HAL Manual V2.5, 2018-10-21

HAL Manual V2.5, 2018-10-21

HAL Manual V2.5, 2018-10-21 ii

Contents

I Hardware Abstract Layer 1
1 HAL Introduction 2
1.1 HAL is based on traditional system design techniques Lo o 2
LI.L PartSelection L e e e 2

1.1.2 Interconnection Design L e e e e e e e 2

1.1.3 Implementation oL e e e e e e e e e e 3

114 Testing o o o o e e e e e 3

LIS Summary e e 3

1.2 HAL COnCepts v i e e e e e e e e e e 4

1.3 HAL COmMPONENtSs o o it ettt e et e e e e e e e e e e e e e 5
1.3.1 External Programs with HAL hooks 5

1.3.2 Internal Components i it e e e e e e e e e e e e e e 5

1.3.3 Hardware Drivers o o e 6

1.34 Toolsand Utilities e e e e 6

1.4 Timing Issues InHAL 0 . . o L 0 e 6

2 Advanced HAL Tutorial 8
2.1 Introduction e e e e 8
21,1 Notation oL e e 8

2.1.2 Tab-completion e 8

2.1.3 The RTAPI environment it e e e 8

22 ASimple Example e e 9
22,1 Loadingacomponent. vttt it e e e e e e e 9

2.2.2 Examiningthe HAL o e 9

2.2.3 Makingrealtime coderun L. e 10

2.2.4 Changing Parameters o o i e e e e e e e e e e e e e e e 12

2.2.5 Saving the HAL configuration e e 12

2.2.6 Exitinghalruno e 13

2.2.77 Restoring the HAL configuration. Lo 13

HAL Manual V2.5, 2018-10-21 i
2.2.8 Removing HAL frommemory 13

2.3 Halmeter e e 13
24 Stepgen Example e e e e e e 15
2.4.1 Installing the components L e 15

24.2 Connecting pins with signals L 16

2.4.3 Setting up realtime execution - threads and functions 17

2.4.4 Setting parameters i e e e e e e e e e e e e e e e e e e 18

245 Runit!l ..o e e e 19

2.5 HalSCope o e e e e e e 19
2.5.1 Hookingupthe scope probes 21

2.5.2 Capturing our first waveformso L e 24

2.5.3 Vertical AdJustments e e e e e e e e e e e e e e 25

254 Triggering o o e e 26

2.5.5 Horizontal Adjustments L. e e 28

2.5.6 MoreChannels e e 29

257 Moresamplesl e e 30

3 General Reference 31
3.1 General Naming CONVENtONS v v vt vttt e e b et e e e e e e e e e e 31
3.2 Hardware Driver Naming Conventions ittt it e e 31
3.2.1 Pin/Parameter Namesot e e e e e e e e e e e e e e e 31

322 Function Names e e e e 32
Canonical Device Interfaces 34
4.1 Introduction L e 34
42 Digital Input L . e e e e e e 34
42,1 PINS . .. 34

422 Parameters e e e e e e e e e e e e e e 34

423 Functions e e 34

4.3 Digital Output oo e e e e e e 34
431 PINS . . .o e 35

432 Parameters e e e 35

433 Functions e e e e 35

4.4 AnalogInput e e e 35
441 PINS . . L. e 35

442 Parameters e e e e e e e e e e 35

443 Functions e e e e e 35

4.5 Analog Output L e e 35
451 PINs . . .o e 35

4.5.2 Parameters L. e e e 36

453 Functions e e e e e e e 36

HAL Manual V2.5, 2018-10-21 iv
5 HAL Tools 37
5.1 Halemd 37

5.2 Halmeter 37

5.3 Halscope e 38

6 Basic HAL Tutorial 39
6.1 HAL Commands e 39
6.1.1 loadrt e 40

6.1.2 addf 40

6.1.3 loadusr 41

6.1.4 MeL . ..o 41

6.1.5 SEID . . . e 42

6.1.6 SELS 43

6.1.7 unlinkp 43

6.1.8 Obsolete Commands L e e e 43

6.1.8.1 HnKSp e e e e e 43

6.1.82 linkps 44

6.1.8.3 MeWSIZ e e e 44

6.2 HALData 44
6.2.1 BIt . .o 44

6.2.2 Float e e 44

6.2.3 832 L 44

6.2.4 UB2 L 44

6.3 HALFiles 45
6.4 HAL Components o v i ittt et e e e e e e e e e e e 45

6.5 Logic COMPONENLS o vttt e e e e e e e e e e e e e e 45
6.5.1 and2o 45

6.52 MNOL 46

6.53 02 . L 46

6.5.4 XOI2 . . . L. 46

6.5.5 Logic Examples e e e e 47

6.6 Conversion COMPONENES v ittt it et e e e e 47
6.6.1 weighted_sum 47

7 Halshow 49
7.1 Starting Halshow 0 o L e 49
7.2 HALTree Area e 49
7.3 HAL Show Area e 51
74 HAL Watch Area o e 54

HAL Manual V2.5, 2018-10-21 v
8 HAL Components 56
8.1 Commands and Userspace Componentsttt 56

8.2 Realtime Components List e 57
8.2.1 Core LinuxCNC COMPONENLS v v v v it v et e e e e e e e e e e e e e e e 57

8.2.2 Logic and bitwise COMPONENLS o v v v v v v et e e e e e e e e e e e e e e e e e e 57

8.2.3 Arithmetic and float-components e e e e e e e 58

8.2.4 TypPe CONVEISION . . . o v v v vttt ettt e e e e e e e e e e 59

8.2.5 Hardware drivers L. e e 60

8.2.6 KinematiCs e 60

8.277 Motorcontrol L. e e e e e e e 61

8.2.8 BLDC and 3-phase motor control L e 61

8.2.9 Other e 62

83 HAL APIcalls e 63

8.4 RTAPIcalls 64

9 HAL Component Descriptions 66
0.1 Stepgen e e e e 66
0.2 PWMEEN o e e e e e 73
0.3 Encoder e e 74
9.4 PID 77
9.5 Simulated Encoder e 79
0.6 Debounce e 80
0.7 SigEeN L e 80
0.8 TUtS . . L e 81

10 Parallel Port Driver 83
10.1 Parport. o o o e e 83
10.1.1 Inmstalling oL 83

10.1.2 PIns . . . oo e 84

10.1.3 Parameters oL e e e e e e e e e e e 85

10.1.4 Functions o it i e e e e e e e e e 85

10.1.5 Common problems e e e e e e e e e 85

10.1.6 Using DoubleStep o e 86

10.2 probe_parport e e e e e e e e e 86
10.2.1 Installing o0 e 86

11 HAL Examples 87
11.1 Manual Toolchange e 87
11.2 Compute VeloCity o o e 87
11.3 Soft Start e e 89
11.4 Stand Alone HAL e 90

HAL Manual V2.5, 2018-10-21

vi

12 Comp HAL Component Generator

12.1 Introduction
12.2 Installing .
12.3 Definitions .

12.4 InStance Creation v v v i e e e e e e e e e e e e e

12.5 Implicit Parameters e

12.6 Syntax . . .

12.6.2 OPLONS v o ot e e e e e e e e e e e e e e e
12.6.3 License and Authorship o e e

12.6.4 Per-instance data StOrage o . e e e e e e e e e e e e e

12.6.5 COommMENLS o o o e e e e e e e

12.7 Restrictions

12.8 Convenience MAacCros v v i v i e e e e e

12.9 Components with one function e e e e e e

12.10Component Personality e e e e e e e e

12.11Compiling .

12.12Compiling realtime components outside the source tree L e

12.13Compiling userspace components outside the source treeo

12.14Examples .

12.14.1constant o . e e e e e e
12.14.28INC0S . . . o v v e e e e e e

12.14.3 out8

12.14.4hal_loop e

12.14.5arraydemo oL e e e

12.14.6 rand
12.14.7 logic

13 Creating Userspace Python Components

13.1 Basic usage

13.2 Userspace components and delays e e e

13.3 Create pins and parameters v v v it e

133.1 Changingtheprefix e

13.4 Reading and writing pins and parameters i e e e e e e
13.4.1 Driving output (HAL_OUT) pins o o it e s e e e e s e
13.4.2 Driving bidirectional (HAL_IO) pins o

13.5 Exiting. . .
13.6 Project ideas

14 Index

92
92
92
92
93
93
93
95
95
95
96
96
96
97
97
97
97
98
98
98
98
99
99
100
100
100
101

102
102
103
103
103
103
104
104
104
104

105

HAL Manual V2.5, 2018-10-21 Vi

The LinuxCNC Team

This handbook is a work in progress. If you are able to help with writing, editing, or graphic preparation please contact any
member of the writing team or join and send an email to emc-users @lists.sourceforge.net.

Copyright © 2000-2012 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and one Back-Cover Text: This LinuxCNC Handbook is the product of several authors writing for linuxCNC.org. As you find it
to be of value in your work, we invite you to contribute to its revision and growth. A copy of the license is included in the section
entitled GNU Free Documentation License. If you do not find the license you may order a copy from Free Software Foundation,
Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

LINUX® is the registered trademark of Linus Torvalds in the U.S. and other countries. The registered trademark Linux® is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

mailto:emc-users@lists.sourceforge.net

HAL Manual V2.5, 2018-10-21 1/107

Part 1

Hardware Abstract Layer

HAL Manual V2.5, 2018-10-21 2/107

Chapter 1

HAL Introduction

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a number of building blocks to be
loaded and interconnected to assemble a complex system. The Hardware part is because HAL was originally designed to make
it easier to configure LinuxCNC for a wide variety of hardware devices. Many of the building blocks are drivers for hardware
devices. However, HAL can do more than just configure hardware drivers.

1.1 HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is useful to examine those
principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC machine, those components might
be the main controller, servo amps or stepper drives, motors, encoders, limit switches, pushbutton pendants, perhaps a VFD for
the spindle drive, a PLC to run a toolchanger, etc. The machine builder must select, mount and wire these pieces together to
make a complete system.

1.1.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them as black boxes. During the
design stage, he decides which parts he is going to use - steppers or servos, which brand of servo amp, what kind of limit switches
and how many, etc. The integrator’s decisions about which specific components to use is based on what that component does and
the specifications supplied by the manufacturer of the device. The size of a motor and the load it must drive will affect the choice
of amplifier needed to run it. The choice of amplifier may affect the kinds of feedback needed by the amp and the velocity or
position signals that must be sent to the amp from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every interface card will require a
driver. Additional components may be needed for software generation of step pulses, PLC functionality, and a wide variety of
other tasks.

1.1.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will be interconnected. Each black
box has terminals, perhaps only two for a simple switch, or dozens for a servo drive or PLC. They need to be wired together. The
motors connect to the servo amps, the limit switches connect to the controller, and so on. As the machine builder works on the
design, he creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which signals are needed, and what they
should connect.

HAL Manual V2.5, 2018-10-21 3/107

1.1.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired and mounted, and then they
are interconnected according to the wiring diagram. In a physical system, each interconnection is a piece of wire that needs to be
cut and connected to the appropriate terminals.

HAL provides a number of tools to help build a HAL system. Some of the tools allow you to connect (or disconnect) a single
wire. Other tools allow you to save a complete list of all the parts, wires, and other information about the system, so that it can
be rebuilt with a single command.

1.1.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see whether a limit switch is working
or to measure the DC voltage going to a servo motor. He may hook up an oscilloscope to check the tuning of a drive, or to look
for electrical noise. He may find a problem that requires the wiring diagram to be changed; perhaps a part needs to be connected
differently or replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools needed for testing and
tuning a system. The same commands used to build the system can be used to make changes as needed.

1.1.5 Summary

This document is aimed at people who already know how to do this kind of hardware system integration, but who do not know
how to connect the hardware to LinuxCNC. See the Remote Start Example section in the HAL UI Examples documentation.

Femote
Hun Btn

| haluimade, auto

and?.0.inf

halui.mode.is-auto andZ.0.in

andZ.0.out hialulprogram.run

The traditional hardware design as described above ends at the edge of the main control. Outside the control are a bunch of
relatively simple boxes, connected together to do whatever is needed. Inside, the control is a big mystery — one huge black box
that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes device drivers and even
some internal parts of the controller into smaller black boxes that can be interconnected and even replaced just like the external
hardware. It allows the system wiring diagram to show part of the internal controller, rather than just a big black box. And most
importantly, it allows the integrator to test and modify the controller using the same methods he would use on the rest of the
hardware.

HAL Manual V2.5, 2018-10-21 4/107

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk about using extra flexible eight
conductor shielded cable to connect an encoder to the servo input board in the computer, the reader immediately understands
what it is and is led to the question, what kinds of connectors will I need to make up each end. The same sort of thinking is
essential for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may seem a bit strange
at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If you are comfortable with
the idea of interconnecting hardware black boxes, you will probably have little trouble using HAL to interconnect software black
boxes.

1.2 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional glossary because these terms are
not arranged in alphabetical order. They are arranged by their relationship or flow in the HAL way of things.

Component
When we talked about hardware design, we referred to the individual pieces as parts, building blocks, black boxes, etc.
The HAL equivalent is a component or HAL component. (This document uses HAL component when there is likely to be
confusion with other kinds of components, but normally just uses component.) A HAL component is a piece of software
with well-defined inputs, outputs, and behavior, that can be installed and interconnected as needed.

Parameter
Many hardware components have adjustments that are not connected to any other components but still need to be accessed.
For example, servo amps often have trim pots to allow for tuning adjustments, and test points where a meter or scope can
be attached to view the tuning results. HAL components also can have such items, which are referred to as parameters.
There are two types of parameters: Input parameters are equivalent to trim pots - they are values that can be adjusted by
the user, and remain fixed once they are set. Output parameters cannot be adjusted by the user - they are equivalent to test
points that allow internal signals to be monitored.

Pin
Hardware components have terminals which are used to interconnect them. The HAL equivalent is a pin or HAL pin. (HAL

pin is used when needed to avoid confusion.) All HAL pins are named, and the pin names are used when interconnecting
them. HAL pins are software entities that exist only inside the computer.

Physical_Pin
Many I/O devices have real physical pins or terminals that connect to external hardware, for example the pins of a parallel
port connector. To avoid confusion, these are referred to as physical pins. These are the things that stick out into the real
world.

Signal
In a physical machine, the terminals of real hardware components are interconnected by wires. The HAL equivalent of a
wire is a signal or HAL signal. HAL signals connect HAL pins together as required by the machine builder. HAL signals
can be disconnected and reconnected at will (even while the machine is running).

Type
When using real hardware, you would not connect a 24 volt relay output to the +/-10V analog input of a servo amp. HAL
pins have the same restrictions, which are based upon their type. Both pins and signals have types, and signals can only be
connected to pins of the same type. Currently there are 4 types, as follows:

* bit - a single TRUE/FALSE or ON/OFF value
* float - a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.
* u32 - a 32 bit unsigned integer, legal values are 0 to 4,294,967,295
* 532 - a 32 bit signed integer, legal values are -2,147,483,647 to +2,147,483,647
Function

Real hardware components tend to act immediately on their inputs. For example, if the input voltage to a servo amp
changes, the output also changes automatically. However software components cannot act automatically. Each component

HAL Manual V2.5, 2018-10-21 5/107

has specific code that must be executed to do whatever that component is supposed to do. In some cases, that code simply
runs as part of the component. However in most cases, especially in realtime components, the code must run in a specific
sequence and at specific intervals. For example, inputs should be read before calculations are performed on the input data,
and outputs should not be written until the calculations are done. In these cases, the code is made available to the system in
the form of one or more functions. Each function is a block of code that performs a specific action. The system integrator
can use threads to schedule a series of functions to be executed in a particular order and at specific time intervals.

Thread
A thread is a list of functions that runs at specific intervals as part of a realtime task. When a thread is first created, it has a
specific time interval (period), but no functions. Functions can be added to the thread, and will be executed in order every
time the thread runs.

As an example, suppose we have a parport component named hal_parport. That component defines one or more HAL pins for
each physical pin. The pins are described in that component’s doc section: their names, how each pin relates to the physical pin,
are they inverted, can you change polarity, etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It
takes code to do that, and that is where functions come into the picture. The parport component needs at least two functions: one
to read the physical input pins and update the HAL pins, the other to take data from the HAL pins and write it to the physical
output pins. Both of these functions are part of the parport driver.

1.3 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that can be installed and intercon-
nected as needed. This section lists some of the available components and a brief description of what each does. Complete details
for each component are available later in this document.

1.3.1 External Programs with HAL hooks

motion
A realtime module that accepts NML ! motion commands and interacts with HAL

iocontrol
A user space module that accepts NML I/O commands and interacts with HAL

classicladder
A PLC using HAL for all I/O

halui

A user space program that interacts with HAL and sends NML commands, it is intended to work as a full User Interface
using external knobs & switches

1.3.2 Internal Components

stepgen
Software step pulse generator with position loop. See section Section 9.1

encoder
Software based encoder counter. See section Section 9.3
pid
Proportional/Integral/Derivative control loops. See section Section 9.4

siggen
A sine/cosine/triangle/square wave generator for testing. See section [sec:Siggen]

! Neutral Message Language provides a mechanism for handling multiple types of messages in the same buffer as well as simplifying the interface for
encoding and decoding buffers in neutral format and the configuration mechanism.

HAL Manual V2.5, 2018-10-21 6/107

supply
a simple source for testing

blocks
assorted useful components (mux, demux, or, and, integ, ddt, limit, wcomp, etc.)

1.3.3 Hardware Drivers

hal_ax5214h
A driver for the Axiom Measurement & Control AX5241H digital I/O board

hal_m5i20
Mesa Electronics 5i20 board

hal_motenc
Vital Systems MOTENC-100 board

hal_parport
PC parallel port.

hal_ppmc
Pico Systems family of controllers (PPMC, USC and UPC)

hal_stg
Servo To Go card (version 1 & 2)

hal_vti
Vigilant Technologies PCI ENCDAC-4 controller

1.3.4 Tools and Utilities

halemd
Command line tool for configuration and tuning. See section [sec:Halcmd]

halgui
GUI tool for configuration and tuning (not implemented yet).

halmeter
A handy multimeter for HAL signals. See section [sec:Halmeter].

halscope
A full featured digital storage oscilloscope for HAL signals. See section [sec:Halscope].

Each of these building blocks is described in detail in later chapters.

1.4 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon, simply connecting two pins
with a hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current flows (or stops) immediately.
Other coils may change state, etc, and it all just happens. But in PLC style ladder logic, it doesn’t work that way. Usually in a
single pass through the ladder, each rung is evaluated in the order in which it appears, and only once per pass. A perfect example
is a single rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and de-energize it. That means the
contacts close again, etc, etc. The relay becomes a buzzer.

HAL Manual V2.5, 2018-10-21 7/107

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung, then when it finishes that pass,
the coil is ON. The fact that turning on the coil opens the contact feeding it is ignored until the next pass. On the next pass, the
PLC sees that the contact is open, and de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate
determined by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version of ClassicLadder exports a
function to do exactly that. Meanwhile, a thread is the thing that runs the function at specific time intervals. Just like you can
choose to have a PLC evaluate all its rungs every 10 ms, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is nor what the thread does - that is determined by which functions are connected to
it. The real distinction is simply how often a thread runs.

In LinuxCNC you might have a 50 us thread and a 1 ms thread. These would be created based on BASE_PERIOD and
SERVO_PERIOD, the actual times depend on the values in your ini file.

The next step is to decide what each thread needs to do. Some of those decisions are the same in (nearly) any LinuxCNC
system—~For instance, motion-command-handler is always added to servo-thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s encoder read and DAC write
functions to the servo thread, or hooking stepgen’s function to the base-thread, along with the parport function(s) to write the
steps to the port.

HAL Manual V2.5, 2018-10-21 8/107

Chapter 2

Advanced HAL Tutorial

2.1 Introduction

Configuration moves from theory to device— HAL device that is. For those who have had just a bit of computer programming,
this section is the Hello World of the HAL. Halrun can be used to create a working system. It is a command line or text file tool
for configuration and tuning. The following examples illustrate its setup and operation.

2.1.1 Notation

Terminal commands are shown without the system prompt unless you are running HAL. The terminal window is in Application-
s/Accessories from the main Ubuntu menu bar.

Terminal Command Example

me@computer:~linuxcnc$ halrun
(will be shown like the following line)
halrun

(the halcmd: prompt will be shown when running HAL)
halcmd: loadrt debounce
halcmd: show pin

2.1.2 Tab-completion

Your version of halemd may include tab-completion. Instead of completing file names as a shell does, it completes commands
with HAL identifiers. You will have to type enough letters for a unique match. Try pressing tab after starting a HAL command:

Tab Completion

halcmd: loa<TAB>
halcmd: load

halcmd: loadrt

halcmd: loadrt deb<TAB>
halcmd: loadrt debounce

2.1.3 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in realtime, and all HAL compo-
nents store data in shared memory so realtime components can access it. Normal Linux does not support realtime programming

HAL Manual V2.5, 2018-10-21 9/107

or the type of shared memory that HAL needs. Fortunately there are realtime operating systems (RTOS’s) that provide the
necessary extensions to Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the LinuxCNC team came up with RTAPI, which provides a consistent way for programs to talk
to the RTOS. If you are a programmer who wants to work on the internals of LinuxCNC, you may want to study linuxcnc/src/r-
tapi/rtapi.h to understand the API. But if you are a normal person all you need to know about RTAPI is that it (and the RTOS)
needs to be loaded into the memory of your computer before you do anything with HAL.

2.2 A Simple Example

2.2.1 Loading a component

For this tutorial, we are going to assume that you have successfully installed the Live CD and, if using a RIP !, invoked the
rip-environment script to prepare your shell. In that case, all you need to do is load the required RTOS and RTAPI modules into
memory. Just run the following command from a terminal window:

Loading HAL

cd linuxcnc
halrun
halcmd:

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt is now shown as halcmd:.
This is because subsequent commands will be interpreted as HAL commands, not shell commands.

For the first example, we will use a HAL component called siggen, which is a simple signal generator. A complete description
of the siggen component can be found in the Siggen section of this Manual. It is a realtime component, implemented as a Linux
kernel module. To load siggen use the HAL command loadrt.

Loading siggen

halcmd: loadrt siggen

2.2.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd , the command line tool used to configure the HAL. This tutorial
will introduce some halecmd features, for a more complete description try man halcmd, or see the reference in Hal Commands
section of this document. The first halcmd feature is the show command. This command displays information about the current
state of the HAL. To show all installed components:

Show Components

halcmd: show comp

Loaded HAL Components:

ID Type Name PID State
3 RT siggen ready
2 User halcmd2177 2177 ready

Since halcmd itself is a HAL component, it will always show up in the list. The number after halcmd in the component list is the
process ID. It is possible to run more than one copy of halcmd at the same time (in different windows for example), so the PID is
added to the end of the name to make it unique. The list also shows the siggen component that we installed in the previous step.
The RT under Type indicates that siggen is a realtime component. The User under Type indicates it is a user space component.

Next, let’s see what pins siggen makes available:

Show Pins

! Run In Place, when the source files have been downloaded to a user directory.

HAL Manual V2.5, 2018-10-21 10/107

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float 1IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0O.clock
3 float OUT 0 siggen.0.cosine
3 float 1IN 1 siggen.0.frequency
3 float 1IN 0 siggen.0.offset
3 float OUT 0 siggen.0.sawtooth
3 float OUT 0 siggen.0.sine
3 float OUT 0 siggen.0.square
3 float OUT 0 siggen.0.triangle

This command displays all of the pins in the current HAL. A complex system could have dozens or hundreds of pins. But right
now there are only nine pins. All eight of these pins are floating point, and carry data out of the siggen component. Since we
have not yet executed the code contained within the component, some the pins have a value of zero.

The next step is to look at parameters:
Show Parameters

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 0 siggen.0.update.time
3 s32 RW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now each parameter has the default value it was given
when the component was loaded. Note the column labeled Dir. The parameters labeled -W are writable ones that are never
changed by the component itself, instead they are meant to be changed by the user to control the component. We will see how to
do this later. Parameters labeled R- are read only parameters. They can be changed only by the component. Finally, parameter
labeled RW are read-write parameters. That means that they are changed by the component, but can also be changed by the user.
Note: the parameters siggen.O.update.time and siggen.O.update.tmax are for debugging purposes, and won’t be covered in this
section.

Most realtime components export one or more functions to actually run the realtime code they contain. Let’s see what function(s)
siggen exported:

Show Functions

halcmd: show funct

Exported Functions:
Owner CodeAddr Arg FP Users Name
00003 £801b000 fae820b8 YES 0 siggen.0.update

The siggen component exported a single function. It requires floating point. It is not currently linked to any threads, so users is
Zero.

2.2.3 Making realtime code run

To actually run the code contained in the function siggen.O.update, we need a realtime thread. The component called threads that
is used to create a new thread. Lets create a thread called fest-thread with a period of 1 ms (1,000 us or 1,000,000 ns):

halcmd: loadrt threads namel=test-thread periodl=1000000

Let’s see if that worked:

Show Threads

HAL Manual V2.5, 2018-10-21 11/107

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max—-Time)
999855 YES test—-thread (0, 0)

It did. The period is not exactly 1,000,000 ns because of hardware limitations, but we have a thread that runs at approximately
the correct rate, and which can handle floating point functions. The next step is to connect the function to the thread:

Add Function

halcmd: addf siggen.0O.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the addf (add function) command to
actually change something in the HAL. We told halcmd to add the function siggen.O.update to the thread test-thread, and if we
look at the thread list again, we see that it succeeded:

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max—-Time)
999855 YES test-thread (0, 0)
1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the HAL is first started, the thread(s)
are not actually running. This is to allow you to completely configure the system before the realtime code starts. Once you are
happy with the configuration, you can start the realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0O.clock
3 float OUT -0.1640929 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.4475303 siggen.0.sawtooth
3 float OUT 0.9864449 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT -0.1049393 siggen.0O.triangle
And let’s look again:
halcmd: show pin
Component Pins:
Owner Type Dir Value Name
3 float IN 1 siggen.0.amplitude
3 bit ouT FALSE siggen.0O.clock
3 float OUT 0.0507619 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT -0.516165 siggen.0.sawtooth
3 float OUT 0.9987108 siggen.0.sine
3 float OUT -1 siggen.0.square
3 float OUT 0.03232994 siggen.0O.triangle

HAL Manual V2.5, 2018-10-21 12/107

We did two show pin commands in quick succession, and you can see that the outputs are no longer zero. The sine, cosine,
sawtooth, and triangle outputs are changing constantly. The square output is also working, however it simply switches from +1.0
to -1.0 every cycle.

2.2.4 Changing Parameters

The real power of HAL is that you can change things. For example, we can use the sefp command to set the value of a parameter.
Let’s change the amplitude of the signal generator from 1.0 to 5.0:
Set Pin

halcmd: setp siggen.O.amplitude 5

Check the parameters and pins again

halcmd: show param

Parameters:

Owner Type Dir Value Name
3 s32 RO 1754 siggen.0O.update.time
3 s32 RW 16997 siggen.0O.update.tmax

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
3 float IN 5 siggen.0.amplitude
3 bit ouT FALSE siggen.0O.clock
3 float OUT 0.8515425 siggen.0.cosine
3 float IN 1 siggen.0.frequency
3 float IN 0 siggen.0.offset
3 float OUT 2.772382 siggen.0.sawtooth
3 float OUT -4.926954 siggen.0O.sine
3 float OUT 5 siggen.0.square
3 float OUT 0.544764 siggen.0O.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5, and that the pins now have larger values.

2.2.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show command. However two of the
commands actually changed things. As we design more complex systems with HAL, we will use many commands to configure
things just the way we want them. HAL has the memory of an elephant, and will retain that configuration until we shut it down.
But what about next time? We don’t want to manually enter a bunch of commands every time we want to use the system. We can
save the configuration of the entire HAL with a single command:

Save

halcmd: save

components

loadrt threads namel=test-thread periodl=1000000
loadrt siggen

pin aliases

signals

nets

parameter values

setp siggen.O.update.tmax 14687
realtime thread/function links
addf siggen.0O.update test-thread

HAL Manual V2.5, 2018-10-21 13/107

The output of the save command is a sequence of HAL commands. If you start with an empty HAL and run all these commands,
you will get the configuration that existed when the save command was issued. To save these commands for later use, we simply
redirect the output to a file:

Save to a file

halcmd: save all saved.hal

2.2.6 Exiting halrun

When you’re finished with your HAL session type exit at the halcmd: prompt. This will return you to the system prompt and
close down the HAL session. Do not simply close the terminal window without shutting down the HAL session.

Exit HAL

halcmd: exit

2.2.7 Restoring the HAL configuration

To restore the HAL configuration stored in saved.hal, we need to execute all of those HAL commands. To do that, we use -f <file
name> which reads commands from a file, and -I (upper case i) which shows the halemd prompt after executing the commands:
Run a Saved File

halrun -I -f saved.hal

Notice that there is not a start command in saved.hal. It’s necessary to issue it again (or edit saved.hal to add it there).

2.2.8 Removing HAL from memory

If an unexpected shut down of a HAL session occurs you might have to unload HAL before another session can begin. To do this
type the following command in a terminal window.

Removing HAL

halrun -U

2.3 Halmeter

You can build very complex HAL systems without ever using a graphical interface. However there is something satisfying about
seeing the result of your work. The first and simplest GUI tool for the HAL is halmeter. It is a very simple program that is the
HAL equivalent of the handy Fluke multimeter (or Simpson analog meter for the old timers).

We will use the siggen component again to check out halmeter. If you just finished the previous example, then you can load
siggen using the saved file. If not, we can load it just like we did before:

halrun

halcmd: loadrt siggen

halcmd: loadrt threads namel=test-thread periodl=1000000
halcmd: addf siggen.0.update test-thread

halcmd: start

halcmd: setp siggen.O.amplitude 5

At this point we have the siggen component loaded and running. It’s time to start halmeter.

Starting Halmeter

HAL Manual V2.5, 2018-10-21 14 /107

halcmd: loadusr halmeter

The first window you will see is the Select Item to Probe window.

siggen.0.amplitude
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle

Close

Figure 2.1: Halmeter Select Window

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one displays all the signals, and
the third displays all the parameters. We would like to look at the pin siggen.0.cosine first, so click on it then click the Close
button. The probe selection dialog will close, and the meter looks something like the following figure.

HAL Manual V2.5, 2018-10-21 15/107

m Hal Meter =)&)
-0.6874131

siggen.0.cosine

Select | | Exit |

Figure 2.2: Halmeter

To change what the meter displays press the Select button which brings back the Select Item to Probe window.
You should see the value changing as siggen generates its cosine wave. Halmeter refreshes its display about 5 times per second.
To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more halmeters. The halmeter window
was intentionally made very small so you could have a lot of them on the screen at once.

2.4 Stepgen Example

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow you to load and connect a
number of simple components to make up a complex system. The next example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just finished one of the previous
examples, we need to remove the all components and reload the RTAPI and HAL libraries.

halcmd: exit

2.4.1 Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this component refer to the stepgen
section of the Integrator Manual. In this example we will use the velocity control type of stepgen. For now, we can skip the
details, and just run the following commands.

halrun

halcmd: loadrt stepgen step_type=0,0 ctrl_type=v,v

halcmd: loadrt siggen

halcmd: loadrt threads namel=fast fpl=0 periodl=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The second command loads our old
friend siggen, and the third one creates two threads, a fast one with a period of 50 microseconds and a slow one with a period of
1 millisecond. The fast thread doesn’t support floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins and parameters than before:

halcmd: show pin

Component Pins:

Owner Type Dir Value Name
4 float IN 1 siggen.0.amplitude
4 Dbit ouT FALSE siggen.0O.clock
4 float OUT 0 siggen.0.cosine
4 float IN 1 siggen.0.frequency
4 float IN 0 siggen.0.offset

HAL Manual V2.5, 2018-10-21

16 /107

float
float
float
float
s32
bit
bit
float
bit
float
s32
bit
bit
float
bit
float

W W wwwwwwwwww b b DD

halcmd: show param

Parameters:
Owner Type
s32
s32
u32
u32
float
float
float
float
s32
u32
u32
u32
u32
float
float
float
float
s32
u32
u32
s32
s32
s32
s32
s32
s32

W WwWwwwwwwwwwwwwwwwwwwwwwws

ouT
ouT
ouT
ouT
ouT
ouT
IN

ouT
ouT
IN

ouT
ouT
IN

ouT
ouT
IN

Dir
RO
RW
RW
RW
RO
RW
RW
RW
RO
RW
RW
RW
RW
RO
RW
RW
RW
RO
RW
RW
RO
RW
RO
RW
RO
RW

O O O O O

FALSE
FALSE

FALSE

FALSE
FALSE

FALSE

Value

0

0
0x00000001
0x00000001

0x00000001
0x00000001
0x00000001
0x00000001

0x00000001
0x00000001
0

O O O O O

siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0O.triangle
stepgen.0.counts
stepgen.0.dir
stepgen.0.enable
stepgen.0.position-fb
stepgen.0.step
stepgen.0.velocity-cmd
stepgen.l.counts
stepgen.l.dir
stepgen.l.enable
stepgen.l.position-fb
stepgen.l.step
stepgen.l.velocity-cmd
Name

siggen.0.update.time
siggen.0.update.tmax

stepgen.0.dirhold
stepgen.0.dirsetup
stepgen.0.frequency
stepgen.0.maxaccel
stepgen.0.maxvel
stepgen.0.position-scale
stepgen.0.rawcounts
stepgen.0.steplen
stepgen.0.stepspace
stepgen.l.dirhold
stepgen.l.dirsetup
stepgen.l.frequency
stepgen.l.maxaccel
stepgen.l.maxvel
stepgen.l.position-scale
stepgen.l.rawcounts
stepgen.l.steplen
stepgen.l.stepspace

stepgen.capture-position.time
stepgen.capture-position.tmax
stepgen.make-pulses.time
stepgen.make-pulses.tmax
stepgen.update-freq.time
stepgen.update—-freq.tmax

2.4.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL signals to connect the two
components. We are going to pretend that the two step pulse generators are driving the X and Y axis of a machine. We want
to move the table in circles. To do this, we will send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen
module creates the sine and cosine, but we need wires to connect the modules together. In the HAL, wires are called signals. We
need to create two of them. We can call them anything we want, for this example they will be X-vel and Y-vel. The signal X-vel
is intended to run from the cosine output of the signal generator to the velocity input of the first step pulse generator. The first

step is to connect the signal to the signal generator output. To connect a signal to a pin we use the net command.

net command

HAL Manual V2.5, 2018-10-21 17/107

halcmd: net X-vel <= siggen.0.cosine

To see the effect of the ner command, we show the signals again.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately following the signal name. The
arrow shows the direction of data flow - in this case, data flows from pin siggen.0.cosine to signal X-vel. Now let’s connect the
X-vel to the velocity input of a step pulse generator.

halcmd: net X-vel => stepgen.O.velocity-cmd

We can also connect up the Y axis signal Y-vel. It is intended to run from the sine output of the signal generator to the input of the
second step pulse generator. The following command accomplishes in one line what two net commands accomplished for X-vel.

halcmd: net Y-vel siggen.0.sine => stepgen.l.velocity-cmd

Now let’s take a final look at the signals and the pins connected to them.

halcmd: show sig

Signals:
Type Value Name (linked to)
float 0 X-vel <== siggen.0.cosine
==> stepgen.0.velocity-cmd
float 0 Y-vel <== siggen.0.sine

==> stepgen.l.velocity—-cmd

The show sig command makes it clear exactly how data flows through the HAL. For example, the X-vel signal comes from pin
siggen.O.cosine, and goes to pin stepgen.O.velocity-cmd.

2.4.3 Setting up realtime execution - threads and functions

Thinking about data flowing through wires makes pins and signals fairly easy to understand. Threads and functions are a little
more difficult. Functions contain the computer instructions that actually get things done. Thread are the method used to make
those instructions run when they are needed. First let’s look at the functions available to us.

halcmd: show funct

Exported Functions:

Owner CodeAddr Arg FP Users Name
00004 £9992000 £c731278 YES 0 siggen.0.update
00003 £f998b20f £fc7310b8 YES 0 stepgen.capture-position
00003 £998b000 £fc7310b8 NO 0 stepgen.make-pulses
00003 £998b307 £fc7310b8 YES 0 stepgen.update-freq

In general, you will have to refer to the documentation for each component to see what its functions do. In this case, the function
siggen.O.update is used to update the outputs of the signal generator. Every time it is executed, it calculates the values of the sine,
cosine, triangle, and square outputs. To make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators.

The first one, stepgen.capture_position, is used for position feedback. It captures the value of an internal counter that counts the
step pulses as they are generated. Assuming no missed steps, this counter indicates the position of the motor.

HAL Manual V2.5, 2018-10-21 18 /107

The main function for the step pulse generator is stepgen.make_pulses. Every time make_pulses runs it decides if it is time to
take a step, and if so sets the outputs accordingly. For smooth step pulses, it should run as frequently as possible. Because it
needs to run so fast, make_pulses is highly optimized and performs only a few calculations. Unlike the others, it does not need
floating point math.

The last function, stepgen.update-freq, is responsible for doing scaling and some other calculations that need to be performed
only when the frequency command changes.

What this means for our example is that we want to run siggen.O.update at a moderate rate to calculate the sine and cosine
values. Immediately after we run siggen.0.update, we want to run stepgen.update_freq to load the new values into the step pulse
generator. Finally we need to run stepgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position
feedback, we don’t need to run stepgen.capture_position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what threads we have available.

halcmd: show thread

Realtime Threads:

Period FP Name (Time, Max—-Time)
996980 YES slow (0, 0)
49849 NO fast (@, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millisecond, and is capable of running
floating point functions. We will use it for siggen.O.update and stepgen.update_freq. The second thread is fast, which runs every
50 microseconds, and does not support floating point. We will use it for stepgen.make_pulses. To connect the functions to the
proper thread, we use the addf command. We specify the function first, followed by the thread.

halcmd: addf siggen.0O.update slow
halcmd: addf stepgen.update—-freq slow
halcmd: addf stepgen.make-pulses fast

After we give these commands, we can run the show thread command again to see what happened.

halcmd: show thread

Realtime Threads:
Period FP Name (Time, Max-Time)
996980 YES slow (0, 0)
1 siggen.0.update
2 stepgen.update-freqg
49849 NO fast (0, 0)
1 stepgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will run.

2.4.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By default, the siggen component
generates signals that swing from +1 to -1. For our example that is fine, we want the table speed to vary from +1 to -1 inches per
second. However the scaling of the step pulse generator isn’t quite right. By default, it generates an output frequency of 1 step
per second with an input of 1.000. It is unlikely that one step per second will give us one inch per second of table movement.
Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200 step per rev stepper with 10x microstepping.
So it takes 2000 steps for one revolution of the screw, and 5 revolutions to travel one inch. that means the overall scaling is
10000 steps per inch. We need to multiply the velocity input to the step pulse generator by 10000 to get the proper output. That
is exactly what the parameter stepgen.n.velocity-scale is for. In this case, both the X and Y axis have the same scaling, so we set
the scaling parameters for both to 10000.

halcmd: setp stepgen.
halcmd: setp stepgen.
halcmd: setp stepgen.
halcmd: setp stepgen.

position-scale 10000
position-scale 10000
enable 1

0.
1.
0.
1.enable 1

HAL Manual V2.5, 2018-10-21 19/107

This velocity scaling means that when the pin stepgen.0.velocity-cmd is 1.000, the step generator will generate 10000 pulses per
second (10KHz). With the motor and leadscrew described above, that will result in the axis moving at exactly 1.000 inches per
second. This illustrates a key HAL concept - things like scaling are done at the lowest possible level, in this case in the step pulse
generator. The internal signal X-vel is the velocity of the table in inches per second, and other components such as siggen don’t
know (or care) about the scaling at all. If we changed the leadscrew, or motor, we would change only the scaling parameter of
the step pulse generator.

2.4.5 Runit!

‘We now have everything configured and are ready to start it up. Just like in the first example, we use the start command.

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out step pulses, varying from
10KHz forward to 10KHz reverse and back again every second. Later in this tutorial we’ll see how to bring those internal signals
out to run motors in the real world, but first we want to look at them and see what is happening.

2.5 Halscope

The previous example generates some very interesting signals. But much of what happens is far too fast to see with halmeter. To
take a closer look at what is going on inside the HAL, we want an oscilloscope. Fortunately HAL has one, called halscope.

Halscope has two parts - a realtime part that is loaded as a kernel module, and a user part that supplies the GUI and display.
However, you don’t need to worry about this, because the userspace portion will automatically request that the realtime part be
loaded. Also notice the first time you run halscope in a directory it gives a benign message that the file autosave.halscope could
not be opened.

Starting Halscope

halcmd: loadusr halscope
halcmd: halscope: config file ’"autosave.halscope’ could not be opened

The scope GUI window will open, immediately followed by a Realtime function not linked dialog that looks like the following
figure.

HAL Manual V2.5, 2018-10-21 20/107

Realtime function mot linked)

The HALSCOPE realtime sampling function
rmust be called from a HAL thread in to
determine the sampling rate.

Please do one of the following:
Select a thread name and multiplier then click 'OK!

ar
Click 'Quit' to exit HALSCOPE

Thread: slow
Sample Period; 980 uSec
Sample Rate: 1.01 KHz
Thre Period

slow 989 uSec

fast 49.4 usec

Multiplier: | 1 -

Record Length

) 16000 samples (1 channel]
8000 samples (2 channels)
4000 samples (4 channels)
2000 samples (8 channels)

OO0 ®O0

1000 samples (16 channels)

oK | | Quit

Figure 2.3: Realtime function not linked dialog

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once per millisecond, so click
on the 989 us thread slow and leave the multiplier at 1. We will also leave the record length at 4000 samples, so that we can use
up to four channels at one time. When you select a thread and then click OK, the dialog disappears, and the scope window looks

HAL Manual V2.5, 2018-10-21 21/107

something like the following figure.

= HAL Oscilloscope =) (=)

File Help

r

Horizontal Fun Mode- Trigger
Zoom |1 500 mSec | 4000 samples || © Nermal| @ Normal
Pos === per div at 1.01 KHz 5iﬂg|E) Auto

| | e |© Rl Force

@ Stop || evel Pos

vertical
Gain Pos

L1

Scale Level
1{2(3(dal{=lealfFls8lfS|L1HLLIHfLIL|LI| LE Offset Hiaiﬂg
Selected Channel Source

-~ Chan Off Mone

Figure 2.4: Initial scope window

2.5.1 Hooking up the scope probes

At this point, Halscope is ready to use. We have already selected a sample rate and record length, so the next step is to decide
what to look at. This is equivalent to hooking virtual scope probes to the HAL. Halscope has 16 channels, but the number you
can use at any one time depends on the record length - more channels means shorter records, since the memory available for the
record is fixed at approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button /, and you will see the Select Channel Source
dialog as shown in the following figure. This dialog is very similar to the one used by Halmeter. We would like to look at the
signals we defined earlier, so we click on the Signals tab, and the dialog displays all of the signals in the HAL (only two for this
example).

HAL Manual V2.5, 2018-10-21 22/107

Select Chamnel Source

Select a pin, signal, or parameter
as the source for channel 1.

Pins Signals | Parameters

siggen.0.amplitude

siggen.0.cosine
siggen.0.frequency
siggen.0.offset
siggen.0.sawtooth
siggen.0.sine
siggen.0.square
siggen.0.triangle
stepgen.D.counts

N o T H

(<]

Cancel

Figure 2.5: Select Channel Source

To choose a signal, just click on it. In this case, we want channel 1 to display the signal X-vel. Click on the Signals tab then click
on X-vel and the dialog closes and the channel is now selected.

HAL Manual V2.5, 2018-10-21 23/107

Select Chamnel Source

Select a pin, signal, or parameter
as the source for channel 1.

Pins Signals Parameters

Yovel

Cancel

Figure 2.6: Select Signal

The channel 1 button is pressed in, and channel number 1 and the name X-vel appear below the row of buttons. That display
always indicates the selected channel - you can have many channels on the screen, but the selected one is highlighted, and the
various controls like vertical position and scale always work on the selected one.

HAL Manual V2.5, 2018-10-21 24 /107

- HAL Oscilloscope =B E)]

File Help

Haorizontal Run Mode- Trigger

Zoom | 500 mSec | 4000 samples | ' Normal| @ Normal
Pog o= I per div at 1.01 KHz 5iﬂg|E () Auto

| | IDLE C Raoll Force
@ Stop

Level Pos
vertical
Gain Pos

L

Scale Lewvel
l,n"di"u" ----
.EEﬂEE?Eglllllllﬁ Offset Rising
0.000
Selected Channel Source
1 ¥vel Chan Off Mone

Figure 2.7: Halscope

To add a signal to channel 2, click the 2 button. When the dialog pops up, click the Signals tab, then click on Y-vel. We also want
to look at the square and triangle wave outputs. There are no signals connected to those pins, so we use the Pins tab instead. For
channel 3, select siggen.O.triangle and for channel 4, select siggen.0.square.

2.5.2 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start the scope, click the Normal
button in the Run Mode section of the screen (upper right). Since we have a 4000 sample record length, and are acquiring 1000
samples per second, it will take halscope about 2 seconds to fill half of its buffer. During that time a progress bar just above the
main screen will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we haven’t configured
one yet, it will wait forever. To manually trigger it, click the Force button in the Trigger section at the top right. You should
see the remainder of the buffer fill, then the screen will display the captured waveforms. The result will look something like the
following figure.

HAL Manual V2.5, 2018-10-21

25/107

- HAIL Oscilloscope (=) (@) (3]
File Help
Haorizontal Run Mode- Trigger
Zoom | 500 mSec | 4000 samples | @ Normal| @ Normal

Pog o= I per div at 1.01 KHz 5iﬂg|E () Auto
| | TRiggery | & Rell Force
... I-I Etﬂp LE'lurE| pDS
... Vertical

Gain Pos

.|;||;|.55?89111111 16
Selected Channel

4 siggen.0.square

L

Level

Rising

Source
Mone

Figure 2.8: Captured Waveforms

The Selected Channel box at the bottom tells you that the purple trace is the currently selected one, channel 4, which is displaying
the value of the pin siggen.O.square. Try clicking channel buttons 1 through 3 to highlight the other three traces.

2.5.3 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we use the Vertical controls in the
box to the right of the screen. These controls act on the currently selected channel. When adjusting the gain, notice that it covers
a huge range - unlike a real scope, this one can display signals ranging from very tiny (pico-units) to very large (Tera-units).
The position control moves the displayed trace up and down over the height of the screen only. For larger adjustments the offset

button should be used.

HAL Manual V2.5, 2018-10-21

26/107

r

.|;||;|.55?89111111
Selected Channel
1 *-vel

15

a HAL Oscilloscope SlElEs
File Help
Haorizontal Run Mode- Trigger
Zoom | S00 mSec | 4000 samples || @ MNormal| @ Normal
Pog o= I per div at 1.01 KHz 5iﬂg|E () Auto
| | TRiggery | & Rell Force
L Stop || ayel Pos

vertical
Gain Pos

[

=

Scale Level
1 ,n"di"u" -—--
Offset Rising
0.000
Source
Chan Off MNone

Figure 2.9: Vertical Adjustment

2.5.4 Triggering

Using the Force button is a rather unsatisfying way to trigger the scope. To set up real triggering, click on the Source button at
the bottom right. It will pop up the Trigger Source dialog, which is simply a list of all the probes that are currently connected.
Select a probe to use for triggering by clicking on it. For this example we will use channel 3, the triangle wave as shown in the
following figure.

HAL Manual V2.5, 2018-10-21

27 /107

Trigger Source

Select a channel to use for triggering.

Chan Source
1 X-vel

2 Y-vel

4 siggen.0.square
5 ——--

5 ——--

7 ——--

8 ——--

g ——--

10 -

11 -

1 J—

i J—

| S—

- J—

16 -

Cancel

Figure 2.10: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders in the Trigger box along the
right edge. The level can be adjusted from the top to the bottom of the screen, and is displayed below the sliders. The position is
the location of the trigger point within the overall record. With the slider all the way down, the trigger point is at the end of the
record, and halscope displays what happened before the trigger point. When the slider is all the way up, the trigger point is at
the beginning of the record, displaying what happened after it was triggered. The trigger point is visible as a vertical line in the
progress box above the screen. The trigger polarity can be changed by clicking the button just below the trigger level display.

Now that we have adjusted the vertical controls and triggering, the scope display looks something like the following figure.

HAL Manual V2.5, 2018-10-21 28 /107

‘m HAL Oscilloscope = @

File Help

Haorizontal Run Mode- Trigger
Zoom |} 500 mSec | 4000 samples | @ Normal| @ Normal
Pog === I | per div at 1.01 KHz 5iﬂg|E () Auto

| | preTRig | Rell Force

() Stop || avel Pos

AN : : : : ; vertical

[

............................. Scale LE'lurE|
: : : : lj'di"u" 0.000

.|2||3|.5 6 7|glls1f1)a]r]lz]1] 16| offset || Rising
[b e o] 0.000

Selected Channel 1: Source
1 ¥vel (1.12939) Chan Off || Chan 3

Figure 2.11: Waveforms with Triggering

2.5.5 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to expand the waveforms horizontally,
and the position slider to determine which part of the zoomed waveform is visible. However, sometimes simply expanding the
waveforms isn’t enough and you need to increase the sampling rate. For example, we would like to look at the actual step pulses
that are being generated in our example. Since the step pulses may be only 50 us long, sampling at 1KHz isn’t fast enough. To
change the sample rate, click on the button that displays the number of samples and sample rate to bring up the Select Sample
Rate dialog, figure . For this example, we will click on the 50 us thread, fast, which gives us a sample rate of about 20KHz. Now
instead of displaying about 4 seconds worth of data, one record is 4000 samples at 20KHz, or about 0.20 seconds.

HAL Manual V2.5, 2018-10-21 29/107

‘m Select sample Rate)

Select a thread name and multiplier then click 'OK!
or
Click 'Quit' to exit HALSCOPE

Thread: fast
Sample Period; 49.4 uSec
Sample Rate: 20.2 KHz
Thread Period —
slow 080 uSec =
Multiplier: | 1 -

Record Length

() 16000 samples (1 channel)
() 8000 samples (2 channels)
@ 4000 samples (4 channels)
() 2000 samples (8 channels)
(1000 samples (16 channels)

. ok || quit

Figure 2.12: Sample Rate Dialog

2.5.6 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only 4 at a time. Before we select
any more channels, we need to turn off a couple. Click on the channel 2 button, then click the Chan Off button at the bottom of
the Vertical box. Then click on channel 3, turn if off, and do the same for channel 4. Even though the channels are turned off,
they still remember what they are connected to, and in fact we will continue to use channel 3 as the trigger source. To add new
channels, select channel 5, and choose pin stepgen.0.dir, then channel 6, and select stepgen.0.step. Then click run mode Normal
to start the scope, and adjust the horizontal zoom to 5 ms per division. You should see the step pulses slow down as the velocity
command (channel 1) approaches zero, then the direction pin changes state and the step pulses speed up again. You might want
to increase the gain on channel 1 to about 20 milli per division to better see the change in the velocity command. The result
should look like the following figure.

HAL Manual V2.5, 2018-10-21

30/107

- HAL Oscilloscope M=EE
File Help
Haorizontal Run Mode- Trigger
Zoorm e 1 | 5.00 mSec | 4000 SEH'I"I[]'ES l Mormal l Mormal

Pog === I | per div at 20.2 KHz 5iﬂg|E () Auto

= —— TRIGGER? | = Pol Force

... -I Etnp LE'lurE| pDS
.. Vertical
... Gain Pos

ot .

.23a|5|i?39111111 16
Selected Channel

1 ¥vel

I

I

Scale

20mj/div

Offset
0.000

f(-0.01014) Chan Off

Level
0.000

Rising

Source
Chan 3

Figure 2.13: Step Pulses

2.5.7 More samples

If you want to record more samples at once, restart realtime and load halscope with a numeric argument which indicates the

number of samples you want to capture.

halcmd: loadusr halscope 80000

If the scope_rt component was not already loaded, halscope will load it and request 80000 total samples, so that when sampling
4 channels at a time there will be 20000 samples per channel. (If scope_rt was already loaded, the numeric argument to halscope

will have no effect).

HAL Manual V2.5, 2018-10-21 31/107

Chapter 3

General Reference

3.1 General Naming Conventions

Consistent naming conventions would make HAL much easier to use. For example, if every encoder driver provided the same
set of pins and named them the same way it would be easy to change from one type of encoder driver to another. Unfortunately,
like many open-source projects, HAL is a combination of things that were designed, and things that simply evolved. As a result,
there are many inconsistencies. This section attempts to address that problem by defining some conventions, but it will probably
be a while before all the modules are converted to follow them.

Halcmd and other low-level HAL utilities treat HAL names as single entities, with no internal structure. However, most modules
do have some implicit structure. For example, a board provides several functional blocks, each block might have several channels,
and each channel has one or more pins. This results in a structure that resembles a directory tree. Even though halemd doesn’t
recognize the tree structure, proper choice of naming conventions will let it group related items together (since it sorts the names).
In addition, higher level tools can be designed to recognize such structure, if the names provide the necessary information. To do
that, all HAL components should follow these rules:

* Dots (“.”) separate levels of the hirearchy. This is analogous to the slash (“/”) in a filename.
* Hyphens (“-”) separate words or fields in the same level of the hirearchy.
* HAL components should not use underscores or “MixedCase”.

* Use only lowercase letters and numbers in names.

3.2 Hardware Driver Naming Conventions

3.2.1 Pin/Parameter names

Hardware drivers should use five fields (on three levels) to make up a pin or parameter name, as follows:
<device—name>.<device—num>.<io—-type>.<chan—num>. <specific—name>

The individual fields are:

<device-name>
The device that the driver is intended to work with. This is most often an interface board of some type, but there are other
possibilities.

<device-num>
It is possible to install more than one servo board, parallel port, or other hardware device in a computer. The device number
identifies a specific device. Device numbers start at 0 and increment.

HAL Manual V2.5, 2018-10-21 32/107

<io-type>
Most devices provide more than one type of I/0. Even the simple parallel port has both digital inputs and digital outputs.
More complex boards can have digital inputs and outputs, encoder counters, pwm or step pulse generators, analog-to-
digital converters, digital-to-analog converters, or other unique capabilities. The I/O type is used to identify the kind of
I/O that a pin or parameter is associated with. Ideally, drivers that implement the same I/O type, even if for very different
devices, should provide a consistent set of pins and parameters and identical behavior. For example, all digital inputs
should behave the same when seen from inside the HAL, regardless of the device.

<chan-num>

Virtually every I/O device has multiple channels, and the channel number identifies one of them. Like device numbers,
channel numbers start at zero and increment.! If more than one device is installed, the channel numbers on additional
devices start over at zero. If it is possible to have a channel number greater than 9, then channel numbers should be two
digits, with a leading zero on numbers less than 10 to preserve sort ordering. Some modules have pins and/or parameters
that affect more than one channel. For example a PWM generator might have four channels with four independent “duty-
cycle” inputs, but one “frequency” parameter that controls all four channels (due to hardware limitations). The frequency
parameter should use “0-3” as the channel number.

<specific-name>
An individual I/O channel might have just a single HAL pin associated with it, but most have more than one. For example,
a digital input has two pins, one is the state of the physical pin, the other is the same thing inverted. That allows the
configurator to choose between active high and active low inputs. For most io-types, there is a standard set of pins
and parameters, (referred to as the “canonical interface”) that the driver should implement. The canonical interfaces are
described in the Canonical Device Interfaces chapter.

EXAMPLES

motenc.(.encoder.2.position
— the position output of the third encoder channel on the first Motenc board.

stg.0.din.03.in
— the state of the fourth digital input on the first Servo-to-Go board.

ppmc.0.pwm.00-03.frequency
— the carrier frequency used for PWM channels 0 through 3 on the first Pico Systems ppmc board.

3.2.2 Function Names

Hardware drivers usually only have two kinds of HAL functions, ones that read the hardware and update HAL pins, and ones
that write to the hardware using data from HAL pins. They should be named as follows:

<device—-name>-<device—num>.<io-type>-<chan—-num-range>.read|write

<device-name>
The same as used for pins and parameters.

<device-num>
The specific device that the function will access.

<io-type>
Optional. A function may access all of the I/O on a board, or it may access only a certain type. For example, there may
be independent functions for reading encoder counters and reading digital I/O. If such independent functions exist, the
<io-type> field identifies the type of I/O they access. If a single function reads all I/O provided by the board, <io-type> is
not used. >

! One exception to the “channel numbers start at zero” rule is the parallel port. Its HAL pins are numbered with the corresponding pin number on the DB-25
connector. This is convenient for wiring, but inconsistent with other drivers. There is some debate over whether this is a bug or a feature.

2 Note to driver programmers: do NOT implement separate functions for different I/O types unless they are interruptible and can work in independent
threads. If interrupting an encoder read, reading digital inputs, and then resuming the encoder read will cause problems, then implement a single function that
does everything.

HAL Manual V2.5, 2018-10-21 33/107

<chan-num-range>

Optional. Used only if the <io-type> I/O is broken into groups and accessed by different functions.
readlwrite

Indicates whether the function reads the hardware or writes to it.

EXAMPLES

motenc.().encoder.read

—reads all encoders on the first motenc board.
generic8255.0.din.09-15.read

—reads the second 8 bit port on the first generic 8255 based digital I/O board.
ppmc.0.write

— writes all outputs (step generators, pwm, DACs, and digital) on the first Pico Systems ppmc board.

HAL Manual V2.5, 2018-10-21 34/107

Chapter 4

Canonical Device Interfaces

Note

By version 2.1, the HAL drivers should have all been updated to match these specs. Send an email if you spot any
problems.

4.1 Introduction
The following sections show the pins, parameters, and functions that are supplied by “canonical devices”. All HAL device drivers

should supply the same pins and parameters, and implement the same behavior.

Note that the only the <io—-type> and <specific—name> fields are defined for a canonical device. The <device—name>,
<device-num>, and <chan—-num> fields are set based on the characteristics of the real device.

4.2 Digital Input

The canonical digital input (I/O type field: digin) is quite simple.

421 Pins

¢ (bit) in— State of the hardware input.

* (bit) in-not— Inverted state of the input.

4.2.2 Parameters

¢ None

4.2.3 Functions

* (funct) read — Read hardware and set in and in-not HAL pins.

4.3 Digital Output

The canonical digital output (I/O type field: digout) is also very simple.

HAL Manual V2.5, 2018-10-21 35/107

4.3.1 Pins

¢ (bit) out — Value to be written (possibly inverted) to the hardware output.

4.3.2 Parameters

¢ (bit) invert — If TRUE, out is inverted before writing to the hardware.

4.3.3 Functions

* (funct) write — Read out and invert, and set hardware output accordingly.

4.4 Analog Input

The canonical analog input (I/O type: adcin). This is expected to be used for analog to digital converters, which convert e.g.
voltage to a continuous range of values.

441 Pins

* (float) value— The hardware reading, scaled according to the scale and offset parameters. Value = ((input reading, in
hardware-dependent units) * scale) - offset

4.4.2 Parameters

* (float) scale — The input voltage (or current) will be multiplied by scale before being output to value.
* (float) offset — This will be subtracted from the hardware input voltage (or current) after the scale multiplier has been applied.
* (float) bit_weight — The value of one least significant bit (LSB). This is effectively the granularity of the input reading.

* (float) hw_offset — The value present on the input when 0 volts is applied to the input pin(s).

4.4.3 Functions

* (funct) read — Read the values of this analog input channel. This may be used for individual channel reads, or it may cause
all channels to be read

4.5 Analog Output

The canonical analog output (I/O Type: adcout). This is intended for any kind of hardware that can output a more-or-less
continuous range of values. Examples are digital to analog converters or PWM generators.

451 Pins

* (float) value — The value to be written. The actual value output to the hardware will depend on the scale and offset parameters.

* (bit) enable — If false, then output O to the hardware, regardless of the value pin.

HAL Manual V2.5, 2018-10-21 36/107

4.5.2 Parameters

* (float) offset— This will be added to the value before the hardware is updated
* (float) scale — This should be set so that an input of 1 on the value pin will cause the analog output pin to read 1 volt.

¢ (float) high_limit (optional) — When calculating the value to output to the hardware, if value + offset is greater than high_limit,
then high_limit will be used instead.

* (float) low_limit (optional) — When calculating the value to output to the hardware, if value + offset is less than low_limit,
then low_limit will be used instead.

* (float) bit_weight (optional) — The value of one least significant bit (LSB), in volts (or mA, for current outputs)

¢ (float) hw_offset (optional) — The actual voltage (or current) that will be output if O is written to the hardware.

4.5.3 Functions

(funct) write — This causes the calculated value to be output to the hardware. If enable is false, then the output will be 0,
regardless of value, scale, and offset. The meaning of “0” is dependent on the hardware. For example, a bipolar 12-bit A/D may
need to write Ox1FF (mid scale) to the D/A get 0 volts from the hardware pin. If enable is true, read scale, offset and value and
output to the adc (scale * value) + offset. If enable is false, then output 0.

HAL Manual V2.5, 2018-10-21 37/107

Chapter 5

HAL Tools

5.1 Halemd

Halcmd is a command line tool for manipulating the HAL. There is a rather complete man page for halemd, which will be
installed if you have installed LinuxCNC from either source or a package. If you have compiled LinuxCNC for “run-in-place”,
the man page is not installed, but it is accessible. From the main LinuxCNC directory, do:

man -M docs/man halcmd

The HAL Tutorial has a number of examples of halcmd usage, and is a good tutorial for halcmd.

5.2 Halmeter

Halmeter is a voltmeter for the HAL. It lets you look at a pin, signal, or parameter, and displays the current value of that item. It
is pretty simple to use. Start it by typing halmeter in an X windows shell. Halmeter is a GUI application. It will pop up a small
window, with two buttons labeled Select and Exit. EXxit is easy - it shuts down the program. Select pops up a larger window,
with three tabs. One tab lists all the pins currently defined in the HAL. The next lists all the signals, and the last tab lists all
the parameters. Click on a tab, then click on a pin/signal/parameter. Then click on OK. The lists will disappear, and the small
window will display the name and value of the selected item. The display is updated approximately 10 times per second. If you
click Accept instead of OK, the small window will display the name and value of the selected item, but the large window will
remain on the screen. This is convenient if you want to look at a number of different items quickly.

You can have many halmeters running at the same time, if you want to monitor several items. If you want to launch a halmeter
without tying up a shell window, type halmeter & to run it in the background. You can also make halmeter start displaying a
specific item immediately, by adding pinlsiglpar{am] <name> to the command line. It will display the pin, signal, or parameter
<name> as soon as it starts. (If there is no such item, it will simply start normally.) And finally, if you specify an item to display,
you can add -s before the pinlsiglparam to tell halmeter to use a small window. The item name will be displayed in the title bar
instead of under the value, and there will be no buttons. Useful when you want a lot of meters in a small amount of screen space.

Refer to Halmeter Tutorial section for more information.

Halmeter can be loaded from a terminal or from Axis. Halmeter is faster than Halshow at displaying values. Halmeter has two
windows, one to pick the pin, signal, or parameter to monitor and one that displays the value. Multiple Halmeters can be open
at the same time. If you use a script to open multiple Halmeters you can set the position of each one with -g X Y relative to the
upper left corner of your screen. For example:

loadusr halmeter pin hm2.0.stepgen.00.velocity-fb -g 0 500

See the man page for more options. See section Halmeter.

HAL Manual V2.5, 2018-10-21 38/107

m Selectitem to Probe | =7 'E | 7

Pins Signals | Parameters
=R AT iy #1010 [|
axis.0.index-enable]
axis.0.,jog-counts
axis.0.jog-enable
axis.0.jog-scale
axis.0.jog-vel-mode
axis.0.joint-pos-cmd
axis.0 . joint-pos-fb
axis.0 joint-vel-cmd
axis.0.kb-jog-active
axis.0.motor-pos-cmd
axis.0.motor-pos-fb
axis.0.neg-hard-limit
axis.0.neg-lim-sw-in
axis.0.pos-hard-limit
axis.0.pos-lim-sw-in
axis.0.wheel-jog-active
axis.l.active
axis.l.amn-enable-out

[

| Close

Figure 5.1: Halmeter

- HallMeter, i

1.010344
axis.0.motor-pos-cmd
.................... T | | = |

5.3 Halscope

Halscope is an oscilloscope for the HAL. It lets you capture the value of pins, signals, and parameters as a function of time.
Complete operating instructions should be located here eventually. For now, refer to section [sec:Tutorial-Halscope] in the
tutorial chapter, which explains the basics.

HAL Manual V2.5, 2018-10-21 39/107

Chapter 6

Basic HAL Tutorial

6.1 HAL Commands

More detailed information can be found in the man page for halemd man halcmd in a terminal window. To see the HAL
configuration and check the status of pins and parameters use the HAL Configuration window on the Machine menu in AXIS.
To watch a pin status open the Watch tab and click on each pin you wish to watch and it will be added to the watch window.

HAL Manual V2.5, 2018-10-21 40/107

- HAILL Configuration BiEE
Tree View
Components SHOW | waATCH
Fins
axis Component Pins:
axisui Owner Type Dirc Value Name
hal_manualtoolchange 6 hit IN FALSE parport. 0. pin-0l-out <{==
iocontrol estop-out :

. 6 hit IN FALSE parport. 0. pin-02-out <{== xstep
motion 6 hit IN FALSE parport. 0. pin-03-out <{== =dir
parport 6 hit IN FALSE parport. 0. pin-04-out <== ystep

0 6 hit IN FALSE parport. 0. pin-05-out <{== wydir
pywrmgen & bit 1IN FALSE parport. 0 pin-06-out <== =zstep
stepgen & bit 1IN FALSE parport. 0. pin-07-out <== =zdir

E— Parameters & bit 1IN FALSE parport. 0 pin-08-out <== astep
- 6 hit IN FALSE parport. 0. pin-09-out <{== adir
b= Slg"a!s 6 hit OUT TRUE parport. 0. pin-10-in
&— Functions & hit OUT FALSE parport. 0. pin-10-in-not
E— Threads & bit OUT TRUE parport. 0. pin-11-in
6 hit OUT FALSE parport. 0. pin-11-in-not
6 hit OUT TRUE parport. 0. pin-12-in
6 hit OUT FALSE parport. 0. pin-12-in-not
6 hit OUT TRUE parport. 0. pin-13-in
6 hit OUT FALSE parport. 0. pin-13-in-not
6 hit IN FALSE parport. 0. pin-14-out <{==
spindle-cw
6 hit OUT TRUE parport. 0. pin-15-in
6 hit OUT FALSE parport. 0. pin-15-in-not
6 hit IN FALSE parport. 0. pin-16-oukt <{==
spindle-puwm
Test HAL command : Execute

Commands may be tested here but they will NOT be sawed

Figure 6.1: HAL Configuration Window

6.1.1 loadrt

The command loadrt loads a real time HAL component. Real time component functions need to be added to a thread to be
updated at the rate of the thread. You cannot load a user space component into the real time space.

The syntax and an example:

loadrt <component> <options>

loadrt mux4 count=1

6.1.2 addf

The command addf adds a real time component function to a thread. You have to add a function from a HAL real time component
to a thread to get the function to update at the rate of the thread.
If you used the Stepper Config Wizard to generate your config you will have two threads.

* base-thread (the high-speed thread): this thread handles items that need a fast response, like making step pulses, and reading
and writing the parallel port.

HAL Manual V2.5, 2018-10-21 41/107

* servo-thread (the slow-speed thread): this thread handles items that can tolerate a slower response, like the motion controller,
ClassicLadder, and the motion command handler.

The syntax and an example:

addf <component> <thread>

addf mux4 servo-thread

6.1.3 loadusr

The command loadusr loads a user space HAL component. User space programs are their own separate processes, which
optionally talk to other HAL components via pins and parameters. You cannot load real time components into user space.

Flags may be one or more of the following:

-W to wait for the component to become ready. The component is assumed to have the same name as the
first argument of the command.

-Wn <name> to wait for the component, which will have the given <name>. This only applies if the component
has a name option.

-W to wait for the program to exit
-i to ignore the program return value (with -w)
-n name a component when it is a valid option for that component.

The syntax and examples:

loadusr <component> <options>
loadusr halui

loadusr -Wn spindle gs2_vfd -n spindle

In English it means loadusr wait for name spindle component gs2_vfd name spindle.

6.1.4 net

The command net creates a connection between a signal and one or more pins. If the signal does not exist net creates the new
signal. This replaces the need to use the command newsig. The optional direction arrows <=, => and <=> make it easier to
follow the logic when reading a net command line and are not used by the net command. The direction arrows must be separated
by a space from the pin names.

Syntax and Example:

net signal-name pin-name <optional arrow> <optional second pin-name>

net home-x axis.0.home-sw-in <= parport.0.pin-11-in

In the above example home-x is the signal name, axis.0.home-sw-in is a Direction IN pin, <= is the optional direction arrow, and
parport.0.pin-11-in is a Direction OUT pin. This may seem confusing but the in and out labels for a parallel port pin indicates
the physical way the pin works not how it is handled in HAL.

A pin can be connected to a signal if it obeys the following rules:

HAL Manual V2.5, 2018-10-21 42 /107

* An IN pin can always be connected to a signal
* An IO pin can be connected unless there’s an OUT pin on the signal

* An OUT pin can be connected only if there are no other OUT or IO pins on the signal

The same signal-name can be used in multiple net commands to connect additional pins, as long as the rules above are obeyed.

Signal
Source

Dir
Qut

Signal

Dir Dir
+ In In +

Signal Signal
Reader Reader

Figure 6.2: Signal Direction

This example shows the signal xStep with the source being stepgen.0.out and with two readers, parport.0.pin-02-out and parport.0.pin-
08-out. Basically the value of stepgen.0.out is sent to the signal xStep and that value is then sent to parport.0.pin-02-out and
parport.0.pin-08-out.

signal source destination destination
net xStep stepgen.0.out => parport.0.pin-02-out parport.0.pin-08-out

Since the signal xStep contains the value of stepgen.0.out (the source) you can use the same signal again to send the value to
another reader. To do this just use the signal with the readers on another line.

net xStep => parport.0.pin-02-out

I/0O pins An I/O pin like encoder.N.index-enable can be read or set as allowed by the component.

6.1.5 setp

The command setp sets the value of a pin or parameter. The valid values will depend on the type of the pin or parameter. It is an
error if the data types do not match.

HAL Manual V2.5, 2018-10-21 43/107

Some components have parameters that need to be set before use. Parameters can be set before use or while running as needed.
You cannot use setp on a pin that is connected to a signal.

The syntax and an example:

setp <pin/parameter—-name> <value>

setp parport.0.pin-08-out TRUE

6.1.6 sets

The command sets sets the value of a signal.
The syntax and an example:

sets <signal—-name> <value>
net mysignal and2.0.in0 pyvcp.my-led

sets mysignal 1
It is an error if:

* The signal-name does not exist
* If the signal already has a writer

* If value is not the correct type for the signal

6.1.7 unlinkp

The command unlinkp unlinks a pin from the connected signal. If no signal was connected to the pin prior running the command,
nothing happens. The unlinkp command is useful for trouble shooting.

The syntax and an example:

unlinkp <pin-name>

unlinkp parport.0.pin-02-out

6.1.8 Obsolete Commands

The following commands are depreciated and may be removed from future versions. Any new configuration should use the net
command. These commands are included so older configurations will still work.

6.1.8.1 linksp

The command linksp creates a connection between a signal and one pin.
The syntax and an example:
linksp <signal-name> <pin-name>

linksp X-step parport.0.pin-02-out

The linksp command has been superseded by the net command.

HAL Manual V2.5, 2018-10-21 44 /107

6.1.8.2 linkps

The command linkps creates a connection between one pin and one signal. It is the same as linksp but the arguments are reversed.
The syntax and an example:

linkps <pin-name> <signal-name>

linkps parport.0.pin-02-out X-Step

The linkps command has been superseded by the net command.

6.1.8.3 newsig

the command newsig creates a new HAL signal by the name <signame> and the data type of <type>. Type must be bit, s32, u32
or float. Error if <signame> all ready exists.

The syntax and an example:

newsig <signame> <type>

newsig Xstep bit

More information can be found in the HAL manual or the man pages for halrun.

6.2 HAL Data

6.2.1 Bit
A bit value is an on or off.

* bit values = true or 1 and false or O (True, TRUE, true are all valid)

6.2.2 Float

A float is a floating point number. In other words the decimal point can move as needed.

* float values = a 64 bit floating point value, with approximately 53 bits of resolution and over 1000 bits of dynamic range.
For more information on floating point numbers see:

http://en.wikipedia.org/wiki/Floating_point

6.2.3 s32

An 532 number is a whole number that can have a negative or positive value.

* 532 values = integer numbers -2147483648 to 2147483647

6.2.4 u32

A u32 number is a whole number that is positive only.

* u32 values = integer numbers 0 to 4294967295

http://en.wikipedia.org/wiki/Floating_point

HAL Manual V2.5, 2018-10-21 45/107

6.3 HAL Files

If you used the Stepper Config Wizard to generate your config you will have up to three HAL files in your config directory.

* my-mill.hal (if your config is named my-mill) This file is loaded first and should not be changed if you used the Stepper Config
Wizard.

* custom.hal This file is loaded next and before the GUI loads. This is where you put your custom HAL commands that you
want loaded before the GUI is loaded.

* custom_postgui.hal This file is loaded after the GUI loads. This is where you put your custom HAL commands that you want
loaded after the GUI is loaded. Any HAL commands that use py VCP widgets need to be placed here.

6.4 HAL Components

Two parameters are automatically added to each HAL component when it is created. These parameters allow you to scope the
execution time of a component.

.time
.tmax
Time is the number of CPU cycles it took to execute the function.

Tmax is the maximum number of CPU cycles it took to execute the function. Tmax is a read/write parameter so the user can set
it to O to get rid of the first time initialization on the function’s execution time.

6.5 Logic Components

HAL contains several real time logic components. Logic components follow a Truth Table that states what the output is for any
given input. Typically these are bit manipulators and follow electrical logic gate truth tables.

6.5.1 and2

The and2 component is a two input and gate. The truth table below shows the output based on each combination of input.
Syntax

and2 [count=N] | [names=namel[,name2...]]

Functions
and2.n
Pins

and2.N.in0O (bit, in)
and2.N.inl (bit, in)
and2.N.out (bit, out)

Truth Table
in0 inl out
False False False
True False False
False True False
True True True

HAL Manual V2.5, 2018-10-21

46 /107

6.5.2 not

The not component is a bit inverter.

Syntax

not [count=n] | [names=namel[,name2...]]

Functions

not.all
not.n

Pins

not.n.in (bit, in)
not.n.out (bit, out)

Truth Table
in out
True False
False True
6.5.3 or2

The or2 component is a two input OR gate.
Syntax

or2[count=n] | [names=namel[,name2...]]

Functions
or2.n
Pins

or2.n.in0 (bit, in)
or2.n.inl (bit, in)
or2.n.out (bit, out)

Truth Table
in0 inl out
True False True
True True True
False True True
False False False
6.5.4 xor2

The xor2 component is a two input XOR (exclusive OR)gate.

Syntax

xor2 [count=n] | [names=namel[,name2...]]

Functions

HAL Manual V2.5, 2018-10-21 47 /107

X0or2.n
Pins

xor2.n.in0 (bit, in)
xor2.n.inl (bit, in)
xor2.n.out (bit, out)

Truth Table
in0 inl out
True False True
True True False
False True True
False False False

6.5.5 Logic Examples

An and2 example connecting two inputs to one output.

loadrt and2 count=l

addf and2.0 servo-thread

net my-siginl and2.0.in0 <= parport.0.pin-11-in
net my-sigin2 and2.0.inl <= parport.0.pin-12-in

net both-on parport.0.pin-14-out <= and2.0.out

In the above example one copy of and?2 is loaded into real time space and added to the servo thread. Next pin 11 of the parallel
port is connected to the in0 bit of the and gate. Next pin 12 is connected to the inl bit of the and gate. Last we connect the and2
out bit to the parallel port pin 14. So following the truth table for and2 if pin 11 and pin 12 are on then the output pin 14 will be
on.

6.6 Conversion Components

6.6.1 weighted_sum

The weighted_sum converts a group of bits to an integer. The conversion is the sum of the weights of the bits that are on plus
any offset. The weight of the m-th bit is 2°m. This is similar to a binary coded decimal but with more options. The hold bit stops
processing the input changes so the sum will not change.

The following syntax is used to load the weighted_sum component.

loadrt weighted_sum wsum_sizes=sizel[,size,...]

Creates weighted sum groups each with the given number of input bits (size).
To update the weighted_sum you need to attach process_wsums to a thread.

addf process_wsums servo—-thread

This updates the weighted_sum component.

In the following example clipped from the HAL Configuration window in Axis the bits 0 and 2 are true and there is no offset.
The weight of 0 is 1 and the weight of 2 is 4 so the sum is 5.

weighted_sum

HAL Manual V2.5, 2018-10-21

48 /107

Component Pins:

Owner
10
10
10
10
10
10
10
10
10
10
10

Type
bit
s32
bit
s32
bit
s32
bit
s32
bit
s32
s32

Dir
In
I/0
In
I/0
In
I/0
In
I/0
In
I/0
Oout

Value
TRUE

FALSE

TRUE

FALSE

FALSE

Name

wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.
wsum.

O O O O O O O o o o o

.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.bit.
.hold
.offset
.sum

[CSERCVEN \ VRV i N e @)

.in
.weight
o L
.weight
.in
.weight
.in
.weight

HAL Manual V2.5, 2018-10-21 49/107

Chapter 7

Halshow

The script halshow can help you find your way around a running HAL. This is a very specialized system and it must connect
to a working HAL. It cannot run standalone because it relies on the ability of HAL to report what it knows of itself through
the halcmd interface library. It is discovery based. Each time halshow runs with a different LinuxCNC configuration it will be
different.

As we will soon see, this ability of HAL to document itself is one key to making an effective CNC system.

7.1 Starting Halshow

Halshow is in the AXIS menu under Machine/Show HAL Configuration.
Halshow is in the TkLinuxCNC menu under Scripts/HAL Show.

7.2 HAL Tree Area

At the left of its display as shown in figure [cap:Halshow-Layout] is a tree view, somewhat like you might see with some file
browsers. At the right is a tabbed notebook with tabs for show and watch.

HAL Manual V2.5, 2018-10-21 50/107

— (] C] ol (] — D x

Tree View

Components . SHOW] WATCH

Fins

Parameters Loaded HAL Components: /]

Signals Eg IIII“EFF”3 EB-TE d23376

Functions SEE L= e

T e 07 User halcmd23370

05 RT hal m&iZ20
04 RT pid

03 ET motmod,

02 User doconktrol

/
Test HAL command : Execute

Commands may he tested here but they will NOT be sawed

~|

Figure 7.1: Halshow Layout

The tree shows all of the major parts of a HAL. In front of each is a small plus (+) or minus (-) sign in a box. Clicking the plus
will expand that tree node to display what is under it. If that box shows a minus sign, clicking it will collapse that section of the
tree.

You can also expand or collapse the tree display using the Tree View menu at the upper left edge of the display. Under Tree View
you will find: Expand Tree, Collapse Tree; Expand Pins, Expand Parameters, Expand Signals; and Erase Watch. (Note that Erase
Watch erases all previously set watches, you cannot erase just one watch.)

HAL Manual V2.5, 2018-10-21 51/107
. 0 = O X
Tree View
Components . SHOW | wATCH
Fins
Parameters Fealtime Threads: [
Signals Period FP Name (Time, Max-Time) T
Functions 10006914 YES traj-thread ¢ 0,00
Threads 1005720 YES servo-thread {43164, 81162)
) 1 m5120.0. digital-in-read
traj-thread 2 m5i20. 0. misc-update
servo-thread 3 m51i20. 0. encoder-read
hase-thread 4 motion-command-handler
5 motion-controller
6 pid. 0. do-pid-calcs
T pid. 1. do-pid-calcs
8 pid. 2. do-pid-calcs
9 m5i20. 0. dac-write
10 mE51i20. 0. digital-out-write
E0286 NO bhase-thread (0,070

~|

Test HAL command :

%
Execute

Commands may he tested here but they will NOT be sawed

7.3 HAL Show Area

Figure 7.2: Show Menu

Clicking on the node name, the word "Components" for example, will show you (under the "Show" tab) all that HAL knows
about the contents of that node. Figure [cap:Halshow-Layout] shows a list exactly like you will see if you click the "Components"
name while you are running a standard m5i20 servo card. The information display is exactly like those shown in traditional text
based HAL analysis tools. The advantage here is that we have mouse click access, access that can be as broad or as focused as

you need.

If we take a closer look at the tree display we can see that the six major parts of a HAL can all be expanded at least one level.
As these levels are expanded you can get more focused with the reply when you click on the rightmost tree node. You will find
that there are some HAL pins and parameters that show more than one reply. This is due to the nature of the search routines in
halemd itself. If you search one pin you may get two, like this:

Component Pins:

Owner Type Dir Value Name
06 bit -W TRUE parport.0.pin-10-in
06 bit -W FALSE parport.0.pin-10-in-not

The second pin’s name contains the complete name of the first.

HAL Manual V2.5, 2018-10-21

52/107

Below the show area on the right is a set of widgets that will allow you to play with the running HAL. The commands you enter
here and the effect that they have on the running HAL are not saved. They will persist as long as LinuxCNC remains up but are
gone as soon as LinuxCNC is.

The entry box labeled "Test HAL Command:" will accept any of the commands listed for halcmd. These include:

¢ loadrt, unloadrt (load/unload real-time module)

* loadusr, unloadusr (load/unload user-space component)

addf, delf (add/delete a function to/from a real-time thread)

* net (create a connection between two or more items)

* setp (set parameter (or pin) to a value)

This little editor will enter a command any time you press <enter> or push the execute button. An error message from halecmd
will show below this entry widget when these commands are not properly formed. If you are not certain how to set up a proper
command you’ll need to read again the documentation on halcmd and the specific modules that you are working with.

Let’s use this editor to add a differential module to a HAL and connect it to axis position so that we could see the rate of change
in position, i.e., acceleration. We first need to load a HAL component named blocks, add it to the servo thread, then connect it to
the position pin of an axis. Once that is done we can find the output of the differentiator in halscope. So let’s go. (Yes, I looked
this one up.)

loadrt blocks ddt=1

Now look at the components node and you should see blocks in there someplace.

Loaded HAL Components:

ID Type
10 User
09 User
08 RT
06 RT
05 RT
04 RT
03 RT
02 User

halcmd2
halcmd?2
bl

hal par
scop
ste

mo
iocon

Name
9800
9374
ocks
port
e_rt
pgen
tmod
trol

Sure enough there it is. Notice that its ID is
functions:

Exported Functions:

Owner

08
03
03
06
06
06
06
05
04
04
04

CodeAddr
EO0B97630
EODEF83C
EODFORBEFE3
EOB541FE
EOB54270
EO0B54309
EOB5433A
EOAD712D
EOB618C1
EOB612F5
EOB614AD

Arg
EODC7674
00000000
00000000
EODC75B8
EODC75B8
EODC75B8
EODC75B8
00000000
EODC7448
EODC7448
EODC7448

FP Users

YES
YES
YES
NO
NO
NO
NO
NO
YES
NO
YES

P PR OO0OORREREREO

08. Next we need to find out what functions are available with it so we look at

Name

ddt.o0
motion—-command-handler
motion-controller
parport.0.read
parport.0.write
parport.read-all
parport.write-all
scope.sample
stepgen.capture-position
stepgen.make-pulses
stepgen.update-freq

Here we look for owner #08 and see that blocks has exported a function named ddt.0. We should be able to add ddt.0 to the servo
thread and it will do its math each time the servo thread is updated. Once again we look up the addf command and find that it
uses three arguments like this:

addf <functname> <threadname>

[<position>]

HAL Manual V2.5, 2018-10-21

53/107

We already know the functname=ddt.0 so let’s get the thread name right by expanding the thread node in the tree. Here we see
two threads, servo-thread and base-thread. The position of ddt.0 in the thread is not critical. So we add the function ddt.0 to the

servo-thread:

addf ddt.0 servo-thread

This is just for viewing, so we leave position blank and get the last position in the thread. Figure [cap:Addf-Command] shows
the state of halshow after this command has been issued.

| HAL Configuration

SIEIE)

Test HAL command :

Tree View
Components . SHOW] WATCH |
Pins
Parameters Realtime Threads:
Signals Period FP Name (
Functions 999380 YES servo-thread (3772,
Threads 1 stepgen.capture-position
servo-thread 2 motion-command-handler
base-thread 3 motion-controller
4 stepgen.update-freq
5 pwmgen.update
6 toolchanger.@
7 ddt.o
90038 NO base-thread (12218,
1 parport.0.read
2 stepgen.make-pulses
3 pwmgen.make-pulses
4 parport.0.write
S parport.0.reset

addf ddt.0 servo-thread

Time, Max-Time)

49114)

29285)

Execute

Functi

on 'ddt.0' added to thread 'servo-thread’

Figure 7.3: Addf Command

Next we need to connect this block to something. But how do we know what pins are available? The answer is to look under

pins. There we find ddt and see this:

Component Pins:

Owner Type Dir Value Name

08 float R- 0.00000e+00 ddt.0.in
08 float -W 0.00000e+00 ddt.0.out

That looks easy enough to understand, but what signal or pin do we want to connect to it? It could be an axis pin, a stepgen pin,

or a signal. We see this when we look at axis.0:

HAL Manual V2.5, 2018-10-21 547107

Component Pins:
Owner Type Dir Value Name
03 float -W 0.00000e+00 axis.O.motor-pos-cmd ==> Xpos—-cmd

So it looks like Xpos-cmd should be a good signal to use. Back to the editor where we enter the following command:

linksp Xpos-cmd ddt.0.in

Now if we look at the Xpos-cmd signal using the tree node we’ll see what we’ve done:

Signals:

Type Value Name

float 0.00000e+00 Xpos—cmd
<== axis.0O.motor-pos-cmd
==> ddt.0.in

==> stepgen.0.position-cmd

We see that this signal comes from axis.o.motor-pos-cmd and goes to both ddt.0.in and stepgen.0.position-cmd. By connecting
our block to the signal we have avoided any complications with the normal flow of this motion command.

The HAL Show Area uses halcmd to discover what is happening in a running HAL. It gives you complete information about
what it has discovered. It also updates as you issue commands from the little editor panel to modify that HAL. There are times
when you want a different set of things displayed without all of the information available in this area. That is where the HAL
Watch Area is of value.

7.4 HAL Watch Area

Clicking the watch tab produces a blank canvas. You can add signals and pins to this canvas and watch their values.! You can
add signals or pins when the watch tab is displayed by clicking on the name of it. Figure [cap:Watch-Display] shows this canvas
with several "bit" type signals. These signals include enable-out for the first three axes and two of the three iocontrol "estop"
signals. Notice that the axes are not enabled even though the estop signals say that LinuxCNC is not in estop. A quick look at
TkLinuxCNC shows that the condition of LinuxCNC is ESTOP RESET. The amp enables do not turn true until the machine has
been turned on.

! The refresh rate of the watch display is much lower than Halmeter or Halscope. If you need good resolution of the timing of signals those tools are much
more effective.

HAL Manual V2.5, 2018-10-21 55/107

= O X

Fle View Settings Units Scripts Help

ESTOFP RESET
Tree View
MAHUAL
Components WATCH
Tool: 0O Offset: Finsp SLIE

axis
m:]t axis.0.amp-enable-out

L in axis.1.amp-enable-out

L— out

axis.2. amp-enahle-out
jocontrol.0.user-enable-out

E incontrol

L0
— coolant-flood
— coolant-mist
— emc-enable-in
— lube
— lube_level
— Spindle-brake
— spindle-decr-spee
— spindle-forvward
— spindle-incr-speed
— spindle-on
— spindle-reverse
Axis Speed: — spindle-speed-in
- snindla-znaad-nnt

iocontrol.0.emc-enakble-in

oo 1]

Figure 7.4: Watch Display

Watch displays bit type (binary) values using colored circles representing LEDs. They show as dark brown when a bit signal or
pin is false, and as light yellow whenever that signal is true. If you select a pin or signal that is not a bit type (binary) signal,
watch will show it as a numerical value.

Watch will quickly allow you to test switches or see the effect of changes that you make to LinuxCNC while using the graphical
interface. Watch’s refresh rate is a bit slow to see stepper pulses, but you can use it for these if you move an axis very slowly or
in very small increments of distance. If you’ve used IO_Show in LinuxCNC, the watch page in halshow can be set up to watch a
parport much as IO_Show did.

HAL Manual V2.5, 2018-10-21

56 /107

Chapter 8

HAL Components

8.1 Commands and Userspace Components

All of the commands in the following list have man pages. Some will have expanded descriptions, some will have limited
descriptions. Also, all of the components listed below have man pages. From these two lists you know what components exist,
and you can use man n name to get additional information. To view the information in the man page, in a terminal window type:

man axis (or perhaps 'man 1 axis’ if your system requires it.)

axis

AXIS LinuxCNC (The Enhanced Machine Controller) Graphical User Interface.

axis-remote
AXIS Remote Interface.

comp
Build, compile and install LinuxCNC HAL components.

emc
LinuxCNC (The Enhanced Machine Controller).

gladevcp
Virtual Control Panel for LinuxCNC based on Glade, Gtk and HAL widgets.

gs2
HAL userspace component for Automation Direct GS2 VFD’s.

halemd
Manipulate the Enhanced Machine Controller HAL from the command line.

hal_input
Control HAL pins with any Linux input device, including USB HID devices.

halmeter
Observe HAL pins, signals, and parameters.

halrun
Manipulate the Enhanced Machine Controller HAL from the command line.

halsampler
Sample data from HAL in realtime.

halstreamer
Stream file data into HAL in real time.

HAL Manual V2.5, 2018-10-21

577107

halui
Observe HAL pins and command LinuxCNC through NML.

io
Accepts NML I/O commands, interacts with HAL in userspace.

iocontrol
Accepts NML I/O commands, interacts with HAL in userspace.

pyvep
Virtual Control Panel for LinuxCNC.

shuttlexpress

control HAL pins with the ShuttleXpress device made by Contour Design.

8.2 Realtime Components List

Some of these will have expanded descriptions from the man pages. Some will have limited descriptions. All of the components
have man pages. From this list you know what components exist and can use man n name to get additional information in a

terminal window.

Note

If the component requires a floating point thread that is usually the slower servo-thread.

8.2.1 Core LinuxCNC components

motion
Accepts NML motion commands, interacts with HAL in realtime.

axis
Accepts NML motion commands, interacts with HAL in realtime.

classicladder

Realtime software PLC based on ladder logic. See Classic Ladder manual for more information.

gladevcp
Displays Virtual Control Panels built with GTK/Glade.

threads
Creates hard realtime HAL threads.

8.2.2 Logic and bitwise components

and2
Two-input AND gate. For out to be true both inputs must be true.

not
Inverter.

or2
Two-input OR gate.

xor2
Two-input XOR (exclusive OR) gate.

HAL Manual V2.5, 2018-10-21

58 /107

debounce
Filter noisy digital inputs. Description

edge
Edge detector.

flipflop
D type flip-flop.

oneshot
One-shot pulse generator.

logic
General logic function component.

lut5
A 5-input logic function based on a look-up table. Description

match8
8-bit binary match detector.

select8
8-bit binary match detector.

8.2.3 Arithmetic and float-components

abs
Compute the absolute value and sign of the input signal.

blend
Perform linear interpolation between two values.

comp
Two input comparator with hysteresis.

constant
Use a parameter to set the value of a pin.

sum?2
Sum of two inputs (each with a gain) and an offset.

counter
Counts input pulses (deprecated). Use the encoder component.

updown
Counts up or down, with optional limits and wraparound behavior.

ddt
Compute the derivative of the input function.

deadzone
Return the center if within the threshold.

hypot
Three-input hypotenuse (Euclidean distance) calculator.

mult2
Product of two inputs.

mux16
Select from one of sixteen input values.

HAL Manual V2.5, 2018-10-21

59/107

mux2
Select from one of two input values.

mux4
Select from one of four input values.

mux8
Select from one of eight input values.

near
Determine whether two values are roughly equal.

offset
Adds an offset to an input, and subtracts it from the feedback value.

integ
Integrator.

invert
Compute the inverse of the input signal.

wcomp
Window comparator.

weighted_sum
Convert a group of bits to an integer.

biquad
Biquad IIR filter

lowpass
Low-pass filter
limitl

Limit the output signal to fall between min and max. !

limit2

Limit the output signal to fall between min and max. Limit its slew rate to less than maxv per second. >

limit3

Limit the output signal to fall between min and max. Limit its slew rate to less than maxv per second. Limit its second

derivative to less than MaxA per second squared. 3

maj3
Compute the majority of 3 inputs.

scale
Applies a scale and offset to its input.

8.2.4 Type conversion

conv_bit_s32
Convert a value from bit to s32.

conv_bit_u32
Convert a value from bit to u32.

conv_float_s32
Convert a value from float to s32.

! When the input is a position, this means that the position is limited.
2 When the input is a position, this means that position and velocity are limited.

3 When the input is a position, this means that the position, velocity, and acceleration are limited.

HAL Manual V2.5, 2018-10-21

60/107

conv_float_u32

Convert a value from float to u32.

conv_s32_bit
Convert a value from s32 to bit.

conv_s32_float

Convert a value from s32 to float.

conv_s32_u32
Convert a value from s32 to u32.

conv_u32_bit
Convert a value from u32 to bit.

conv_u32_float

Convert a value from u32 to float.

conv_u32_s32
Convert a value from u32 to s32.

8.2.5 Hardware drivers

hm2_7i43

HAL driver for the Mesa Electronics 7i43 EPP Anything 1O board with HostMot2.

hm2_pci

HAL driver for the Mesa Electronics 5i20, 5122, 5123, 4i65, and 4168 Anything I/O boards, with HostMot2 firmware.

hostmot2

HAL driver for the Mesa Electronics HostMot2 firmware.

mesa_7i65

Support for the Mesa 7i65 eight-axis servo card.

pluto_servo

Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with servos.

pluto_step

Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with steppers.

the

Torch Height Control using a Mesa THC card.

serport

Hardware driver for the digital I/O bits of the 8250 and 16550 serial port.

8.2.6 Kinematics

Kins

kinematics definitions for LinuxCNC.

gantrykins

A kinematics module that maps one axis to multiple joints.

genhexkins

Gives six degrees of freedom in position and orientation (XYZABC). The location of the motors is defined at compile

time.

HAL Manual V2.5, 2018-10-21 61/107

genserkins
Kinematics that can model a general serial-link manipulator with up to 6 angular joints.

maxKkins
Kinematics for a tabletop 5 axis mill named max with tilting head (B axis) and horizontal rotary mounted to the table (C
axis). Provides UVW motion in the rotated coordinate system. The source file, maxkins.c, may be a useful starting point
for other 5-axis systems.

tripodkins
The joints represent the distance of the controlled point from three predefined locations (the motors), giving three degrees
of freedom in position (XYZ).

trivkins
There is a 1:1 correspondence between joints and axes. Most standard milling machines and lathes use the trivial kinematics
module.

pumakins
Kinematics for PUMA-style robots.

rotatekins
The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.

scarakins
Kinematics for SCARA-type robots.

8.2.7 Motor control

at_pid
Proportional/integral/derivative controller with auto tuning.

pid
Proportional/integral/derivative controller. Description

pwmgen
Software PWM/PDM generation. Description

encoder
Software counting of quadrature encoder signals. Description.

stepgen
Software step pulse generation. Description.

freqgen
Software step pulse generation.

8.2.8 BLDC and 3-phase motor control

bldc_hall3
3-wire Bipolar trapezoidal commutation BLDC motor driver using Hall sensors.

clarke2
Two input version of Clarke transform.

clarke3
Clarke (3 phase to cartesian) transform.

clarkeinv
Inverse Clarke transform.

HAL Manual V2.5, 2018-10-21 62/107

8.2.9 Other

charge_pump
Creates a square-wave for the charge pump input of some controller boards. The Charge Pump should be added to the
base thread function. When enabled the output is on for one period and off for one period. To calculate the frequency of
the output 1/(period time in seconds x 2) = hz. For example if you have a base period of 100,000ns that is 0.0001 seconds
and the formula would be 1/(0.0001 x 2) = 5,000 hz or 5 Khz.

encoder_ratio
An electronic gear to synchronize two axes.

estop_latch
ESTOP latch.

feedcomp
Multiply the input by the ratio of current velocity to the feed rate.

gearchange
Select from one of two speed ranges.

ilowpass
While it may find other applications, this component was written to create smoother motion while jogging with an MPG.

In a machine with high acceleration, a short jog can behave almost like a step function. By putting the ilowpass component
between the MPG encoder counts output and the axis jog-counts input, this can be smoothed.

Choose scale conservatively so that during a single session there will never be more than about 2e9/scale pulses seen on
the MPG. Choose gain according to the smoothing level desired. Divide the axis.N.jog-scale values by scale.

joyhandle
Sets nonlinear joypad movements, deadbands and scales.

knob2float
Convert counts (probably from an encoder) to a float value.

minmax
Track the minimum and maximum values of the input to the outputs.

sample_hold
Sample and Hold.

sampler
Sample data from HAL in real time.

siggen
Signal generator. Description.

sim_encoder
Simulated quadrature encoder. Description.

sphereprobe
Probe a pretend hemisphere.

steptest
Used by Stepconf to allow testing of acceleration and velocity values for an axis.

streamer
Stream file data into HAL in real time.

supply
Set output pins with values from parameters (deprecated).

threadtest
Component for testing thread behavior.

HAL Manual V2.5, 2018-10-21

63/107

time
Accumulated run-time timer counts HH:MM:SS of active input.

timedelay
The equivalent of a time-delay relay.

timedelta
Component that measures thread scheduling timing behavior.

toggle2nist
Toggle button to nist logic.

toggle
Push-on, push-off from momentary pushbuttons.

tristate_bit

Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics.

tristate_float

Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics.

watchdog
Monitor one to thirty-two inputs for a heartbeat.

8.3 HAL APl calls

hal add_funct_to_thread.3hal
hal_bit_t.3hal
hal_create_thread.3hal
hal_del_funct_from_ thread.3hal
hal_exit.3hal
hal_export_funct.3hal
hal float_t.3hal
hal_get_1lock.3hal
hal_init.3hal
hal_link.3hal
hal_malloc.3hal
hal_param_bit_new.3hal
hal_param_bit_newf.3hal
hal_param_float_new.3hal
hal_param_float_newf.3hal
hal_param_new.3hal
hal_param_s32_new.3hal
hal_param_s32_newf.3hal
hal_param_u32_new.3hal
hal_param_u32_newf.3hal
hal_parport.3hal
hal_pin_bit_new.3hal
hal_pin_bit_newf.3hal
hal_pin_float_new.3hal
hal_pin_float_newf.3hal
hal_pin_new.3hal
hal_pin_s32_new.3hal
hal_pin_s32_newf.3hal
hal_pin_u32_new.3hal
hal_pin_u32_newf.3hal
hal_ready.3hal
hal_s32_t.3hal

HAL Manual V2.5, 2018-10-21 64 /107

hal_set_constructor.3hal
hal_set_lock.3hal
hal_signal_delete.3hal
hal_signal_new.3hal
hal_start_threads.3hal
hal_type_t.3hal

hal u32_t.3hal
hal_unlink.3hal
intro.3hal
undocumented. 3hal

8.4 RTAPI calls

EXPORT_FUNCTION.3rtapi
MODULE_AUTHOR. 3rtapi
MODULE_DESCRIPTION.3rtapi
MODULE_LICENSE.3rtapi
RTAPI_MP_ARRAY_INT.3rtapi
RTAPI_MP_ARRAY_LONG.3rtapi
RTAPI_MP_ARRAY_STRING.3rtapi
RTAPI_MP_INT.3rtapi
RTAPI_MP_LONG.3rtapi
RTAPI_MP_STRING.3rtapi
intro.3rtapi
rtapi_app_exit.3rtapi
rtapi_app_main.3rtapi
rtapi_clock_set_period.3rtapi
rtapi_delay.3rtapi
rtapi_delay_max.3rtapi
rtapi_exit.3rtapi
rtapi_get_clocks.3rtapi
rtapi_get_msg_level.3rtapi
rtapi_get_time.3rtapi
rtapi_inb.3rtapi
rtapi_init.3rtapi
rtapi_module_param.3rtapi
RTAPI_MP_ARRAY_INT.3rtapi
RTAPI_MP_ARRAY_LONG.3rtapi
RTAPI_MP_ARRAY_STRING.3rtapi
RTAPI_MP_INT.3rtapi
RTAPI_MP_LONG. 3rtapi
RTAPI_MP_STRING.3rtapi
rtapi_mutex.3rtapi
rtapi_outb.3rtapi
rtapi_print.3rtap
rtapi_prio.3rtapi
rtapi_prio_highest.3rtapi
rtapi_prio_lowest.3rtapi
rtapi_prio_next_higher.3rtapi
rtapi_prio_next_lower.3rtapi
rtapi_region.3rtapi
rtapi_release_region.3rtapi
rtapi_request_region.3rtapi
rtapi_set_msg_level.3rtapi
rtapi_shmem.3rtapi

HAL Manual V2.5, 2018-10-21

65/107

rtapi_shmem _delete.3rtapi
rtapi_shmem_getptr.3rtapi
rtapi_shmem_new.3rtapi
rtapi_snprintf.3rtapi
rtapi_task_delete.3rtpi
rtapi_task_new.3rtapi
rtapi_task_pause.3rtapi
rtapi_task_resume.3rtapi
rtapi_task_start.3rtapi
rtapi_task_wait.3rtapi

HAL Manual V2.5, 2018-10-21 66 /107

Chapter 9

HAL Component Descriptions

9.1 Stepgen

This component provides software based generation of step pulses in response to position or velocity commands. In position
mode, it has a built in pre-tuned position loop, so PID tuning is not required. In velocity mode, it drives a motor at the commanded
speed, while obeying velocity and acceleration limits. It is a realtime component only, and depending on CPU speed, etc, is
capable of maximum step rates of 10kHz to perhaps 50kHz. Figure Step Pulse Generator Block Diagram shows three block
diagrams, each is a single step pulse generator. The first diagram is for step type 0, (step and direction). The second is for step
type I (up/down, or pseudo-PWM), and the third is for step types 2 through 14 (various stepping patterns). The first two diagrams
show position mode control, and the third one shows velocity mode. Control mode and step type are set independently, and any
combination can be selected.

Step Pulse Generator Block Diagram position mode

HAL Manual V2.5, 2018-10-21 67 /107

stepgen.Q

capture_position() make_pulsesi)

T
I
I
I STERTYPE =0
i
I
i
!
I
I
|

COUnts
lateh
step

position-fio

update freq()
CTRL TYPE = POSITION

stepplen

stepspace

step/dir
logic
and dirsetup

timing dihold

|
I
1
I
I
I
I
I
1
control [=] ! —
i ¢ (| position | hold I
equationf—=f——1=| | >_. - ramp b
| < | 1 accumulator
L / ,
I
|
I
|
7
|
I
|

position-scale

positian-cond

i

maxfreg

maxaccel T

StePgen'O capture_position()

make_pulses()

srep e =1

T
I
i
!
|
______ —
counts : W
latch :
position-fib - T down
|
I
P
update_freq() tepidir stepplen
CTRL TYPE = POSITION ' logie stepspace
1 and
Hming

control

3
ramp pesiton | hold

/
___ o | | r .,
position-cmd equation [~ p ™ J .i’ accurmulator
d = i
dt
i manfreg
| maxaccel i

make_pulsesi)
STEP TYPE = 2-14

|Stepgen'0 capture_position()

rawcounts

I
I
|
I
|
[phase-A
I
counts] : |ookip phase-B
latch 1 table
positien-fb :
I
i
""""""""""""""""""""""""" i Istate
update_freq()
CTRL TYPE = VELOCITY

step/dir
— / lovgic
and -
timing stepplen
| dirdelay
ramp position | hold I

accumulator)

- ramp

position-cmd

maxaccel

Installing

halcmd: loadrt stepgen step_type=<type—array> [ctrl_type=<ctrl_array>]

HAL Manual V2.5, 2018-10-21 68/107

<type-array> is a series of comma separated decimal integers. Each number causes a single step pulse generator to be loaded,
the value of the number determines the stepping type. <ctrl_array> is a comma separated series of p or v characters, to specify
position or velocity mode. ctrl_type is optional, if ommitted, all of the step generators will be position mode.

For example:

halcmd: loadrt stepgen step_type=0,0,2 ctrl_type=p,p,Vv

will install three step generators. The first two use step type O (step and direction) and run in position mode. The last one uses
step type 2 (quadrature) and runs in velocity mode. The default value for <config-array> is 0,0,0 which will install three type 0
(step/dir) generators. The maximum number of step generators is 8 (as defined by MAX_CHAN in stepgen.c). Each generator is
independent, but all are updated by the same function(s) at the same time. In the following descriptions, <chan> is the number
of a specific generator. The first generator is number 0. .Removing

halcmd: unloadrt stepgen
Pins Each step pulse generator will have only some of these pins, depending on the step type and control type selected.

* (float) stepgen.<chan>.position-cmd - Desired motor position, in position units (position mode only).

* (float) stepgen.<chan>.velocity-cmd - Desired motor velocity, in position units per second (velocity mode only).
* (s32) stepgen.<chan>.counts - Feedback position in counts, updated by capture_position().

* (float) stepgen.<chan>.position-fb - Feedback position in position units, updated by capture_position().
* (bit) stepgen.<chan>.enable - Enables output steps - when false, no steps are generated.

* (bit) stepgen.<chan>.step - Step pulse output (step type O only).

* (bit) stepgen.<chan>.dir - Direction output (step type O only).

* (bit) stepgen.<chan>.up - UP pseudo-PWM output (step type 1 only).

* (bit) stepgen.<chan>.down - DOWN pseudo-PWM output (step type 1 only).

* (bit) stepgen.<chan>.phase-A - Phase A output (step types 2-14 only).

* (bit) stepgen.<chan>.phase-B - Phase B output (step types 2-14 only).

* (bit) stepgen.<chan>.phase-C - Phase C output (step types 3-14 only).

* (bit) stepgen.<chan>.phase-D - Phase D output (step types 5-14 only).

* (bit) stepgen.<chan>.phase-E - Phase E output (step types 11-14 only).
PARAMETERS

* (float) stepgen.<chan>.position-scale - Steps per position unit. This parameter is used for both output and feedback.

* (float) stepgen.<chan>.maxvel - Maximum velocity, in position units per second. If 0.0, has no effect.

* (float) stepgen.<chan>.maxaccel - Maximum accel/decel rate, in positions units per second squared. If 0.0, has no effect.
* (float) stepgen.<chan>.frequency - The current step rate, in steps per second.

* (float) stepgen.<chan>.steplen - Length of a step pulse (step type 0 and 1) or minimum time in a given state (step types 2-14),
in nano-seconds.

* (float) stepgen.<chan>.stepspace - Minimum spacing between two step pulses (step types 0 and 1 only), in nano-seconds. Set
to 0 to enable the stepgen doublefreq function. To use doublefreq the parport reset function must be enabled.

* (float) stepgen.<chan>.dirsetup - Minimum time from a direction change to the beginning of the next step pulse (step type O
only), in nanoseconds.

HAL Manual V2.5, 2018-10-21 69/107

* (float) stepgen.<chan>.dirhold - Minmum time from the end of a step pulse to a direction change (step type O only), in
nanoseconds.

* (float) stepgen.<chan>.dirdelay - Minmum time any step to a step in the opposite direction (step types 1-14 only), in nano-
seconds.

* (s32) stepgen.<chan>.rawcounts - The raw feedback count, updated by make_pulses().

In position mode, the values of maxvel and maxaccel are used by the internal position loop to avoid generating step pulse
trains that the motor cannot follow. When set to values that are appropriate for the motor, even a large instantaneous change
in commanded position will result in a smooth trapezoidal move to the new location. The algorithm works by measuring both
position error and velocity error, and calculating an acceleration that attempts to reduce both to zero at the same time. For more
details, including the contents of the control equation box, consult the code.

In velocity mode, maxvel is a simple limit that is applied to the commanded velocity, and maxaccel is used to ramp the actual
frequency if the commanded velocity changes abruptly. As in position mode, proper values for these parameters ensure that the
motor can follow the generated pulse train.

Step Type 0

Step type O is the standard step and direction type. When configured for step type 0, there are four extra parameters that
determine the exact timing of the step and direction signals. In the following figure the meaning of these parameters is shown.
The parameters are in nanoseconds, but will be rounded up to an integer multiple of the thread period for the threaed that calls
make_pulses(). For example, if make_pulses() is called every 16 us, and steplen is 20000, then the step pulses will be 2 x 16
= 32 us long. The default value for all four of the parameters is 1ns, but the automatic rounding takes effect the first time the
code runs. Since one step requires steplen ns high and stepspace ns low, the maximum frequency is 1,000,000,000 divided by
(steplen+stepspace). If maxfreq is set higher than that limit, it will be lowered automatically. If maxfreq is zero, it will remain
zero, but the output frequency will still be limited.

When using the parallel port driver the step frequency can be doubled using the parport reset function together with stepgen’s

doublefreq setting.
step | \
n(—steplen}-(— Stefr’rff:f;‘:‘?_p-q- Steplerp-e—— Stet':nsi‘:’;ce ——— - steplerp-
dirsetup _ dirhold dirsetup
?‘_ {min) +i "_(mln} > imin} _"T
direction !

Figure 9.1: Step and Direction Timing

Step Type 1 Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending on the direction of travel.
Each pulse is steplen ns long, and the pulses are separated by at least stepspace ns. The maximum frequency is the same as
for step type 0. If maxfreq is set higher than the limit it will be lowered. If maxfreq is zero, it will remain zero but the output
frequency will still be limited.

Warning
Do not use the parport reset function with step types 2 - 14. Unexpected results can happen.

HAL Manual V2.5, 2018-10-21 70/107

Step Type 2 - 14 Step types 2 through 14 are state based, and have from two to five outputs. On each step, a state counter is
incremented or decremented. Figures Two-and-Three-Phase, Four-Phase, and Five-Phase show the output patterns as a function
of the state counter. The maximum frequency is 1,000,000,000 divided by steplen, and as in the other modes, maxfreq will be
lowered if it is above the limit.

Two-and-Three-Phase Step Types

STEP TYPE 2 o | 1| 2 | 3 o 1 2 3 @ o

phase-A

phase-B

STEP TYPE 3 0

phase-A

phase-B

phase-C

STEPTYPE 4 o : ! ! : ;
phase-A | . /a— T
phase-B f |

phase-C \

[L

s D

Four-Phase Step Types

HAL Manual V2.5, 2018-10-21

71/107

STEPTYPES 0

phase-A ;"' I‘.

phase-B I\

phase-C

phase-D

STEPTYPEG & 0

phase-A

phase-B

phase-C

phase-D

STEP TYPE 7 0

phase-A

phase-B

phase-C

phase-D

Five-Phase Step Types

STEPTYPES o0 1

phase-A ‘—_

phase-B —’J'_

—

phase-C

phase-D

STEPTYPES 0 1

phase-A :

phase-B _/_

phase-C

STEPTYPEL1D 0 1
phase-A

phase-B | :

phase-C _[(_

phase-D ",

HAL Manual V2.5, 2018-10-21 72/107

STEPTYPE 11 o, 1, 2 3 4 0 1 2 .3 4 0

STEPTYPE12 o 1 2 3 4 0 1 2 3 4 0

phase-A

phase-B

phase-C

phase-D

phase-E

STEP TYPE 13 e ., 1 2 . 3 4 5 & 7 ; 8 : 8 0

w0 T N

STEPTYPE14 . o , 1 , 2 , 3 4 ., 5 ., 6 , 7 .8 .9 , 0

e i

HAL Manual V2.5, 2018-10-21 73/107

Functions The component exports three functions. Each function acts on all of the step pulse generators - running different
generators in different threads is not supported.

* (funct) stepgen.make-pulses - High speed function to generate and count pulses (no floating point).
* (funct) stepgen.update-freq - Low speed function does position to velocity conversion, scaling and limiting.

* (funct) stepgen.capture-position - Low speed function for feedback, updates latches and scales position.

The high speed function stepgen.make-pulses should be run in a very fast thread, from 10 to 50 us depending on the capabilities
of the computer. That thread’s period determines the maximum step frequency, since steplen, stepspace, dirsetup, dirhold, and
dirdelay are all rounded up to a integer multiple of the thread periond in nanoseconds. The other two functions can be called at a
much lower rate.

9.2 PWMgen

This component provides software based generation of PWM (Pulse Width Modulation) and PDM (Pulse Density Modulation)
waveforms. It is a realtime component only, and depending on CPU speed, etc, is capable of PWM frequencies from a few
hundred Hertz at pretty good resolution, to perhaps 10KHz with limited resolution.

Installing

loadrt pwmgen output_type=<config-array>

The <config-array> is a series of comma separated decimal integers. Each number causes a single PWM generator to be loaded,
the value of the number determines the output type. The following example will install three PWM generators. There is no default
value, if <config-array> is not specified, no PWM generators will be installed. The maximum number of frequency generators

is 8 (as defined by MAX_CHAN in pwmgen.c). Each generator is independent, but all are updated by the same function(s) at the
same time. In the following descriptions, <chan> is the number of a specific generator. The first generator is number 0.

Example

loadrt pwmgen output_type=0,1,2

Removing

unloadrt pwmgen
Output Types The PWM generator supports three different output types.
e Qutput type 0 - PWM output pin only. Only positive commands are accepted, negative values are treated as zero (and will be

affected by the parameter min-dc if it is non-zero).

* Qutput type 1 - PWM/PDM and direction pins. Positive and negative inputs will be output as positive and negative PWM. The
direction pin is false for positive commands, and true for negative commands. If your control needs positive PWM for both
CW and CCW use the abs component to convert your PWM signal to positive value when a negative input is input.

* Qutput type 2 - UP and DOWN pins. For positive commands, the PWM signal appears on the up output, and the down output
remains false. For negative commands, the PWM signal appears on the down output, and the up output remains false. Output
type 2 is suitable for driving most H-bridges.

Pins Each PWM generator will have the following pins:

* (float) pwmgen.<chan>.value - Command value, in arbitrary units. Will be scaled by the scale parameter (see below).

* (bit) pwmgen.<chan>.enable - Enables or disables the PWM generator outputs.

Each PWM generator will also have some of these pins, depending on the output type selected:

HAL Manual V2.5, 2018-10-21 747107

* (bit) pwmgen.<chan>.pwm - PWM (or PDM) output, (output types 0 and 1 only).
* (bit) pwmgen.<chan>.dir - Direction output (output type 1 only).
* (bit) pwmgen.<chan>.up - PWM/PDM output for positive input value (output type 2 only).

* (bit) pwmgen.<chan>.down - PWM/PDM output for negative input value (output type 2 only).
PARAMETERS

* (float) pwmgen.<chan>.scale - Scaling factor to convert value from arbitrary units to duty cycle.

* (float) pwmgen.<chan>.pwm-freq - Desired PWM frequency, in Hz. If 0.0, generates PDM instead of PWM. If set higher
than internal limits, next call of update_freq() will set it to the internal limit. If non-zero, and dither is false, next call of
update_freq() will set it to the nearest integer multiple of the make_pulses() function period.

* (bit) pwmgen.<chan>.dither-pwm - If true, enables dithering to achieve average PWM frequencies or duty cycles that are
unobtainable with pure PWM. If false, both the PWM frequency and the duty cycle will be rounded to values that can be
achieved exactly.

* (float) pwmgen.<chan>.min-dc - Minimum duty cycle, between 0.0 and 1.0 (duty cycle will go to zero when disabled, regard-
less of this setting).

* (float) pwmgen.<chan>.max-dc - Maximum duty cycle, between 0.0 and 1.0.

* (float) pwmgen.<chan>.curr-dc - Current duty cycle - after all limiting and rounding (read only).

Functions The component exports two functions. Each function acts on all of the PWM generators - running different generators
in different threads is not supported.

* (funct) pwmgen.make-pulses - High speed function to generate PWM waveforms (no floating point).

* (funct) pwmgen.update - Low speed function to scale and limit value and handle other parameters.

The high speed function pwmgen.make-pulses should be run in a very fast thread, from 10 to 50 us depending on the capabilities
of the computer. That thread’s period determines the maximum PWM carrier frequency, as well as the resolution of the PWM or
PDM signals. The other function can be called at a much lower rate.

9.3 Encoder

This component provides software based counting of signals from quadrature encoders. It is a realtime component only, and
depending on CPU speed, latency, etc, is capable of maximum count rates of 10kHz to perhaps up to 50kHz.

The base thread should be 1/2 count speed to allow for noise and timing variation. For example if you have a 100 pulse per
revolution encoder on the spindle and your maximnum RPM is 3000 the maximum base thread should be 25 us. A 100 pulse per
revolution encoder will have 400 counts. The spindle speed of 3000 RPM = 50 RPS (revolutions per second). 400 * 50 = 20,000
counts per second or 50 us between counts.

Figure Encoder Counter Block Diagram is a block diagram of one channel of encoder counter.

Encoder Counter Block Diagram

HAL Manual V2.5, 2018-10-21 757107

capture-posiBon) updabe-counters ()

posibon

[raweourts] courtr

< phase-4
upldn quad
T
ri: lateh L decode
<: courts I El oL phae B
clear —

|: reset

iy ——<__mez
detact prsez |

C indes-enable >

encoder. 0

Installing

halcmd: loadrt encoder [num_chan=<counters>]

<counters> is the number of encoder counters that you want to install. If numchan is not specified, three counters will be
installed. The maximum number of counters is 8 (as defined by MAX_CHAN in encoder.c). Each counter is independent, but all
are updated by the same function(s) at the same time. In the following descriptions, <chan> is the number of a specific counter.
The first counter is number 0.

Removing

halcmd: unloadrt encoder

PINS

* encoder.<chan>.counter-mode (bit, 1/0) (default: FALSE) - Enables counter mode. When true, the counter counts each rising
edge of the phase-A input, ignoring the value on phase-B. This is useful for counting the output of a single channel (non-
quadrature) sensor. When false, it counts in quadrature mode.

e encoder.<chan>.counts (s32, Out) - Position in encoder counts.
e encoder.<chan>.counts-latched (s32, Out) - Not used at this time.

* encoder.<chan>.index-enable (bit, I/O) - When True, counts and position are reset to zero on next rising edge of Phase Z. At
the same time, index-enable is reset to zero to indicate that the rising edge has occoured. The index-enable pin is bi-directional.
If index-enable is False, the Phase Z channel of the encoder will be ignored, and the counter will count normally. The encoder
driver will never set index-enable True. However, some other component may do so.

HAL Manual V2.5, 2018-10-21 76 /107

* encoder.<chan>.latch-falling (bit, In) (default: TRUE) - Not used at this time.
* encoder.<chan>.latch-input (bit, In) (default: TRUE) - Not used at this time.
* encoder.<chan>.latch-rising (bit, In) - Not used at this time.

* encoder.<chan>.min-speed-estimate (float, in) - Determine the minimum true velocity magnitude at which velocity will be
estimated as nonzero and postition-interpolated will be interpolated. The units of min-speed-estimate are the same as the units
of velocity . Scale factor, in counts per length unit. Setting this parameter too low will cause it to take a long time for velocity
to go to 0 after encoder pulses have stopped arriving.

* encoder.<chan>.phase-A (bit, In) - Phase A of the quadrature encoder signal.

* encoder.<chan>.phase-B (bit, In) - Phase B of the quadrature encoder signal.

* encoder.<chan>.phase-Z (bit, In) - Phase Z (index pulse) of the quadrature encoder signal.
* encoder.<chan>.position (float, Out) - Position in scaled units (see position-scale).

* encoder.<chan>.position-interpolated (float, Out) - Position in scaled units, interpolated between encoder counts. The position-
interpolated attempts to interpolate between encoder counts, based on the most recently measured velocity. Only valid when
velocity is approximately constant and above min-speed-estimate. Do not use for position control, since its value is incorrect at
low speeds, during direction reversals, and during speed changes. However, it allows a low ppr encoder (including a one pulse
per revolution encoder) to be used for lathe threading, and may have other uses as well.

* encoder.<chan>.position-latched (float, Out) - Not used at this time.

* encoder.<chan>.position-scale (float, 1/0) - Scale factor, in counts per length unit. For example, if position-scale is 500, then
1000 counts of the encoder will be reported as a position of 2.0 units.

* encoder.<chan>.rawcounts (s32, In) - The raw count, as determined by update-counters. This value is updated more frequently
than counts and position. It is also unaffected by reset or the index pulse.

* encoder.<chan>.reset (bit, In) - When True, force counts and position to zero immediately.

* encoder.<chan>.velocity (float, Out) - Velocity in scaled units per second. encoder uses an algorithm that greatly reduces
quantization noise as compared to simply differentiating the position output. When the magnitude of the true velocity is below
min-velocity-estimate, the velocity output is 0.

* encoder.<chan>.x4-mode (bit, 1/0) (default: TRUE) - Enables times-4 mode. When true, the counter counts each edge of
the quadrature waveform (four counts per full cycle). When false, it only counts once per full cycle. In counter-mode, this
parameter is ignored. The 1x mode is useful for some jogwheels.

PARAMETERS

* encoder.<chan>.capture-position.time (s32, RO)
* encoder.<chan>.capture-position.tmax (s32, RW)
* encoder.<chan>.update-counters.time (s32, RO)

* encoder.<chan>.update-counter.tmax (s32, RW)

Functions The component exports two functions. Each function acts on all of the encoder counters - running different counters
in different threads is not supported.

* (funct) encoder.update-counters - High speed function to count pulses (no floating point).

* (funct) encoder.capture-position - Low speed function to update latches and scale position.

HAL Manual V2.5, 2018-10-21 777107

9.4 PID

This component provides Proportional/Integral/Derivative control loops. It is a realtime component only. For simplicity, this
discussion assumes that we are talking about position loops, however this component can be used to implement other feedback
loops such as speed, torch height, temperature, etc. Figure PID Loop Block Diagram is a block diagram of a single PID loop.

PID Loop Block Diagram

<, leedback

C Ermr IL

P H x
i

[ommd > "
e R —— ® _/’ T

E—TT—
o)

id. 0
g

Installing

halcmd: loadrt pid [num_chan=<loops>] [debug=1]

<loops> is the number of PID loops that you want to install. If numchan is not specified, one loop will be installed. The
maximum number of loops is 16 (as defined by MAX_CHAN in pid.c). Each loop is completely independent. In the following
descriptions, <loopnum> is the loop number of a specific loop. The first loop is number 0.

If debug=1 is specified, the component will export a few extra parameters that may be useful during debugging and tuning. By
default, the extra parameters are not exported, to save shared memory space and avoid cluttering the parameter list.

Removing

halcmd: unloadrt pid

Pins The three most important pins are

HAL Manual V2.5, 2018-10-21 78 /107

* (float) pid.<loopnum>.command - The desired position, as commanded by another system component.

* (float) pid.<loopnum>.feedback - The present position, as measured by a feedback device such as an encoder.

* (float) pid.<loopnum>.output - A velocity command that attempts to move from the present position to the desired position.
For a position loop, command and feedback are in position units. For a linear axis, this could be inches, mm, meters, or whatever
is relevant. Likewise, for an angular axis, it could be degrees, radians, etc. The units of the output pin represent the change
needed to make the feedback match the command. As such, for a position loop Output is a velocity, in inches/sec, mm/sec,

degrees/sec, etc. Time units are always seconds, and the velocity units match the position units. If command and feedback are in
meters, then output is in meters per second.

Each loop has two pins which are used to monitor or control the general operation of the component.

* (float) pid.<loopnum>.error - Equals .command minus .feedback.

* (bit) pid.<loopnum>.enable - A bit that enables the loop. If .enable is false, all integrators are reset, and the output is forced to
zero. If .enable is true, the loop operates normally.

Pins used to report saturation. Saturation occurs when the output of the PID block is at its maximum or minimum limit.

* (bit) pid.<loopnum>.saturated - True when output is saturated.
* (float) pid.<loopnum>.saturated_s - The time the output has been saturated.

* (s32) pid.<loopnum>.saturated_count - The time the output has been saturated.

Parameters The PID gains, limits, and other tunable features of the loop are implemented as parameters.

* (float) pid.<loopnum>.Pgain - Proportional gain

* (float) pid.<loopnum>.Igain - Integral gain

* (float) pid.<loopnum>.Dgain - Derivative gain

* (float) pid.<loopnum>.bias - Constant offset on output

* (float) pid.<loopnum>.FFO0 - Zeroth order feedforward - output proportional to command (position).

* (float) pid.<loopnum>.FF - First order feedforward - output proportional to derivative of command (velocity).
* (float) pid.<loopnum>.FF2 - Second order feedforward - output proportional to 2nd derivative of command (acceleration)'.
* (float) pid.<loopnum>.deadband - Amount of error that will be ignored

* (float) pid.<loopnum>.maxerror - Limit on error

* (float) pid.<loopnum>.maxerrorl - Limit on error integrator

* (float) pid.<loopnum>.maxerrorD - Limit on error derivative

* (float) pid.<loopnum>.maxcmdD - Limit on command derivative

* (float) pid.<loopnum>.maxcmdDD - Limit on command 2nd derivative

* (float) pid.<loopnum>.maxoutput - Limit on output value

All of the max limits are implemented such that if the parameter value is zero, there is no limit.

If debug=1 was specified when the component was installed, four additional parameters will be exported:

* (float) pid.<loopnum>.errorl - Integral of error.

! FF2 is not currently implemented, but it will be added. Consider this note a “FIXME” for the code

HAL Manual V2.5, 2018-10-21 79/107

* (float) pid.<loopnum>.errorD - Derivative of error.
* (float) pid.<loopnum>.commandD - Derivative of the command.

* (float) pid.<loopnum>.commandDD - 2nd derivative of the command.

Functions The component exports one function for each PID loop. This function performs all the calculations needed for the
loop. Since each loop has its own function, individual loops can be included in different threads and execute at different rates.

* (funct) pid.<loopnum>.do_pid_calcs - Performs all calculations for a single PID loop.

If you want to understand the exact algorithm used to compute the output of the PID loop, refer to figure PID Loop Block
Diagram, the comments at the beginning of emc2/src/hal/components/pid.c , and of course to the code itself. The loop calculations
are in the C function calc_pid().

9.5 Simulated Encoder

The simulated encoder is exactly that. It produces quadrature pulses with an index pulse, at a speed controlled by a HAL pin.
Mostly useful for testing.

Installing

halcmd: loadrt sim-encoder num_chan=<number>

<number> is the number of encoders that you want to simulate. If not specified, one encoder will be installed. The maximum
number is 8 (as defined by MAX_CHAN in sim_encoder.c).

Removing

halcmd: unloadrt sim-encoder
PINS

* (float) sim-encoder.<chan-num>.speed - The speed command for the simulated shaft.
* (bit) sim-encoder.<chan-num>.phase-A - Quadrature output.
* (bit) sim-encoder.<chan-num>.phase-B - Quadrature output.

* (bit) sim-encoder.<chan-num>.phase-Z - Index pulse output.

When .speed is positive, .phase-A leads .phase-B.

PARAMETERS

* (u32) sim-encoder.<chan-num>.ppr - Pulses Per Revolution.

* (float) sim-encoder.<chan-num>.scale - Scale Factor for speed. The default is 1.0, which means that speed is in revolutions
per second. Change to 60 for RPM, to 360 for degrees per second, 6.283185 for radians per seconed, etc.

Note that pulses per revolution is not the same as counts per revolution. A pulse is a complete quadrature cycle. Most encoder
counters will count four times during one complete cycle.

Functions The component exports two functions. Each function affects all simulated encoders.

* (funct) sim-encoder.make-pulses - High speed function to generate quadrature pulses (no floating point).

* (funct) sim-encoder.update-speed - Low speed function to read speed, do scaling, and set up make-pulses.

HAL Manual V2.5, 2018-10-21 80/107

9.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts. It may also be useful in
other applications where short pulses are to be rejected.

Installing

halcmd: loadrt debounce cfg=<config-string>

<config-string> is a series of comma separated decimal integers. Each number installs a group of identical debounce filters, the
number determines how many filters are in the group.

For example:

halcmd: loadrt debounce cfg=1,4,2

will install three groups of filters. Group 0 contains one filter, group 1 contains four, and group 2 contains two filters. The default
value for <config-string> is "1" which will install a single group containing a single filter. The maximum number of groups 8 (as
defined by MAX_GROUPS in debounce.c). The maximum number of filters in a group is limited only by shared memory space.
Each group is completely independent. All filters in a single group are identical, and they are all updated by the same function at
the same time. In the following descriptions, <G> is the group number and <F> is the filter number within the group. The first
filter is group 0, filter 0.

Removing

halcmd: unloadrt debounce
Pins Each individual filter has two pins.

* (bit) debounce.<G>.<F>.in - Input of filter <F> in group <G>.

* (bit) debounce.<G>.<F>.out - Output of filter <F> in group <G>.
Parameters Each group of filters has one parameter?.
* (532) debounce.<G>.delay - Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay filter exactly follows its
input - it doesn’t filter anything. As delay increases, longer and longer glitches are rejected. If delay is 4, all glitches less than or
equal to four thread periods will be rejected.

Functions Each group of filters has one function, which updates all the filters in that group simultaneously. Different groups of
filters can be updated from different threads at different periods.

* (funct) debounce.<G> - Updates all filters in group <G>.

9.7 Siggen

Siggen is a realtime component that generates square, triangle, and sine waves. It is primarily used for testing.
Installing

halcmd: loadrt siggen [num_chan=<chans>]

2 Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as a parameter. This is intended for
testing, and simply wastes shared memory under normal circumstances.

HAL Manual V2.5, 2018-10-21 81/107

<chans> is the number of signal generators that you want to install. If numchan is not specified, one signal generator will be
installed. The maximum number of generators is 16 (as defined by MAX_CHAN in siggen.c). Each generator is completely
independent. In the following descriptions, <chan> is the number of a specific signal generator (the numbers start at 0).

Removing

halcmd: unloadrt siggen
Pins Each generator has five output pins.

* (float) siggen.<chan>.sine - Sine wave output.

* (float) siggen.<chan>.cosine - Cosine output.

* (float) siggen.<chan>.sawtooth - Sawtooth output.

* (float) siggen.<chan>.triangle - Triangle wave output.

* (float) siggen.<chan>.square - Square wave output.

All five outputs have the same frequency, amplitude, and offset.

In addition to the output pins, there are three control pins:

* (float) siggen.<chan>.frequency - Sets the frequency in Hertz, default value is 1 Hz.
* (float) siggen.<chan>.amplitude - Sets the peak amplitude of the output waveforms, default is 1.
* (float) siggen.<chan>.offset - Sets DC offset of the output waveforms, default is 0.

For example, if siggen.0.amplitude is 1.0 and siggen.0.off5set is 0.0, the outputs will swing from -1.0 to +1.0. If siggen.0.amplitude

is 2.5 and siggen.0.offset is 10.0, then the outputs will swing from 7.5 to 12.5.
Parameters None.

FUNCTIONS

* (funct) siggen.<chan>.update - Calculates new values for all five outputs.

9.8 Iut5

The Iut5 component is a 5 input logic component based on a look up table.
* [ut5 does not require a floating point thread.

Installing

loadrt lut5 [count=N|names=namel[,name2...]]
addf 1ut5.N servo-thread | base-thread
setp lut5.N.function 0xN

Computing Function To compute the hexadecimal number for the function starting from the top put a 1 or O to indicate if that
row would be true or false. Next write down every number in the output column starting from the top and writing them from right
to left. This will be the binary number. Using a calculator with a program view like the one in Ubuntu enter the binary number
and then convert it to hexadecimal and that will be the value for function.

3 Prior to version 2.1, frequency, amplitude, and offset were parameters. They were changed to pins to allow control by other components.

HAL Manual V2.5, 2018-10-21 82/107

Table 9.1: Look Up Table

Bit 4 Bit 3 Bit 2 Bit1 Bit0 | Output
0 0 0 0

o

e e e) el e) B e) B e el el el e = K= E) E ol N N ool Hev] Hen) Neoo) Hev] ool Neo) Hev] Heol Nen)

—m =] = = = = = O O O O OO OO = = = = = = = OO O OO OO
=== = OO OO = = = = OO OO = = = = OO OO == = OO O
— = OO = = OO = | OO = OO = = OO = = OO = = OO = = O
= OO = OO OO OO OO = O = OO = O = O =

Two Input Example In the following table we have selected the output state for each line that we wish to be true.

Table 9.2: Look Up Table

Bit 4 Bit3 Bit 2 Bit1 Bit0 | Output
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1

Looking at the output column of our example we want the output to be on when Bit O or Bit 0 and Bitl is on and nothing else.
The binary number is #7010 (rotate the output 90 degrees CW). Enter this number into the calculator then change the display to
hexadecimal and the number needed for function is Oxa. The hexadecimal prefix is Ox.

HAL Manual V2.5, 2018-10-21 83/107

Chapter 10

Parallel Port Driver

10.1 Parport

Parport is a driver for the traditional PC parallel port. The port has a total of 17 physical pins. The original parallel port divided
those pins into three groups: data, control, and status. The data group consists of 8 output pins, the control group consists of 4
pins, and the status group consists of 5 input pins.

In the early 1990’s, the bidirectional parallel port was introduced, which allows the data group to be used for output or input.
The HAL driver supports the bidirectional port, and allows the user to set the data group as either input or output. If configured
as output, a port provides a total of 12 outputs and 5 inputs. If configured as input, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by an external gate. On a board
with open collector control pins, the x mode allows a more flexible mode with 8 outputs, and 9 inputs. In other parallel ports, the
control group has push-pull drivers and cannot be used as an input.

HAL and Open Collectors

HAL cannot automatically determine if the x mode bidirectional pins are actually open collectors (OC). If they are not, they
cannot be used as inputs, and attempting to drive them LOW from an external source can damage the hardware.

To determine whether your port has open collector pins, load hal_parport in x mode. With no device attached, HAL should read
the pin as TRUE. Next, insert a 470 ohm resistor from one of the control pins to GND. If the resulting voltage on the control pin
is close to 0V, and HAL now reads the pin as FALSE, then you have an OC port. If the resulting voltage is far from 0V, or HAL
does not read the pin as FALSE, then your port cannot be used in x mode.

The external hardware that drives the control pins should also use open collector gates (e.g., 74LS05).

On some machines, BIOS settings may affect whether x mode can be used. SPP mode is most likely to work.

No other combinations are supported, and a port cannot be changed from input to output once the driver is installed. The Parport
Block Diagram shows two block diagrams, one showing the driver when the data group is configured for output, and one showing
it configured for input. For x mode, refer to the pin listing of halcmd show pin for pin direction assignment.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports are numbered starting at zero.

10.1.1 Installing

loadrt hal_parport cfg="<config-string>"

Using the Port Index I/0O addresses below 16 are treated as port indexes. This is the simplest way to install the parport driver
and cooperates with the Linux parport_pc driver if it is loaded. This will use the address Linux has detected for parport 0.

loadrt hal_parport cfg="0"

HAL Manual V2.5, 2018-10-21 84 /107

Using the Port Address The configure string consists of a hex port address, followed by an optional direction, repeated for each
port. The direction is in, out, or x and determines the direction of the physical pins 2 through 9, and whether to create input HAL
pins for the physical control pins. If the direction is not specified, the data group defaults to output. For example:

loadrt hal_parport cfg="0x278 0x378 in O0x20A0 out"

This example installs drivers for one port at 0x0278, with pins 2-9 as outputs (by default, since neither in nor out was specified),
one at 0x0378, with pins 2-9 as inputs, and one at 0x20A0, with pins 2-9 explicitly specified as outputs. Note that you must know
the base address of the parallel port to properly configure the driver. For ISA bus ports, this is usually not a problem, since the
port is almost always at a well known address, like 0278 or 0378 which is typically configured in the system BIOS. The address
for a PCI card is usually shown in Ispci -v in an I/O ports line, or in the kernel message log after executing sudo modprobe -a
parport_pc. There is no default address; if <config-string> does not contain at least one address, it is an error.

parport.0 parport.0
confiqured as ouipul configured asinpul

ph.l‘.‘lln -i. <]

__.,‘..,‘

<

i]
(_pnithng ||

P

T p<

<

-'"‘.

A s ai — jD
4MLJETKBD |
Lo P o

pn-3 i -
gl i i D

pnt i

@OEEEREEE)

A
£\
§¥§g§369®®®0@/

PEOEEOE®EEEE
EOEEOEEOEE/

S e P L R
= i R

€
\¢

I — (DI D | [FW.-" [pni7u wari |—7.D
— gin |6 malima d D — WD
n-iod = ,]D [T D
I lnlu—lml—jE) T IWHD

pin-Ii-oul- srl

Figure 10.1: Parport Block Diagram

10.1.2 Pins
* parport.<p>.pin-<n>-out (bit) Drives a physical output pin.
* parport.<p>.pin-<n>-in (bit) Tracks a physical input pin.

* parport.<p>.pin-<n>-in-not (bit) Tracks a physical input pin, but inverted.

HAL Manual V2.5, 2018-10-21 85/107

For each pin, <p> is the port number, and <n> is the physical pin number in the 25 pin D-shell connector.
For each physical output pin, the driver creates a single HAL pin, for example: parport.0.pin-14-out.

Pins 2 through 9 are part of the data group and are output pins if the port is defined as an output port. (Output is the default.) Pins
1, 14, 16, and 17 are outputs in all modes. These HAL pins control the state of the corresponding physical pins.

For each physical input pin, the driver creates two HAL pins, for example: parport.0.pin-12-in and parport.0.pin-12-in-not.

Pins 10, 11, 12, 13, and 15 are always input pins. Pins 2 through 9 are input pins only if the port is defined as an input port. The
-in HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The -in-not HAL pin is inverted — it is
FALSE if the physical pin is high. By connecting a signal to one or the other, the user can determine the state of the input. In x
mode, pins 1, 14, 16, and 17 are also input pins.

10.1.3 Parameters

* parport.<p>.pin-<n>-out-invert (bit) Inverts an output pin.
* parport.<p>.pin-<n>-out-reset (bit) (only for out pins) TRUE if this pin should be reset when the -reset function is executed.
* parport.<p>.reset-time’ (U32) The time (in nanoseconds) between a pin is set by write and reset by the reser function if it is

enabled.

The -invert parameter determines whether an output pin is active high or active low. If -invert is FALSE, setting the HAL -out
pin TRUE drives the physical pin high, and FALSE drives it low. If -invert is TRUE, then setting the HAL -out pin TRUE will
drive the physical pin low.

10.1.4 Functions

parport.<p>.read (funct) Reads physical input pins of port <portnum> and updates HAL -in and -in-not pins.

parport.read-all (funct) Reads physical input pins of all ports and updates HAL -in and -in-not pins.

parport.<p>.write (funct) Reads HAL -out pins of port <p> and updates that port’s physical output pins.

e parport.write-all (funct) Reads HAL -out pins of all ports and updates all physical output pins.

parport.<p>.reset (funct) Waits until reset-time has elapsed since the associated write, then resets pins to values indicated by
-out-invert and -out-invert settings. reset must be later in the same thread as wrife. ’If -reset is TRUE, then the reset function
will set the pin to the value of -out-invert. This can be used in conjunction with stepgen’s doublefreq to produce one step per
period. The stepgen stepspace for that pin must be set to 0 to enable doublefreq.

The individual functions are provided for situations where one port needs to be updated in a very fast thread, but other ports can
be updated in a slower thread to save CPU time. It is probably not a good idea to use both an -all function and an individual
function at the same time.

10.1.5 Common problems

If loading the module reports

insmod: error inserting ’/home/Jjepler/emc2/rtlib/hal_parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport_pc is not loaded' and that no other device in the system has claimed the I/O
ports.

If the module loads but does not appear to function, then the port address is incorrect or the probe_parport module is required.

!'In the LinuxCNC packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport_pc from being automatically loaded.

HAL Manual V2.5, 2018-10-21 86 /107

10.1.6 Using DoubleStep

To setup DoubleStep on the parallel port you must add the function parport.n.reset after parport.n.write and configure stepspace
to 0 and the reset time wanted. So that step can be asserted on every period in HAL and then toggled off by parport after being
asserted for time specificed by parport.n.reset-time.

For example:

loadrt hal_parport cfg="0x378 out"

setp parport.0.reset-time 5000

loadrt stepgen step_type=0,0,0

addf parport.0.read base-thread

addf stepgen.make-pulses base-thread

addf parport.O0.write base-thread

addf parport.0.reset base-thread

addf stepgen.capture-position servo-thread

setp stepgen.0O.steplen 1
setp stepgen.0.stepspace 0

More information on DoubleStep can be found on the wiki.

10.2 probe_parport

In modern PCs, the parallel port may require plug and play (PNP) configuration before it can be used. The probe_parport module
performs configuration of any PNP ports present, and should be loaded before hal_parport. On machines without PNP ports, it
may be loaded but has no effect.

10.2.1 Installing

loadrt probe_parport

loadrt hal_parport

If the Linux kernel prints a message similar to

parport: PnPBIOS parport detected.

when the parport_pc module is loaded (sudo modprobe -a parport_pc; sudo rmmod parport_pc) then use of this module is
probably required.

http://wiki.linuxcnc.org/cgi-bin/wiki.pl?TweakingSoftwareStepGeneration

HAL Manual V2.5, 2018-10-21 87/107

Chapter 11

HAL Examples

All of these examples assume you are starting with a stepconf based configuration and have two threads base-thread and servo-
thread. The stepconf wizard will create an empty custom.hal and a custom_postgui.hal file. The custom.hal file will be loaded
after the configuration HAL file and the custom_postgui.hal file is loaded after the GUI has been loaded.

11.1 Manual Toolchange

In this example it is assumed that you’re rolling your own configuration and wish to add the HAL Manual Toolchange window.
The HAL Manual Toolchange is primarily useful if you have presettable tools and you store the offsets in the tool table. If you
need to touch off for each tool change then it is best just to split up your g code. To use the HAL Manual Toolchange window you
basically have to load the hal_manualtoolchange component then send the iocontrol fool change to the hal_manualtoolchange
change and send the hal_manualtoolchange changed back to the iocontrol fool changed.

This is an example of manual toolchange with the HAL Manual Toolchange component:

loadusr -W hal_manualtoolchange

net tool-change iocontrol.0.tool-change => hal_manualtoolchange.change

net tool-changed iocontrol.0.tool-changed <= hal _manualtoolchange.changed

net tool-number iocontrol.0.tool-prep-number => hal_manualtoolchange.number

net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

This is an example of manual toolchange without the HAL Manual Toolchange component:

net tool-number <= iocontrol.0.tool-prep-number
net tool-change-loopback iocontrol.0.tool.-change => iocontrol.0.tool-changed
net tool-prepare-loopback iocontrol.0.tool-prepare => iocontrol.0.tool-prepared

11.2 Compute Velocity

This example uses ddt, mult2 and abs to compute the velocity of a single axis. For more information on the real time components
see the man pages or the Realtime Components section ([sec:Realtime-Components]).

The first thing is to check your configuration to make sure you are not using any of the real time components all ready. You can
do this by opening up the HAL Configuration window and look for the components in the pin section. If you are then find the
.hal file that they are being loaded in and increase the counts and adjust the instance to the correct value. Add the following to
your custom.hal file.

Load the realtime components.

loadrt ddt count=1
loadrt mult2 count=1
loadrt abs count=1

HAL Manual V2.5, 2018-10-21

88/107

Add the functions to a thread so it will get updated.

addf ddt.0 servo-thread
addf mult2.0 servo-thread
addf abs.0 servo-thread

Make the connections.

setp mult2.inl 60

net xpos-cmd ddt.0.in

net X-IPS mult2.0.in0 <= ddt.0.out
net X-ABS abs.0.in <= mult2.0.out
net X-IPM abs.0.out

In this last section we are setting the mult2.0.in1 to 60 to convert the inch per second to inch per minute that we get from the

ddt.0.out.

The xpos-cmd sends the commanded position to the ddt.0.in. The ddt computes the derivative of the change of the input.

The ddt2.0.out is multiplied by 60 to give IPM.

The mult2.0.out is sent to the abs to get the absolute value.

The following figure shows the result when the X axis is moving at 15 IPM in the minus direction. Notice that we can get the
absolute value from either the abs.0.out pin or the X-IPM signal.

=

- HAIL Gonfiguration

SIEIE)

Tree Views

Components . sSHOW
Fins
abs -0.25

0 -15

15
sign -15

axis 15

ddt -0.25

out
hal_manualtoolchange
iocontrol
motion =
mult2
1]

in0

inl

out
parport
pwmygen
stepgen
F— Parameters
E Signals
x
X-ABS
*-1PM
*-IPS

WATCH]

ddt.0.out
multz.0.out
abs.0.out
H-ABS
H-1PhA
H-IPS

Figure 11.1: Velocity Example

HAL Manual V2.5, 2018-10-21 89/107

11.3 Soft Start

This example shows how the HAL components lowpass, limit2 or limit3 can be used to limit how fast a signal changes.

In this example we have a servo motor driving a lathe spindle. If we just used the commanded spindle speeds on the servo it will
try to go from present speed to commanded speed as fast as it can. This could cause a problem or damage the drive. To slow
the rate of change we can send the motion.spindle-speed-out through a limiter before the PID, so that the PID command value
changes to new settings more slowly.

Three built-in components that limit a signal are:

* [imit2 limits the range and first derivative of a signal.
* [imit3 limits the range, first and second derivatives of a signal.

* Jowpass uses an exponentially-weighted moving average to track an input signal.

To find more information on these HAL components check the man pages.
Place the following in a text file called softstart.hal. If you’re not familiar with Linux place the file in your home directory.

loadrt threads periodl=1000000 namel=thread
loadrt siggen

loadrt lowpass

loadrt limit2

loadrt 1limit3

net square siggen.0.square => lowpass.0.in 1imit2.0.in 1imit3.0.in
net lowpass <= lowpass.0.out

net 1limit2 <= 1imit2.0.out

net 1limit3 <= 1imit3.0.out

setp siggen.0.frequency .1

setp lowpass.0O.gain .01

setp limit2.0.maxv 2

setp limit3.0.maxv 2

setp limit3.0.maxa 10

addf siggen.0O.update thread

addf lowpass.O0 thread

addf 1imit2.0 thread

addf 1imit3.0 thread

start

loadusr halscope

Open a terminal window and run the file with the following command.

halrun -I softstart.hal

When the HAL Oscilloscope first starts up click OK to accept the default thread.

Next you have to add the signals to the channels. Click on channel 1 then select square from the Signals tab. Repeat for channels
2-4 and add lowpass, limit2, and limit3.

Next to set up a trigger signal click on the Source None button and select square. The button will change to Source Chan 1.
Next click on Single in the Run Mode radio buttons box. This will start a run and when it finishes you will see your traces.

To separate the signals so you can see them better click on a channel then use the Pos slider in the Vertical box to set the positions.

HAL Manual V2.5, 2018-10-21 90/107

File Help
Horizontal Fun Mode- Trigger
Zoom === 200 mSec | 4000 samples © Normal| & Normal
Pos m per div at 1.00 KHz) Single | @ Auto
f : : IDLE O Roll Force
. @ Stop |} evel Pos
g \ertical I |
Gain Pos
Scale Level
1 /div +3.000
2] 10 11 12| 13 |[14 | 15 16 Offset Rising
Selected Channel 0.000 Source
1 square f(0.97785) = 1.00000 chan off || chan 1

Figure 11.2: Softstart

To see the effect of changing the set point values of any of the components you can change them in the terminal window. To see
what different gain settings do for lowpass just type the following in the terminal window and try different settings.

setp lowpass.O0.gain *.01

After changing a setting run the oscilloscope again to see the change.

When you’re finished type exit in the terminal window to shut down halrun and close the halscope. Don’t close the terminal
window with halrun running as it might leave some things in memory that could prevent EMC from loading.

For more information on Halscope see the HAL manual.

11.4 Stand Alone HAL

In some cases you might want to run a GladeVCP screen with just HAL. For example say you had a stepper driven device that
all you need is to run a stepper motor. A simple Start/Stop interface is all you need for your application so no need to load up
and configure a full blown CNC application.

In the following example we have created a simple GladeVCP panel with one

HAL Manual V2.5, 2018-10-21 91/107

Basic Syntax

load the winder.glade GUI and name it winder
loadusr —-Wn winder gladevcp -c winder -u handler.py winder.glade

load realtime components

loadrt threads namel=fast periodl=50000 fpl=0 name2=slow period2=1000000
loadrt stepgen step_type=0 ctrl_type=v

loadrt hal_parport cfg="0x378 out"

add functions to threads

addf stepgen.make-pulses fast

addf stepgen.update-freqg slow

addf stepgen.capture-position slow
addf parport.0.read fast

addf parport.0.write fast

make hal connections

net winder-step parport.0.pin-02-out <= stepgen.0.step
net winder-dir parport.0.pin-03-out <= stepgen.0.dir
net run-stepgen stepgen.0O.enable <= winder.start_button

start the threads
start

comment out the following lines while testing and use the interactive
option halrun -I -f start.hal to be able to show pins etc.

wait until the gladevcp GUI named winder terminates
waitusr winder

stop HAL threads
stop

unload HAL all components before exiting
unloadrt all

HAL Manual V2.5, 2018-10-21 92/107

Chapter 12

Comp HAL Component Generator

12.1 Introduction

Writing a HAL component can be a tedious process, most of it in setup calls to rfapi_ and hal_ functions and associated error
checking. comp will write all this code for you, automatically.

Compiling a HAL component is also much easier when using comp, whether the component is part of the LinuxCNC source tree,
or outside it.

For instance, when coded in C, a simple component such as "ddt" is around 80 lines of code. The equivalent component is very
short when written using the comp preprocessor:

Simple Comp Example

component ddt "Compute the derivative of the input function";
pin in float in;

pin out float out;

variable float old;

function _;

license "GPL"; // indicates GPL v2 or later

I

float tmp = in;

out = (tmp - old) / fperiod;

old = tmp;

12.2 Installing

If you’re working with an installed version of LinuxCNC you will need to install the development packages.
One method is to say following line in a terminal.
Installing Dev

sudo apt-get install linuxcnc-dev

Another method is to use the Synaptic Package Manager from the main Ubuntu menu to install linuxcnc-dev.

12.3 Definitions

* component - A component is a single real-time module, which is loaded with halcmd loadrt. One .comp file specifies one
component. The component name and file name must match.

HAL Manual V2.5, 2018-10-21 93/107

* instance - A component can have zero or more instances. Each instance of a component is created equal (they all have the same
pins, parameters, functions, and data) but behave independently when their pins, parameters, and data have different values.

* singleton - It is possible for a component to be a "singleton", in which case exactly one instance is created. It seldom makes
sense to write a singleton component, unless there can literally only be a single object of that kind in the system (for instance,
a component whose purpose is to provide a pin with the current UNIX time, or a hardware driver for the internal PC speaker)

12.4 Instance creation

For a singleton, the one instance is created when the component is loaded.

For a non-singleton, the count module parameter determines how many numbered instances are created. If not specified, the
name module parameter determines how many named instances are created. Otherwise, a single numbered instance is created.

12.5 Implicit Parameters

Functions are implicitly passed the period parameter which is the time in nanoseconds of the last period to execute the comp.
Functions which use floating-point can also refer to fperiod which is the floating-point time in seconds, or (period*1e-9). This
can be useful in comps that need the timing information.

12.6 Syntax

A .comp file consists of a number of declarations, followed by ;; on a line of its own, followed by C code implementing the
module’s functions.

Declarations include:

* component HALNAME (DOC);
 pin PINDIRECTION TYPE HALNAME ([SIZE]I[MAXSIZE: CONDSIZE]) (if CONDITION) (= STARTVALUE) (DOC) ;
e param PARAMDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE: CONDSIZE]) (if CONDITION) (= STARTVALUE) (DOC)

»

* function HALNAME (fp | nofp) (DOC);

* option OPT (VALUE);

* variable CTYPE STARREDNAME ([SIZE]);
* description DOC;

e see_also DOC;

license LICENSE;
e author AUTHOR;

Parentheses indicate optional items. A vertical bar indicates alternatives. Words in CAPITALS indicate variable text, as follows:

e NAME - A standard C identifier

e STARREDNAME - A C identifier with zero or more * before it. This syntax can be used to declare instance variables that are
pointers. Note that because of the grammar, there may not be whitespace between the * and the variable name.

HAL Manual V2.5, 2018-10-21 94 /107

* HALNAME - An extended identifier. When used to create a HAL identifier, any underscores are replaced with dashes, and
any trailing dash or period is removed, so that "this_name_" will be turned into "this-name", and if the name is "_", then
a trailing period is removed as well, so that "function _" gives a HAL function name like "component.<num>" instead of
"component.<num>."

If present, the prefix hal_ is removed from the beginning of the component name when creating pins, parameters and functions.

In the HAL identifier for a pin or parameter, # denotes an array item, and must be used in conjunction with a [SIZE] declaration.
The hash marks are replaced with a 0-padded number with the same length as the number of # characters.

When used to create a C identifier, the following changes are applied to the HALNAME:

nnonon non

1. Any "#" characters, and any ".", "_" or characters immediately before them, are removed.

non

2. Any remaining "." and "-" characters are replaced with "_".

3. Repeated "_" characters are changed to a single "_" character.

A trailing "_" is retained, so that HAL identifiers which would otherwise collide with reserved names or keywords (e.g., min)
can be used.

HALNAME C Identifier HAL Identifier

X_y_z X_y_z X-y-Z

X-y.Z X_y_z X-y.Z

Xy 7z Xy z_ X-y-Z

Xy x_y(MM) x.MM.z

Xt x(MM) x.MM

* if CONDITION - An expression involving the variable personality which is nonzero when the pin or parameter should be
created

o SIZE - A number that gives the size of an array. The array items are numbered from O to SIZE-1.

* MAXSIZE : CONDSIZE - A number that gives the maximum size of the array followed by an expression involving the variable
personality and which always evaluates to less than MAXSIZE. When the array is created its size will be CONDSIZE.

* DOC - A string that documents the item. String can be a C-style "double quoted" string, like:

"Selects the desired edge: TRUE means falling, FALSE means rising"

or a Python-style "triple quoted" string, which may include embedded newlines and quote characters, such as:

"""The effect of this parameter, also known as "the orb of zot",
will require at least two paragraphs to explain.

Hopefully these paragraphs have allowed you to understand "zot"
better."""

The documentation string is in "groff -man" format. For more information on this markup format, see groff_man(7). Remember
that comp interprets backslash escapes in strings, so for instance to set the italic font for the word example, write:

"\\fIexample\\fB"

* TYPE - One of the HAL types: bit, signed, unsigned, or float. The old names s32 and u32 may also be used, but signed and
unsigned are preferred.

* PINDIRECTION - One of the following: in, out, or io. A component sets a value for an out pin, it reads a value from an in pin,
and it may read or set the value of an io pin.

* PARAMDIRECTION - One of the following: r or rw. A component sets a value for a r parameter, and it may read or set the
value of a rw parameter.

* STARTVALUE - Specifies the initial value of a pin or parameter. If it is not specified, then the default is 0 or FALSE, depending
on the type of the item.

HAL Manual V2.5, 2018-10-21 95/107

12.6.1 HAL functions

* fp - Indicates that the function performs floating-point calculations.

* nofp - Indicates that it only performs integer calculations. If neither is specified, fp is assumed. Neither comp nor gcc can
detect the use of floating-point calculations in functions that are tagged nofp, but use of such operations results in undefined
behavior.

12.6.2 Options
The currently defined options are:

* option singleton yes - (default: no) Do not create a count module parameter, and always create a single instance. With singleton,
items are named component-name.item-name and without singleton, items for numbered instances are named component-
name.<num>.item-name.

* option default_count number - (default: 1) Normally, the module parameter count defaults to 1. If specified, the count will
default to this value instead.

* option count_function yes - (default: no) Normally, the number of instances to create is specified in the module parameter
count; if count_function is specified, the value returned by the function int get_count(void) is used instead, and the count
module parameter is not defined.

* option rtapi_app no - (default: yes) Normally, the functions rtapi_app_main and rtapi_app_exit are automatically defined.
With option rtapi_app no, they are not, and must be provided in the C code. When implementing your own rtapi_app_main,
call the function int export(char *prefix, long extra_arg) to register the pins, parameters, and functions for prefix.

* option data TYPE - (default: none) deprecated If specified, each instance of the component will have an associated data block
of type TYPE (which can be a simple type like float or the name of a type created with fypedef). In new components, variable
should be used instead.

* option extra_setup yes - (default: no) If specified, call the function defined by EXTRA_SETUP for each instance. If using the
automatically defined rtapi_app_main, extra_arg is the number of this instance.

* option extra_cleanup yes - (default: no) If specified, call the function defined by EXTRA_CLEANUP from the automatically
defined rtapi_app_exit, or if an error is detected in the automatically defined rrapi_app_main.

* option userspace yes - (default: no) If specified, this file describes a userspace component, rather than a real one. A userspace
component may not have functions defined by the function directive. Instead, after all the instances are constructed, the C
function user_mainloop() is called. When this function returns, the component exits. Typically, user_mainloop() will use
FOR_ALL_INSTS() to perform the update action for each instance, then sleep for a short time. Another common action in
user_mainloop() may be to call the event handler loop of a GUI toolkit.

* option userinit yes - (default: no) This option is ignored if the option userspace (see above) is set to no. If userinit is specified,
the function userinit(argc,argv) is called before rtapi_app_main() (and thus before the call to hal_init()). This function may
process the commandline arguments or take other actions. Its return type is void; it may call exir() if it wishes to terminate
rather than create a HAL component (for instance, because the commandline arguments were invalid).

If an option’s VALUE is not specified, then it is equivalent to specifying option ... yes. The result of assigning an inappropriate
value to an option is undefined. The result of using any other option is undefined.

12.6.3 License and Authorship

* LICENSE - Specify the license of the module for the documentation and for the MODULE_LICENSE() module declaration.
For example, to specify that the module’s license is GPL v2 or later,

license "GPL"; // indicates GPL v2 or later

HAL Manual V2.5, 2018-10-21 96 /107

For additional information on the meaning of MODULE_LICENSE() and additional license identifiers, see <linux/module.h>.
or the manual page rtapi_module_param(3)

This declaration is required.

* AUTHOR - Specify the author of the module for the documentation.

12.6.4 Per-instance data storage

* variable CTYPE STARREDNAME;

variable CTYPE STARREDNAME([SIZE];

variable CTYPE STARREDNAME = DEFAULT;

variable CTYPE STARREDNAME(SIZE] = DEFAULT;

Declare a per-instance variable STARREDNAME of type CTYPE, optionally as an array of SIZE items, and optionally with a
default value DEFAULT. Items with no DEFAULT are initialized to all-bits-zero. CTYPE is a simple one-word C type, such as
float, u32, s32, int, etc. Access to array variables uses square brackets.

If a variable is to be of a pointer type, there may not be any space between the "*" and the variable name. Therefore, the
following is acceptable:

variable int xexample;

but the following are not:

variable intx badexample;
variable int * badexample;

12.6.5 Comments

C++-style one-line comments (/...) and

C-style multi-line comments (/* ... */) are both supported in the declaration section.

12.7 Restrictions

Though HAL permits a pin, a parameter, and a function to have the same name, comp does not.

Variable and function names that can not be used or are likely to cause problems include:

* Anything beginning with _comp.
* comp_id

* fperiod

* rtapi_app_main

* rtapi_app_exit

* extra_setup

* extra_cleanup

HAL Manual V2.5, 2018-10-21 97 /107

12.8 Convenience Macros

Based on the items in the declaration section, comp creates a C structure called struct __comp_state. However, instead
of referring to the members of this structure (e.g., » (1nst—->name)), they will generally be referred to using the macros below.
The details of struct ___comp_state and these macros may change from one version of comp to the next.

FUNCTION(name) - Use this macro to begin the definition of a realtime function which was previously declared with function
NAME. The function includes a parameter period which is the integer number of nanoseconds between calls to the function.

e EXTRA_SETUP() - Use this macro to begin the definition of the function called to perform extra setup of this instance. Return
a negative Unix errno value to indicate failure (e.g., return -EBUSY on failure to reserve an I/O port), or O to indicate success.

e EXTRA_CLEANUP() - Use this macro to begin the definition of the function called to perform extra cleanup of the component.

Note that this function must clean up all instances of the component, not just one. The "pin_name", "parameter_name", and
"data" macros may not be used here.

* pin_name or parameter_name - For each pin pin_name or param parameter_name there is a macro which allows the name to
be used on its own to refer to the pin or parameter. When pin_name or parameter_name is an array, the macro is of the form
pin_name(idx) or param_name(idx) where idx is the index into the pin array. When the array is a variable-sized array, it is only
legal to refer to items up to its condsize.

When the item is a conditional item, it is only legal to refer to it when its condition evaluated to a nonzero value.

variable_name - For each variable variable_name there is a macro which allows the name to be used on its own to refer to the
variable. When variable_name is an array, the normal C-style subscript is used: variable_name[idx]

* data - If "option data" is specified, this macro allows access to the instance data.
* fperiod - The floating-point number of seconds between calls to this realtime function.

e FOR_ALL_INSTS() {...} - For userspace components. This macro iterates over all the defined instances. Inside the body of
the loop, the pin_name, parameter_name, and data macros work as they do in realtime functions.

12.9 Components with one function

If a component has only one function and the string "FUNCTION" does not appear anywhere after ;;, then the portion after ;; is
all taken to be the body of the component’s single function. See the Simple Comp for and example of this.

12.10 Component Personality

If a component has any pins or parameters with an "if condition" or "[maxsize : condsize]", it is called a component with
personality. The personality of each instance is specified when the module is loaded. Personality can be used to create pins only
when needed. For instance, personality is used in the logic component, to allow for a variable number of input pins to each logic
gate and to allow for a selection of any of the basic boolean logic functions and, or, and xor.

12.11 Compiling

Place the .comp file in the source directory linuxcnc/src/hal/components and re-run make. Comp files are automatically detected
by the build system.

If a .comp file is a driver for hardware, it may be placed in linuxcnc/src/hal/components and will be built unless LinuxCNC is
configured as a userspace simulator.

HAL Manual V2.5, 2018-10-21 98/107

12.12 Compiling realtime components outside the source tree

comp can process, compile, and install a realtime component in a single step, placing rtexample.ko in the LinuxCNC realtime
module directory:

comp —--install rtexample.comp

Or, it can process and compile in one step, leaving example.ko (or example.so for the simulator) in the current directory:

comp —--compile rtexample.comp

Or it can simply process, leaving example.c in the current directory:

comp rtexample.comp

comp can also compile and install a component written in C, using the --install and --compile options shown above:

comp ——install rtexample2.c

man-format documentation can also be created from the information in the declaration section:

comp ——document rtexample.comp

The resulting manpage, example.9 can be viewed with

man ./example.9

or copied to a standard location for manual pages.

12.13 Compiling userspace components outside the source tree

comp can process, compile, install, and document userspace components:

comp usrexample.comp

comp ——compile usrexample.comp
comp -—-install usrexample.comp
comp —-document usrexample.comp

This only works for .comp files, not for .c files.

12.14 Examples

12.14.1 constant

Note that the declaration "function _" creates functions named "constant.0" , etc. The file name must match the component name.

component constant;

pin out float out;

param r float value = 1.0;

function _;

license "GPL"; // indicates GPL v2 or later
rs

FUNCTION(_) { out = wvalue; }

HAL Manual V2.5, 2018-10-21 99/107

12.14.2 sincos

This component computes the sine and cosine of an input angle in radians. It has different capabilities than the "sine" and
"cosine" outputs of siggen, because the input is an angle, rather than running freely based on a "frequency" parameter.

The pins are declared with the names sin_ and cos_ in the source code so that they do not interfere with the functions sin() and
cos(). The HAL pins are still called sincos. <num>.sin.

component sincos;

pin out float sin_;

pin out float cos_;

pin in float theta;

function _;

license "GPL"; // indicates GPL v2 or later

I

#include <rtapi_math.h>

FUNCTION(_) { sin_ = sin(theta); cos_ = cos(theta); }

12.14.3 out8

This component is a driver for a fictional card called "out8", which has 8 pins of digital output which are treated as a single 8-bit
value. There can be a varying number of such cards in the system, and they can be at various addresses. The pin is called out_
because out is an identifier used in <asm/io.h>. It illustrates the use of EXTRA_SETUP and EXTRA_CLEANUP to request an
I/0 region and then free it in case of error or when the module is unloaded.

component out8;
pin out unsigned out_ "Output value; only low 8 bits are used";
param r unsigned ioaddr;

function _;

option count_function;
option extra_setup;
option extra_cleanup;
option constructable noj;

license "GPL"; // indicates GPL v2 or later
I

#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY_ INT (io, MAX, "I/O addresses of out8 boards");

int get_count (void) {
int 1 = 0;
for (i=0; i<MAX && io[i]; 1i++) { /» Nothing */ }
return i;

EXTRA_SETUP () {

if (!rtapi_request_region(io[extra_arg], 1, "out8")) {
// set this I/0 port to 0 so that EXTRA_CLEANUP does not release the IO
// ports that were never requested.
iolextra_arg] = 0;
return —-EBUSY;

}

icaddr = io[extra_argl;

return 0; }

HAL Manual V2.5, 2018-10-21 100/107

EXTRA_CLEANUP () {
int 1i;
for (i=0; i < MAX && iof[i]; i++) {
rtapi_release_region(io[i], 1);

FUNCTION(_) { outb(out_, ioaddr); }

12.14.4 hal_loop

component hal_loop;
pin out float example;

This fragment of a component illustrates the use of the hal_ prefix in a component name. loop is the name of a standard Linux
kernel module, so a loop component might not successfully load if the Linux loop module was also present on the system.

When loaded, halcmd show comp will show a component called hal_loop. However, the pin shown by halcmd show pin will be
loop.0.example, not hal-loop.0.example.

12.14.5 arraydemo

This realtime component illustrates use of fixed-size arrays:

component arraydemo "4-bit Shift register";
pin in bit in;

pin out bit out-# [4];

function _ nofp;

license "GPL"; // indicates GPL v2 or later

rr

int i;
for (i=3; i>0; i--) out (i) = out (i-1);
out (0) = in;

12.14.6 rand

This userspace component changes the value on its output pin to a new random value in the range (0,1) about once every 1ms.

component rand;
option userspace;

pin out float out;
license "GPL"; // indicates GPL v2 or later
I

#include <unistd.h>

void user_mainloop (void) {
while (1) {
usleep (1000);
FOR_ALL_INSTS () out = drand48();

HAL Manual V2.5, 2018-10-21 101 /107

12.14.7 logic

This realtime component shows how to use "personality" to create variable-size arrays and optional pins.

component logic "LinuxCNC HAL component providing experimental logic functions";
pin in bit in-##[16 : personality & Oxff];

pin out bit and if personality & 0x100;

pin out bit or if personality & 0x200;

pin out bit xor if personality & 0x400;

function _ nofp;

description """

Experimental general ’'logic function’ component. Can perform ’'and’, ’'or’
and ’"xor’ of up to 16 inputs. Determine the proper value for ’'personality’
by adding:

.IP \\ (bu 4

The number of input pins, usually from 2 to 16

.IP \\ (bu

256 (0x100) if the ’"and’ output is desired

.IP \\ (bu

512 (0x200) if the 'or’ output is desired

.IP \\ (bu

1024 (0x400) if the ’'xor’ (exclusive or) output is desired""";

license "GPL"; // indicates GPL v2 or later
i
FUNCTION (_) {
int i, a=1, o0=0, x=0;
for (i=0; i < (personality & Oxff); i++) {
if(in(i)) { o =1; x = !'x; }
else { a = 0; }
}
if (personality & 0x100) and = a;
if (personality & 0x200) or = o;
if (personality & 0x400) xor = x;

A typical load line for this component might be

loadrt logic count=3 personality=0x102,0x305,0x503
which creates the following pins:

* A 2-input AND gate: logic.0.and, logic.0.in-00, logic.0.in-01
* 5-input AND and OR gates: logic.1.and, logic.1.or, logic.1.in-00, logic.1.in-01, logic.1.in-02, logic.1.in-03, logic.1.in-04,
* 3-input AND and XOR gates: logic.2.and, logic.2.xor, logic.2.in-00, logic.2.in-01, logic.2.in-02

HAL Manual V2.5, 2018-10-21 102 /107

Chapter 13

Creating Userspace Python Components

13.1 Basic usage

A userspace component begins by creating its pins and parameters, then enters a loop which will periodically drive all the
outputs from the inputs. The following component copies the value seen on its input pin (passthrough.in) to its output pin
(passthrough.out) approximately once per second.

#!/usr/bin/python

import hal, time

h = hal.component ("passthrough")
h.newpin("in", hal.HAL_FLOAT, hal.HAL_IN)
h.newpin ("out", hal.HAL_FLOAT, hal.HAL_OUT)

h.ready ()
try:
while 1:
time.sleep (1)
h[’out’] = h[’in’]

except KeyboardInterrupt:
raise SystemExit

Copy the above listing into a file named "passthrough”, make it executable (chmod +x), and place it on your $PATH. Then try it
out:

halrun
halcmd: loadusr passthrough
halcmd: show pin

Component Pins:

Owner Type Dir Value Name
03 float IN 0 passthrough.in
03 float OUT 0 passthrough.out

halcmd: setp passthrough.in 3.14
halcmd: show pin

Component Pins:

Owner Type Dir Value Name
03 float IN 3.14 passthrough.in
03 float OUT 3.14 passthrough.out

HAL Manual V2.5, 2018-10-21 103/107

13.2 Userspace components and delays

If you typed “show pin” quickly, you may see that passthrough.out still had its old value of 0. This is because of the call
to time.sleep(1), which makes the assignment to the output pin occur at most once per second. Because this is a userspace
component, the actual delay between assignments can be much longer if the memory used by the passthrough component is
swapped to disk, the assignment could be delayed until that memory is swapped back in.

Thus, userspace components are suitable for user-interactive elements such as control panels (delays in the range of milliseconds
are not noticed, and longer delays are acceptable), but not for sending step pulses to a stepper driver board (delays must always
be in the range of microseconds, no matter what).

13.3 Create pins and parameters

h = hal.component ("passthrough")

The component itself is created by a call to the constructor hal.component. The arguments are the HAL component name and
(optionally) the prefix used for pin and parameter names. If the prefix is not specified, the component name is used.

h.newpin("in", hal.HAL_FLOAT, hal.HAL_IN)

Then pins are created by calls to methods on the component object. The arguments are: pin name suffix, pin type, and pin
direction. For parameters, the arguments are: parameter name suffix, parameter type, and parameter direction.

Table 13.1: HAL Option Names

Pin and Parameter Types: HAL_BIT HAL_FLOAT HAL_S32 HAL _U32
Pin Directions: HAL_IN HAL_OUT HAL_IO
Parameter Directions: HAL_RO HAL_RW

non

The full pin or parameter name is formed by joining the prefix and the suffix with a ".", so in the example the pin created is called
passthrough.in.

h.ready ()

Once all the pins and parameters have been created, call the .ready() method.

13.3.1 Changing the prefix

The prefix can be changed by calling the .sefprefix() method. The current prefix can be retrieved by calling the .getprefix()
method.

13.4 Reading and writing pins and parameters

For pins and parameters which are also proper Python identifiers, the value may be accessed or set using the attribute syntax:

h.out = h.in

For all pins, whether or not they are also proper Python identifiers, the value may be accessed or set using the subscript syntax:

h[’out’] = h[’in’]

HAL Manual V2.5, 2018-10-21 104 /107

13.4.1 Driving output (HAL_OUT) pins

Periodically, usually in response to a timer, all HAL_OUT pins should be "driven" by assigning them a new value. This should
be done whether or not the value is different than the last one assigned. When a pin is connected to a signal, its old output value
is not copied into the signal, so the proper value will only appear on the signal once the component assigns a new value.

13.4.2 Driving bidirectional (HAL_IO) pins

The above rule does not apply to bidirectional pins. Instead, a bidirectional pin should only be driven by the component when
the component wishes to change the value. For instance, in the canonical encoder interface, the encoder component only sets the
index-enable pin to FALSE (when an index pulse is seen and the old value is TRUE), but never sets it to TRUE. Repeatedly
driving the pin FALSE might cause the other connected component to act as though another index pulse had been seen.

13.5 Exiting

A halcmd unload request for the component is delivered as a KeyboardInterrupt exception. When an unload request arrives, the
process should either exit in a short time, or call the .exi#() method on the component if substantial work (such as reading or
writing files) must be done to complete the shutdown process.

13.6 Project ideas

* Create an external control panel with buttons, switches, and indicators. Connect everything to a microcontroller, and connect
the microcontroller to the PC using a serial interface. Python has a very capable serial interface module called pyserial (Ubuntu
package name “python-serial”, in the universe repository)

* Attach a LCDProc-compatible LCD module and use it to display a digital readout with information of your choice (Ubuntu
package name “lcdproc”, in the universe repository)

* Create a virtual control panel using any GUI library supported by Python (gtk, qt, wxwindows, etc)

http://pyserial.sourceforge.net/
http://lcdproc.omnipotent.net/

HAL Manual V2.5, 2018-10-21

105/107

Chapter 14

Index

7i65. 60

A

abs, 58
addf, 40
and2, 57
at_pid, 61
axis, 57

B

Basic HAL Tutorial, 39
biquad, 59

Bit, 44

bldc_hall3, 61

blend, 58

blocks, 6

C

charge_pump, 62
clarke2, 61
clarke3, 61
clarkeinv, 61
ClassicLadder, 5
classicladder, 57
CNC, 2

comp, 58

Comp HAL Component Generator, 92
Compiling realtime components outside the source tree, 98

constant, 58
conv_bit_s32, 59
conv_bit_u32, 59
conv_float_s32, 59
conv_float_u32, 60
conv_s32_bit, 60
conv_s32_float, 60
conv_s32_u32, 60
conv_u32_bit, 60
conv_u32_float, 60
conv_u32_s32, 60
counter, 58

D
ddt, 58

deadzone, 58
debounce, 58, 80

E

edge, 58

encoder, 5, 61, 74

Encoder Block Diagram, 74
encoder_ratio, 62
estop_latch, 62

F

feedcomp, 62
Five Phase, 71
flipflop, 58
Float, 44

Four Phase, 70
freqgen, 61

G

gantrykins, 60

gearchange, 62
genhexkins, 60
genserkins, 61

gladevcp, 57

H

HAL, 2

HAL Component, 4
HAL Components, 56
HAL Introduction, 2
HAL Parameter, 4
HAL Physical-Pin, 4
HAL Pin, 4

HAL Signal, 4

HAL Tools, 37

HAL Tutorial, 8
HAL Type, 4
hal-ax5214h, 6
hal-m5i20, 6
hal-motenc, 6
hal-parport, 6
hal-ppmc, 6

hal-stg, 6

hal-vti, 6

HAL Manual V2.5, 2018-10-21

halecmd, 6

Halmeter
Tutorial-Halmeter, 13

halmeter, 6, 37

halscope, 6

Halshow, 49

halui, 5

Hardware Drivers, 6

hm?2_7i43, 60

hm2_pci, 60

hostmot2, 60

hypot, 58

I

ilowpass, 62
integ, 59
invert, 59
iocontrol, 5

J
joyhandle, 62

K
kins, 60
knob2float, 62

L

limit1, 59
limit2, 59
limit3, 59
loadrt, 40
loadusr, 41
logic, 58
lowpass, 59
lut5, 58, 81

M

maj3, 59
match8, 58
maxkins, 61
minmax, 62
motion, 5, 57
mult2, 58
mux16, 58
mux2, 59
mux4, 59
mux8, 59

N

near, 59
net, 41
not, 57

(0]

offset, 59
oneshot, 58
or2, 57

P

Parallel Port Driver, 83
parport functions, 85
pid, 5, 61, 77

PID Block Diagram, 77
pluto_servo, 60
pluto_step, 60
pumakins, 61

pwmgen, 61, 73

R
Realtime Components, 66
rotatekins, 61

S

s32, 44

sample_hold, 62
sampler, 62

scale, 59

scarakins, 61

select8, 58

serport, 60

setp, 42

sets, 43

siggen, 5, 62, 80
sim-encoder, 79
sim_encoder, 62
sphereprobe, 62
stepgen, 5, 15, 61, 66
Stepgen Block Diagram, 66, 68
steptest, 62

streamer, 62

sum?2, 58

supply, 6, 62

T

threads, 57

threadtest, 62

time, 45, 63

timedelay, 63
timedelta, 63

tmax, 45

toggle, 63

toggle2nist, 63

torch height control, 60
tripodkins, 61
tristate_bit, 63
tristate_float, 63
trivkins, 61
Tutorial-Halmeter, 13
Two and Three Phase, 70

U
u32, 44
updown, 58

w
watchdog, 63
wcomp, 59

HAL Manual V2.5, 2018-10-21 107 /107

weighted_sum, 59

X
xor2, 57

	I Hardware Abstract Layer
	HAL Introduction
	HAL is based on traditional system design techniques
	Part Selection
	Interconnection Design
	Implementation
	Testing
	Summary

	HAL Concepts
	HAL components
	External Programs with HAL hooks
	Internal Components
	Hardware Drivers
	Tools and Utilities

	Timing Issues In HAL

	Advanced HAL Tutorial
	Introduction
	Notation
	Tab-completion
	The RTAPI environment

	A Simple Example
	Loading a component
	Examining the HAL
	Making realtime code run
	Changing Parameters
	Saving the HAL configuration
	Exiting halrun
	Restoring the HAL configuration
	Removing HAL from memory

	Halmeter
	Stepgen Example
	Installing the components
	Connecting pins with signals
	Setting up realtime execution - threads and functions
	Setting parameters
	Run it!

	Halscope
	Hooking up the scope probes
	Capturing our first waveforms
	Vertical Adjustments
	Triggering
	Horizontal Adjustments
	More Channels
	More samples

	General Reference
	General Naming Conventions
	Hardware Driver Naming Conventions
	Pin/Parameter names
	Function Names

	Canonical Device Interfaces
	Introduction
	Digital Input
	Pins
	Parameters
	Functions

	Digital Output
	Pins
	Parameters
	Functions

	Analog Input
	Pins
	Parameters
	Functions

	Analog Output
	Pins
	Parameters
	Functions

	HAL Tools
	Halcmd
	Halmeter
	Halscope

	Basic HAL Tutorial
	HAL Commands
	loadrt
	addf
	loadusr
	net
	setp
	sets
	unlinkp
	Obsolete Commands
	linksp
	linkps
	newsig

	HAL Data
	Bit
	Float
	s32
	u32

	HAL Files
	HAL Components
	Logic Components
	and2
	not
	or2
	xor2
	Logic Examples

	Conversion Components
	weighted_sum

	Halshow
	Starting Halshow
	HAL Tree Area
	HAL Show Area
	HAL Watch Area

	HAL Components
	Commands and Userspace Components
	Realtime Components List
	Core LinuxCNC components
	Logic and bitwise components
	Arithmetic and float-components
	Type conversion
	Hardware drivers
	Kinematics
	Motor control
	BLDC and 3-phase motor control
	Other

	HAL API calls
	RTAPI calls

	HAL Component Descriptions
	Stepgen
	PWMgen
	Encoder
	PID
	Simulated Encoder
	Debounce
	Siggen
	lut5

	Parallel Port Driver
	Parport
	Installing
	Pins
	Parameters
	Functions
	Common problems
	Using DoubleStep

	probe_parport
	Installing

	HAL Examples
	Manual Toolchange
	Compute Velocity
	Soft Start
	Stand Alone HAL

	Comp HAL Component Generator
	Introduction
	Installing
	Definitions
	Instance creation
	Implicit Parameters
	Syntax
	HAL functions
	Options
	License and Authorship
	Per-instance data storage
	Comments

	Restrictions
	Convenience Macros
	Components with one function
	Component Personality
	Compiling
	Compiling realtime components outside the source tree
	Compiling userspace components outside the source tree
	Examples
	constant
	sincos
	out8
	hal_loop
	arraydemo
	rand
	logic

	Creating Userspace Python Components
	Basic usage
	Userspace components and delays
	Create pins and parameters
	Changing the prefix

	Reading and writing pins and parameters
	Driving output (HAL_OUT) pins
	Driving bidirectional (HAL_IO) pins

	Exiting
	Project ideas

	Index

