT(9)

NAME
tristate_float − Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS
loadrt tristate_float [count=N|names=name1[,name2...]]

FUNCTIONS
tristate-float.N (requires a floating-point thread)

If enableis TRUE, copyin to out.

PINS
tristate-float.N.in float in

Input value

tristate-float.N.out float io
Output value

tristate-float.N.enablebit in
When TRUE, copy in to out

LICENSE
GPL

356 2021-01-22 LinuxCNC Documentation

UPDOWN(9) HAL Component UPDOWN(9)

NAME
updown − Counts up or down, with optional limits and wraparound behavior

SYNOPSIS
loadrt updown [count=N|names=name1[,name2...]]

FUNCTIONS
updown.N

Process inputs and update count if necessary

PINS
updown.N.countup bit in

Increment count when this pin goes from 0 to 1

updown.N.countdownbit in
Decrement count when this pin goes from 0 to 1

updown.N.resetbit in
Reset count when this pin goes from 0 to 1

updown.N.count s32 out
The current count

PARAMETERS
updown.N.clamp bit rw

If TRUE, then clamp the output to the min and max parameters.

updown.N.wrap bit rw
If TRUE, then wrap around when the count goes above or below the min and max parameters.
Note that wrap implies (and overrides) clamp.

updown.N.max s32 rw (default:0x7FFFFFFF)
If clamp or wrap is set, count will never exceed this number

updown.N.min s32 rw
If clamp or wrap is set, count will never be less than this number

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 357

WA TCHDOG(9) HAL Component WATCHDOG(9)

NAME
watchdog − monitor multiple inputs for a "heartbeat"

SYNOPSIS
loadrt watchdog num_inputs=N

You must specify the number of inputs, from 1 to 32. Each input has a separate timeout value.

FUNCTIONS
process

Check all input pins for transitions, clear theok−out pin if any input has no transition within its
timeout period. This function does not use floating point, and should be added to a fast thread.

set−timeouts
Check for timeout changes, and convert the float timeout inputs to int values that can be used in
process. This function also monitorsenable−infor false to true transitions, and re-enables moni-
toring when such a transition is detected. This function does use floating point, and it is appropri-
ate to add it to the servo thread.

PINS
watchdog.input−n bit in

Input number n. The inputs are numbered from 0 tonum_inputs−1.

watchdog.enable−inbit in (default:FALSE)
If TRUE, forces out−ok to be false. Additionally, if a timeout occurs on any input, this pin must
be set FALSE and TRUE again to re-start the monitoring of input pins.

watchdog.ok−outbit out (default:FALSE)
OK output. This pin is true only if enable−in is TRUE and no timeout has been detected. This
output can be connected to the enable input of acharge_pumpor stepgen(in v mode), to provide
a heartbeat signal to external monitoring hardware.

PARAMETERS
watchdog.timeout−nfloat in

Timeout value for input number n. The inputs are numbered from 0 tonum_inputs−1. Thetime-
out is in seconds, and may not be below zero. Notethat a timeout of 0.0 will likely prevent
ok−out from ever becoming true. Also note that excessively long timeouts are relatively useless
for monitoring purposes.

LICENSE
GPL

358 2010-06-22 LinuxCNC Documentation

WCOMP(9) HAL Component WCOMP(9)

NAME
wcomp − Window comparator

SYNOPSIS
loadrt wcomp [count=N|names=name1[,name2...]]

FUNCTIONS
wcomp.N (requires a floating-point thread)

PINS
wcomp.N.in float in

Value being compared

wcomp.N.min float in
Low boundary for comparison

wcomp.N.max float in
High boundary for comparison

wcomp.N.out bit out
True if in is strictly betweenmin andmax

wcomp.N.under bit out
True if in is less than or equal tomin

wcomp.N.over bit out
True if in is greater than or equal tomax

NOTES
If max <= min then the behavior is undefined.

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 359

WEIGHTED_SUM(9) HAL Component WEIGHTED_SUM(9)

NAME
weighted_sum − convert a group of bits to an integer

SYNOPSIS
loadrt weighted_sum wsum_sizes=size[,size,...]

Creates weighted sum groups each with the given number of input bits (size).

DESCRIPTION
This component is a "weighted summer": Its output is the offset plus the sum of the weight of each TRUE
input bit. The default value for each weight is 2ˆn where n is the bit number. This results in a binary to
unsigned conversion.

There is a limit of 8 weighted summers and each may have up to 16 input bits.

FUNCTIONS
process_wsums (requires a floating point thread)

Read all input values and update all output values.

PINS
wsum.N.bit.M.in bit in

Them’th input of weighted summern.

wsum.N.hold bit in
When TRUE, thesumoutput does not change. When FALSE, thesumoutput tracks thebit inputs
according to the weights and offset.

wsum.N.sumsigned out
The output of the weighted summer

wsum.N.bit.M.weight signed rw
The weight of them’th input of weighted summern. The default value is 2m̂.

wsum.N.offsetsigned rw
The offset is added to the weights corresponding to all TRUE inputs to give the final sum.

360 2007-01-16 LinuxCNC Documentation

WJ200_VFD(9) HAL Component WJ200_VFD(9)

NAME
wj200_vfd − Hitachi wj200 modbus driver

SYNOPSIS
wj200_vfd

PINS
wj200-vfd.N.commanded-frequencyfloat in

Frequency of vfd

wj200-vfd.N.rev ersebit in
1 when reverse 0 when forward

wj200-vfd.N.run bit in
run the vfd

wj200-vfd.N.enablebit in
1 to enable the vfd. 0 will remote trip the vfd, thereby disabling it.

wj200-vfd.N.is-running bit out
1 when running

wj200-vfd.N.is-at-speedbit out
1 when running at assigned frequency

wj200-vfd.N.is-readybit out
1 when vfd is ready to run

wj200-vfd.N.is-alarm bit out
1 when vfd alarm is set

wj200-vfd.N.watchdog-outbit out
Alternates between 1 and 0 after every update cycle. Feed into a watchdog component to ensure
vfd driver is communicating with the vfd properly.

PARAMETERS
wj200-vfd.N.mbslaveaddr u32 rw

Modbus slave address

LICENSE
GPLv2 or greater

LinuxCNC Documentation 2021-01-22 361

XHC_HB04_UTIL(9) HAL Component XHC_HB04_UTIL(9)

NAME
xhc_hb04_util − xhc-hb04 convenience utility

SYNOPSIS
loadrt xhc_hb04_util [count=N|names=name1[,name2...]]

DESCRIPTION
Provides logic for a start/pause button and an interface to halui.program.is_paused, is_idle, is_running to
generate outputs for halui.program.pause, resume, run.

Includes 4 simple lowpass filters with coef and scale pins. The coef value should be 0 <= coef <=1, smaller
coef values slow response.

Includes 4 multiplexers to manage ini hal pins ini.N.max_acceleration. The amux.N.in0 inputs are used by
default, the amux.N.in1 inputs are selected when the is-manual pin is True.

The pin named is-manual is typically connected to halui.mode.is-manual.

The pin named jogenable-off is not used.

FUNCTIONS
xhc-hb04-util.N (requires a floating-point thread)

PINS
xhc-hb04-util.N.start-or-pausebit in
xhc-hb04-util.N.is-pausedbit in
xhc-hb04-util.N.is-idle bit in
xhc-hb04-util.N.is-running bit in
xhc-hb04-util.N.pausebit out
xhc-hb04-util.N.resumebit out
xhc-hb04-util.N.run bit out
xhc-hb04-util.N.in0 s32 in
xhc-hb04-util.N.in1 s32 in
xhc-hb04-util.N.in2 s32 in
xhc-hb04-util.N.in3 s32 in
xhc-hb04-util.N.out0 s32 out
xhc-hb04-util.N.out1 s32 out
xhc-hb04-util.N.out2 s32 out
xhc-hb04-util.N.out3 s32 out
xhc-hb04-util.N.scale0float in (default:1.0)
xhc-hb04-util.N.scale1float in (default:1.0)
xhc-hb04-util.N.scale2float in (default:1.0)
xhc-hb04-util.N.scale3float in (default:1.0)
xhc-hb04-util.N.coef0float in (default:1.0)
xhc-hb04-util.N.coef1float in (default:1.0)
xhc-hb04-util.N.coef2float in (default:1.0)
xhc-hb04-util.N.coef3float in (default:1.0)
xhc-hb04-util.N.divide-by-k-in float in
xhc-hb04-util.N.divide-by-k-out float out
xhc-hb04-util.N.k float in (default:1.0)
xhc-hb04-util.N.is-manualbit in
xhc-hb04-util.N.jogenable-offbit in
xhc-hb04-util.N.amux0-in0float in

362 2021-01-22 LinuxCNC Documentation

XHC_HB04_UTIL(9) HAL Component XHC_HB04_UTIL(9)

xhc-hb04-util.N.amux1-in0float in
xhc-hb04-util.N.amux2-in0float in
xhc-hb04-util.N.amux3-in0float in
xhc-hb04-util.N.amux0-in1float in
xhc-hb04-util.N.amux1-in1float in
xhc-hb04-util.N.amux2-in1float in
xhc-hb04-util.N.amux3-in1float in
xhc-hb04-util.N.amux0-outfloat out
xhc-hb04-util.N.amux1-outfloat out
xhc-hb04-util.N.amux2-outfloat out
xhc-hb04-util.N.amux3-outfloat out

LICENSE
GPL

LinuxCNC Documentation 2021-01-22 363

XOR2(9) HAL Component XOR2(9)

NAME
xor2 − Two-input XOR (exclusive OR) gate

SYNOPSIS
loadrt xor2 [count=N|names=name1[,name2...]]

FUNCTIONS
xor2.N

PINS
xor2.N.in0 bit in
xor2.N.in1 bit in
xor2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=TRUE in1=FALSE
in0=FALSE in1=TRUE

out=TRUE

Otherwise,
out=FALSE

LICENSE
GPL

364 2021-01-22 LinuxCNC Documentation

