
EMC(1) TheEnhanced Machine Controller EMC(1)

NAME
emc − EMC (The Enhanced Machine Controller)

SYNOPSIS
emc[-v] [-d] [INIFILE]

DESCRIPTION
emc is used to start EMC (The Enhanced Machine Controller). It starts the realtime system and then initial-
izes a number of EMC components (IO, Motion, GUI, HAL, etc). The most important parameter is
INIFILE, which specifies the configuration name you would like to run. If INIFILE is not specified, theemc
script presents a graphical wizard to let you choose one.

OPTIONS
−v Be a little bit verbose. This causes the script to print information as it works.

−d Print lots of debug information. All executed commands are echoed to the screen. This mode is
useful when something is not working as it should.

INIFILE
The ini file is the main piece of an EMC configuration. It is not the entire configuration; there are
various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tellsemcwhich other files to load and use.

There are several ways to specify which config to use:

Specify the absolute path to an ini, e.g.
emc/usr/local/emc2/configs/sim/sim.ini

Specify a relative path from the current directory, e.g.
emcconfigs/sim/sim.ini

Otherwise, in the case where theINIFILE is not specified, the behavior will depend on whether
you configured emc with--enable-run-in-place. If so, the emc config chooser will search only
the configs directory in your source tree. If not (or if you are using a packaged version of emc), it
may search several directories. The config chooser is currently set to search the path:

˜/emc2/configs:/usr/local/etc/emc2/configs:/usr/local/share/doc/emc2/examples/sample-configs

EXAMPLES
emc

emcconfigs/sim/sim.ini

emc/etc/emc2/sample-configs/stepper/stepper_mm.ini

SEE ALSO
halcmd(1)

Much more information about EMC2 and HAL is available in the EMC2 and HAL User Manuals, found at
/usr/share/doc/emc2/.

HISTORY
BUGS

None known at this time.

EMC Documentation 2006-02-20 1

EMC(1) TheEnhanced Machine Controller EMC(1)

AUTHOR
This man page written by Alex Joni, as part of the Enhanced Machine Controller (EMC) project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2 2006-02-20 EMCDocumentation

axis-remote(1) TheEnhanced Machine Controller axis-remote(1)

NAME
axis-remote − AXIS Remote Interface

SYNOPSIS
axis-remote<--ping> <--reload> <--quit> <--help>

DESCRIPTION
axis-remoteis a small script to control a running AXIS GUI.Useaxis-remote --helpfor further informa-
tion.

OPTIONS
--ping Check whether AXIS is running.

--reload
Make AXIS reload the currently loaded file.

--quit Make AXIS quit.

--help Display a list of valid parameters foraxis-remote.

SEE ALSO
axis(1)

Much more information about EMC2 and HAL is available in the EMC2 and HAL User Manuals, found at
/usr/share/doc/emc2/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the Enhanced Machine Controller (EMC) project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2007-04-01 3

AXIS(1) TheEnhanced Machine Controller AXIS(1)

NAME
axis − AXIS EMC (The Enhanced Machine Controller) Graphical User Interface

SYNOPSIS
axis -ini INIFILE

DESCRIPTION
axis is one of the Graphical User Interfaces (GUI) for EMC (The Enhanced Machine Controller). It gets
run by the runscript usually.

OPTIONS
INIFILE

The ini file is the main piece of an EMC configuration. It is not the entire configuration; there are
various other files that go with it (NML files, HAL files, TBL files, VAR files). It is, however, the
most important one, because it is the file that holds the configuration together. It can adjust a lot of
parameters itself, but it also tellsemcwhich other files to load and use.

SEE ALSO
emc(1)

Much more information about EMC2 and HAL is available in the EMC2 and HAL User Manuals, found at
/usr/share/doc/emc2/.

HISTORY
BUGS

None known at this time.

AUTHOR
This man page written by Alex Joni, as part of the Enhanced Machine Controller (EMC) project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2007 Alex Joni.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

4 2007-04-01 EMCDocumentation

bfload(1) TheEnhanced Machine Controller bfload(1)

NAME
bfload − A program for loading a Xilinx Bitfile program into the FPGA of an Anything I/O board from
Mesa Electronics.

SYNOPSIS
bfload help

bfload list

bfload BoardType[:BoardIdentifier]=BitFile

DESCRIPTION
This program loads a Xilinx bitfile-format FPGA program into the FPGA of an Anything I/O board from
Mesa Electronics. Currently supported boards:

5i20

7i43 (both the 200K and 400K FPGA models)

OPTIONS
The first two command-line forms do not program an FPGA.

help Prints terse usage info.

list Lists all the supported PCI Anything I/O boards in the system.

The last command-line form tries to program the FPGA of an Anything I/O board.

BoardType specifies the model name of a supported Anything I/O board (see the DESCRIPTION
section above).

BoardIdentifier is optional. Its format depends on the board type.For PCI boards, BoardIdenti-
fier is an integer specifying the n’th discovered PCI board of that type.For EPP boards, BoardI-
dentifier is the I/O address of the parallel port to use, in the format "IOAddr[,IOAddrHigh]". If
IOAddrHigh is omitted, it defaults to IOAddr + 0x400.If BoardIdentifier is omitted, it defaults to
"0" for PCI boards and "0x378" for EPP boards.

BitFile is the name of the FPGA program file to send.

EXAMPLE
send the file SV12.BIT to the first 5i20 board in the system
bfload 5i20=SV12.BIT

send the file SV8B.BIT to the 7i43 at the specified address
bfload 7i43:0xdc48,0xdc50=SV8B.BIT

EMC Documentation 2008 April 9 5

comp(1) TheEnhanced Machine Controller comp(1)

NAME
comp − Build, compile and install EMC HAL components

SYNOPSIS
comp [--compile|--preprocess|--document|--view-doc] compfile...

sudocomp [--install|--install-doc] compfile...
comp --compile --userspacecfile...

sudocomp --install --userspacecfile...
sudocomp --install --userspacepyfile...

DESCRIPTION
compperforms many different functions:

• Compile.compand.c files into.soor .ko HAL realtime components (the--compileflag)

• Compile.compand.c files into HAL userspace components (the--compile --userspaceflag)

• Preprocess.compfiles into.c files (the--preprocessflag)

• Extract documentation from.compfiles into.9 manpage files (the--documentflag)

• Display documentation from.compfiles onscreen (the--view-docflag)

• Compile and install.comp and .c files into the proper directory for HAL realtime components (the
--install flag), which may requiresudoto write to system directories.

• Install .c and .py files into the proper directory for HAL userspace components (the--install
--userspaceflag), which may requiresudoto write to system directories.

• Extract documentation from.comp files into .9 manpage files in the proper system directory (the
--install flag), which may requiresudoto write to system directories.

• Preprocess.compfiles into.c files (the--preprocessflag)

SEE ALSO
Comp: A tool for creating HAL componentsin the emc2 documentation for a full descrition of the.comp
syntax, along with examples

pydoc hal and Creating Userspace Python Components with the ’hal’ modulefor documentation on the
Python interface to HAL components

comp(9) for documentation on the "two input comparator with hysteresis", a HAL realtime compoent with
the same name as this program

6 2007-10-17 EMCDocumentation

gs2_vfd(1) EMC Documentation gs2_vfd(1)

NAME
gs2_vfd- HAL userspace component for Automation Direct GS2 VFD’s

SYNOPSIS
gs2_vfd[OPTIONS]

DESCRIPTION
This manual page explains thegs2_vfdcomponent. This component reads and writes to the GS2 via a mod-
bus connection.

gs2_vfdis for use with EMC2

OPTIONS
-b -bits <n>

(default 8) Set number of data bits to <n>, where n must be from 5 to 8 inclusive

-d -device <path>
(default /dev/ttyS0) Set the name of the serial device node to use.

-g -debug
Turn on debugging messages. This will also set the verbose flag. Debug mode will cause all mod-
bus messages to be printed in hex on the terminal.

-n -name <string>
(default gs2_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

-p -parity [even,odd,none]
(default gs2_vfd) Set the name of the HAL module. The HAL comp name will be set to <string>,
and all pin and parameter names will begin with <string>.

-r -rate <n>
(default 38400) Set baud rate to <n>. It is an error if the rate is not one of the following: 110, 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

-s -stopbits [1,2]
(default 1) Set serial stop bits to 1 or 2

-t -target <n>
(default 1) Set MODBUS target (slave) number. This must match the device number you set on the
GS2.

-v -verbose
Turn on debug messages. Note that if there are serial errors, this may become annoying. At the
moment it doesn’t make much difference most of the time.

PINS
<name>.DC-bus-volts (float, out)

from the VFD

<name>.at-speed (bit, out)
when drive is at commanded speed

<name>.err-reset (bit, in)
reset errors sent to VFD

<name>.firmware-revision (s32, out)
from the VFD

GS2 VFD January 1, 2009 7

gs2_vfd(1) EMC Documentation gs2_vfd(1)

<name>.frequency-command (float, out)
from the VFD

<name>.frequency-out (float, out)
from the VFD

<name>.is-stopped (bit, out)
when the VFD reports 0 Hz output

<name>.load-percentage (float, out)
from the VFD

<name>.motor-RPM (float, out)
from the VFD

<name>.output-current (float, out)
from the VFD

<name>.output-voltage (float, out)
from the VFD

<name>.power-factor (float, out)
from the VFD

<name>.scale-frequency (float, out)
from the VFD

<name>.speed-command (float, in)
speed sent to VFD in RPM It is an error to send a speed faster than the Motor Max RPM as set in
the VFD

<name>.spindle-fwd (bit, in)
1 for FWD and 0 for REV sent to VFD

<name>.spindle-on (bit, in)
1 for ON and 0 for OFF sent to VFD, only on when running

<name>.spindle-rev (bit, in)
1 for ON and 0 for OFF, only on when running

<name>.status-1 (s32, out)
Drive Status of the VFD (see the GS2 manual)

<name>.status-2 (s32, out)
Drive Status of the VFD (see the GS2 manual) Note that the value is a sum of all the bits that are
on. So a 163 which means the drive is in the run mode is the sum of 3 (run) + 32 (freq set by
serial) + 128 (operation set by serial).

PARAMETERS
<name>.error-count (s32, RW)

<name>.loop-time (float, RW)
how often the modbus is polled (default 0.1)

<name>.nameplate-HZ (float, RW)
Nameplate Hz of motor (default 60)

<name>.nameplate-RPM (float, RW)
Nameplate RPM of motor (default 1730)

<name>.retval (s32, RW)
the return value of an error in HAL

8 January 1, 2009 GS2 VFD

gs2_vfd(1) EMC Documentation gs2_vfd(1)

<name>.tolerance (float, RW)
speed tolerance (default 0.01)

<name>.ack-delay (s32, RW)
number of read/write cycles before checking at-speed (default 2)

USAGE
See the EMC2 Integrators Manual for more information.

BUGS
AUTHOR

John Thornton

LICENSE
GPL

GS2 VFD January 1, 2009 9

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

NAME
hal_input − control HAL pins with any Linux input device, including USB HID devices

SYNOPSIS
loadusrhal_input [-KRAL] inputspec ...

DESCRIPTION
hal_input is an interface between HAL and any Linux input device, including USB HID devices. For each
device named,hal_input creates pins corresponding to its keys, absolute axes, and LEDs. At a fixed rate of
approximately 10ms, it synchronizes the device and the HAL pins.

INPUT SPECIFICATION
The inputspecmay be in one of several forms:

A string S
A substring or shell-style pattern match will be tested against the "name" of the device, the "phys"
(which gives information about how it is connected), and the "id", which is a string of the form
"Bus=... Vendor=... Product=...Version=...". You can view the name, phys, and id of attached
devices by executing less /proc/bus/input/devices. Examples:

SpaceBall
"Vendor=001f Product=0001"
serio*/input0

A numberN
This opens/dev/input/eventN. Except for devices that are always attached to the system, this
number may change over reboots or when the device is removed. For this reason, using an integer
is not recommended.

When several devices are identified by the same string, add ":N" whereN is the index of the desired device.
For example, ifMousematchesinput3 and input10, thenMouseandMouse:0selectinput3. Specifying
mouse:1selects input10.

For devices that appear as multiple entries in /dev/input, these indices are likely to stay the same every time.
For multiple identical devices, these indices are likely to depend on the insertion order, but stay the same
across reboots as long as the devices are not moved to different ports or unplugged while the machine is
booted.

If the first character of theinputspecis a "+", thenhal_input requests exclusive access to the device. The
first device matching aninputspecis used. Any number ofinputspecs may be used.

A subset option may preceed each inputspec. The subset option begins with a dash.Each letter in the sub-
set option specifies a device feature toinclude. Features that are not specified are excluded. For instance,
to export keyboard LEDs to HAL without exporting keys, use

hal_input -Lkeyboard...

DEVICE FEATURES SUPPORTED
• EV_KEY (buttons and keys). Subset-K

• EV_ABS (absolute analog inputs). Subset -A

• EV_REL (relative analog inputs). Subset -R

• EV_LED (LED outputs). Subset -L

HAL PINS AND PARAMETERS
For buttons

input.N.btn-namebit out
input.N.btn-name-not bit out

Created for each button on the device.

10 2007-02-25 EMC Documentation

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

For k eys
input.N.key-name
input.N.key-name-not

Created for each key on the device.

For absolute axes
input.N.abs-name-countss32 out
input.N.abs-name-position float out
input.N.abs-name-scaleparameter float rw
input.N.abs-name-offsetparameter float rw
input.N.abs-name-fuzz parameter s32 rw
input.N.abs-name-flat parameter s32 rw
input.N.abs-name-min parameter s32 r
input.N.abs-name-max parameter s32 r

Created for each absolute axis on the device. Device positions closer thanflat to offset are
reported asoffset in counts, and counts does not change until the device position changes by at
leastfuzz. The position is computed asposition = (counts - offset) / scale. The default value of
scaleandoffset map the range of the axis reported by the operating system to [-1,1]. The default
values offuzz andflat are those reported by the operating system. The values ofmin andmax are
those reported by the operating system.

For r elative axes
input.N.rel-name-countss32 out
input.N.rel-name-position float out
input.N.rel-name-resetbit in
input.N.rel-name-scaleparameter float rw
input.N.rel-name-absoluteparameter s32 rw
input.N.rel-name-precisionparameter s32 rw
input.N.rel-name-last parameter s32 rw

Created for each relative axis on the device. As long asreset is true, counts is reset to zero
regardless of any past or current axis movement. Otherwise,counts increases or decreases accord-
ing to the motion of the axis.counts is divided by position-scale to give position. The default
value of position is 1. There are some devices, notably scroll wheels, which return signed values
with less resolution than 32 bits. The default value ofprecision is 32. precision can be set to 8
for a device that returns signed 8 bit values, or any other value from 1 to 32.absolute, when set
true, ignores duplicate events with the same value. Thisallows for devices that repeat events with-
out any user action to work correctly. last shows the most recent count value returned by the
device, and is used in the implementation ofabsolute.

For L EDs
input.N.led-namebit out
input.N.led-name-invert parameter bit rw

Created for each LED on the device.

PERMISSIONS AND UDEV
By default, the input devices may not be accessible to regular users--hal_input requires read-write access,
ev en if the device has no outputs.To change the default permission of a device, add a new file to
/etc/udev/rules.d to set the device’s GROUP to "plugdev". You can do this for all input devices with this
rule:

SUBSYSTEM=="input", mode="0660", group="plugdev"
You can also make more specific rules for particular devices. For instance, a SpaceBall input device uses
the ’spaceball’ kernel module, so a udev entry for it would read:

DRIVER=="spaceball", MODE="0660", GROUP="plugdev"
the next time the device is attached to the system, it will be accessible to the "plugdev" group.

For USB devices, the udev line would refer to the device’s Vendor and Product values, such as
SYSFS{idProduct}=="c00e", SYSFS{idVendor}=="046d", MODE="0660", GROUP="plugdev"

EMC Documentation 2007-02-25 11

HAL_INPUT(1) HAL User’s Manual HAL_INPUT(1)

for a particular logictech-brand mouse.

For more information on writing udev rules, seeudev(8).

BUGS
The initial state of keys, buttons, and absolute axes are erroneously reported as FALSE or 0 until an event is
received for that key, button, or axis.

SEE ALSO
hal_joystick(1), udev(8)

12 2007-02-25 EMC Documentation

HAL_JOYSTICK(1) HAL User’s Manual HAL_JOYSTICK(1)

NAME
hal_joystick −(DEPRECATED) control HAL pins with a joystick

SYNOPSIS
hal_joystick [-d device] [-p prefix]

DESCRIPTION
hal_joystick is deprecated. Usehal_input(1) instead. hal_joystick will be removed from a future ver-
sion of emc.

hal_joystick allows a joystick to generate HAL (Hardware Abstraction Layer) signals. Although not a
hard realtime component, it is quite responsive under moderate system load. It provides analog (float) HAL
pins for each joystick axis, and digital (bit) pins for each joystick button or trigger.

OPTIONS
-d device

usedeviceas the joystick device (default is /dev/input/js0).

-p prefix
useprefix for the HAL pin names (default is "joystick.0"). Notethat changing the prefix also
changes the component name from its default of "hal_joystick" to the new prefix. If you are load-
ing hal_joystick with "halcmd loadusr -W", you will need to use the -Wn variant, and specify the
new prefix as the component name.However, this still does not avoid race conditions between
creating and connecting pins; see the sectionBUGS.

USAGE
hal_joystick runs forever until interrupted with SIGINT or SIGTERM.Normally it would be invoked as
hal_joystick & to run in the background.

For each joystick axis, it exports a HAL float pin called "<prefix>.axis.<N>" where N is an integer, starting
at zero. The value of the pin will range from -1.0 to +1.0 as the axis is moved thru its range of motion.

For each joystick button, it exports a HAL bit pin called "<prefix>.button.<M>" where M is also an integer
starting at zero.

The mapping of axis and buttons to N and M are joystick dependent, as is the direction of motion that
results in positive values of the axis pin.hal_joystick uses the numbering and direction that is reported by
the Linux joystick driver. For modern USB or other digital joysticks, the Linux driver figures out the num-
ber of axis and buttons automatically. For older analog joysticks, the driver may need configured by the
user. See Linux documentation for more details. Once the Linux driver is properly configured, the HAL
driver will configure itself to match automatically.

SEE ALSO
hal_input(1)

BUGS
hal_joystick is incompatible with the way that halcmd waits for components to be ready. This leads to race
conditions when connecting signals to hal_joystick’s pins.

Perhaps the analog axes should have a "scale" parameter that could be used to scale the -1.0 to +1.0 range
to whatever the user needs. It would also allow the direction of an axis to be reversed by using a negative
scale. Thiscan already be done using a HAL scale block, but a built-in scale parameter would be more
convenient.

AUTHOR
Written by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

EMC Documentation 2006-03-13 13

HAL_JOYSTICK(1) HAL User’s Manual HAL_JOYSTICK(1)

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

14 2006-03-13 EMC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

NAME
halcmd − manipulate the Enhanced Machine Controller HAL from the command line

SYNOPSIS
halcmd [OPTIONS] [COMMAND[ARG]]

halrun [-I] [HALCMD OPTIONS]

halrun [-U]

DESCRIPTION
halcmd is used to manipulate the HAL (Hardware Abstraction Layer) from the command line.halcmd can
optionally read commands from a file, allowing complex HAL configurations to be set up with a single
command.

halrun is a convenience script which sets up the realtime environment, executeshalcmd with the given
arguments, optionally runs an interactive halcmd -kf if -I is given, then tears down the realtime environ-
ment.

If the readline library is available when emc is compiled, thenhalcmd offers commandline editing and
completion when running interactively. Use the up arrow to recall previous commands, and press tab to
complete the names of items such as pins and signals.

OPTIONS
-I Before tearing down the realtime environment, run an interactive halcmd. halrun only. -I must

precede all other commandline arguments.

−f [file] Ignore commands on command line, take input fromfile instead. Iffile is not specified, take input
from stdin.

-i inifile
Use variables frominifile for substitutions. SeeSUBSTITUTION below.

−k Keep going after failed command(s). The default is to stop and return failure if any command
fails.

−q display errors only (default)

−Q display nothing, execute commands silently

−s Script-friendly mode. In this mode,showwill not output titles for the items shown. Also,module
names will be printed instead of ID codes in pin, param, and funct listings.Threads are printed on
a single line, with the thread period, FP usage and name first, followed by all of the functions in
the thread, in execution order. Signals are printed on a single line, with the type, value, and signal
name first, followed by a list of pins connected to the signal, showing both the direction and the
pin name. No prompt will be printed if both-s and-f are specified.

-R Release the HAL mutex. This is useful for recovering when a HAL component has crashed while
holding the HAL mutex.

-U Forcibly cause the realtime environment to exit. It releases the HAL mutex, requests that all HAL
components unload, and stops the realtime system.halrun only. -U must be the only command-
line argument.

−v display results of each command

−V display lots of debugging junk

−h [command]
display a help screen and exit, displays extended help oncommandif specified

COMMANDS
Commands tellhalcmd what to do.Normally halcmd reads a single command from the command line and
executes it. If the ’-f’ option is used to read commands from a file,halcmd reads each line of the file as a
new command. Anything following ’#’ on a line is a comment.

EMC Documentation 2003-12-18 15

HALCMD(1) HAL User’s Manual HALCMD(1)

loadrt modname
(load realtime module) Loads a realtime HAL module calledmodname. halcmd looks for the
module in a directory specified at compile time.

In systems with realtime,halcmd calls the emc_module_helper to load realtime modules.
emc_module_helperis a setuid program and is compiled with a whitelist of modules it is allowed
to load. This is currently just a list ofEMC -related modules.The emc_module_helperexecs
insmod, so return codes and error messages are those from insmod. Administrators who wish to
restrict which users can load theseEMC -related kernel modules can do this by setting the permis-
sions and group onemc_module_helperappropriately.

In systems without realtimehalcmd calls thertapi_app which creates the simulated realtime
environment if it did not yet exist, and then loads the requested component with a call to
dlopen(3).

unloadrt modname
(unload realtime module)Unloads a realtime HAL module calledmodname. If modnameis "all",
it will unload all currently loaded realtime HAL modules.unloadrt also works by execing
emc_module_helperor rtapi_app, just likeloadrt .

loadusr [flags] unix-command
(load Userspace component) Executes the given unix-command, usually to load a userspace com-
ponent. [flags] may be one or more of:

• -W to wait for the component to become ready. The component is assumed to have the same
name as the first argument of the command.

• -Wn name to wait for the component, which will have the given name.

• -w to wait for the program to exit

• -i to ignore the program return value (with -w)

waitusr name
(wait for Userspace component) Waits for user space componentnameto disconnect from HAL
(usually on exit). The component must already be loaded.Usefull near the end of a HAL file to
wait until the user closes some user interface component before cleaning up and exiting.

unloadusr compname
(unload Userspace component) Unloads a userspace component calledcompname. If compname
is "all", it will unload all userspace components.unloadusr works by sending SIGTERM to all
userspace components.

unload compname
Unloads a userspace component or realtime module.If compnameis "all", it will unload all
userspace components and realtime modules.

newsigsigname type
(new signal) Createsa new HAL signal calledsignamethat may later be used to connect two or
more HAL component pins.type is the data type of the new signal, and must be one of "bit ",
"s32", "u32", or "float". Fails if a signal of the same name already exists.

delsigsigname
(delete signal) DeletesHAL signal signame. Any pins currently linked to the signal will be
unlinked. Fails if signamedoes not exist.

setssigname value
(set signal) Setsthe value of signalsignameto value. Fails if signamedoes not exist, if it already
has a writer, or if valueis not a legal value. Legal values depend on the signals’s type.

16 2003-12-18 EMC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

stypename
(signal type) Gets the type of signalname. Fails if namedoes not exist as a signal.

getssigname
(get signal) Getsthe value of signalsigname. Fails if signamedoes not exist.

linkps pinname[arrow] signame
(link pin to signal) Establishsa link between a HAL component pinpinnameand a HAL signal
signame. Any previous link topinnamewill be broken. arrow can be "=>", "<=", "<=>", or omit-
ted. halcmd ignores arrows, but they can be useful in command files to document the direction of
data flow. Arrows should not be used on the command line since the shell might try to interpret
them. Fails if eitherpinnameor signamedoes not exist, or if they are not the same type type.

linksp signame[arrow] pinname
(link signal topin) Works like linkps but rev erses the order of the arguments.halcmd treats both
link commands exactly the same. Use whichever you prefer.

linkpp pinname1[arrow] pinname2
(OBSOLETE - usenet instead) (link pin to pin) Shortcutfor linkps that creates the signal (named
like the first pin), then links them both to that signal.halcmd treats this just as if it were:

halcmd newsigpinname1
halcmd linksp pinname1 pinname1
halcmd linksp pinname1 pinname2

net signame pinname ...
Createsignnameto match the type ofpinnameif it does not yet exist. Then,link signameto each
pinnamein turn. Arrows may be used as inlinkps.

unlinkp pinname
(unlink pin) Breaksany previous link topinname. Fails if pinnamedoes not exist.

setpname value
(set parameter orpin) Setsthe value of parameter or pinnameto value. Fails if namedoes not
exist as a pin or parameter, if it is a parameter that is not writable, if it is a pin that is an output, if
it is a pin that is already attached to a signal, or ifvalueis not a legal value. Legal values depend
on the type of the pin or parameter. If a pin and a parameter both exist with the given name, the
parameter is acted on.

paramname= value

pinname= value
Identical tosetp. This alternate form of the command may be more convenient and readable when
used in a file.

ptype name
(parameter orpin type) Gets the type of parameter or pinname. Fails if namedoes not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

getpname
(get parameter orpin) Getsthe value of parameter or pinname. Fails if namedoes not exist as a
pin or parameter. If a pin and a parameter both exist with the given name, the parameter is acted
on.

addf functname threadname
(add function) Addsfunction functnameto realtime threadthreadname. functnamewill run after
any functions that were previously added to the thread.Fails if either functnameor threadname
does not exist, or if they are incompatible.

delf functname threadname
(delete function) Removes function functnamefrom realtime threadthreadname. Fails if either
functnameor threadnamedoes not exist, or iffunctnameis not currently part ofthreadname.

EMC Documentation 2003-12-18 17

HALCMD(1) HAL User’s Manual HALCMD(1)

start Starts execution of realtime threads. Each thread periodically calls all of the functions that were
added to it with theaddf command, in the order in which they were added.

stop Stops execution of realtime threads. The threads will no longer call their functions.

show[item]
Prints HAL items tostdoutin human readable format.itemcan be one of "comp" (components),
"pin", "sig" (signals), "param" (parameters), "funct" (functions), or "thread". Thetype "all" can
be used to show matching items of all the preceeding types.If item is omitted,show will print
ev erything.

item This is equivalent toshow all [item] .

save [item]
Prints HAL items tostdoutin the form of HAL commands. These commands can be redirected to
a file and later executed usinghalcmd -f to restore the saved configuration. itemcan be one of the
following: "comp" generates aloadrt command for realtime component."sig" generates anewsig
command for each signal, and "sigu" generates anewsigcommand for each unlinked signal (for
use withnetl andnetla). "link " and "linka " both generatelinkps commands for each link. (linka
includes arrows, whilelink does not.) "net" and "neta" both generate onenewsigcommand for
each signal, followed bylinksp commands for each pin linked to that signal.(neta includes
arrows.) "netl" generates onenet command for each linked signal, and "netla" generates a similar
command using arrows. "param" generates onesetp command for each parameter. "thread"
generates oneaddf command for each function in each realtime thread.If item is omitted,save
does the equivalent ofcomp, sigu, link , param, and thread.

source filename.hal
Execute the commands fromfilename.hal.

SUBSTITUTION
After a command is read but before it is executed, several types of variable substitution take place.

Environment Variables
Environment variables have the following formats:

$ENVVAR followed by end-of-line or whitespace

$(ENVVAR)

Inifile Variables
Inifile variables are available only when an inifile was specified with the halcmd-i flag. They hav ethe fol-
lowing formats:

[SECTION]VAR followed by end-of-line or whitespace

[SECTION](VAR)

EXAMPLES
SEE ALSO
HISTORY
BUGS

None known at this time.

AUTHOR
Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.Now
includes major contributions by several members of the project.

REPORTING BUGS
Report bugs to the emc bug tracker
〈http://sf.net/tracker/?group_id=6744&atid=106744〉.

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for

18 2003-12-18 EMC Documentation

HALCMD(1) HAL User’s Manual HALCMD(1)

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2003-12-18 19

HALMETER(1) HAL User’s Manual HALMETER(1)

NAME
halmeter − observe HAL pins, signals, and parameters

SYNOPSIS
halmeter [-s] [pin|sig|param name]

DESCRIPTION
halmeter is used to observe HAL (Hardware Abstraction Layer) pins, signals, or parameters. It serves the
same purpose as a multimeter does when working on physical systems.

OPTIONS
pin name

display the HAL pinname.

signame
display the HAL signalname.

param name
display the HAL parametername.

If neitherpin, sig, or param are specified, the
window starts out blank and the user must select an item to observe.

−s small window. Non-interactive, must be used withpin, sig, or param to select the item to display.
The item name is displayed in the title bar instead of the window, and there are no "Select" or
"Exit" buttons. Handywhen you want a lot of meters in a small space.

USAGE
Unless−s is specified, there are two buttons, "Select" and "Exit"."Select" opens a dialog box to select the
item (pin, signal, or parameter) to be observed. "Exit"does what you expect.

The selection dialog has "OK" "Apply", and "Cancel" buttons. OKdisplays the selected item and closes
the dialog. "Apply" displays the selected item but keeps the selection dialog open."Cancel" closes the dia-
log without changing the displayed item.

EXAMPLES
halmeter

Opens a meter window, with nothing initially displayed. Use the "Select" button to choose an item
to observe. Doesnot return until the window is closed.

halmeter &
Open a meter window, with nothing initially displayed. Use the "Select" button to choose an item.
Runs in the background leaving the shell free for other commands.

halmeter pin parport.0.pin-03-out&
Open a meter window, initially displaying HAL pinparport.0.pin-03-out. The "Select" button can
be used to display other items. Runs in background.

halmeter -s pinparport.0.pin-03-out&
Open a small meter window, displaying HAL pinparport.0.pin-03-out. The displayed item cannot
be changed. Runs in background.

SEE ALSO
HISTORY
BUGS
AUTHOR

Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.
Improvements by several other members of the EMC development team.

20 2006-03-13 EMC Documentation

HALMETER(1) HAL User’s Manual HALMETER(1)

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2003 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2006-03-13 21

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

NAME
halsampler − sample data from HAL in realtime

SYNOPSIS
halsampler [options]

DESCRIPTION
sampler(9) andhalsampler are used together to sample HAL data in real time and store it in a file.sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then
begins sampling data from the HAL and storing it to the FIFO.halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS
-c CHAN

instructshalsampler to read from FIFOCHAN. FIFOs are numbered from zero, and the default
value is zero, so this option is not needed unless multiple FIFOs have been created.

-n COUNT
instructshalsampler to readCOUNT samples from the FIFO, then exit. If -n is not specified,hal-
samplerwill read continuously until it is killed.

-t instructshalsampler to tag each line by printing the sample number in the first column.

FILENAME
instructshalsampler to write toFILENAME instead of to stdout.

USAGE
A FIFO must first be created by loadingsampler(9) with halcmd loadrt or aloadrt command in a .hal file.
Thenhalsamplercan be invoked to begin printing data from the FIFO to stdout.

Data is printed one line per sample.If -t was specified, the sample number is printed first.The data fol-
lows, in the order that the pins were defined in the config string.For example, if thesampler config string
was "ffbs" then a typical line of output (without-t) would look like:

123.55 33.4 0 -12

halsampler prints data as fast as possible until the FIFO is empty, then it retries at regular intervals, until it
is either killed or has printedCOUNT samples as requested by-n. Usually, but not always, data printed by
halsamplerwill be redirected to a file or piped to some other program.

The FIFO size should be chosen to absorb samples captured during any momentary disruptions in the flow
of data, such as disk seeks, terminal scrolling, or the processing limitations of subsequent program in a
pipeline. If the FIFO gets full andsampler is forced to overwrite old data,halsampler will print ’overrun’
on a line by itself to mark each gap in the sampled data.If -t was specified, gaps in the sequential sample
numbers in the first column can be used to determine exactly how many samples were lost.

The data format forhalsampler output is the same as forhalstreamer(1) input, so ’wav eforms’ captured
with halsamplercan be replayed usinghalstreamer. The-t option should not be used in this case.

EXIT STATUS
If a problem is encountered during initialization,halsamplerprints a message to stderr and returns failure.

Upon printingCOUNT samples (if-n was specified) it will shut down and return success. If it is termi-
nated before printing the specified number of samples, it returns failure. Thismeans that when-n is not
specified, it will always return failure when terminated.

SEE ALSO
sampler(9) streamer(9) halstreamer(1)

22 2006-11-18 EMC Documentation

HALSAMPLER(1) HAL User’s Manual HALSAMPLER(1)

HISTORY
BUGS
AUTHOR

Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.
Improvements by several other members of the EMC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2006-11-18 23

HALSTREAMER(1) HAL User’s Manual HALSTREAMER(1)

NAME
halstreamer − stream file data into HAL in real time

SYNOPSIS
halstreamer [options]

DESCRIPTION
streamer(9) andhalstreamer are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so thatstreamer can write
it to the HAL pins.

OPTIONS
-c CHAN

instructshalstreamer to write to FIFOCHAN. FIFOs are numbered from zero, and the default
value is zero, so this option is not needed unless multiple FIFOs have been created.

FILENAME
instructshalsampler to read fromFILENAME instead of from stdin.

USAGE
A FIFO must first be created by loadingstreamer(9) with halcmd loadrt or a loadrt command in a .hal
file. Thenhalstreamercan be invoked to begin writing data into the FIFO.

Data is read from stdin, and is almost always either redirected from a file or piped from some other pro-
gram, since keyboard input would be unable to keep up with even slow streaming rates.

Each line of input must match the pins that are attached to the FIFO, for example, if thestreamer config
string was "ffbs" then each line of input must consist of two floats, a bit, and a signed integer, in that order
and separated by whitespace.Floats must be formatted as required bystrtod(3), signed and unsigned inte-
gers must be formated as required bystrtol (3) andstrtoul (3), and bits must be either ’0’ or ’1’.

halstreamer transfers data to the FIFO as fast as possible until the FIFO is full, then it retries at regular
intervals, until it is either killed or readsEOF from stdin. Data can be redirected from a file or piped from
some other program.

The FIFO size should be chosen to ride through any momentary disruptions in the flow of data, such as disk
seeks. Ifthe FIFO is big enough,halstreamer can be restarted with the same or a new file before the FIFO
empties, resulting in a continuous stream of data.

The data format forhalstreamer input is the same as forhalsampler(1) output, so ’wav eforms’ captured
with halsamplercan be replayed usinghalstreamer.

EXIT STATUS
If a problem is encountered during initialization,halstreamer prints a message to stderr and returns failure.

If a badly formatted line is encountered while writing to the FIFO, it prints a message to stderr, skips the
line, and continues (this behavior may be revised in the future).

Upon readingEOF from the input, it returns success. If it is terminated before the input ends, it returns
failure.

SEE ALSO
streamer(9) sampler(9) halsampler(1)

HISTORY

24 2006-11-18 EMC Documentation

HALSTREAMER(1) HAL User’s Manual HALSTREAMER(1)

BUGS
AUTHOR

Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.
Improvements by several other members of the EMC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2006-11-18 25

HALUI(1) HAL User Interface HALUI(1)

NAME
halui − observe HAL pins and command EMC through NML

SYNOPSIS
halui [-ini <path-to-ini>]

DESCRIPTION
halui is used to build a User Interface using hardware knobs and switches. It experts a big number of pins,
and acts accordingly when these change.

OPTIONS
-ini name

use thenameas the configuration file. Note: halui must find the nml file specified in the ini, usu-
ally that file is in the same folder as the ini, so it makes sense to run halui from that folder.

USAGE
When run,halui will export a large number of pins. A user can connect those to his physical knobs &
switches & leds, and when a change is noticed halui triggers an appropriate event.

halui expects the signals to be debounced, so if needed (bad knob contact) connect the physical button to a
HAL debounce filter first.

EXPORTED PINS
machine

halui.machine.on
pin for setting machine On

halui.machine.off
pin for setting machine Off

halui.machine.is-on
pin for machine is On/Off

axis
halui.axis.#.pos-commanded

Commanded axis position in machine coordinates

halui.axis.#.pos-feedback
Feedback axis position in machine coordinates

halui.axis.#.pos-relative
Commanded axis position in relative coordinates

estop
halui.estop.activate

pin for setting Estop (emc internal) On

halui.estop.reset
pin for resetting Estop (emc internal) Off

halui.estop.is-activated
pin for displaying Estop state (emc internal) On/Off

mode
halui.mode.manual

pin for requesting manual mode

halui.mode.is_manual
pin for manual mode is on

halui.mode.auto
pin for requesting auto mode

26 2006-07-22 EMC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.mode.is_auto
pin for auto mode is on

halui.mode.mdi
pin for requesting mdi mode

halui.mode.is_mdi
pin for mdi mode is on

halui.mode.teleop
pin for requesting coordinated jog mode

halui.mode.is_teleop
pin showing coordinated jog mode is on

halui.mode.joint
pin for requesting joint by joint jog mode

halui.mode.is_joint
pin showing joint by joint jog mode is on

coolant, lubrication
halui.mist.on

pin for starting mist

halui.mist.off
pin for stoping mist

halui.mist.is-on
pin for mist is on

halui.flood.on
pin for starting flood

halui.flood.off
pin for stoping flood

halui.flood.is-on
pin for flood is on

halui.lube.on
pin for starting lube

halui.lube.off
pin for stoping lube

halui.lube.is-on
pin for lube is on

spindle
halui.spindle.start

pin for starting the spindle

halui.spindle.stop
pin for stopping the spindle

halui.spindle.forward
pin for making the spindle go forward

halui.spindle.reverse
pin for making the spindle go reverse

halui.spindle.increase
pin for making the spindle go faster

EMC Documentation 2006-07-22 27

HALUI(1) HAL User Interface HALUI(1)

halui.spindle.decrease
pin for making the spindle go slower

halui.spindle.brake-on
pin for activating the spindle brake

halui.spindle.brake-off
pin for deactivating the spindle brake

halui.spindle.brake-is-on
status pin that tells us if brake is on

joint
halui.joint.#.home

pin for homing the specific joint (x = 0..7)

halui.joint.#.is-homed
status pin telling that the joint is homed (x = 0..7)

halui.joint.selected.home
pin for homing the selected joint

halui.joint.selected.is-homed
status pin telling that the selected joint is homed

halui.joint.#.on-soft-min-limit
status pin telling that the joint is on the negative software limit (x=0..7, selected)

halui.joint.#.on-soft-max-limit
status pin telling that the joint is on the positive software limit (x=0..7, selected)

halui.joint.#.on-hard-min-limit
status pin telling that the joint is on the negative hardware limit (x=0..7, selected)

halui.joint.#.on-hard-max-limit
status pin telling that the joint is on the positive hardware limit (x=0..7, selected)

halui.joint.#.has-fault
status pin telling that the joint has a fault (x = 0..7, selected)

halui.joint.select
select joint (value = 0..7)

halui.joint.selected
selected joint (value = 0..7)

halui.joint.#.select
pins for selecting a joint (x = 0..7)

halui.joint.#.is-selected
status pin that a joint is selected (x = 0..7)

jogging
halui.jog.speed

pin for setting jog speed. will be used for minus/plus jogging.

halui.jog.deadband
pin for setting jog analog deadband (where not to move)

halui.jog.N.minus
pin for jogging axis N in negative direction at the halui.jog.speed velocity

halui.jog.N.plus
pin for jogging axis N in positive direction at the halui.jog.speed velocity

28 2006-07-22 EMC Documentation

HALUI(1) HAL User Interface HALUI(1)

halui.jog.N.analog
pin for jogging the axis X using an float value (e.g. joystick)

halui.jog.selected.minus
pin for jogging the selected axis in negative direction at the halui.jog.speed velocity

halui.jog.selected.plus
pin for jogging the selected axis in positive direction at the halui.jog.speed velocity

tool
halui.tool.number

current selected tool

halui.tool.length-offset
current applied tool-length-offset

program
halui.program.is-idle

status pin telling that no program is running

halui.program.is-running
status pin telling that a program is running

halui.program.is-paused
status pin telling that a program is paused

halui.program.run
pin for running a program

halui.program.pause
pin for pausing a program

halui.program.resume
pin for resuming a program

halui.program.step
pin for stepping in a program

halui.program.stop
pin for stopping a program (note: this pin does the same thing as halui.abort)

general
halui.abortpin to send an abort message (clears out most errors)

feed override
halui.feed-override.value

current Feed Override value

halui.feed-override.scale
pin for setting the scale on changing the FO

halui.feed-override.counts
counts from an encoder to change FOhalui.feed-override.count-enable(default: TRUE) When
TRUE, modify feed override when counts changes.

halui.feed-override.increase
pin for increasing the FO (+=scale)

halui.feed-override.decrease
pin for decreasing the FO (-=scale)

spindle override
halui.spindle-override.value

current FO value

EMC Documentation 2006-07-22 29

HALUI(1) HAL User Interface HALUI(1)

halui.spindle-override.scale
pin for setting the scale on changing the SO

halui.spindle-override.counts
counts from an encoder for example to change SOhalui.spindle-override.count-enable(default:
TRUE) When TRUE, modify spindle override when counts changes.

halui.spindle-override.increase
pin for increasing the SO (+=scale)

halui.spindle-override.decrease
pin for decreasing the SO (-=scale)

halui.spindle-override.value
current FO value

maximum velocity
halui.max-velocity.scale

pin for setting the scale on changing the maximum velocity

halui.max-velocity.counts
counts from an encoder for example to change maximum velocity halui.max-velocity.count-enable
(default:TRUE) When TRUE, modify max velocity when counts changes.

halui.max-velocity.increase
pin for increasing the maximum velocity (+=scale)

halui.max-velocity.decrease
pin for decreasing the maximum velocity (-=scale)

halui.max-velocity.value
Current value for maximum velocity

SEE ALSO
HISTORY
BUGS

none known at this time.

AUTHOR
Written by Alex Joni, as part of the Enhanced Machine Controller (EMC2) project.

REPORTING BUGS
Report bugs to alex_joni AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 Alex Joni.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

30 2006-07-22 EMC Documentation

IOCONTROL(1) HAL Component IOCONTROL(1)

NAME
iocontrol − accepts NML I/O commands, interacts with HAL in userspace

SYNOPSIS
loadusr io [-ini inifile]

DESCRIPTION
These pins are created by the userspace IO controller, usually found in $EMC2_HOME/bin/io

The signals are turned on and off in userspace - if you have strict timing requirements or simply need more
i/o, consider using the realtime synchronized i/o provided bymotion(9) instead.

The inifile is searched for in the directory from which halcmd was run, unless an absolute path is specified.

PINS
iocontrol.0.coolant-flood

(Bit, Out) TRUE when flood coolant is requested

iocontrol.0.coolant-mist
(Bit, Out) TRUE when mist coolant is requested

iocontrol.0.emc-enable-in
(Bit, In) Should be driven FALSE when an external estop condition exists.

iocontrol.0.lube
(Bit, Out) TRUE when lube is requested

iocontrol.0.lube_level
(Bit, In) Should be driven FALSE when lubrication tank is empty.

iocontrol.0.tool-change
(Bit, Out) TRUE when a tool change is requested

iocontrol.0.tool-changed
(Bit, In) Should be driven TRUE when a tool change is completed.

iocontrol.0.tool-number
(s32, Out) Current tool number

iocontrol.0.tool-prep-number
(s32, Out) The number of the next tool, from the RS274NGC T-word

iocontrol.0.tool-prepare
(Bit, Out) TRUE when a Tn tool prepare is requested

iocontrol.0.tool-prepared
(Bit, In) Should be driven TRUE when a tool prepare is completed.

EMC Documentation 2007-08-25 31

IOCONTROL(1) HAL Component IOCONTROL(1)

iocontrol.0.user-enable-out
(Bit, Out) FALSE when an internal estop condition exists

iocontrol.0.user-request-enable
(Bit, Out) TRUE when the user has requested that estop be cleared

SEE ALSO
motion(9)

32 2007-08-25 EMC Documentation

PYVCP(1) TheEnhanced Machine Controller PYVCP(1)

NAME
pyvcp − Virtual Control Panel for EMC2

SYNOPSIS
pyvcp [-g WxH+X+Y] [-c component-name] myfile.xml

OPTIONS
-g WxH+X+Y

This sets the initial geometry of the root window. Use ’WxH’ for just size, ’+X+Y’ for just posi-
tion, or ’WxH+X+Y’ for both. Size / position use pixel units. Position is referenced from top left.

-c component-name
Usecomponent-nameas the HAL component name.If the component name is not specified, the
basename of the xml file is used.

SEE ALSO
Virtual Control Panelsin the emc2 documentation for a description of the xml syntax, along with examples

EMC Documentation 2007-04-01 33

intro(3hal) HAL intro(3hal)

NAME
hal − Introduction to the HAL API

DESCRIPTION
HAL stands for Hardware Abstraction Layer, and is used by EMC to transfer realtime data to and from I/O
devices and other low-level modules.

hal.h defines the API and data structures used by the HAL.This file is included in both realtime and non-
realtime HAL components. HAL uses the RTPAI real time interface, and the #define symbols RTAPI and
ULAPI are used to distinguish between realtime and non-realtime code. The API defined in this file is
implemented in hal_lib.c and can be compiled for linking to either realtime or user space HAL components.

The HAL is a very modular approach to the low lev el parts of a motion control system. The goal of the
HAL is to allow a systems integrator to connect a group of software components together to meet whatever
I/O requirements he (or she) needs. This includes realtime and non-realtime I/O, as well as basic motor
control up to and including a PID position loop. What these functions have in common is that they all pro-
cess signals. In general, a signal is a data item that is updated at regular intervals. For example, a PID loop
gets position command and feedback signals, and produces a velocity command signal.

HAL is based on the approach used to design electronic circuits. In electronics, off-the-shelf components
like integrated circuits are placed on a circuit board and their pins are interconnected to build whatever
overall function is needed. The individual components may be as simple as an op-amp, or as complex as a
digital signal processor. Each component can be individually tested, to make sure it works as designed.
After the components are placed in a larger circuit, the signals connecting them can still be monitored for
testing and troubleshooting.

Like electronic components, HAL components have pins, and the pins can be interconnected by signals.

In the HAL, asignal contains the actual data value that passes from one pin to another. When a signal is
created, space is allocated for the data value. Apin on the other hand, is a pointer, not a data value. When
a pin is connected to a signal, the pin’s pointer is set to point at the signal’s data value. Thisallows the
component to access the signal with very little run-time overhead. (Ifa pin is not linked to any signal, the
pointer points to a dummy location, so the realtime code doesn’t hav eto deal with null pointers or treat
unlinked variables as a special case in any way.)

There are three approaches to writing a HAL component. Those that do not require hard realtime perfor-
mance can be written as a single user mode process. Components that need hard realtime performance but
have simple configuration and init requirements can be done as a single kernel module, using either pre-
defined init info, or insmod-time parameters.Finally, complex components may use both a kernel module
for the realtime part, and a user space process to handle ini file access, user interface (possibly including
GUI features), and other details.

HAL uses the RTAPI/ULAPI interface. If RTAPI is #defined hal_lib.c would generate a kernel module
hal_lib.o that is insmoded and provides the functions for all kernel module based components. The same
source file compiled with the ULAPI #define would make a user space hal_lib.o that is staticlly linked to
user space code to make user space executables. Thevariable lists and link information are stored in a
block of shared memory and protected with mutexes, so that kernel modules and any of sev eral user mode
programs can access the data.

REALTIME CONSIDERATIONS
For an explanation of realtime considerations, seeintro(3rtapi) .

34 2006-10-12 EMC Documentation

intro(3hal) HAL intro(3hal)

HAL STATUS CODES
HAL_SUCCESS

call successful

HAL_UNSUP
function not supported

HAL_BADVAR
duplicate or not-found variable name

HAL_INVAL
invalid argument

HAL_NOMEM
not enough memory

HAL_LIMIT
resource limit reached

HAL_PERM
permission denied

HAL_BUSY
resource is busy or locked

HAL_NOTFND
object not found

HAL_FAIL
operation failed

SEE ALSO
intro(3rtapi)

EMC Documentation 2006-10-12 35

hal_add_funct_to_thread(3hal) HAL hal_add_funct_to_thread(3hal)

NAME
hal_add_funct_to_thread − cause a function to be executed at regular intervals

SYNTAX
int hal_add_funct_to_thread(const char *funct_name, const char *thread_name,

int position)

int hal_del_funct_from_thread(const char *funct_name, const char *thread_name)

ARGUMENTS
funct_name

The name of the function

thread_name
The name of the thread

position
The desired location within the thread. This determines when the function will run, in relation to
other functions in the thread.A positive number indicates the desired location as measured from
the beginning of the thread, and a negative is measured from the end. So +1 means this function
will become the first one to run, +5 means it will be the fifth one to run, -2 means it will be next to
last, and -1 means it will be last. Zero is illegal.

DESCRIPTION
hal_add_funct_to_thread adds a function exported by a realtime HAL component to a realtime thread.
This determines how often and in what order functions are executed.

hal_del_funct_from_thread removes a function from a thread.

RETURN VALUE
Returns a HAL status code.

REALTIME CONSIDERATIONS
Call only from realtime init code, not from user space or realtime code.

SEE ALSO
hal_thread_new(3hal), hal_export_funct(3hal)

36 2006-10-12 EMC Documentation

hal_create_thread(3hal) HAL hal_create_thread(3hal)

NAME
hal_create_thread − Create a HAL thread

SYNTAX
int hal_create_thread(const char *name, unsigned longperiod, int uses_fp)

int hal_thread_delete(const char *name)

ARGUMENTS
name The name of the thread

period The interval, in nanoseconds, between iterations of the thread

uses_fpMust be nonzero if a function which uses floating-point will be attached to this thread.

DESCRIPTION
hal_create_threadestablishes a realtime thread that will execute one or more HAL functions periodically.

All thread periods are rounded to integer multiples of the hardware timer period, and the timer period is
based on the first thread created.Threads must be created in order, from the fastest to the slowest. HAL
assigns decreasing priorities to threads that are created later, so creating them from fastest to slowest results
in rate monotonic priority scheduling.

hal_delete_threaddeletes a previously created thread.

REALTIME CONSIDERATIONS
Call only from realtime init code, not from user space or realtime code.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal)

EMC Documentation 2006-10-12 37

hal_exit(3hal) HAL hal_exit(3hal)

NAME
hal_exit − Shut down HAL

SYNTAX
int hal_exit(intcomp_id)

ARGUMENTS
comp_id

A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_exit shuts down and cleans up HAL and RTAPI. It must be called prior to exit by any module that
calledhal_init .

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns a HAL status code.

38 2006-10-12 EMC Documentation

hal_export_funct(3hal) HAL hal_export_funct(3hal)

NAME
hal_export_funct − create a realtime function callable from a thread

SYNTAX
typedef void(*hal_funct_t)(void *arg, longperiod)

int hal_export_funct(const char *name, hal_funct_tfunct, void *arg, int uses_fp, int reentrant, int comp_id)

ARGUMENTS
name The name of the function.

funct The pointer to the function

arg The argument to be passed as the first parameter offunct

uses_fpNonzero if the function uses floating-point operations, including assignment of floating point val-
ues with "=".

reentrant
If reentrant is non-zero, the function may be preempted and called again before the first call com-
pletes. Otherwise,it may only be added to one thread.

comp_id
A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_export_funct makes a realtime function provided by a component available to the system.A subse-
quent call tohal_add_funct_to_threadcan be used to schedule the execution of the function as needed by
the system.

When this function is placed on a HAL thread, and HAL threads are started,funct is called repeatedly with
two arguments:void *arg is the same value that was given to hal_export_funct, and long periodis the
interval between calls in nanoseconds.

Each call to the function should do a small amount of work and return.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

EMC Documentation 2006-10-12 39

hal_init(3hal) HAL hal_init(3hal)

NAME
hal_init − Sets up HAL and RTAPI

SYNTAX
int hal_init(const char *modname)

ARGUMENTS
modname

The name of this hal module

DESCRIPTION
hal_init sets up HAL and RTAPI. It must be called by any module that intends to use the API, before any
other RTAPI calls.

modnamecan optionally point to a string that identifies the module.The string will be truncated at
RTAPI_NAME_LEN characters. Ifmodnameis NULL , the system will assign a name.

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to hal and rtapi APIs.
On failure, returns a HAL error code.

40 2006-10-12 EMC Documentation

hal_malloc(3hal) HAL hal_malloc(3hal)

NAME
hal_malloc − Allocate space in the HAL shared memory area

SYNTAX
void *hal_malloc(long intsize)

ARGUMENTS
size Gives the size, in bytes, of the block

DESCRIPTION
hal_malloc allocates a block of memory from the main HAL shared memory area.It should be used by all
components to allocate memory for HAL pins and parameters. It allocates ‘size’ bytes, and returns a
pointer to the allocated space, or NULL (0) on error. The returned pointer will be properly aligned for any
type HAL supports.A component should allocate during initialization all the memory it needs.

The allocator is very simple, and there is no ‘free’. The entire HAL shared memory area is freed when the
last component callshal_exit. This means that if you continuously install and remove one component
while other components are present, you eventually will fill up the shared memory and an install will fail.
Removing all components completely clears memory and you start fresh.

RETURN VALUE
A pointer to the allocated space, which is properly aligned for any variable HAL supports. Returns NULL
on error.

EMC Documentation 2006-10-12 41

hal_param_new(3hal) HAL hal_param_new(3hal)

NAME
hal_param_new − Create a HAL parameter

SYNTAX
int hal_param_bit_new(const char *name, hal_param_dir_tdir, hal_bit_t * data_addr, int comp_id)

int hal_param_float_new(const char *name, hal_param_dir_tdir, hal_float_t *data_addr, int comp_id)

int hal_param_u32_new(const char *name, hal_param_dir_tdir, hal_u32_t *data_addr, int comp_id)

int hal_param_s32_new(const char *name, hal_param_dir_tdir, hal_s32_t *data_addr, int comp_id)

int hal_param_bit_newf(hal_param_dir_tdir, hal_bit_t * data_addr, int comp_id)

int hal_param_float_newf(hal_param_dir_tdir, hal_float_t *data_addr, int comp_id)

int hal_param_u32_newf(hal_param_dir_tdir, hal_u32_t *data_addr, int comp_id, const char *fmt, ...)

int hal_param_s32_newf(hal_param_dir_tdir, hal_s32_t *data_addr, int comp_id, const char *fmt, ...)

int hal_param_new(const char *name, hal_type_ttype, hal_in_dir_tdir, void *data_addr, int comp_id)

ARGUMENTS
name The name to give to the created parameter

dir The direction of the parameter, from the viewpoint of the component.It may be one ofHAL_RO ,
or HAL_RW A component may assign a value to any parameter, but other programs (such as hal-
cmd) may only assign a value to a parameter that isHAL_RW .

data_addr
The address of the data, which must lie within memory allocated byhal_malloc.

comp_id
A HAL component identifier returned by an earlier call tohal_init .

fmt, ... A printf-style format string and arguments

type The type of the parameter, as specified inhal_type_t(3hal).

DESCRIPTION
Thehal_param_newfamily of functions create a newparamobject.

There are functions for each of the data types that the HAL supports.Pins may only be linked to signals of
the same type.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

42 2006-10-12 EMC Documentation

hal_pin_new(3hal) HAL hal_pin_new(3hal)

NAME
hal_pin_new − Create a HAL pin

SYNTAX
int hal_pin_bit_new(const char *name, hal_pin_dir_tdir, hal_bit_t ** data_ptr_addr, int comp_id)

int hal_pin_float_new(const char *name, hal_pin_dir_tdir, hal_float_t ** data_ptr_addr, int comp_id)

int hal_pin_u32_new(const char *name, hal_pin_dir_tdir, hal_u32_t **data_ptr_addr, int comp_id)

int hal_pin_s32_new(const char *name, hal_pin_dir_tdir, hal_s32_t **data_ptr_addr, int comp_id)

int hal_pin_bit_newf(hal_pin_dir_tdir, hal_bit_t ** data_ptr_addr, int comp_id)

int hal_pin_float_newf(hal_pin_dir_tdir, hal_float_t ** data_ptr_addr, int comp_id)

int hal_pin_u32_newf(hal_pin_dir_tdir, hal_u32_t **data_ptr_addr, int comp_id, const char *fmt, ...)

int hal_pin_s32_newf(hal_pin_dir_tdir, hal_s32_t **data_ptr_addr, int comp_id, const char *fmt, ...)

int hal_pin_new(const char *name, hal_type_ttype, hal_in_dir_tdir, void **data_ptr_addr, int comp_id)

ARGUMENTS
name The name of the pin

dir The direction of the pin, from the viewpoint of the component. It may be one ofHAL_IN ,
HAL_OUT , or HAL_IO . Any number ofHAL_IN or HAL_IO pins may be connected to the
same signal, but at most oneHAL_OUT pin is permitted.A component may assign a value to a
pin that isHAL_OUT or HAL_IO , but may not assign a value to a pin that isHAL_IN .

data_ptr_addr
The address of the pointer-to-data, which must lie within memory allocated byhal_malloc.

comp_id
A HAL component identifier returned by an earlier call tohal_init .

fmt,
A printf-style format string and arguments

type
The type of the param, as specified inhal_type_t(3hal).

DESCRIPTION
Thehal_pin_newfamily of functions create a new pin object. Oncea pin has been created, it can be linked
to a signal object usinghal_link . A pin contains a pointer, and the component that owns the pin can deref-
erence the pointer to access whatever signal is linked to the pin.(If no signal is linked, it points to a
dummy signal.)

There are functions for each of the data types that the HAL supports.Pins may only be linked to signals of

EMC Documentation 2006-10-12 43

hal_pin_new(3hal) HAL hal_pin_new(3hal)

the same type.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal), hal_link(3hal)

44 2006-10-12 EMC Documentation

funct(3hal) HAL funct(3hal)

NAME
hal_ready − indicates that this component is ready

SYNTAX
hal_ready(intcomp_id)

ARGUMENTS
comp_id

A HAL component identifier returned by an earlier call tohal_init .

DESCRIPTION
hal_ready indicates that this component is ready (has created all its pins, parameters, and functions).This
must be called in any realtime HAL component before itsrtapi_app_init exits, and in any userspace com-
ponent before it enters its main loop.

RETURN VALUE
Returns a HAL status code.

EMC Documentation 2006-10-12 45

hal_set_constructor(3hal) HAL hal_set_constructor(3hal)

NAME
hal_set_constructor − Set the constructor function for this component

SYNTAX
typedef int (*hal_constructor_t)(const char *prefix, const char *arg); int hal_set_constructor(intcomp_id,

hal_constructor_tconstructor)

ARGUMENTS
comp_idA HAL component identifier returned by an earlier call tohal_init .

prefixThe prefix to be given to the pins, parameters, and functions in the new instance

arg An argument that may be used by the component to customize this istance.

DESCRIPTION
As an experimental feature in HAL 2.1, components may beconstructable. Such a component may create
pins and parameters not only at the time the module is loaded, but it may create additional pins and parame-
ters, and functions on demand.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
halcmd(1)

46 2006-10-12 EMC Documentation

hal_set_lock(3hal) HAL hal_set_lock(3hal)

NAME
hal_set_lock, hal_get_lock − Set or get the HAL lock level

SYNTAX
int hal_set_lock(unsigned charlock_type)

int hal_get_lock()

ARGUMENTS
lock_type

The desired lock type, which may be a bitwise combination of:HAL_LOCK_LOAD ,
HAL_LOCK_CONFIG , HAL_LOCK_PARAMS , or HAL_LOCK_PARAMS .
HAL_LOCK_NONE or 0 locks nothing, andHAL_LOCK_ALL locks e verything.

DESCRIPTION
RETURN VALUE

hal_set_lockReturns a HAL status code.hal_get_lockreturns the current HAL lock level or a HAL status
code.

EMC Documentation 2006-10-12 47

hal_signal_new(3hal) HAL hal_signal_new(3hal)

NAME
hal_signal_new, hal_signal_delete, hal_link, hal_unlink − Manipulate HAL signals

SYNTAX
int hal_signal_new(const char *signal_name, hal_type_ttype)

int hal_signal_delete(const char *signal_name)

int hal_link(const char *pin_name, const char *signal_name)

int hal_unlink(const char *pin_name)

ARGUMENTS
signal_name

The name of the signal

pin_name
The name of the pin

type The type of the signal, as specified inhal_type_t(3hal).

DESCRIPTION
hal_signal_newcreates a new signal object. Once a signal has been created, pins can be linked to it with
hal_link . The signal object contains the actual storage for the signal data. Pin objects linked to the signal
have pointers that point to the data.’name’ is the name of the new signal. If longer than
HAL_NAME_LEN it will be truncated. If there is already a signal with the same name the call will fail.

hal_link links a pin to a signal. If the pin is already linked to the desired signal, the command succeeds.If
the pin is already linked to some other signal, it is an error. In either case, the existing connection is not
modified. (Use’hal_unlink’ to break an existing connection.) If the signal already has other pins linked to
it, they are unaffected - one signal can be linked to many pins, but a pin can be linked to only one signal.

hal_unlink unlinks any signal from the specified pin.

hal_signal_deletedeletes a signal object. Any pins linked to the object are unlinked.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_type_t(3hal)

48 2006-10-12 EMC Documentation

hal_start_threads(3hal) HAL hal_start_threads(3hal)

NAME
hal_start_threads − Allow HAL threads to begin executing

SYNTAX
int hal_start_threads()

int hal_stop_threads()

ARGUMENTS
DESCRIPTION

hal_start_threads starts all threads that have been created. This is the point at which realtime functions
start being called.

hal_stop_threadsstops all threads that were previously started byhal_start_threads. It should be called
before any component that is part of a system exits.

RETURN VALUE
Returns a HAL status code.

SEE ALSO
hal_export_funct(3hal), hal_create_thread(3hal), hal_add_funct_to_thread(3hal)

EMC Documentation 2006-10-12 49

hal_type_t(3hal) HAL hal_type_t(3hal)

NAME
hal_type_t − typedefs for HAL datatypes

DESRCIPTION
typedef ...hal_bit_t;

A volatile type which may have a value of 0 or nonzero.

typedef ...hal_s32_t;
A volatile type which may have a value from -2147483648 to 2147483647.

typedef ...hal_u32_t;
A volatile type which may have a value from 0 to 4294967295.

typedef ...hal_float_t;
A volatile floating-point type, which typically has the same precision and range as the C typedou-
ble.

typedef ...real_t;
A nonvolatile floating-point type with at least as much precision ashal_float_t.

typedef ...ireal_t;
A nonvolatile unsigned integral type the same size ashal_float_t.

typedef enumhal_type_t;

HAL_BIT
Corresponds to the typehal_bit_t.

HAL_FLO AT
Corresponds to the typehal_float_t.

HAL_S32
Corresponds to the typehal_s32_t.

HAL_U32
Corresponds to the typehal_u32_t.

NOTES
hal_bit_t is typically a typedef to an integer type whose range is larger than just 0 and 1. When testing the
value of ahal_bit_t, nev er compare it to 1. Prefer one of the following:

• if(b)

• if(b != 0)

SEE ALSO
hal_pin_new(3hal), hal_param_new(3hal)

50 2006-10-12 EMC Documentation

undocumented(3hal) HAL undocumented(3hal)

NAME
undocumented − undocumented functions in HAL

SEE ALSO
The header filehal.h. Most hal functions have documentation in that file.

EMC Documentation 2006-10-12 51

intro(3rtapi) RTAPI intro(3rtapi)

NAME
rtapi − Introduction to the RTAPI API

DESCRIPTION
RTAPI is a library providing a uniform API for several real time operating systems. As of ver 2.1,
RTLinux, RTAI, and a pure userspace simulator are supported.

HEADER FILES
rtapi.h

The file rtapi.h defines the RTAPI for both realtime and non-realtime code.This is a change from Rev 2,
where the non-realtime (user space) API was defined in ulapi.h and used different function names.The
symbols RTAPI and ULAPI are used to determine which mode is being compiled, RTAPI for realtime and
ULAPI for non-realtime.

rtapi_math.h
The file rtapi_math.h defines floating-point functions and constants.It should be used instead of <math.h>
in rtapi real-time components.

rtapi_string.h
The file rtapi_string.h defines string-related functions. It should be used instead of <string.h> in rtapi real-
time components.

REALTIME CONSIDERATIONS
Userspace code

Certain functions are not available in userspace code. This includes functions that perform direct device
access such asrtapi_inb(3) .

Init/cleanup code
Certain functions may only be called from realtime init/cleanup code.This includes functions that perform
memory allocation, such asrtapi_shmem_new(3).

Realtime code
Only a few functions may be called from realtime code.This includes functions that perform direct device
access such asrtapi_inb(3) . It excludes most Linux kernel APIs such as do_gettimeofday(3) and many
rtapi APIs such as rtapi_shmem_new(3).

Simulator
For an RTAPI module to be buildable in the "sim" environment (fake realtime system without special privi-
leges), it must not useany linux kernel APIs, and must not use the RTAPI APIs for direct device access
such asrtapi_inb(3) . This automatically includes any hardware device drivers, and also devices which use
Linux kernel APIs to do things like create special devices or entries in the/proc filesystem.

RTAPI STATUS CODES
RTAPI_SUCCESS

call successfull

RTAPI_UNSUP
function not supported

52 2006-10-02 EMC Documentation

intro(3rtapi) RTAPI intro(3rtapi)

RTAPI_BADID
bad task, shmem, sem, or fifo ID

RTAPI_INVAL
invalid argument

RTAPI_NOMEM
not enough memory

RTAPI_LIMIT
resource limit reached

RTAPI_PERM
permission denied

RTAPI_BUSY
resource is busy or locked

RTAPI_NOTFND
object not found

RTAPI_FAIL
operation failed

EMC Documentation 2006-10-02 53

rtapi_app_exit(3rtapi) HAL rtapi_app_exit(3rtapi)

NAME
rtapi_app_exit − User-provided function to shut down a component

SYNTAX
void rtapi_app_exit(void) { ... }

ARGUMENTS
None

DESCRIPTION
The body ofrtapi_app_exit, which is provided by the component author, generally consists of a call to
rtapi_exit or hal_exit, preceded by other :omponent-specific shutdown code.

RETURN CODE
None.

REALTIME CONSIDERATIONS
Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_main(3rtapi) , rtapi_exit(3rtapi) , hal_exit(3hal)

54 2008-05-26 EMC Documentation

rtapi_app_main(3rtapi) HAL rtapi_app_main(3rtapi)

NAME
rtapi_app_main − User-provided function to initialize a component

SYNTAX
#include "rtapi_app.h" intrtapi_app_main(void) { ... }

ARGUMENTS
None

DESCRIPTION
The body ofrtapi_app_main, which is provided by the component author, generally consists of a call to
rtapi_init or hal_init, followed by other :omponent-specific initialization code.

RETURN VALUE
Return 0 for success. Return a negative errno value (e.g., -EINVAL) on error. Existing code also returns
RTAPI or HAL error values, but using negative errno values gives better diagnostics from insmod.

REALTIME CONSIDERATIONS
Called automatically by the rtapi infrastructure in an initialization (not realtime) context.

SEE ALSO
rtapi_app_exit(3rtapi) , rtapi_init(3rtapi) , hal_init(3hal)

EMC Documentation 2008-05-26 55

rtapi_clock_set_period(3rtapi) RTAPI rtapi_clock_set_period(3rtapi)

NAME
rtapi_clock_set_period − set the basic time interval for realtime tasks

SYNTAX
rtapi_clock_set_period(long intnsec)

ARGUMENTS
nsec The desired basic time interval for realtime tasks.

DESCRIPTION
rtapi_clock_set_period sets the basic time interval for realtime tasks. All periodic tasks will run at an
integer multiple of this period. The first call tortapi_clock_set_periodwith nsecgreater than zero will
start the clock, usingnsecas the clock period in nano-seconds.Due to hardware and RTOS limitations, the
actual period may not be exactly what was requested.On success, the function will return the actual clock
period if it is available, otherwise it returns the requested period. If the requested period is outside the lim-
its imposed by the hardware or RTOS, it returnsRTAPI_INVAL and does not start the clock. Once the
clock is started, subsequent calls with non-zeronsecreturn RTAPI_INVAL and have no effect. Calling
rtapi_clock_set_periodwith nsecset to zero queries the clock, returning the current clock period, or zero
if the clock has not yet been started.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks. This function is not available from user
(non-realtime) code.

RETURN VALUE
The actual period provided by the RTOS, which may be different than the requested period, or a RTAPI sta-
tus code.

56 2006-10-12 EMC Documentation

rtapi_delay(3rtapi) RTAPI rtapi_delay(3rtapi)

NAME
rtapi_delay − Busy-loop for short delays

SYNTAX
void rtapi_delay(long intnsec)

void rtapi_delay_max()

ARGUMENTS
nsec The desired delay length in nanoseconds

DESCRIPTION
rtapi_delay is a simple delay. It is intended only for short delays, since it simply loops, wasting CPU
cycles.

rtapi_delay_max returns the max delay permitted (usually approximately 1/4 of the clock period).Any
call to rtapi_delay requesting a delay longer than the max will delay for the max time only.

rtapi_delay_max should be called before usingrtapi_delay to make sure the required delays can be
achieved. Theactual resolution of the delay may be as good as one nano-second, or as bad as a several
microseconds.

REALTIME CONSIDERATIONS
May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
rtapi_delay_max returns the maximum delay permitted.

SEE ALSO
rtapi_clock_set_period(3rtapi)

EMC Documentation 2006-10-12 57

rtapi_exit(3rtapi) RTAPI rtapi_exit(3rtapi)

NAME
rtapi_exit − Shut down RTAPI

SYNTAX
int rtapi_exit(intmodule_id)

ARGUMENTS
module_id

An rtapi module identifier returned by an earlier call tortapi_init .

DESCRIPTION
rtapi_exit shuts down and cleans up the RTAPI. It must be called prior to exit by any module that called
rtapi_init .

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
Returns a RTAPI status code.

58 2006-10-12 EMC Documentation

rtapi_get_time(3rtapi) HAL rtapi_get_time(3rtapi)

NAME
rtapi_get_time − get the current time

SYNTAX
long long rtapi_get_time()

long long rtapi_get_clocks()

DESCRIPTION
rtapi_get_time returns the current time in nanoseconds. Depending on the RTOS, this may be time since
boot, or time since the clock period was set, or some other time. Its absolute value means nothing, but it is
monotonically increasing and can be used to schedule future events, or to time the duration of some activ-
ity. Returns a 64 bit value. Theresolution of the returned value may be as good as one nano-second, or as
poor as several microseconds. May be called from init/cleanup code, and from within realtime tasks.

Experience has shown that the implementation of this function in some RTOS/Kernel combinations is hor-
rible. It can take up to sev eral microseconds, which is at least 100 times longer than it should, and perhaps
a thousand times longer. Use it only if you MUST have results in seconds instead of clocks, and use it spar-
ingly. In most cases,rtapi_get_clocksshold be used instead.

rtapi_get_clocksreturns the current time in CPU clocks. It is fast, since it just reads the TSC in the CPU
instead of calling a kernel or RTOS function. Ofcourse, times measured in CPU clocks are not as con-
venient, but for relative measurements this works fine. Its absolute value means nothing, but it is monotoni-
cally increasing and can be used to schedule future events, or to time the duration of some activity. (on
SMP machines, the two TSC’s may get out of sync, so if a task reads the TSC, gets swapped to the other
CPU, and reads again, the value may decrease.RTAPI tries to force all RT tasks to run on one CPU.)
Returns a 64 bit value. Theresolution of the returned value is one CPU clock, which is usually a few
nanoseconds to a fraction of a nanosecond.

Note thatlong longmath may be poorly supported on some platforms, especially in kernel space. Also note
that rtapi_print() will NOT print long longs. Mosttime measurements are relative, and should be done like
this:

deltat = (long int)(end_time - start_time);
where end_time and start_time are longlong values returned from rtapi_get_time, and deltat is an ordinary
long int (32 bits). This will work for times up to a second or so, depending on the CPU clock frequency. It
is best used for millisecond and microsecond scale measurements though.

RETURN VALUE
Returns the current time in nanoseconds or CPU clocks.

NOTES
Certain versions of the Linux kernel provide a global variablecpu_khz. Computing

deltat = (end_clocks - start_clocks) / cpu_khz:
gives the duration measured in milliseconds. Computing

deltat = (end_clocks - start_clocks) * 1000000 / cpu_khz:
gives the duration measured in nanoseconds for deltas less than about 9 trillion clocks (e.g., 3000 seconds
at 3GHz).

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks.Not available in userspace compo-
nents.

EMC Documentation 2006-10-12 59

rtapi_init(3rtapi) RTAPI rtapi_init(3rtapi)

NAME
rtapi_init − Sets up RTAPI

SYNTAX
int rtapi_init(const char *modname)

ARGUMENTS
modname

The name of this rtapi module

DESCRIPTION
rtapi_init sets up the RTAPI. It must be called by any module that intends to use the API, before any other
RTAPI calls.

modnamecan optionally point to a string that identifies the module.The string will be truncated at
RTAPI_NAME_LEN characters. Ifmodnameis NULL , the system will assign a name.

REALTIME CONSIDERATIONS
Call only from within user or init/cleanup code, not from relatime tasks.

RETURN VALUE
On success, returns a positive integer module ID, which is used for subsequent calls to rtapi_xxx_new,
rtapi_xxx_delete, and rtapi_exit. On failure, returns an RTAPI error code.

60 2006-10-12 EMC Documentation

rtapi_module_param(3rtapi) RTAPI rtapi_module_param(3rtapi)

NAME
rtapi_module_param − Specifying module parameters

SYNTAX
RTAPI_MP_INT(var, description)

RTAPI_MP_LONG(var, description)

RTAPI_MP_STRING(var, description)

RTAPI_MP_ARRAY_INT(var, num, description)

RTAPI_MP_ARRAY_LONG(var, num, description)

RTAPI_MP_ARRAY_STRING(var, num, description)

MODULE_LICENSE(license)

MODULE_AUTHOR(author)

MODULE_DESCRIPTION(description)

EXPORT_FUNCTION(function)

ARGUMENTS
var The variable where the parameter should be stored

description
A short description of the parameter or module

num The maximum number of values for an array parameter

license The license of the module, for instance "GPL"

author The author of the module

function
The pointer to the function to be exported

DESCRIPTION
These macros are portable ways to declare kernel module parameters.They must be used in the global
scope, and are not followed by a terminating semicolon.They must be used after the associated variable or
function has been defined.

NOTES
EXPORT_FUNCTION makes a symbol available for use by a subsequently loaded component.It is unre-
lated to hal functions, which are described in hal_export_funct(3hal)

REALTIME CONSIDERATIONS
Not available in userspace code.

EMC Documentation 2006-10-12 61

rtapi_mutex(3rtapi) RTAPI rtapi_mutex(3rtapi)

NAME
rtapi_mutex − Mutex-related functions

SYNTAX
int rtapi_mutex_try(unsigned long *mutex)

void rtapi_mutex_get(unsigned long *mutex)

void rtapi_mutex_give(unsigned long *mutex)

ARGUMENTS
mutex A pointer to the mutex.

DESCRIPTION
rtapi_mutex_try makes a non-blocking attempt to get the mutex. If the mutex is available, it returns 0,
and the mutex is no longer available. Otherwise,it returns a nonzero value.

rtapi_mutex_getblocks until the mutex is available.

rtapi_mutex_give releases a mutex acquired byrtapi_mutex_try or rtapi_mutex_get.

REALTIME CONSIDERATIONS
rtapi_mutex_giveandrtapi_mutex_try may be used from user, init/cleanup, and realtime code.

rtapi_mutex_getmay not be used from realtime code.

RETURN VALUE
rtapi_mutex_try returns 0 for if the mutex was claimed, and nonzero otherwise.

rtapi_mutex_getandrtapi_mutex_gif have no return value.

62 2006-10-12 EMC Documentation

rtapi_outb(3rtapi) RTAPI rtapi_outb(3rtapi)

NAME
rtapi_outb, rtapi_inb − Perform hardware I/O

SYNTAX
void rtapi_outb(unsigned charbyte, unsigned intport)

unsigned char rtapi_inb(unsigned intport)

ARGUMENTS
port The address of the I/O port

byte The byte to be written to the port

DESCRIPTION
rtapi_outb writes a byte to a hardware I/O port.rtapi_inb reads a byte from a hardware I/O port.

REALTIME CONSIDERATIONS
May be called from init/cleanup code and from within realtime tasks.Not available in userspace compo-
nents.

RETURN VALUE
rtapi_inb returns the byte read from the given I/O port

NOTES
The I/O address should be within a region previously allocated byrtapi_request_region. Otherwise,
another real-time module or the Linux kernel might attempt to access the I/O region at the same time.

SEE ALSO
rtapi_region(3rtapi)

EMC Documentation 2006-10-12 63

rtapi_print(3rtapi) RTAPI rtapi_print(3rtapi)

NAME
rtapi_print, rtapi_print_msg − print diagnostic messages

SYNTAX
void rtapi_print(const char *fmt, ...)

void rtapi_print_msg(int level, const char *fmt, ...)

typedef void(*rtapi_msg_handler_t)(msg_level_t level, const char *msg);

void rtapi_set_msg_handler(rtapi_msg_handler_thandler);

rtapi_msg_handler_trtapi_set_msg_handler(void);

ARGUMENTS
level A message level: One ofRTAPI_MSG_ERR, RTAPI_MSG_WARN , RTAPI_MSG_INFO , or

RTAPI_MSG_DBG.

handler
A function to call fromrtapi_print or rtapi_print_msg to actually output the message.

fmt

... Other arguments are as forprintf(3).

DESCRIPTION
rtapi_print and rtapi_print_msg work like the standard C printf functions, except that a reduced set of
formatting operations are supported.

Depending on the RTOS, the default may be to print the message to stdout, stderr, a kernel log, etc. In
RTAPI code, the action may be changed by a call tortapi_set_msg_handler. A NULL argument to
rtapi_set_msg_handlerrestores the default handler. rtapi_msg_get_handlerreturns the current handler.
When the message came fromrtapi_print , level is RTAPI_MSG_ALL.

rtapi_print_msg works like rtapi_print but only prints iflevel is less than or equal to the current message
level.

REALTIME CONSIDERATIONS
rtapi_print and rtapi_print_msg May be called from user, init/cleanup, and realtime code.
rtapi_get_msg_handlerand ftapi_set_msg_handlermay be called from realtime init/cleanup code.A
message handler passed tortapi_set_msg_handlermay only call functions that can be called from real-
time code.

RETURN VALUE
None.

SEE ALSO
rtapi_set_msg_level(3rtapi) , rtapi_get_msg_level(3rtapi) , printf(3)

64 2006-10-12 EMC Documentation

rtapi_prio(3rtapi) RTAPI rtapi_prio(3rtapi)

NAME
rtapi_prio − thread priority functions

SYNTAX
int rtapi_prio_highest()

int rtapi_prio_lowest()

int rtapi_prio_next_higher(intprio)

int rtapi_prio_next_lower(intprio)

ARGUMENTS
prio A value returned by a priorrtapi_prio_xxx call

DESCRIPTION
The rtapi_prio_xxxx functions provide a portable way to set task priority. The mapping of actual priority
to priority number depends on the RTOS. Prioritiesrange fromrtapi_prio_lowest to rtapi_prio_highest,
inclusive. To use this API, use one of two methods:

1) Setyour lowest priority task tortapi_prio_lowest, and for each task of the next lowest priority, set
their priorities tortapi_prio_next_higher(pr evious).

2) Setyour highest priority task tortapi_prio_highest, and for each task of the next highest priority,
set their priorities tortapi_prio_next_lower(pr evious).

N.B. A high priority task will pre-empt or interrupt a lower priority task. Linux is always the lowest prior-
ity!

REALTIME CONSIDERATIONS
Call these functions only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an opaque real-time priority number.

SEE ALSO
rtapi_task_new(3rtapi)

EMC Documentation 2006-10-12 65

rtapi_region(3rtapi) RTAPI rtapi_region(3rtapi)

NAME
rtapi_region − functions to manage I/O memory regions

SYNTAX
void *rtapi_request_region(unsigned longbase, unsigned long intsize, const char *name)

void rtapi_release_region(unsigned longbase, unsigned long intsize)

ARGUMENTS
base The base address of the I/O region

size The size of the I/O region

name The name to be shown in /proc/ioports

DESCRIPTION
rtapi_request_regionreserves I/O memory starting atbaseand going forsizebytes.

REALTIME CONSIDERATIONS
May be called from realtime init/cleanup code only.

BUGS
On kernels before 2.4.0,rtapi_request_regionalways suceeds.

RETURN VALUE
rtapi_request_regionreturns NULL if the allocation fails, and a non-NULL value otherwise.

rtapi_release_regionhas no return value.

66 2006-10-12 EMC Documentation

rtapi_set_msg_level(3rtapi) RTAPI rtapi_set_msg_level(3rtapi)

NAME
rtapi_get_msg_level, rtapi_set_msg_level − Get or set the logging level

SYNTAX
int rtapi_set_msg_level(int level)

int rtapi_get_msg_level()

ARGUMENTS
level The desired logging level

DESCRIPTION
Get or set the RTAPI message level used byrtapi_print_msg . Depending on the RTOS, this level may
apply to a single RTAPI module, or it may apply to a group of modules.

REALTIME CONSIDERATIONS
May be called from user, init/cleanup, and realtime code.

RETURN VALUE
rtapi_set_msg_level returns a status code, andrtapi_get_msg_level returns the current level.

SEE ALSO
rtapi_print_msg(3rtapi)

EMC Documentation 2006-10-12 67

rtapi_shmem(3rtapi) RTAPI rtapi_shmem(3rtapi)

NAME
rtapi_shmem − Functions for managing shared memory blocks

SYNTAX
int rtapi_shmem_new(intkey, int module_id, unsigned long intsize)

int rtapi_shmem_delete(intshmem_id, int module_id)

int rtapi_shmem_getptr(intshmem_id, void ** ptr)

ARGUMENTS
key Identifies the memory block.Ke y must be nonzero. All modules wishing to use the same memory

must use the same key.

module_id
Module identifier returned by a prior call tortapi_init .

size The desired size of the shared memory block, in bytes

ptr The pointer to the shared memory block. Note that the block may be mapped at a different
address for different modules.

DESCRIPTION
rtapi_shmem_newallocates a block of shared memory. key identifies the memory block, and must be non-
zero. All modules wishing to access the same memory must use the same key. module_idis the ID of the
module that is making the call (see rtapi_init). The block will be at leastsizebytes, and may be rounded
up. Allocatingmany small blocks may be very wasteful. Whena particular block is allocated for the first
time, the first 4 bytes are zeroed.Subsequent allocations of the same block by other modules or processes
will not touch the contents of the block. Applications can use those bytes to see if they need to initialize
the block, or if another module already did so. On success, it returns a positive integer ID, which is used
for all subsequent calls dealing with the block. On failure it returns a negative error code.

rtapi_shmem_deletefrees the shared memory block associated withshmem_id. module_idis the ID of the
calling module. Returns a status code.

rtapi_shmem_getptrsets*ptr to point to shared memory block associated withshmem_id.

REALTIME CONSIDERATIONS
rtapi_shmem_getptrmay be called from user code, init/cleanup code, or realtime tasks.

rtapi_shmem_newandrtapi_shmem_detemay not be called from realtime tasks.

RETURN VALUE

68 2006-10-12 EMC Documentation

rtapi_snprintf(3rtapi) RTAPI rtapi_snprintf(3rtapi)

NAME
rtapi_snprintf, rtapi_vsnprintf − Perform snprintf-like string formatting

SYNTAX
int rtapi_snprintf(char *buf, unsigned long intsize, const char *fmt, ...)

int rtapi_vsnprintf(char *buf, unsigned long intsize, const char *fmt, va_listapfB)

ARGUMENTS
As for snprintf(3)or vsnprintf(3).

DESCRIPTION
These functions work like the standard C printf functions, except that a reduced set of formatting operations
are supported.

REALTIME CONSIDERATIONS
May be called from user, init/cleanup, and realtime code.

RETURN VALUE
The number of characters written tobuf.

SEE ALSO
printf(3)

EMC Documentation 2006-10-12 69

rtapi_task_new(3rtapi) RTAPI rtapi_task_new(3rtapi)

NAME
rtapi_task_new − create a realtime task

SYNTAX
int rtapi_task_new(void (*taskcode)(void*), void *arg, int prio, unsigned longstacksize, int

uses_fp)

int rtapi_task_delete(inttask_id)

ARGUMENTS
taskcode

A pointer to the function to be called when the task is started

arg An argument to be passed to thetaskcodefunction when the task is started

prio A task priority value returned byrtapi_prio_xxxx

uses_fpA flag that tells the OS whether the task uses floating point or not.

task_id A task ID returned by a previous call tortapi_task_new

DESCRIPTION
rtapi_task_new creates but does not start a realtime task.The task is created in the "paused" state.To
start it, call eitherrtapi_task_start for periodic tasks, orrtapi_task_resumefor free-running tasks.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
On success, returns a positive integer task ID. This ID is used for all subsequent calls that need to act on
the task. On failure, returns an RTAPI status code.

SEE ALSO
rtapi_prio(3rtapi) , rtapi_task_start(3rtapi) , rtapi_task_wait(3rtapi) , rtapi_task_resume(3rtapi)

70 2006-10-12 EMC Documentation

rtapi_task_pause(3rtapi) RTAPI rtapi_task_pause(3rtapi)

NAME
rtapi_task_pause, rtapi_task_resume − pause and resume real-time tasks

SYNTAX
void rtapi_task_pause(inttask_id)

void rtapi_task_resume(inttask_id)

ARGUMENTS
task_id An RTAPI task identifier returned by an earlier call tortapi_task_new.

DESCRIPTION
rtapi_task_resumestarts a task in free-running mode. The task must be in the "paused" state.

A f ree running task runs continuously until either:

1) It is prempted by a higher priority task. It will resume as soon as the higher priority task releases
the CPU.

2) It calls a blocking function, likertapi_sem_take. It will resume when the function unblocks.

3) It is returned to the "paused" state byrtapi_task_pause. May be called from init/cleanup code,
and from within realtime tasks.

rtapi_task_pausecauses a task to stop execution and change to the "paused" state. The task can
be free-running or periodic. Note thatrtapi_task_pausemay called from any task, or from init or
cleanup code, not just from the task that is to be paused. The task will resume execution when
either rtapi_task_resume or rtapi_task_start (depending on whether this is a free-running or
periodic task) is called.

REALTIME CONSIDERATIONS
May be called from init/cleanup code, and from within realtime tasks.

RETURN VALUE
An RTAPI status code.

SEE ALSO
rtapi_task_new(3rtapi), rtapi_task_start(3rtapi)

EMC Documentation 2006-10-12 71

rtapi_task_start(3rtapi) RTAPI rtapi_task_start(3rtapi)

NAME
rtapi_task_start − start a realtime task in periodic mode

SYNTAX
int rtapi_task_start(inttask_id, unsigned longperiod_nsec)

ARGUMENTS
task_id A task ID returned by a previous call tortapi_task_new

period_nsec
The clock period in nanoseconds between iterations of a periodic task

DESCRIPTION
rtapi_task_start starts a task in periodic mode. The task must be in thepausedstate.

REALTIME CONSIDERATIONS
Call only from within init/cleanup code, not from realtime tasks.

RETURN VALUE
Returns an RTAPI status code.

SEE ALSO
rtapi_task_new(3rtapi), rtapi_task_pause(3rtapi), rtapi_task_resume(3rtapi)

72 2006-10-12 EMC Documentation

rtapi_task_wait(3rtapi) RTAPI rtapi_task_wait(3rtapi)

NAME
rtapi_task_wait − suspend execution of this periodic task

SYNTAX
void rtapi_task_wait()

DESCRIPTION
rtapi_task_wait suspends execution of the current task until the next period. The task must be periodic.If
not, the result is undefined.

REALTIME CONSIDERATIONS
Call only from within a periodic realtime task

RETURN VALUE
None

SEE ALSO
rtapi_task_start(3rtapi) , rtapi_task_pause(3rtapi)

EMC Documentation 2006-10-12 73

undocumented(3rtapi) RTAPI undocumented(3rtapi)

NAME
undocumented − undocumented functions in RTAPI

SEE ALSO
The header filertapi.h. Most rtapi functions have documentation in that file.

74 2006-10-12 EMC Documentation

ABS(9) HAL Component ABS(9)

NAME
abs − Compute the absolute value and sign of the input signal

SYNOPSIS
loadrt abs [count=N|names=name1[,name2...]]

FUNCTIONS
abs.N (uses floating-point)

PINS
abs.N.in float in

Analog input value

abs.N.out float out
Analog output value, always positive

abs.N.signbit out
Sign of input, false for positive, true for negative

LICENSE
GPL

EMC Documentation 2009-07-31 75

AND2(9) HAL Component AND2(9)

NAME
and2 − Two-input AND gate

SYNOPSIS
loadrt and2 [count=N|names=name1[,name2...]]

FUNCTIONS
and2.N

PINS
and2.N.in0 bit in
and2.N.in1 bit in
and2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=TRUE in1=TRUE
out=TRUE

Otherwise,
out=FALSE

LICENSE
GPL

76 2009-07-31 EMC Documentation

AT_PID(9) HAL Component AT_PID(9)

NAME
at_pid − proportional/integral/derivative controller with auto tuning

SYNOPSIS
loadrt at_pid num_chan=num[debug=dbg]

DESCRIPTION
at_pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback
loops for servo motors and other closed-loop applications.

at_pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chanargument when the module is loaded.If numchan is not specified, the default value is three.If
debug is set to 1 (the default is 0), some additional HAL parameters will be exported, which might be use-
ful for tuning, but are otherwise unnecessary.

at_pid has a built in auto tune mode. It works by setting up a limit cycle to characterize the process. From
this, Pgain/Igain/Dgain or Pgain/Igain/FF1 can be determined using Ziegler-Nichols. When usingFF1,
scaling must be set so thatoutput is in user units per second.

During auto tuning, thecommand input should not change. The limit cycle is setup around the commanded
position. No initial tuning values are required to start auto tuning.Only tune-cycles, tune-effort andtune-
mode need be set before starting auto tuning.When auto tuning completes, the tuning parameters will be
set. If running from EMC, the FERROR setting for the axis being tuned may need to be loosened up as it
must be larger than the limit cycle amplitude in order to avoid a following error.

To perform auto tuning, take the following steps.Move the axis to be tuned, to somewhere near the center
of it’s travel. Set tune-cycles(the default value should be fine in most cases) andtune-mode. Set tune-
effort to a small value. Setenable to true. Settune-mode to true. Settune-start to true. If no oscillation
occurs, or the oscillation is too small, slowly increasetune-effort. Auto tuning can be aborted at any time
by settingenableor tune-modeto false.

FUNCTIONS
pid.N.do-pid-calcs(uses floating-point)

Does the PID calculations for control loopN.

PINS
pid.N.commandfloat in

The desired (commanded) value for the control loop.

pid.N.feedbackfloat in
The actual (feedback) value, from some sensor such as an encoder.

pid.N.error float out
The difference between command and feedback.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.enablebit in
When true, enables the PID calculations.When false,output is zero, and all internal integrators,
etc, are reset.

pid.N.tune-modebit in
When true, enables auto tune mode. When false, normal PID calculations are performed.

pid.N.tune-start bit io
When set to true, starts auto tuning. Cleared when the auto tuning completes.

EMC Documentation 2007-05-12 77

AT_PID(9) HAL Component AT_PID(9)

PARAMETERS
pid.N.Pgainfloat rw

Proportional gain. Resultsin a contribution to the output that is the error multiplied byPgain.

pid.N.Igain float rw
Integral gain. Resultsin a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error
(errorI) of 0.2, and ifIgain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float rw
Derivative gain. Resultsin a contribution to the output that is the rate of change (derivative) of the
error multiplied byDgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and ifDgain is 5, the derivative term would
add 0.25 to the output.

pid.N.biasfloat rw
bias is a constant amount that is added to the output.In most cases it should be left at zero.How-
ev er, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically.bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum2 block.

pid.N.FF0 float rw
Zero order feed-forward term. Produces a contribution to the output that isFF0 multiplied by the
commanded value. For position loops, it should usually be left at zero.For velocity loops,FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float rw
First order feed-forward term. Produces a contribution to the output thatFF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float rw
Second order feed-forward term. Produces a contribution to the output that isFF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia.For velocity loops, it should usually be
left at zero.

pid.N.deadbandfloat rw
Defines a range of "acceptable" error. If the absolute value oferror is less thandeadband, it will
be treated as if the error is zero.When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When
the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the
edge of the deadband. (SeeBUGS.)

pid.N.maxoutput float rw
Output limit. The absolute value of the output will not be permitted to exceedmaxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

pid.N.maxerror float rw
Limit on the internal error variable used for P, I, and D. Can be used to prevent highPgain values
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change).Not normally needed, but can be useful when tuning non-linear
systems.

78 2007-05-12 EMC Documentation

AT_PID(9) HAL Component AT_PID(9)

pid.N.maxerrorD float rw
Limit on the error derivative. The rate of change of error used by theDgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect ofDgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorI float rw
Limit on error integrator. The error integrator used by theIgain term will be limited to this value,
unless it is zero.Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdDfloat rw
Limit on command derivative. The command derivative used byFF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

pid.N.maxcmdDDfloat rw
Limit on command second derivative. The command second derivative used byFF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.tune-typeu32 rw
When set to 0,Pgain/Igain/Dgainare caclulated. When set to 1,Pgain/Igain/FF1are calculated.

pid.N.tune-cyclesu32 rw
Determines the number of cycles to run to characterize the process.tune-cyclesactually sets the
number of half cycles. More cycles results in a more accurate characterization as the average of all
cycles is used.

pid.N.tune-effort float rw
Determines the effor used in setting up the limit cycle in the process.tune-effort should be set to
a positive value less thanmaxoutput. Start with something small and work up to a value that
results in a good portion of the maximum motor current being used. The smaller the value, the
smaller the amplitude of the limit cycle.

pid.N.errorI float ro (only if debug=1)
Integral of error. This is the value that is multiplied byIgain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied byDgain to produce the Derivative term of
the output.

pid.N.commandDfloat ro (only if debug=1)
Derivative of command. Thisis the value that is multiplied byFF1 to produce the first order feed-
forward term of the output.

pid.N.commandDDfloat ro (only if debug=1)
Second derivative of command. Thisis the value that is multiplied byFF2 to produce the second
order feed-forward term of the output.

pid.N.ultimate-gain float ro (only if debug=1)
Determined from process characterization.ultimate-gain is the ratio oftune-effort to the limit
cycle amplitude multipled by 4.0 divided by Pi.pid.N.ultimate-period float ro (only if debug=1)
Determined from process characterization.ultimate-period is the period of the limit cycle.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband.This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version ofat_pid. How-
ev er, the default behavior should not be changed.

EMC Documentation 2007-05-12 79

BIQUAD(9) HAL Component BIQUAD(9)

NAME
biquad − Biquad IIR filter

SYNOPSIS
loadrt biquad [count=N|names=name1[,name2...]]

DESCRIPTION
Biquad IIR filter. Implements the following transfer function: H(z) = (n0 + n1z-1 + n2z-2) / (1+ d1z-1 +
d2z-2)

FUNCTIONS
biquad.N (uses floating-point)

PINS
biquad.N.in float in

Filter input.

biquad.N.out float out
Filter output.

biquad.N.enablebit in (default:0)
Filter enable. When false, the in is passed to out without any filtering. A transition from false to
true causes filter coefficients to be calculated according to parameters

biquad.N.valid bit out (default:0)
When false, indicates an error occured when caclulating filter coefficients.

PARAMETERS
biquad.N.type u32 rw (default:0)

Filter type determines the type of filter coefficients calculated. When 0, coefficients must be
loaded directly. When 1, a low pass filter is created. When 2, a notch filter is created.

biquad.N.f0 float rw (default:250.0)
The corner frequency of the filter.

biquad.N.Q float rw (default:0.7071)
The Q of the filter.

biquad.N.d1 float rw (default:0.0)
1st-delayed denominator coef

biquad.N.d2 float rw (default:0.0)
2nd-delayed denominator coef

biquad.N.n0 float rw (default:1.0)
non-delayed numerator coef

biquad.N.n1 float rw (default:0.0)
1st-delayed numerator coef

biquad.N.n2 float rw (default:0.0)
2nd-delayed numerator coef

biquad.N.s1float rw (default:0.0)
biquad.N.s2float rw (default:0.0)

LICENSE
GPL

80 2009-07-31 EMC Documentation

BLEND(9) HAL Component BLEND(9)

NAME
blend − Perform linear interpolation between two values

SYNOPSIS
loadrt blend [count=N|names=name1[,name2...]]

FUNCTIONS
blend.N (uses floating-point)

PINS
blend.N.in1 float in

First input. If select is equal to 0.0, the output is equal to in1

blend.N.in2 float in
Second input. If select is equal to 1.0, the output is equal to in2

blend.N.selectfloat in
Select input.For values between 0.0 and 1.0, the output changes linearly from in1 to in2

blend.N.out float out
Output value.

PARAMETERS
blend.N.openbit rw

If true, select values outside the range 0.0 to 1.0 give values outside the range in1 to in2. If false,
outputs are clamped to the the range in1 to in2

LICENSE
GPL

EMC Documentation 2009-07-31 81

CHARGE_PUMP(9) HAL Component CHARGE_PUMP(9)

NAME
charge_pump − Create a square-wav efor the ’charge pump’ input of some controller boards

SYNOPSIS
loadrt charge_pump

FUNCTIONS
charge-pump

Toggle the output bit (if enabled)

PINS
charge-pump.outbit out

Square wav eif ’enable’ is TRUE or unconnected, low if ’ enable’ is FALSE

charge-pump.enablebit in (default:TRUE)
If FALSE, forces ’out’ to be low

LICENSE
GPL

82 2009-07-31 EMC Documentation

CLARKE2(9) HAL Component CLARKE2(9)

NAME
clarke2 − Two input version of Clarke transform

SYNOPSIS
loadrt clarke2 [count=N|names=name1[,name2...]]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system.

clarke2 implements a special case of the Clarke transform, which only needs two of the three input phases.
In a three wire three phase system, the sum of the three phase currents or voltages must always be zero.As
a result only two of the three are needed to completely define the current or voltage. clarke2 assumes that
the sum is zero, so it only uses phases A and B of the input.Since the H (homopolar) output will always be
zero in this case, it is not generated.

FUNCTIONS
clarke2.N (uses floating-point)

PINS
clarke2.N.a float in
clarke2.N.b float in

first two phases of three phase input

clarke2.N.x float out
clarke2.N.y float out

cartesian components of output

SEE ALSO
clarke3 for the general case,clarkeinv for the inverse transform.

LICENSE
GPL

EMC Documentation 2009-07-31 83

CLARKE3(9) HAL Component CLARKE3(9)

NAME
clarke3 − Clarke (3 phase to cartesian) transform

SYNOPSIS
loadrt clarke3 [count=N|names=name1[,name2...]]

DESCRIPTION
The Clarke transform can be used to translate a vector quantity from a three phase system (three compo-
nents 120 degrees apart) to a two phase Cartesian system (plus a homopolar component if the three phases
don’t sum to zero).

clarke3 implements the general case of the transform, using all three phases. If the three phases are known
to sum to zero, seeclarke2 for a simpler version.

FUNCTIONS
clarke3.N (uses floating-point)

PINS
clarke3.N.a float in
clarke3.N.b float in
clarke3.N.c float in

three phase input vector

clarke3.N.x float out
clarke3.N.y float out

cartesian components of output

clarke3.N.h float out
homopolar component of output

SEE ALSO
clarke2 for the ’a+b+c=0’ case,clarkeinv for the inverse transform.

LICENSE
GPL

84 2009-07-31 EMC Documentation

CLARKEINV(9) HAL Component CLARKEINV(9)

NAME
clarkeinv − Inv erse Clarke transform

SYNOPSIS
loadrt clarkeinv [count=N|names=name1[,name2...]]

DESCRIPTION
The inverse Clarke transform can be used to translate a vector quantity from Cartesian coordinate system to
a three phase system (three components 120 degrees apart).

FUNCTIONS
clarkeinv.N (uses floating-point)

PINS
clarkeinv.N.x float in
clarkeinv.N.y float in

cartesian components of input

clarkeinv.N.h float in
homopolar component of input (usually zero)

clarkeinv.N.a float out
clarkeinv.N.b float out
clarkeinv.N.c float out

three phase output vector

SEE ALSO
clarke2 andclarke3 for the forward transform.

LICENSE
GPL

EMC Documentation 2009-07-31 85

CLASSICLADDER(9) HAL Component CLASSICLADDER(9)

NAME
classicladder − realtime software plc based on ladder logic

SYNOPSIS
loadrt classicladder_rt [numRungs=N] [numBits=N] [numWords=N] [numTimers=N] [numMonosta-
bles=N] [numCounters=N] [numPhysInputs=N] [numPhysOutputs=N] [numArithmExpr= N] [num-
Sections=N] [numSymbols=N] [numS32in=N] [numS32out=N]

DESCRIPTION
These pins and parameters are created by the realtimeclassicladder_rt module. Each period (minimum
1000000 ns), classicladder reads the inputs, evaluates the ladder logic defined in the GUI, and then writes
the outputs.

PINS
classicladder.0.in-N IN bit

These bit signal pins map to%I NNNvariables in classicladder

classicladder.0.out-N OUT bit
These bit signal pins map to%QnNNvariables in classicladder Output from classicladder

classicladder.0.in-N IN s32
Integer input from classicladder These s32 signal pins map to%IW NNNvariables in classicladder

classicladder.0.out-N OUT s32
Integer output from classicladder These s32 signal pins map to%QW NNNvariables in classiclad-
der

PARAMETERS
classicladder.0.refresh.timeRO s32

Tells you how long the last refresh took

classicladder.0.refresh.tmaxRW s32
Tells you how long the longest refresh took

classicladder.0.ladder-stateRO s32
Tells you if the program is running or not

FUNCTIONS
classicladder.0.refreshFP

The rung update rate. Add this to the servo thread. You can added it to a faster thread but it Will
update no faster than once every 1 millisecond (1000000 ns).

BUGS
See http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?ClassicLadder_Ver_7.124 for the latest.

SEE ALSO
see the integrator manual and http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?ClassicLadder_Ver_7.124

86 2008-11-23 EMC Documentation

COMP(9) HAL Component COMP(9)

NAME
comp − Two input comparator with hysteresis

SYNOPSIS
loadrt comp [count=N|names=name1[,name2...]]

FUNCTIONS
comp.N (uses floating-point)

Update the comparator

PINS
comp.N.in0 float in

Inverting input to the comparator

comp.N.in1 float in
Non-inverting input to the comparator

comp.N.out bit out
Normal output. True whenin1 > in0 (see parameterhyst for details)

comp.N.equalbit out
Match output.True when difference betweenin1 andin0 is less thanhyst/2

PARAMETERS
comp.N.hyst float rw (default:0.0)

Hysteresis of the comparator (default 0.0)

With zero hysteresis, the output is true whenin1 > in0. With nonzero hysteresis, the output
switches on and off at two different values, separated by distancehyst around the point wherein1
= in0. Keep in mind that floating point calculations are never absolute and it is wise to always set
hyst if you intend to use equal

LICENSE
GPL

EMC Documentation 2009-07-31 87

CONSTANT(9) HAL Component CONSTANT(9)

NAME
constant − Use a parameter to set the value of a pin

SYNOPSIS
loadrt constant [count=N|names=name1[,name2...]]

FUNCTIONS
constant.N (uses floating-point)

PINS
constant.N.out float out

PARAMETERS
constant.N.valuefloat rw

LICENSE
GPL

88 2009-07-31 EMC Documentation

CONV_BIT_S32(9) HAL Component CONV_BIT_S32(9)

NAME
conv_bit_s32 − Convert a value from bit to s32

SYNOPSIS
loadrt conv_bit_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-bit-s32.N

Update ’out’ based on ’in’

PINS
conv-bit-s32.N.in bit in
conv-bit-s32.N.out s32 out

LICENSE
GPL

EMC Documentation 2009-07-31 89

CONV_BIT_U32(9) HAL Component CONV_BIT_U32(9)

NAME
conv_bit_u32 − Convert a value from bit to u32

SYNOPSIS
loadrt conv_bit_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-bit-u32.N

Update ’out’ based on ’in’

PINS
conv-bit-u32.N.in bit in
conv-bit-u32.N.out u32 out

LICENSE
GPL

90 2009-07-31 EMC Documentation

CONV_FLOAT_S32(9) HAL Component CONV_FLOAT_S32(9)

NAME
conv_float_s32 − Convert a value from float to s32

SYNOPSIS
loadrt conv_float_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-float-s32.N (uses floating-point)

Update ’out’ based on ’in’

PINS
conv-float-s32.N.in float in
conv-float-s32.N.out s32 out
conv-float-s32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of s32

PARAMETERS
conv-float-s32.N.clamp bit rw

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

EMC Documentation 2009-07-31 91

CONV_FLOAT_U32(9) HAL Component CONV_FLOAT_U32(9)

NAME
conv_float_u32 − Convert a value from float to u32

SYNOPSIS
loadrt conv_float_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-float-u32.N (uses floating-point)

Update ’out’ based on ’in’

PINS
conv-float-u32.N.in float in
conv-float-u32.N.out u32 out
conv-float-u32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of u32

PARAMETERS
conv-float-u32.N.clamp bit rw

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

92 2009-07-31 EMC Documentation

CONV_S32_BIT(9) HAL Component CONV_S32_BIT(9)

NAME
conv_s32_bit − Convert a value from s32 to bit

SYNOPSIS
loadrt conv_s32_bit [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-bit.N

Update ’out’ based on ’in’

PINS
conv-s32-bit.N.in s32 in
conv-s32-bit.N.out bit out
conv-s32-bit.N.out-of-rangebit out

TRUE when ’in’ is not in the range of bit

PARAMETERS
conv-s32-bit.N.clamp bit rw

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

EMC Documentation 2009-07-31 93

CONV_S32_FLOAT(9) HAL Component CONV_S32_FLOAT(9)

NAME
conv_s32_float − Convert a value from s32 to float

SYNOPSIS
loadrt conv_s32_float [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-float.N (uses floating-point)

Update ’out’ based on ’in’

PINS
conv-s32-float.N.in s32 in
conv-s32-float.N.out float out

LICENSE
GPL

94 2009-07-31 EMC Documentation

CONV_S32_U32(9) HAL Component CONV_S32_U32(9)

NAME
conv_s32_u32 − Convert a value from s32 to u32

SYNOPSIS
loadrt conv_s32_u32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-s32-u32.N

Update ’out’ based on ’in’

PINS
conv-s32-u32.N.in s32 in
conv-s32-u32.N.out u32 out
conv-s32-u32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of u32

PARAMETERS
conv-s32-u32.N.clamp bit rw

If TRUE, then clamp to the range of u32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

EMC Documentation 2009-07-31 95

CONV_U32_BIT(9) HAL Component CONV_U32_BIT(9)

NAME
conv_u32_bit − Convert a value from u32 to bit

SYNOPSIS
loadrt conv_u32_bit [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-bit.N

Update ’out’ based on ’in’

PINS
conv-u32-bit.N.in u32 in
conv-u32-bit.N.out bit out
conv-u32-bit.N.out-of-rangebit out

TRUE when ’in’ is not in the range of bit

PARAMETERS
conv-u32-bit.N.clamp bit rw

If TRUE, then clamp to the range of bit. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

96 2009-07-31 EMC Documentation

CONV_U32_FLOAT(9) HAL Component CONV_U32_FLOAT(9)

NAME
conv_u32_float − Convert a value from u32 to float

SYNOPSIS
loadrt conv_u32_float [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-float.N (uses floating-point)

Update ’out’ based on ’in’

PINS
conv-u32-float.N.in u32 in
conv-u32-float.N.out float out

LICENSE
GPL

EMC Documentation 2009-07-31 97

CONV_U32_S32(9) HAL Component CONV_U32_S32(9)

NAME
conv_u32_s32 − Convert a value from u32 to s32

SYNOPSIS
loadrt conv_u32_s32 [count=N|names=name1[,name2...]]

FUNCTIONS
conv-u32-s32.N

Update ’out’ based on ’in’

PINS
conv-u32-s32.N.in u32 in
conv-u32-s32.N.out s32 out
conv-u32-s32.N.out-of-rangebit out

TRUE when ’in’ is not in the range of s32

PARAMETERS
conv-u32-s32.N.clamp bit rw

If TRUE, then clamp to the range of s32. If FALSE, then allow the value to "wrap around".

LICENSE
GPL

98 2009-07-31 EMC Documentation

COUNTER(9) HAL Component COUNTER(9)

NAME
counter − counts input pulses(DEPRECATED)

SYNOPSIS
loadrt counter [num_chan=N]

DESCRIPTION
counter is a deprecated HAL component and will be removed in a future release. Use theencodercompo-
nent with encoder.X.counter-mode set to TRUE.

counter is a HAL component that provides software- based counting that is useful for spindle position
sensing and maybe other things.Instead of using a real encoder that outputs quadrature, some lathes have a
sensor that generates a simple pulse stream as the spindle turns and an index pulse once per revolution.
This component simply counts up when a "count" pulse (phase-A) is received, and if reset is enabled, resets
when the "index" (phase-Z) pulse is received.

This is of course only useful for a unidirectional spindle, as it is not possible to sense the direction of rota-
tion.

counter conforms to the "canonical encoder" interface described in the HAL manual.

FUNCTIONS
counter.capture-position(uses floating-point)

Updates the counts, position and velocity outputs based on internal counters.

counter.update-counters
Samples the phase-A and phase-Z inputs and updates internal counters.

PINS
counter.N.phase-Abit in

The primary input signal. The internal counter is incremented on each rising edge.

counter.N.phase-Zbit in
The index input signal. When theindex-enablepin is TRUE and a rising edge onphase-Z is
seen,index-enableis set to FALSE and the internal counter is reset to zero.

counter.N.index-enablebit io
counter.N.resetbit io
counter.N.countssigned out
counter.N.position float out
counter.N.velocity float out

These pins function according to the canonical digital encoder interface.

PARAMETERS
counter.N.position-scalefloat rw

This parameter functions according to the canonical digital encoder interface.

counter.N.rawcountssigned ro
The internal counts value, updated fromupdate-countersand reflected in the output pins at the
next call tocapture-position.

SEE ALSO
encoder(9). The HAL User Manual.

EMC Documentation 2007-01-19 99

DDT(9) HAL Component DDT(9)

NAME
ddt − Compute the derivative of the input function

SYNOPSIS
loadrt ddt [count=N|names=name1[,name2...]]

FUNCTIONS
ddt.N (uses floating-point)

PINS
ddt.N.in float in
ddt.N.out float out

LICENSE
GPL

100 2009-07-31 EMC Documentation

DEADZONE(9) HAL Component DEADZONE(9)

NAME
deadzone − Return the center if within the threshold

SYNOPSIS
loadrt deadzone [count=N|names=name1[,name2...]]

FUNCTIONS
deadzone.N (uses floating-point)

Updateout based onin and the parameters.

PINS
deadzone.N.in float in
deadzone.N.out float out

PARAMETERS
deadzone.N.centerfloat rw (default:0.0)

The center of the dead zone

deadzone.N.threshhold float rw (default:1.0)
The dead zone iscenter± (threshhold/2)

LICENSE
GPL

EMC Documentation 2009-07-31 101

DEBOUNCE(9) HAL Component DEBOUNCE(9)

NAME
debounce − filter noisy digital inputs

SYNOPSIS
loadrt debounce [cfg=size[,size,...]]

Creates filter groups each with the given number of filters (size). Eachfilter group has the same sample rate
and delay.

DESCRIPTION
The debounce filter works by incrementing a counter whenever the input is true, and decrementing the
counter when it is false. If the counter decrements to zero, the output is set false and the counter ignores
further decrements.If the counter increments up to a threshold, the output is set true and the counter
ignores further increments. If the counter is between zero and the threshold, the output retains its previous
state. Thethreshold determines the amount of filtering: a threshold of 1 does no filtering at all, and a
threshold of N requires a signal to be present for N samples before the output changes state.

FUNCTIONS
debounce.G

Sample all the input pins in group G and update the output pins.

PINS
debounce.G.F.in bit in

The F’th input pin in group G.

debounce.G.F.out bit out
The F’th output pin in group G.Reflects the last "stable" input seen on the corresponding input
pin.

PARAMETERS
debounce.G.delaysigned rw

Sets the amount of filtering for all pins in group G.

102 2007-01-16 EMC Documentation

EDGE(9) HAL Component EDGE(9)

NAME
edge − Edge detector

SYNOPSIS
loadrt edge [count=N|names=name1[,name2...]]

FUNCTIONS
edge.N Produce output pulses from input edges

PINS
edge.N.in bit in
edge.N.out bit out

Goes high when the desired edge is seen on ’in’

edge.N.out-invert bit out
Goes low when the desired edge is seen on ’in’

PARAMETERS
edge.N.in-edgebit rw (default:TRUE)

Selects the desired edge: TRUE means falling, FALSE means rising

edge.N.out-width-ns s32 rw (default:0)
Time in nanoseconds of the output pulse

edge.N.time-left-ns s32 r
Time left in this output pulse

edge.N.last-in bit r
Previous input value

LICENSE
GPL

EMC Documentation 2009-07-31 103

ENCODER(9) HAL Component ENCODER(9)

NAME
encoder − software counting of quadrature encoder signals

SYNOPSIS
loadrt encoder num_chan=num

DESCRIPTION
encoder is used to measure position by counting the pulses generated by a quadrature encoder. As a soft-
ware-based implementation it is much less expensive than hardware, but has a limited maximum count rate.
The limit is in the range of 10KHz to 50KHz, depending on the computer speed and other factors. Ifbetter
performance is needed, a hardware encoder counter is a better choice. Some hardware-based systems can
count at MHz rates.

encoder supports a maximum of eight channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Ifnumchan is not specified, the default value is three.

encoderhas a one-phase, unidirectional mode calledcounter. In this mode, thephase-Binput is ignored;
the counts increase on each rising edge ofphase-A. This mode may be useful for counting a unidirectional
spindle with a single input line, though the noise-resistant characteristics of quadrature are lost.

FUNCTIONS
encoder.update-counters(no floating-point)

Does the actual counting, by sampling the encoder signals and decoding the quadrature
waveforms. Mustbe called as frequently as possible, preferably twice as fast as the maximum
desired count rate. Operates on all channels at once.

encoder.capture-position(uses floating point)
Captures the raw counts fromupdate-countersand performs scaling and other necessary conver-
sion, handles counter rollover, etc. Can(and should) be called less frequently thanupdate-coun-
ters. Operates on all channels at once.

PINS
encoder.N.phase-Abit in

Quadrature input for encoder channelN.

encoder.N.phase-Bbit in
Quadrature input.

encoder.N.phase-Zbit in
Index pulse input.

encoder.N.resetbit in
When true,countsandposition are reset to zero immediately.

encoder.N.index-enablebit i/o
When true,countsandposition are reset to zero on the next rising edge ofPhase-Z. At the same
time, index-enableis reset to zero to indicate that the rising edge has occurred.

encoder.N.countss32 out
Position in encoder counts.

encoder.N.position float out
Position in scaled units (seeposition-scale)

encoder.N.position-interpolated float out
Position in scaled units, interpolated between encoder counts.Only valid when velocity is approx-
imately constant, do not use for position control.

encoder.N.velocity float out
Velocity in scaled units per second.encoderuses an algorithm that greatly reduces quantization
noise as compared to simply differentiating theposition output.

104 2007-01-16 EMC Documentation

ENCODER(9) HAL Component ENCODER(9)

PARAMETERS
encoder.N.position-scalefloat rw

Scale factor, in counts per length unit.For example, ifposition-scaleis 500, then 1000 counts of
the encoder will be reported as a position of 2.0 units.

encoder.N.counter-modebit rw
Enables counter mode.When true, the counter counts each rising edge of the phase-A input,
ignoring the value on phase-B.This is useful for counting the output of a single channel (non-
quadrature) sensor. When false (the default), it counts in quadrature mode.

encoder.N.x4-modebit rw
Enables times-4 mode.When true (the default), the counter counts each edge of the quadrature
waveform (four counts per full cycle). Whenfalse, it only counts once per full cycle. Incounter-
mode, this parameter is ignored.

encoder.N.rawcountss32 ro
The raw count, as determined byupdate-counters. This value is updated more frequently than
countsandposition. It is also unaffected byresetor the index pulse.

SEE ALSO
counter(9)

EMC Documentation 2007-01-16 105

ENCODER_RATIO(9) HAL Component ENCODER_RATIO(9)

NAME
encoder_ratio − an electronic gear to synchronize two axes

SYNOPSIS
loadrt encoder_ratio [num_chan=N]

DESCRIPTION
encoder_ratio can be used to synchronize two axes (like an "electronic gear"). It counts encoder pulses
from both axes in software, and produces an error value that can be used with a PID loop to make the slave
encoder track the master encoder with a specific ratio.

This module supports up to eight axis pairs.The number of pairs is set by the module parameter
num_chan.

FUNCTIONS
encoder-ratio.sample

Read all input pins. Must be called at twice the maximum desired count rate.

encoder-ratio.update (uses floating-point)
Updates all output pins. May be called from a slower thread.

PINS
encoder-ratio.N.master-A bit in
encoder-ratio.N.master-Bbit in
encoder-ratio.N.slave-A bit in
encoder-ratio.N.slave-B bit in

The encoder channels of the master and slave axes

encoder-ratio.N.enablebit in
When the enable pin is FALSE, the error pin simply reports the slave axis position, in revolutions.
As such, it would normally be connected to the feedback pin of a PID block for closed loop con-
trol of the slave axis. Normallythe command input of the PID block is left unconnected (zero), so
the slave axis simply sits still. However when the enable input goes TRUE, the error pin becomes
the slave position minus the scaled master position.The scale factor is the ratio of master teeth to
slave teeth. Asthe master moves, error becomes non-zero, and the PID loop will drive the slave
axis to track the master.

encoder-ratio.N.error float out
The error in the position of the slave (in revolutions)

PARAMETERS
encoder-ratio.N.master-pprunsigned rw
encoder-ratio.N.slave-ppr unsigned rw

The number of pulses per revolution of the master and slave axes

encoder-ratio.N.master-teethunsigned rw
encoder-ratio.N.slave-teethunsigned rw

The number of "teeth" on the master and slave gears.

SEE ALSO
encoder(9)

106 2007-01-16 EMC Documentation

ESTOP_LATCH(9) HAL Component ESTOP_LATCH(9)

NAME
estop_latch − ESTOP latch which sets ok-out true and fault-out false only if ok-in is true, fault-in is false,
and a rising edge is seen on reset. While ok-out is true, watchdog toggles, and can be used for
chargepumps or similar needs.

SYNOPSIS
loadrt estop_latch [count=N|names=name1[,name2...]]

FUNCTIONS
estop-latch.N

PINS
estop-latch.N.ok-in bit in
estop-latch.N.fault-in bit in
estop-latch.N.resetbit in
estop-latch.N.ok-out bit out
estop-latch.N.fault-out bit out
estop-latch.N.watchdogbit out

LICENSE
GPL

EMC Documentation 2009-07-31 107

FLIPFLOP(9) HAL Component FLIPFLOP(9)

NAME
flipflop − D type flip-flop

SYNOPSIS
loadrt flipflop [count= N|names=name1[,name2...]]

FUNCTIONS
flipflop.N

PINS
flipflop.N.data bit in

data input

flipflop.N.clk bit in
clock, rising edge writes data to out

flipflop.N.setbit in
when true, force out true

flipflop.N.resetbit in
when true, force out false; overrides set

flipflop.N.out bit io
output

LICENSE
GPL

108 2009-07-31 EMC Documentation

FREQGEN(9) HAL Component FREQGEN(9)

NAME
freqgen − software step pulse generation

OBSOLETE - seestepgen’s ’ctrl_type=v’ option.

SYNOPSIS
loadrt freqgen step_type=type0[,type1...]

DESCRIPTION
freqgen is used to control stepper motors. The maximum step rate depends on the CPU and other factors,
and is usually in the range of 10KHz to 50KHz. If higher rates are needed, a hardware step generator is a
better choice.

freqgen runs the motor at a commanded velocity, subject to acceleration and velocity limits. It does not
directly control position.

freqgen can control a maximum of eight motors.The number of motors/channels actually loaded depends
on the number oftypevalues given. Thevalue of eachtypedetermines the outputs for that channel.freq-
gensupports 15 possible step types.

By far the most common step type is ’0’, standard step and direction. Others include up/down, quadrature,
and a wide variety of three, four, and five phase patterns that can be used to directly control some types of
motor windings. (When used with appropriate buffers of course.)

Some of the stepping types are described below, but for more details (including timing diagrams) see the
stepgensection of the HAL reference manual.

type 0: step/dir
Tw o pins, one for step and one for direction.make-pulsesmust run at least twice for each step
(once to set the step pin true, once to clear it).This limits the maximum step rate to half (or less)
of the rate that can be reached by types 2-14.The parameterssteplenandstepspacecan further
lower the maximum step rate.Parametersdirsetup anddirhold also apply to this step type.

type 1: up/down
Tw o pins, one for ’step up’ and one for ’step down’. Like type 0,make-pulsesmust run twice per
step, which limits the maximum speed.

type 2: quadrature
Tw o pins, phase-A and phase-B.For forward motion, A leads B.Can advance by one step every
timemake-pulsesruns.

type 3: three phase, full step
Three pins, phase-A, phase-B, and phase-C. Three steps per full cycle, then repeats. Only one
phase is high at a time - for forward motion the pattern is A, then B, then C, then A again.

type 4: three phase, half step
Three pins, phases A through C. Six steps per full cycle. FirstA is high alone, then A and B
together, then B alone, then B and C together, etc.

types 5 through 8: four phase, full step
Four pins, phases A through D.Four steps per full cycle. Types 5 and 6 are suitable for use with
unipolar steppers, where power is applied to the center tap of each winding, and four open-collec-
tor transistors drive the ends.Types 7 and 8 are suitable for bipolar steppers, driven by two H-
bridges.

types 9 and 10: four phase, half step
Four pins, phases A through D. Eight steps per full cycle. Type 9 is suitable for unipolar drive,
and type 10 for bipolar drive.

types 11 and 12: five phase, full step
Five pins, phases A through E.Five steps per full cycle. SeeHAL reference manual for the pat-
terns.

EMC Documentation 2007-01-16 109

FREQGEN(9) HAL Component FREQGEN(9)

types 13 and 14: five phase, half step
Five pins, phases A through E.Ten steps per full cycle. SeeHAL reference manual for the pat-
terns.

FUNCTIONS
freqgen.make-pulses(no floating-point)

Generates the step pulses, using information computed byupdate-freq. Must be called as fre-
quently as possible, to maximize the attainable step rate and minimize jitter. Operates on all chan-
nels at once.

freqgen.capture-position(uses floating point)
Captures position feedback value from the high speed code and makes it available on a pin for use
elsewhere in the system. Operates on all channels at once.

freqgen.update-freq(uses floating point)
Accepts a velocity command and converts it into a form usable bymake-pulsesfor step genera-
tion. Operateson all channels at once.

PINS
freqgen.N.countss32 out

The current position, in counts, for channelN. Updated bycapture-position.

freqgen.N.position-fb float out
The current position, in length units (see parameterposition-scale). Updatedby capture-posi-
tion.

freqgen.N.velocity float in (freqgenonly)
Commanded velocity, in length units per second (see parametervelocity-scale).

freqgen.N.stepbit out (step type 0 only)
Step pulse output.

freqgen.N.dir bit out (step type 0 only)
Direction output: low for forward, high for reverse.

freqgen.N.up bit out (step type 1 only)
Count up output, pulses for forward steps.

freqgen.N.down bit out (step type 1 only)
Count down output, pulses for reverse steps.

freqgen.N.phase-Athruphase-Ebit out (step types 2-14 only)
Output bits.phase-Aandphase-Bare present for step types 2-14,phase-Cfor types 3-14,phase-
D for types 5-14, andphase-Efor types 11-14. Behavior depends on selected stepping type.

PARAMETERS
freqgen.N.frequencyfloat ro

The current step rate, in steps per second, for channelN.

freqgen.N.maxaccelfloat rw
The acceleration/deceleration limit, in steps per second squared.

freqgen.N.maxfreq float rw (freqgenonly)
The maximum allowable velocity, in steps per second.If the requested maximum velocity cannot
be reached with the currentmake-pulsesthread period, it will be reset to the highest attainable
value.

freqgen.N.position-scalefloat rw
The scaling for position feedback, in steps per length unit.

110 2007-01-16 EMC Documentation

FREQGEN(9) HAL Component FREQGEN(9)

freqgen.N.velocity-scalefloat rw
The scaling for the velocity command, in steps per length unit.

freqgen.N.rawcountss32 ro
The position in counts, as updated bymake-pulses. (Note: this is updated more frequently than
thecountspin.)

freqgen.N.steplenu32 rw (step type 0 only)
The length of the step pulses, inmake-pulsesperiods. Measuredfrom rising edge to falling edge.

freqgen.N.stepspaceu32 rw (step type 0 only)
The minimum space between step pulses, inmake-pulsesperiods. Measuredfrom falling edge to
rising edge. The actual time depends on the step rate and can be much longer.

freqgen.N.dirsetup u32 rw (step type 0 only)
The minimum setup time from direction to step, inmake-pulsesperiods. Measuredfrom change
of direction to rising edge of step.

freqgen.N.dirhold u32 rw (step type 0 only)
The minimum hold time of direction after step, inmake-pulsesperiods. Measuredfrom falling
edge of step to change of direction.

BUGS
freqgenshould have an enablepin.

freqgen’s command pin should be calledvelocity-cmd, not velocity, for clarity and consistency with step-
gen.

freqgen should usemaxvel, not maxfreq. (In other words, the velocity limit should be scaled in length
units per second, not steps per second. The scale parameter can be set to 1.0 if it is desired to work in steps
instead of length units.)

freqgen’s maxaccel parameter should be in length units per second squared, not steps per second squared,
for consistency with stepgen.

freqgen should useposition-scalefor scaling both command and feedback,velocity-scaleis redundant and
should be eliminated.

Step type 1 (up/down) should respect thesteplenandstepspacelimits.

Timing parameterssteplen, stepspace, dirsetup, and dirhold should be in nano-seconds, notmake-pulses
periods. Thatwould allow the period to be changed without requiring the parameters to be recalculated.

All of these bugs have been fixed instepgen. Only stepgenwill continue to be maintained, sincefreqgen
contains large amounts of code that duplicates code instepgen. Sincestepgencan provide the same func-
tionality, there is no reason to maintain the duplicate code.freqgen may be eliminated at any time, and
almost certainlywill be eliminated for the version 2.2 release of EMC.

SEE ALSO
stepgen(9)

EMC Documentation 2007-01-16 111

GEARCHANGE(9) HAL Component GEARCHANGE(9)

NAME
gearchange − Select from one two speed ranges

SYNOPSIS
The output will be a value scaled for the selected gear, and clamped to the min/max values for that gear.
The scale of gear 1 is assumed to be 1, so the output device scale should be chosen accordingly. The scale
of gear 2 is relative to gear 1, so if gear 2 runs the spindle 2.5 times as fast as gear 1, scale2 should be set to
2.5.

FUNCTIONS
gearchange.N (uses floating-point)

PINS
gearchange.N.selbit in

Gear selection input

gearchange.N.speed-infloat in
Speed command input

gearchange.N.speed-outfloat out
Speed command to DAC/PWM

gearchange.N.dir-in bit in
Direction command input

gearchange.N.dir-out bit out
Direction output - possibly inverted for second gear

PARAMETERS
gearchange.N.min1 float rw (default:0)

Minimum allowed speed in gear range 1

gearchange.N.max1float rw (default:100000)
Maximum allowed speed in gear range 1

gearchange.N.min2 float rw (default:0)
Minimum allowed speed in gear range 2

gearchange.N.max2float rw (default:100000)
Maximum allowed speed in gear range 2

gearchange.N.scale2float rw (default:1.0)
Relative scale of gear 2 vs. gear 1 Since it is assumed that gear 2 is "high gear",scale2must be
greater than 1, and will be reset to 1 if set lower.

gearchange.N.rev ersebit rw (default:0)
Set to 1 to reverse the spindle in second gear

LICENSE
GPL

112 2009-07-31 EMC Documentation

HM2_7I43(9) HAL Component HM2_7I43(9)

NAME
hm2_7i43 − EMC2 HAL driver for the Mesa Electronics 7i43 EPP Anything IO board with HostMot2
firmware.

SYNOPSIS
loadrt hm2_7i43 [ioaddr=N] [ioaddr_hi=N] [epp_wide=N] [config="str[,str...]"] [debug_epp=N]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode.0 means to use ioaddr +
0x400.

epp_wide[default: 1]
Set to zero to disable the "wide EPP mode"."Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions.However, this may not
work on all EPP parallel ports.

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

debug_epp[default: 0]
Developer/debug use only! Enable debug logging of most EPP transfers.

DESCRIPTION
hm2_7i43 is a device driver that interfaces the Mesa 7i43 board with the HostMot2 firmware to the EMC2
HAL. Both the 200K and the 400K FPGAs are supported.

The driver talks with the 7i43 over the parallel port, not over USB. USBcan be used to power the 7i43, but
not to talk to it. USB communication with the 7i43 will not be supported any time soon, since USB has
poor real-time qualities.

The driver programs the board’s FPGA with firmware when it registers the board with the hostmot2 driver.
The old bfload(1) firmware loading method is not used anymore. Insteadthe firmware to load is specified
in theconfigmodparam, as described in the hostmot2(9) manpage, in theconfig modparamsection.

Some parallel ports require special initialization before they can be used.EMC2 provides a kernel driver
that does this initialization called probe_parport. Load this driver before loading hm2_7i43, by putting
"loadrt probe_parport" in your .hal file.

Jumper settings
To send the FPGA configuration from the PC, the board must be configured to get its firmware from the
EPP port.To do this, jumpers W4 and W5 must both be down, ie toward the USB connector.

The board must be configured to power on whether or not the USB interface is active. This is done by set-
ting jumper W7 up, ie away from the edge of the board.

Communicating with the board
The 7i43 communicates with the EMC computer over EPP, the Enhanced Parallel Port. This provides
about 1 MBps of throughput, and the communication latency is very predictable and reasonably low.

The parallel port must support EPP 1.7 or EPP 1.9.EPP 1.9 is prefered, but EPP 1.7 will work too.The
EPP mode of the parallel port is sometimes a setting in the BIOS.

Note that the popular "NetMOS" aka "MosChip 9805" PCI parport cardsdo not work . They do not meet
the EPP spec, and cannot be reliably used with the 7i43.You hav eto find another card, sorry.

EPP is very reliable under normal circumstances, but bad cabling or excessively long cabling runs may
cause communication timeouts. The driver exports a parameter named hm2_7i43.<BoardNum>.io_error to

EMC Documentation 2008-05-13 113

HM2_7I43(9) HAL Component HM2_7I43(9)

inform HAL of this condition. When the driver detects an EPP timeout, it sets io_error to True and stops
communicating with the 7i43 board. Setting io_error back to False makes the driver start trying to commu-
nicate with the 7i43 again.

Access to the EPP bus is not threadsafe: only one realtime thread may access the EPP bus.

SEE ALSO
hostmot2(9)

LICENSE
GPL

114 2008-05-13 EMC Documentation

HM2_PCI(9) HAL Component HM2_PCI(9)

NAME
hm2_pci − EMC2 HAL driver for the Mesa Electronics 5i20, 5i22, 5i23, 4i65, and 4i68 Anything IO
boards, with HostMot2 firmware.

SYNOPSIS
loadrt hm2_pci [config="str[,str...]"]

config [default: ""]
HostMot2 config strings, described in the hostmot2(9) manpage.

DESCRIPTION
hm2_pci is a device driver that interfaces Mesa’s PCI and PC-104/Plus based Anything I/O boards (with the
HostMot2 firmware) to the EMC2 HAL.

The supported boards are: the 5i20, 5i22, and 5i23 (all on PCI); and the 4i65 and 4i68 (on PC-104/Plus).

The driver programs the board’s FPGA with firmware when it registers the board with the hostmot2 driver.
The firmware to load is specified in theconfig modparam, as described in the hostmot2(9) manpage, in the
config modparamsection.

SEE ALSO
hostmot2(9)

LICENSE
GPL

EMC Documentation 2008-05-13 115

HOSTMOT2(9) HAL Component HOSTMOT2(9)

NAME
hostmot2 − EMC2 HAL driver for the Mesa Electronics HostMot2 firmware.

SYNOPSIS
loadrt hostmot2 [debug_idrom=N] [debug_module_descriptors=N] [debug_pin_descriptors=N]

[debug_modules=N]

debug_idrom [default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 IDROM header.

debug_module_descriptors[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Module Descriptors.

debug_pin_descriptors[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Pin Descriptors.

debug_modules[default: 0]
Developer/debug use only! Enable debug logging of the HostMot2 Modules used.

DESCRIPTION
hostmot2 is a device driver that interfaces the Mesa HostMot2 firmware to the EMC2 HAL. This driver by
itself does nothing, the boards that actually run the firmware require their own drivers before anything can
happen. Currentlydrivers are available for the 5i20, 5i22, 5i23, 4i65, and 4i68 (all using the hm2_pci mod-
ule) and the 7i43 (using the hm2_7i43 module).

The HostMot2 firmware provides encoders, PWM generators, step/dir generators, and general purpose I/O
pins (GPIOs). These things are called "Modules". The firmware is configured, at firmware compile time,
to provide zero or more instances of each of these four Modules.

Board I/O Pins
The HostMot2 firmware runs on an FPGA board. The board interfaces with the computer via PCI,
PC-104/Plus, or EPP, and interfaces with motion control hardware such as servos and stepper motors via
I/O pins on the board.

Each I/O pin can be configured, at board-driver load time, to serve one of two purposes: either as a particu-
lar I/O pin of a particular Module instance (encoder, pwmgen, or stepgen), or as a general purpose digital
I/O pin. By default all Module instances are enabled, and all the board’s pins are used by the Module
instances.

The user can disable Module instances at board-driver load time, by specifying a hostmot2 config string
modparam. Any pins which belong to Module instances that have been disabled automatically become
GPIOs.

All IO pins have some HAL presence, whether they belong to an active module instance or are full GPIOs.
GPIOs can be changed (at run-time) between inputs, normal outputs, and open drains, and have a flexible
HAL interface. IOpins that belong to active Module instances are constrained by the requirements of the
owning Module, and have a more limited interface in HAL. This is described in the General Purpose I/O
section below.

config modparam
All the board-driver modules (hm2_pci and hm2_7i43) accept a load-time modparam of type string array,
named "config".This array has one config string for each board the driver should use. Each board’s config
string is passed to and parsed by the hostmot2 driver when the board-driver registers the board.

The config string can contain spaces, so it is usually a good idea to wrap the whole thing in double-quotes
(the " character).

The comma character (,) separates members of the config array from each other.

116 2008-05-13 EMC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

For example, if your control computer has one 5i20 and one 5i23 you might load the hm2_pci driver with a
HAL command (in halcmd) something like this:

loadrt hm2_pci config="firmware=hm2/5i20/SVST8_4.BIT num_encoders=3 num_pwmgens=3 num_stepgens=0,firmwar

Note: this assumes that the hm2_pci driver detects the 5i20 first and the 5i23 second. If the detection order
does not match the order of the config strings, the hostmot2 driver will refuse to load the firmware and the
board-driver (hm2_pci or hm2_7i43) will fail to load. To the best of my knowledge, there is no way to pre-
dict the order in which PCI boards will be detected by the driver, but the detection order will be consistent
as long as PCI boards are not moved around. Bestto try loading it and see what the detection order is.

The format of each board’s config string is:

[firmware= F] [num_encoders=N] [num_pwmgens=N] [num_stepgens=N] [enable_raw]

firmware [optional]
Load the firmware specified by F into the FPGA on this board.If no "firmware=F"
string is specified, the FPGA will not be programmed, and had better have a valid config-
uration already.

The requested firmware F is fetched by udev. udev searches for the firmware in the sys-
tem’s firmware search path, usually /lib/firmware. F typically has the form
"hm2/<BoardType>/file.bit"; a typical value for F might be "hm2/5i20/SVST8_4.BIT".
If EMC2 is installed by the Debian package (.deb), then the firmware files are already
installed in /lib/firmware. If EMC2 is compiled from source and configured for run-in-
place, then the user must symlink the hostmot2 firmware into /lib/firmware manually,
using a command like this:

sudo ln -s $HOME/emc2-sandbox/src/hal/drivers/mesa-hostmot2/firmware
/lib/firmware/hm2

num_encoders[optional, default: -1]
Only enable the first N encoders. If N is -1, all encoders are enabled. If N is 0, no
encoders are enabled.If N is greater than the number of encoders available in the
firmware, the board will fail to register.

num_pwmgens[optional, default: -1]
Only enable the first N pwmgens. If N is -1, all pwmgens are enabled. If N is 0, no
pwmgens are enabled. If N is greater than the number of pwmgens available in the
firmware, the board will fail to register.

num_stepgens[optional, default: -1]
Only enable the first N stepgens.If N is -1, all stepgens are enabled. If N is 0, no step-
gens are enabled. If N is greater than the number of stepgens available in the firmware,
the board will fail to register.

enable_raw[optional]
If specified, this turns on a raw access mode, whereby a user can peek and poke the
firmware from HAL. See Raw Mode below.

encoder
Encoders have names like "hm2_<BoardType>.<BoardNum>.encoder.<Instance>". "Instance"is a two-
digit number that corresponds to the HostMot2 encoder instance number. There are ’num_encoders’
instances, starting with 00.

So, for example, the HAL pin that has the current position of the second encoder of the first 5i20 board is:
hm2_5i20.0.encoder.01.position (this assumes that the firmware in that board is configured so that this
HAL object is available)

EMC Documentation 2008-05-13 117

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Each encoder uses three or four input IO pins, depending on how the firmware was compiled.Three-pin
encoders use A, B, and Index (sometimes also known as Z).Four-pin encoders use A, B, Index, and Index-
mask.

The hm2 encoder representation is similar to the one described by the Canonical Device Interface (in the
HAL General Reference document), and to the software encoder component. Each encoder instance has
the following pins and parameters:

Pins:

(s32 out) count: Number of encoder counts since the previous reset.

(float out) position: Encoder position in position units (count / scale).

(float out) velocity: Estimated encoder velocity in position units per second.

(bit in) reset: When this pin is TRUE, the count and position pins are set to 0. (The value of the velocity
pin is not affected by this.) The driver does not reset this pin to FALSE after resetting the count to 0, that is
the user’s job.

(bit in/out) index-enable: When this pin is set to True, the count (and therefore also position) are reset to
zero on the next Index (Phase-Z) pulse. At the same time, index-enable is reset to zero to indicate that the
pulse has occurred.

(s32 out) rawcount: Total number of encoder counts since the start, not adjusted for index or reset.

Parameters:

(float r/w) scale: Converts from ’count’ units to ’position’ units.

(bit r/w) index-invert: If set to True, the rising edge of the Index input pin triggers the Index event (if index-
enable is True). If set to False, the falling edge triggers.

(bit r/w) index-mask: If set to True, the Index input pin only has an effect if the Index-Mask input pin is
True (or False, depending on the index-mask-invert pin below).

(bit r/w) index-mask-invert: If set to True, Index-Mask must be False for Index to hav ean effect. If set to
False, the Index-Mask pin must be True.

(bit r/w) counter-mode: Set to False (the default) for Quadrature. Set to True for Step/Dir (in which case
Step is on the A pin and Dir is on the B pin).

(bit r/w) filter: If set to True (the default), the quadrature counter needs 15 clocks to register a change on
any of the three input lines (any pulse shorter than this is rejected as noise). If set to False, the quadrature
counter needs only 3 clocks to register a change. The encoder sample clock runs at 33 MHz on the PCI
AnyIO cards and 50 MHz on the 7i43.

(float r/w) vel-timeout: When the encoder is moving slower than one pulse for each time that the driver
reads the count from the FPGA (in the hm2_read() function), the velocity is harder to estimate. The driver
can wait several iterations for the next pulse to arrive, all the while reporting the upper bound of the
encoder velocity, which can be accurately guessed.This parameter specifies how long to wait for the next
pulse, before reporting the encoder stopped. This parameter is in seconds.

118 2008-05-13 EMC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

pwmgen
pwmgens have names like "hm2_<BoardType>.<BoardNum>.pwmgen.<Instance>". "Instance"is a two-
digit number that corresponds to the HostMot2 pwmgen instance number. There are ’num_pwmgens’
instances, starting with 00.

So, for example, the HAL pin that enables output from the fourth pwmgen of the first 7i43 board is:
hm2_7i43.0.pwmgen.03.enable (this assumes that the firmware in that board is configured so that this HAL
object is available)

In HM2, each pwmgen uses three output IO pins: Not-Enable, Out0, and Out1.

The function of the Out0 and Out1 IO pins varies with output-type parameter (see below).

The hm2 pwmgen representation is similar to the software pwmgen component.Each pwmgen instance
has the following pins and parameters:

Pins:

(bit input) enable: If true, the pwmgen will set its Not-Enable pin false and output its pulses. If ’enable’ is
false, pwmgen will set its Not-Enable pin true and not output any signals.

(float input) value: The current pwmgen command value, in arbitrary units.

Parameters:

(float rw) scale: Scaling factor to convert ’value’ from arbitrary units to duty cycle: dc = value / scale.Duty
cycle has an effective range of -1.0 to +1.0 inclusive, anything outside that range gets clipped.

(s32 rw) output-type: This emulates the output_type load-time argument to the software pwmgen compo-
nent. Thisparameter may be changed at runtime, but most of the time you probably want to set it at startup
and then leave it alone. Acceptedvalues are 1 (PWM on Out0 and Direction on Out1), 2 (Up on Out0 and
Down on Out1), 3 (PDM mode, PDM on Out0 and Dir on Out1), and 4 (Direction on Out0 and PWM on
Out1, "for locked antiphase").

In addition to the per-instance HAL Parameters listed above, there are a couple of HAL Parameters that
affect all the pwmgen instances:

(u32 rw) pwm_frequency: This specifies the PWM frequency, in Hz, of all the pwmgen instances running
in the PWM modes (modes 1 and 2). This is the frequency of the variable-duty-cycle wav e. Its effective
range is from 1 Hz up to 193 KHz. Note that the max frequency is determined by the ClockHigh frequency
of the Anything IO board; the 5i20 and 7i43 both have a 100 MHz clock, resulting in a 193 KHz max PWM
frequency. Other boards may have different clocks, resulting in different max PWM frequencies. If the
user attempts to set the frequency too high, it will be clipped to the max supported frequency of the board.
Frequencies below about 5 Hz are not terribly accurate, but above 5 Hz they’re pretty close.

(u32 rw) pdm_frequency: This specifies the PDM frequency, in Hz, of all the pwmgen instances running in
PDM mode (mode 3). This is the "pulse slot frequency"; the frequency at which the pdm generator in the
AnyIO board chooses whether to emit a pulse or a space.Each pulse (and space) in the PDM pulse train
has a duration of 1/pdm_frequency seconds. For example, setting the pdm_frequency to 2e6 (2 MHz) and
the duty cycle to 50% results in a 1 MHz square wav e, identical to a 1 MHz PWM signal with 50% duty
cycle. Theeffective range of this parameter is from about 1525 Hz up to just under 100 MHz.Note that
the max frequency is determined by the ClockHigh frequency of the Anything IO board; the 5i20 and 7i43
both have a 100 MHz clock, resulting in a 100 Mhz max PDM frequency. Other boards may have different
clocks, resulting in different max PDM frequencies. If the user attempts to set the frequency too high, it

EMC Documentation 2008-05-13 119

HOSTMOT2(9) HAL Component HOSTMOT2(9)

will be clipped to the max supported frequency of the board.

stepgen
stepgens have names like "hm2_<BoardType>.<BoardNum>.stepgen.<Instance>". "Instance"is a two-
digit number that corresponds to the HostMot2 stepgen instance number. There are ’num_stepgens’
instances, starting with 00.

So, for example, the HAL pin that has the current position feedback from the first stepgen of the second
5i22 board is: hm2_5i22.1.stepgen.00.position-fb (this assumes that the firmware in that board is configured
so that this HAL object is available)

Each stepgen uses 2 IO pins. The signals on these pins depends on the step_type parameter (described
below).

The stepgen representation is modeled on the stepgen software component. Each stepgen instance has the
following pins and parameters:

Pins:

(float input) position-cmd: Target position of stepper motion, in arbitrary position units. This pin is only
used when the stepgen is in position control mode (control-type=0).

(float input) velocity-cmd: Target velocity of stepper motion, in arbitrary position units per second.This
pin is only used when the stepgen is in velocity control mode (control-type=1).

(s32 output) counts: Feedback position in counts (number of steps).

(float output) position-fb: Feedback position in arbitrary position units. This is similar to "counts/posi-
tion_scale", but has finer than step resolution.

(float output) velocity-fb: Feedback velocity in arbitrary position units per second.

(bit input) enable: Enables output steps. When false, no steps are generated.

(bit input) control-type: Switches between position control mode (0) and velocity control mode (1).
Defaults to position control (0).

Parameters:

(float r/w) position-scale: Converts from counts to position units. position = counts / position_scale

(float r/w) maxvel: Maximum speed, in position units per second.If set to 0, the driver will always use the
maximum possible velocity based on the current step timings and position-scale. The max velocity will
change if the step timings or position-scale changes. Defaults to 0.

(float r/w) maxaccel: Maximum acceleration, in position units per second per second.Defaults to 1.0.If
set to 0, the driver will not limit its acceleration at all - this requires that the position-cmd or velocity-cmd
pin is driven in a way that does not exceed the machine’s capabilities. Thisis probably what you want if
you’re going to be using the EMC2 trajectory planner to jog or run G-code.

(u32 r/w) steplen: Duration of the step signal, in nanoseconds.

(u32 r/w) stepspace: Minimum interval between step signals, in nanoseconds.

(u32 r/w) dirsetup: Minimum duration of stable Direction signal before a step begins, in nanoseconds.

120 2008-05-13 EMC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

(u32 r/w) dirhold: Minimum duration of stable Direction signal after a step ends, in nanoseconds.

(u32 r/w) step_type: Output format, like the step_type modparam to the software stegen(9) component.0 =
Step/Dir, 1 = Up/Down, 2 = Quadrature.In Quadrature mode (step_type=2), the stepgen outputs one com-
plete Gray cycle (00 -> 01 -> 11 -> 10 -> 00) for each "step" it takes.

General Purpose I/O
I/O pins on the board which are not used by a module instance are exported to HAL as "full" GPIO pins.
Full GPIO pins can be configured at run-time to be inputs, outputs, or open drains, and have a HAL inter-
face that exposes this flexibility . IO pins that are owned by an active module instance are constrained by
the requirements of the owning module, and have a restricted HAL interface.

GPIOs have names like "hm2_<BoardType>.<BoardNum>.gpio.<IONum>". IONumis a three-digit num-
ber. The mapping from IONum to connector and pin-on-that-connector is written to the syslog when the
driver loads, and it’s documented in Mesa’s manual for the Anything I/O boards.

So, for example, the HAL pin that has the current inverted input value read from GPIO 012 of the second
7i43 board is: hm2_7i43.1.gpio.012.in-not (this assumes that the firmware in that board is configured so
that this HAL object is available)

The HAL parameter that controls whether the last GPIO of the first 5i22 is an input or an output is:
hm2_5i22.0.gpio.095.is_output (this assumes that the firmware in that board is configured so that this HAL
object is available)

The hm2 GPIO representation is modeled after the Digital Inputs and Digital Outputs described in the
Canonical Device Interface (part of the HAL General Reference document). Each GPIO can have the fol-
lowing HAL Pins:

(bit out) in & in_not: State (normal and inverted) of the hardware input pin. Both full GPIO pins and IO
pins used as inputs by active module instances have these pins.

(bit in) out: Value to be written (possibly inverted) to the hardware output pin. Only full GPIO pins have
this pin.

Each GPIO can have the following Parameters:

(bit r/w) is_output: If set to 0, the GPIO is an input. The IO pin is put in a high-impedance state (weakly
pulled high), to be driven by other devices. Thelogic value on the IO pin is available in the "in" and
"in_not" HAL pins. Writes to the "out" HAL pin have no effect. If this parameter is set to 1, the GPIO is
an output; its behavior then depends on the "is_opendrain" parameter. Only full GPIO pins have this
parameter.

(bit r/w) is_opendrain: This parameter only has an effect if the "is_output" parameter is true. If this param-
eter is false, the GPIO behaves as a normal output pin: the IO pin on the connector is driven to the value
specified by the "out" HAL pin (possibly inverted), and the value of the "in" and "in_not" HAL pins is
undefined. Ifthis parameter is true, the GPIO behaves as an open-drain pin. Writing 0 to the "out" HAL
pin drives the IO pin low, writing 1 to the "out" HAL pin puts the IO pin in a high-impedance state.In this
high-impedance state the IO pin floats (weakly pulled high), and other devices can drive the value; the
resulting value on the IO pin is available on the "in" and "in_not" pins. Only full GPIO pins and IO pins
used as outputs by active module instances have this parameter.

(bit r/w) invert_output: This parameter only has an effect if the "is_output" parameter is true.If this param-
eter is true, the output value of the GPIO will be the inverse of the value on the "out" HAL pin. Only full
GPIO pins and IO pins used as outputs by active module instances have this parameter.

EMC Documentation 2008-05-13 121

HOSTMOT2(9) HAL Component HOSTMOT2(9)

Watchdog
The HostMot2 firmware may include a watchdog Module; if it does, the hostmot2 driver will use it.

The watchdog must be petted by EMC2 periodically or it will bite.

When the watchdog bites, all the board’s I/O pins are disconnected from their Module instances and
become high-impedance inputs (pulled high), and all communication with the board stops. The state of the
HostMot2 firwmare modules is not disturbed (except for the configuration of the IO Pins).Encoder
instances keep counting quadrature pulses, and pwm- and step-generators keep generating signals (which
are *not* relayed to the motors, because the IO Pins have become inputs).

Resetting the watchdog resumes communication and resets the I/O pins to the configuration chosen at load-
time.

If the firmware includes a watchdog, the following HAL objects will be exported:

Pins:

(bit in/out) has_bit: True if the watchdog has bit, False if the watchdog has not bit. If the watchdog has bit
and the has_bit bit is True, the user can reset it to False to resume operation.

Parameters:

(u32 read/write) timeout_ns: Watchdog timeout, in nanoseconds. This is initialized to 1,000,000,000 (1
second) at module load time. If more than this amount of time passes between calls to the pet_watchdog()
function, the watchdog will bite.

Functions:

pet_watchdog(): Calling this function resets the watchdog timer and postpones the watchdog biting until
timeout_ns nanoseconds later.

Raw Mode
If the "enable_raw" config keyword is specified, some extra debugging options are made available to HAL.
With Raw mode enabled, a user may peek and poke the firmware from HAL, and may dump the internal
state of the hostmot2 driver to the syslog.

Pins:

(u32 in) read_address: The bottom 16 bits of this is used as the address to read from.

(u32 out) read_data: Each time the hm2_read() function is called, this pin is updated with the value at
.read_address.

(u32 in) write_address: The bottom 16 bits of this is used as the address to write to.

(u32 in) write_data: This is the value to write to .write_address.

(bit in) write_strobe: Each time the hm2_write() function is called, this pin is examined. Ifit is True, then
value in .write_data is written to the address in .write_address, and .write_strobe is set back to False.

(bit in/out) dump_state: This pin is normally False. If it gets set to True the hostmot2 driver will write its
representation of the board’s internal state to the syslog, and set the pin back to False.

122 2008-05-13 EMC Documentation

HOSTMOT2(9) HAL Component HOSTMOT2(9)

FUNCTIONS
hm2_<BoardType>.<BoardNum>.read

This reads the encoder counters, stepgen feedbacks, and GPIO input pins from the FPGA.

hm2_<BoardType>.<BoardNum>.write
This updates the PWM duty cycles, stepgen rates, and GPIO outputs on the FPGA.Any changes
to configuration pins such as stepgen timing, GPIO inversions, etc, are also effected by this func-
tion.

hm2_<BoardType>.<BoardNum>.pet-watchdog
Pet the watchdog to keep it from biting us for a while.

hm2_<BoardType>.<BoardNum>.read_gpio
Read the GPIO input pins. Note that the effect of this function is a subset of the effect of the
.read() function described above. Normally only .read() is used. The only reason to call this func-
tion is if you want to do GPIO things in a faster-than-servo thread. (Thisfunction is not available
on the 7i43 due to limitations of the EPP bus.)

hm2_<BoardType>.<BoardNum>.write_gpio
Write the GPIO control registers and output pins. Note that the effect of this function is a subset
of the effect of the .write() function described above. Normally only .write() is used. The only
reason to call this function is if you want to do GPIO things in a faster-than-servo thread. (This
function is not available on the 7i43 due to limitations of the EPP bus.)

SEE ALSO
hm2_7i43(9)
hm2_pci(9)
Mesa’s documentation for the Anything I/O boards, at <http://www.mesanet.com>

LICENSE
GPL

EMC Documentation 2008-05-13 123

HYPOT(9) HAL Component HYPOT(9)

NAME
hypot − Three-input hypotenuse (Euclidean distance) calculator

SYNOPSIS
loadrt hypot [count=N|names=name1[,name2...]]

FUNCTIONS
hypot.N (uses floating-point)

PINS
hypot.N.in0 float in
hypot.N.in1 float in
hypot.N.in2 float in
hypot.N.out float out

out = sqrt(in0ˆ2 + in1ˆ2 + in2ˆ2)

LICENSE
GPL

124 2009-07-31 EMC Documentation

ILOWPASS(9) HAL Component ILOWPASS(9)

NAME
ilowpass − Low-pass filter with integer inputs and outputs

SYNOPSIS
loadrt ilowpass [count=N|names=name1[,name2...]]

DESCRIPTION
While it may find other applications, this component was written to create smoother motion while jogging
with an MPG.

In a machine with high acceleration, a short jog can behave almost like a step function. By putting the
ilowpasscomponent between the MPG encodercounts output and the axis jog-counts input, this can be
smoothed.

Choosescaleconservatively so that during a single session there will never be more than about 2e9/scale
pulses seen on the MPG.Choosegain according to the smoothing level desired. Divide the axis.N.jog-
scale values byscale.

FUNCTIONS
ilowpass.N (uses floating-point)

Update the output based on the input and parameters

PINS
ilowpass.N.in s32 in
ilowpass.N.out s32 out

out tracksin*scalethrough a low-pass filter ofgain per period.

PARAMETERS
ilowpass.N.scalefloat rw (default:1024)

A scale factor applied to the output value of the low-pass filter.

ilowpass.N.gain float rw (default:.5)
Together with the period, sets the rate at which the output changes. Useful range is between 0 and
1, with higher values causing the input value to be tracked more quickly. For instance, a setting of
0.9 causes the output value to go 90% of the way towards the input value in each period

AUTHOR
Jeff Epler <jepler@unpythonic.net>

LICENSE
GPL

EMC Documentation 2009-07-31 125

INTEG(9) HAL Component INTEG(9)

NAME
integ − Integrator

SYNOPSIS
loadrt integ [count=N|names=name1[,name2...]]

FUNCTIONS
integ.N (uses floating-point)

PINS
integ.N.in float in
integ.N.out float out

The discrete integral of ’in’ since ’reset’ was deasserted

integ.N.resetbit in
When asserted, set out to 0

LICENSE
GPL

126 2009-07-31 EMC Documentation

INVERT(9) HAL Component INVERT(9)

NAME
invert − Compute the inverse of the input signal

SYNOPSIS
The output will be the mathematical inverse of the input, ieout = 1/in. The parameterdeadbandcan be
used to control how close to 0 the denominator can be before the output is clamped to 0.deadbandmust
be at least 1e-8, and must be positive.

FUNCTIONS
invert.N (uses floating-point)

PINS
invert.N.in float in

Analog input value

invert.N.out float out
Analog output value

PARAMETERS
invert.N.deadbandfloat rw

Theout will be zero ifin is between -deadbandand +deadband

LICENSE
GPL

EMC Documentation 2009-07-31 127

KINS(9) HAL Component KINS(9)

NAME
kinematics definitions for emc2

SYNOPSIS
loadrt trivkins

loadrt rotatekins

loadrt tripodkins

loadrt genhexkins

DESCRIPTION
Rather than exporting HAL pins and functions, these components provide the forward and inverse kinemat-
ics definitions for emc2.

trivkins − Trivial Kinematics
There is a 1:1 correspondence between joints and axes. Moststandard milling machines and lathes use the
trivial kinematics module.

rotatekins − Rotated Kinematics
The X and Y axes are rotated 45 degrees compared to the joints 0 and 1.

tripodkins − Tripod Kinematics
The joints represent the distance of the controlled point from three predefined locations (the motors), giving
three degrees of freedom in position (XYZ)

tripodkins.Bx

tripodkins.Cx

tripodkins.Cy
The location of the three motors is (0,0), (Bx,0), and (Cx,Cy)

genhexkins − Hexapod Kinematics
Gives six degrees of freedom in position and orientation (XYZABC).The location of the motors is defined
at compile time.

SEE ALSO
The Kinematics section of the EMC2 Developer Manual

128 2007-01-20 EMC Documentation

KNOB2FLOAT(9) HAL Component KNOB2FLOAT(9)

NAME
knob2float − Convert counts (probably from an encoder) to a float value

SYNOPSIS
loadrt knob2float [count=N|names=name1[,name2...]]

FUNCTIONS
knob2float.N (uses floating-point)

PINS
knob2float.N.countss32 in

Counts

knob2float.N.enablebit in
When TRUE, output is controlled by count, when FALSE, output is fixed

knob2float.N.scalefloat in
Amount of output change per count

knob2float.N.out float out
Output value

PARAMETERS
knob2float.N.max-out float rw (default:1.0)

Maximum output value, further increases in count will be ignored

knob2float.N.min-out float rw (default:0.0)
Minimum output value, further decreases in count will be ignored

LICENSE
GPL

EMC Documentation 2009-07-31 129

LIMIT1(9) HAL Component LIMIT1(9)

NAME
limit1 − Limit the output signal to fall between min and max

SYNOPSIS
loadrt limit1 [count= N|names=name1[,name2...]]

FUNCTIONS
limit1.N (uses floating-point)

PINS
limit1.N.in float in
limit1.N.out float out

PARAMETERS
limit1.N.min float rw (default:-1e20)
limit1.N.max float rw (default:1e20)

LICENSE
GPL

130 2009-07-31 EMC Documentation

LIMIT2(9) HAL Component LIMIT2(9)

NAME
limit2 − Limit the output signal to fall between min and max and limit its slew rate to less than maxv per
second. Whenthe signal is a position, this means that position and velocity are limited.

SYNOPSIS
loadrt limit2 [count= N|names=name1[,name2...]]

FUNCTIONS
limit2.N (uses floating-point)

PINS
limit2.N.in float in
limit2.N.out float out

PARAMETERS
limit2.N.min float rw (default:-1e20)
limit2.N.max float rw (default:1e20)
limit2.N.maxv float rw (default:1e20)

LICENSE
GPL

EMC Documentation 2009-07-31 131

LIMIT3(9) HAL Component LIMIT3(9)

NAME
limit3 − Limit the output signal to fall between min and max, limit its slew rate to less than maxv per sec-
ond, and limit its second derivative to less than maxa per second squared.When the signal is a position,
this means that the position, velocity, and acceleration are limited.

SYNOPSIS
loadrt limit3 [count= N|names=name1[,name2...]]

FUNCTIONS
limit3.N (uses floating-point)

PINS
limit3.N.in float in
limit3.N.out float out

PARAMETERS
limit3.N.min float rw (default:-1e20)
limit3.N.max float rw (default:1e20)
limit3.N.maxv float rw (default:1e20)
limit3.N.maxafloat rw (default:1e20)

LICENSE
GPL

132 2009-07-31 EMC Documentation

LOGIC(9) HAL Component LOGIC(9)

NAME
logic

SYNOPSIS
loadrt logic [count=N|names=name1[,name2...]] [personality=P,P,...]

DESCRIPTION
Experimental general ‘logic function’ component.Can perform ‘and’, ‘or’ and ‘xor’ of up to 16 inputs.
Determine the proper value for ‘personality’ by adding:

• The number of input pins, usually from 2 to 16

• 256 (0x100) if the ‘and’ output is desired

• 512 (0x200) if the ‘or’ output is desired

• 1024 (0x400) if the ‘xor’ (exclusive or) output is desired

FUNCTIONS
logic.N

PINS
logic.N.in-MM bit in (MM=00..personality & 0xff)
logic.N.and bit out [if personality & 0x100]
logic.N.or bit out [if personality & 0x200]
logic.N.xor bit out [if personality & 0x400]

LICENSE
GPL

EMC Documentation 2009-07-31 133

LOWPASS(9) HAL Component LOWPASS(9)

NAME
lowpass − Low-pass filter

SYNOPSIS
loadrt lowpass [count=N|names=name1[,name2...]]

FUNCTIONS
lowpass.N (uses floating-point)

PINS
lowpass.N.in float in
lowpass.N.out float out

out += (in - out) * gain

PARAMETERS
lowpass.N.gain float rw

LICENSE
GPL

134 2009-07-31 EMC Documentation

LUT5(9) HAL Component LUT5(9)

NAME
lut5 − Arbitrary 5-input logic function based on a look-up table

SYNOPSIS
loadrt lut5 [count=N|names=name1[,name2...]]

DESCRIPTION
lut5 constructs an arbitrary logic function with up to 5 inputs using alook-up table. Thefunction is speci-
fied by function. The necessary value forfunction can be determined by writing the truth table, and com-
puting the sum of theweightsfor which the output value should be TRUE.

Example Functions
A 5-input and function is TRUE only when all the inputs are true, so the correct value for function is
0x80000000.

A 5-input or function is TRUE whenever any of the inputs are true, so the correct value for function is
0xffffffffe .

A 2-input xor function is TRUE whenever exactly one of the inputs is true, so the correct value forfunction
is 0x6. Only in-0 andin-1 should be connected to signals, because if any other bit isTRUE then the output
will be FALSE.

Weights for each line of truth table
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Weight

0 0 0 0 0 0x1
0 0 0 0 1 0x2
0 0 0 1 0 0x4
0 0 0 1 1 0x8
0 0 1 0 0 0x10
0 0 1 0 1 0x20
0 0 1 1 0 0x40
0 0 1 1 1 0x80
0 1 0 0 0 0x100
0 1 0 0 1 0x200
0 1 0 1 0 0x400
0 1 0 1 1 0x800
0 1 1 0 0 0x1000
0 1 1 0 1 0x2000
0 1 1 1 0 0x4000
0 1 1 1 1 0x8000
1 0 0 0 0 0x10000
1 0 0 0 1 0x20000
1 0 0 1 0 0x40000
1 0 0 1 1 0x80000
1 0 1 0 0 0x100000
1 0 1 0 1 0x200000
1 0 1 1 0 0x400000
1 0 1 1 1 0x800000
1 1 0 0 0 0x1000000
1 1 0 0 1 0x2000000
1 1 0 1 0 0x4000000
1 1 0 1 1 0x8000000
1 1 1 0 0 0x10000000
1 1 1 0 1 0x20000000
1 1 1 1 0 0x40000000
1 1 1 1 1 0x80000000

EMC Documentation 2009-07-31 135

LUT5(9) HAL Component LUT5(9)

FUNCTIONS
lut5.N

PINS
lut5.N.in-0 bit in
lut5.N.in-1 bit in
lut5.N.in-2 bit in
lut5.N.in-3 bit in
lut5.N.in-4 bit in
lut5.N.out bit out

PARAMETERS
lut5.N.function u32 rw

LICENSE
GPL

136 2009-07-31 EMC Documentation

MAJ3(9) HAL Component MAJ3(9)

NAME
maj3 − Compute the majority of 3 inputs

SYNOPSIS
loadrt maj3 [count=N|names=name1[,name2...]]

FUNCTIONS
maj3.N

PINS
maj3.N.in1 bit in
maj3.N.in2 bit in
maj3.N.in3 bit in
maj3.N.out bit out

PARAMETERS
maj3.N.invert bit rw

LICENSE
GPL

EMC Documentation 2009-07-31 137

MATCH8(9) HAL Component MATCH8(9)

NAME
match8 − 8-bit binary match detector

SYNOPSIS
loadrt match8 [count=N|names=name1[,name2...]]

FUNCTIONS
match8.N

PINS
match8.N.in bit in (default:TRUE)

cascade input - if false, output is false regardless of other inputs

match8.N.a0bit in
match8.N.a1bit in
match8.N.a2bit in
match8.N.a3bit in
match8.N.a4bit in
match8.N.a5bit in
match8.N.a6bit in
match8.N.a7bit in
match8.N.b0 bit in
match8.N.b1 bit in
match8.N.b2 bit in
match8.N.b3 bit in
match8.N.b4 bit in
match8.N.b5 bit in
match8.N.b6 bit in
match8.N.b7 bit in
match8.N.out bit out

true only if in is true and a[m] matches b[m] for m = 0 thru 7

LICENSE
GPL

138 2009-07-31 EMC Documentation

MINMAX(9) HAL Component MINMAX(9)

NAME
minmax − Track the minimum and maximum values of the input to the outputs

SYNOPSIS
loadrt minmax [count=N|names=name1[,name2...]]

FUNCTIONS
minmax.N (uses floating-point)

PINS
minmax.N.in float in
minmax.N.resetbit in

When reset is asserted, ’in’ is copied to the outputs

minmax.N.max float out
minmax.N.min float out

LICENSE
GPL

EMC Documentation 2009-07-31 139

MOTION(9) HAL Component MOTION(9)

NAME
motion − accepts NML motion commands, interacts with HAL in realtime

SYNOPSIS
loadrt motmod [base_period_nsec=period] [servo_period_nsec=period] [traj_period_nsec=period]
[key=SHMEM_KEY] [num_joints=[0-9]]

DESCRIPTION
These pins and parameters are created by the realtimemotmod module. This module provides a HAL inter-
face for EMC’s motion planner. Basicallymotmod takes in a list of waypoints and generates a nice blended
and constraint-limited stream of joint positions to be fed to the motor drives.

Pin names starting with "axis" are actually joint values, but the pins and parameters are still called "axis.N".
They are read and updated by the motion-controller function.

PINS
axis.N.amp-enable-outOUT bit

TRUE if the amplifier for this joint should be enabled

axis.N.amp-fault-in IN bit
Should be driven TRUE if an external fault is detected with the amplifier for this joint

axis.N.home-sw-inIN bit
Should be driven TRUE if the home switch for this joint is closed

axis.N.homing OUT bit
TRUE if the joint is currently homing

axis.N.index-enableIO BIT
Should be attached to the index-enable pin of the joint’s encoder to enable homing to index pulse

axis.N.jog-countsIN s32
Connect to the "counts" pin of an external encoder to use a physical jog wheel.

axis.N.jog-enableIN bit
When TRUE (and in manual mode), any change to "jog-counts" will result in motion. When false,
"jog-counts" is ignored.

axis.N.jog-scaleIN float
Sets the distance moved for each count on "jog-counts", in machine units.

axis.N.jog-vel-modeIN bit
When FALSE (the default), the jogwheel operates in position mode. The axis will move exactly
jog-scale units for each count, regardless of how long that might take. When TRUE, the wheel
operates in velocity mode - motion stops when the wheel stops, even if that means the commanded
motion is not completed.

axis.N.joint-pos-cmd OUT float
The joint (as opposed to motor) commanded position. There may be several offsets between the
joint and motor coordinates: backlash compensation, screw error compensation, and home offsets.

140 2007-08-25 EMC Documentation

MOTION(9) HAL Component MOTION(9)

axis.N.joint-pos-fb OUT float
The joint feedback position. This value is computed from the actual motor position minus joint
offsets. Useful for machine visualization.

axis.N.motor-pos-cmdOUT float
The commanded position for this joint.

axis.N.motor-pos-fb IN float
The actual position for this joint.

axis.N.neg-lim-sw-in IN bit
Should be driven TRUE if the negative limit switch for this joint is tripped.

axis.N.pos-lim-sw-in IN bit
Should be driven TRUE if the positive limit switch for this joint is tripped.

motion.adaptive-feedIN float
When adaptive feed is enabled with M52 P1, the commanded velocity is multiplied by this value.
This effect is multiplicative with the NML-level feed override value and motion.feed-hold.

motion.analog-in-NN IN float
These pins are used by M66 Enn wait-for-input mode.

motion.current-vel
Current cartesian velocity

motion.digital-in-NN IN bit
These pins are used by M66 Pnn wait-for-input mode.

motion.digital-out-NN OUT bit
These pins are controlled by the M62 through M65 words.

motion.distance-to-goOUT float
Distance remaining in the current move

motion.enableIN bit
If this bit is driven FALSE, motion stops, the machine is placed in the "machine off" state, and a
message is displayed for the operator. For normal motion, drive this bit TRUE.

motion.feed-holdIN bit
When Feed Stop Control is enabled with M53 P1, and this bit is TRUE, the feed rate is set to 0.

motion.motion-inposOUT bit
TRUE if the machine is in position.

motion.probe-input IN bit
G38.x uses the value on this pin to determine when the probe has made contact. TRUE for probe
contact closed (touching), FALSE for probe contact open.

EMC Documentation 2007-08-25 141

MOTION(9) HAL Component MOTION(9)

motion.spindle-brakeOUT bit
TRUE when the spindle brake should be applied

motion.spindle-forward OUT bit
TRUE when the spindle should rotate forward

motion.spindle-index-enable I/O bit
For correct operation of spindle synchronized moves, this signal must be hooked to the index-
enable pin of the spindle encoder.

motion.spindle-onOUT bit
TRUE when spindle should rotate

motion.spindle-rev erseOUT bit
TRUE when the spindle should rotate backward

motion.spindle-revs IN float
For correct operation of spindle synchronized moves, this signal must be hooked to the position
pin of the spindle encoder.

motion.spindle-speed-inIN float
Actual spindle speed feedback in revolutions per second; used for G96 feed-per-revolution and
constant surface speed modes.

motion.spindle-speed-outOUT float
Desired spindle speed in rotations per minute

motion.spindle-at-speedIN bit
Motion will pause until this pin is TRUE, under the following conditions: before the first feed
move after each spindle start or speed change; before the start of every chain of spindle-synchro-
nized moves; and if in CSS mode, at every rapid->feed transition.

DEBUGGING PINS
Many of the pins below serve as debugging aids, and are subject to change or removal at any time.

axis.N.active
TRUE when this joint is active

axis.N.backlash-corr
Backlash or screw compensation raw value

axis.N.backlash-filt
Backlash or screw compensation filtered value (respecting motion limits)

axis.N.backlash-vel
Backlash or screw compensation velocity

142 2007-08-25 EMC Documentation

MOTION(9) HAL Component MOTION(9)

axis.N.coarse-pos-cmd

axis.N.error
TRUE when this joint has encountered an error, such as a limit switch closing

axis.N.f-error
The actual following error

axis.N.f-error-lim
The following error limit

axis.N.f-errored
TRUE when this joint has exceeded the following error limit

axis.N.faulted

axis.N.free-pos-cmd
The "free planner" commanded position for this joint.

axis.N.free-tp-enable
TRUE when the "free planner" is enabled for this joint

axis.N.free-vel-lim
The velocity limit for the free planner

axis.N.home-state
Reflects the step of homing currently taking place

axis.N.homed
TRUE if the joint has been homed

axis.N.in-position
TRUE if the joint is using the "free planner" and has come to a stop

axis.N.joint-vel-cmd
The joint’s commanded velocity

axis.N.kb-jog-active

axis.N.neg-hard-limit
The negative hard limit for the joint

axis.N.pos-hard-limit
The positive hard limit for the joint

EMC Documentation 2007-08-25 143

MOTION(9) HAL Component MOTION(9)

axis.N.wheel-jog-active

motion.coord-error
TRUE when motion has encountered an error, such as exceeding a soft limit

motion.coord-mode
TRUE when motion is in "coordinated mode", as opposed to "teleop mode"

motion.in-position
Same as the pin motion.motion-inpos

motion.motion-enabled
TRUE when motion is enabled

motion.on-soft-limit

motion.program-line

motion.teleop-mode
TRUE when motion is in "teleop mode", as opposed to "coordinated mode"

PARAMETERS
Many of the parameters serve as debugging aids, and are subject to change or removal at any time.

motion-command-handler.time

motion-command-handler.tmax

motion-controller.time

motion-controller.tmax
Show information about the execution time of these HAL functions in CPU cycles

motion.debug-*
These values are used for debugging purposes.

motion.servo.last-period
The number of CPU cycles between invocations of the servo thread. Typically, this number
divided by the CPU speed gives the time in seconds, and can be used to determine whether the
realtime motion controller is meeting its timing constraints

144 2007-08-25 EMC Documentation

MOTION(9) HAL Component MOTION(9)

motion.servo.overruns
By noting large differences between successive values of motion.servo.last-period, the motion con-
troller can determine that there has probably been a failure to meet its timing constraints. Each
time such a failure is detected, this value is incremented.

FUNCTIONS
Generally, these functions are both added to the servo-thread in the order shown.

motion-command-handler
Processes motion commands coming from user space

motion-controller
Runs the emc motion controller

BUGS
This manual page is horribly incomplete.

SEE ALSO
iocontrol(1)

EMC Documentation 2007-08-25 145

MULT2(9) HAL Component MULT2(9)

NAME
mult2 − Product of two inputs

SYNOPSIS
loadrt mult2 [count=N|names=name1[,name2...]]

FUNCTIONS
mult2.N (uses floating-point)

PINS
mult2.N.in0 float in
mult2.N.in1 float in
mult2.N.out float out

out = in0 * in1

LICENSE
GPL

146 2009-07-31 EMC Documentation

MUX2(9) HAL Component MUX2(9)

NAME
mux2 − Select from one of two input values

SYNOPSIS
loadrt mux2 [count=N|names=name1[,name2...]]

FUNCTIONS
mux2.N (uses floating-point)

PINS
mux2.N.selbit in
mux2.N.out float out

Follows the value of in0 if sel is FALSE, or in1 if sel is TRUE

mux2.N.in1 float in
mux2.N.in0 float in

LICENSE
GPL

EMC Documentation 2009-07-31 147

MUX4(9) HAL Component MUX4(9)

NAME
mux4 − Select from one of four input values

SYNOPSIS
loadrt mux4 [count=N|names=name1[,name2...]]

FUNCTIONS
mux4.N (uses floating-point)

PINS
mux4.N.sel0bit in
mux4.N.sel1bit in

Together, these determine whichinN value is copied toout.

mux4.N.out float out
Follows the value of one of theinN values according to the twoselvalues

sel1=FALSE, sel0=FALSE
out follows in0

sel1=FALSE, sel0=TRUE
out follows in1

sel1=TRUE, sel0=FALSE
out follows in2

sel1=TRUE, sel0=TRUE
out follows in3

mux4.N.in0 float in
mux4.N.in1 float in
mux4.N.in2 float in
mux4.N.in3 float in

LICENSE
GPL

148 2009-07-31 EMC Documentation

MUX8(9) HAL Component MUX8(9)

NAME
mux8 − Select from one of eight input values

SYNOPSIS
loadrt mux8 [count=N|names=name1[,name2...]]

FUNCTIONS
mux8.N (uses floating-point)

PINS
mux8.N.sel0bit in
mux8.N.sel1bit in
mux8.N.sel2bit in

Together, these determine whichinN value is copied toout.

mux8.N.out float out
Follows the value of one of theinN values according to the threeselvalues

sel2=FALSE, sel1=FALSE, sel0=FALSE
out follows in0

sel2=FALSE, sel1=FALSE, sel0=TRUE
out follows in1

sel2=FALSE, sel1=TRUE, sel0=FALSE
out follows in2

sel2=FALSE, sel1=TRUE, sel0=TRUE
out follows in3

sel2=TRUE, sel1=FALSE, sel0=FALSE
out follows in4

sel2=TRUE, sel1=FALSE, sel0=TRUE
out follows in5

sel2=TRUE, sel1=TRUE, sel0=FALSE
out follows in6

sel2=TRUE, sel1=TRUE, sel0=TRUE
out follows in7

mux8.N.in0 float in
mux8.N.in1 float in
mux8.N.in2 float in
mux8.N.in3 float in
mux8.N.in4 float in
mux8.N.in5 float in
mux8.N.in6 float in
mux8.N.in7 float in

LICENSE
GPL

EMC Documentation 2009-07-31 149

NEAR(9) HAL Component NEAR(9)

NAME
near − Determine whether two values are roughly equal.

SYNOPSIS
loadrt near [count=N|names=name1[,name2...]]

FUNCTIONS
near.N (uses floating-point)

PINS
near.N.in1 float in
near.N.in2 float in
near.N.out bit out

true if in1/scale <= in2 <= in1*scale, OR |in1-in2| <= difference

PARAMETERS
near.N.scalefloat rw (default:1)
near.N.differencefloat rw (default:0)

LICENSE
GPL

150 2009-07-31 EMC Documentation

NOT(9) HAL Component NOT(9)

NAME
not − Inverter

SYNOPSIS
loadrt not [count=N|names=name1[,name2...]]

FUNCTIONS
not.N

PINS
not.N.in bit in
not.N.out bit out

LICENSE
GPL

EMC Documentation 2009-07-31 151

OFFSET(9) HAL Component OFFSET(9)

NAME
offset − Adds an offset to an input, and subtracts it from the feedback value

SYNOPSIS
loadrt offset [count=N|names=name1[,name2...]]

FUNCTIONS
offset.N.update-output (uses floating-point)

Updated the output value by adding the offset to the input

offset.N.update-feedback(uses floating-point)
Update the feedback value by subtracting the offset from the feedback

PINS
offset.N.offsetfloat in

The offset value

offset.N.in float in
The input value

offset.N.out float out
The output value

offset.N.fb-in float in
The feedback input value

offset.N.fb-out float out
The feedback output value

LICENSE
GPL

152 2009-07-31 EMC Documentation

ONESHOT(9) HAL Component ONESHOT(9)

NAME
oneshot − one-shot pulse generator

SYNOPSIS
loadrt oneshot [count=N|names=name1[,name2...]]

FUNCTIONS
oneshot.N (uses floating-point)

Produce output pulses from input edges

PINS
oneshot.N.in bit in

Trigger input

oneshot.N.out bit out
Active high pulse

oneshot.N.out-not bit out
Active low pulse

oneshot.N.width float in (default:0)
Pulse width in seconds

oneshot.N.time-left float out
Time left in current output pulse

PARAMETERS
oneshot.N.retriggerable bit rw (default:TRUE)

Allow additional edges to extend pulse

oneshot.N.rising bit rw (default:TRUE)
Trigger on rising edge

oneshot.N.falling bit rw (default:FALSE)
Trigger on falling edge

LICENSE
GPL

EMC Documentation 2009-07-31 153

OPTO_AC5(9) HAL Component OPTO_AC5(9)

NAME
opto_ac5 − Realtime driver for opto22 PCI-AC5 cards

SYNOPSIS
loadrt opto_ac5 [portconfig0=0xN] [portconfig1=0xN]

DESCRIPTION
These pins and parameters are created by the realtimeopto_ac5module. Theportconfig0 and portconfig1
variables are used to configure the two ports of each card. The first 24 bits of a 32 bit number represent the
24 i/o points of each port. The lowest (rightmost) bit would be HAL pin 0 which isheader connector pin
47. Then next bit to the left would be HAL pin 1, header connector pin 45 and so on, untill bit 24 would be
HAL pin 23 , header connector pin 1."1" bits represent output points. So channel 0..11 as inputs and
12..23 as outputs would be represented by (in binary) 111111111111000000000000 which is 0xfff000 in
hexadecimal. Thatis the number you would use Eg. loadrt opto_ac5 portconfig0=0xfff000

If no portconfig variable is specified the default configuration is 12 inputs then 12 outputs.

Up to 4 boards are supported. Boards are numbered starting at 0.

Portnumber can be 0 or 1. Port 0 is closes to the card bracket.

PINS
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER] OUT bit
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].in-[PINNUMBER]-not OUT bit

Connect a hal bit signal to this pin to read an i/o point from the card.The PINNUMBER repre-
sents the position in the relay rack. Eg. PINNUMBER 0 is position 0 in a opto22 relay rack and
would be pin 47 on the 50 pin header connector. The-not pin is inverted so that LOW giv es TRUE
and HIGH gives FALSE.

opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER] IN bit
Connect a hal bit signal to this pin to write to an i/o point of the card.The PINNUMBER repre-
sents the position in the relay rack.Eg. PINNUMBER 23 is position 23 in a opto22 relay rack and
would be pin 1 on the 50 pin header connector.

opto_ac5.[BOARDNUMBER].led[NUMBER] OUT bit
Turns one of the on board LEDS on/off. LEDS are numbered 0 to 3.

PARAMETERS
opto_ac5.[BOARDNUMBER].port[PORTNUMBER].out-[PINNUMBER]-invert W bit

When TRUE, invert the meaning of the corresponding-out pin so that TRUE gives LOW and
FALSE gives HIGH.

FUNCTIONS
opto_ac5.0.digital-read

Add this to a thread to read all the input points.

opto_ac5.0.digital-write
Add this to a thread to write all the output points and LEDS.

BUGS
All boards are loaded with the same port configurations as the first board.

154 2008-08-04 EMC Documentation

OPTO_AC5(9) HAL Component OPTO_AC5(9)

SEE ALSO
http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?OptoPciAc5

EMC Documentation 2008-08-04 155

OR2(9) HAL Component OR2(9)

NAME
or2 − Two-input OR gate

SYNOPSIS
loadrt or2 [count=N|names=name1[,name2...]]

FUNCTIONS
or2.N

PINS
or2.N.in0 bit in
or2.N.in1 bit in
or2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=FALSE in1=FALSE
out=FALSE

Otherwise,
out=TRUE

LICENSE
GPL

156 2009-07-31 EMC Documentation

PID(9) HAL Component PID(9)

NAME
pid − proportional/integral/derivative controller

SYNOPSIS
loadrt pid num_chan=num[debug=dbg]

DESCRIPTION
pid is a classic Proportional/Integral/Derivative controller, used to control position or speed feedback loops
for servo motors and other closed-loop applications.

pid supports a maximum of sixteen controllers. The number that are actually loaded is set by the
num_chanargument when the module is loaded.If numchan is not specified, the default value is three.If
debug is set to 1 (the default is 0), some additional HAL parameters will be exported, which might be use-
ful for tuning, but are otherwise unnecessary.

FUNCTIONS
pid.N.do-pid-calcs(uses floating-point)

Does the PID calculations for control loopN.

PINS
pid.N.commandfloat in

The desired (commanded) value for the control loop.

pid.N.feedbackfloat in
The actual (feedback) value, from some sensor such as an encoder.

pid.N.error float out
The difference between command and feedback.

pid.N.output float out
The output of the PID loop, which goes to some actuator such as a motor.

pid.N.enablebit in
When true, enables the PID calculations. When false,output is zero, and all internal integrators,
etc, are reset.

pid.N.saturatedbit out
When true, the current PID output is saturated. That is,

output = ± maxoutput.

pid.N.saturated-sfloat out
pid.N.saturated-counts32 out

When true, the output of PID was continually saturated for this many seconds (saturated-s) or
periods (saturated-count).

PARAMETERS
pid.N.Pgainfloat rw

Proportional gain. Resultsin a contribution to the output that is the error multiplied byPgain.

pid.N.Igain float rw
Integral gain. Resultsin a contribution to the output that is the integral of the error multiplied by
Igain. For example an error of 0.02 that lasted 10 seconds would result in an integrated error
(errorI) of 0.2, and ifIgain is 20, the integral term would add 4.0 to the output.

pid.N.Dgain float rw
Derivative gain. Resultsin a contribution to the output that is the rate of change (derivative) of the
error multiplied byDgain. For example an error that changed from 0.02 to 0.03 over 0.2 seconds
would result in an error derivative (errorD) of of 0.05, and ifDgain is 5, the derivative term would
add 0.25 to the output.

EMC Documentation 2007-01-16 157

PID(9) HAL Component PID(9)

pid.N.biasfloat rw
bias is a constant amount that is added to the output.In most cases it should be left at zero.How-
ev er, it can sometimes be useful to compensate for offsets in servo amplifiers, or to balance the
weight of an object that moves vertically.bias is turned off when the PID loop is disabled, just like
all other components of the output. If a non-zero output is needed even when the PID loop is dis-
abled, it should be added with an external HAL sum2 block.

pid.N.FF0 float rw
Zero order feed-forward term. Produces a contribution to the output that isFF0 multiplied by the
commanded value. For position loops, it should usually be left at zero.For velocity loops,FF0
can compensate for friction or motor counter-EMF and may permit better tuning if used properly.

pid.N.FF1 float rw
First order feed-forward term. Produces a contribution to the output thatFF1 multiplied by the
derivative of the commanded value. For position loops, the contribution is proportional to speed,
and can be used to compensate for friction or motor CEMF. For velocity loops, it is proportional
to acceleration and can compensate for inertia. In both cases, it can result in better tuning if used
properly.

pid.N.FF2 float rw
Second order feed-forward term. Produces a contribution to the output that isFF2 multiplied by
the second derivative of the commanded value. For position loops, the contribution is proportional
to acceleration, and can be used to compensate for inertia.For velocity loops, it should usually be
left at zero.

pid.N.deadbandfloat rw
Defines a range of "acceptable" error. If the absolute value oferror is less thandeadband, it will
be treated as if the error is zero.When using feedback devices such as encoders that are inherently
quantized, the deadband should be set slightly more than one-half count, to prevent the control
loop from hunting back and forth if the command is between two adjacent encoder values. When
the absolute value of the error is greater than the deadband, the deadband value is subtracted from
the error before performing the loop calculations, to prevent a step in the transfer function at the
edge of the deadband. (SeeBUGS.)

pid.N.maxoutput float rw
Output limit. The absolute value of the output will not be permitted to exceedmaxoutput, unless
maxoutput is zero. When the output is limited, the error integrator will hold instead of integrat-
ing, to prevent windup and overshoot.

pid.N.maxerror float rw
Limit on the internal error variable used for P, I, and D. Can be used to prevent highPgain values
from generating large outputs under conditions when the error is large (for example, when the
command makes a step change).Not normally needed, but can be useful when tuning non-linear
systems.

pid.N.maxerrorD float rw
Limit on the error derivative. The rate of change of error used by theDgain term will be limited to
this value, unless the value is zero. Can be used to limit the effect ofDgain and prevent large out-
put spikes due to steps on the command and/or feedback. Not normally needed.

pid.N.maxerrorI float rw
Limit on error integrator. The error integrator used by theIgain term will be limited to this value,
unless it is zero.Can be used to prevent integrator windup and the resulting overshoot during/after
sustained errors. Not normally needed.

pid.N.maxcmdDfloat rw
Limit on command derivative. The command derivative used byFF1 will be limited to this value,
unless the value is zero. Can be used to prevent FF1 from producing large output spikes if there is
a step change on the command. Not normally needed.

158 2007-01-16 EMC Documentation

PID(9) HAL Component PID(9)

pid.N.maxcmdDDfloat rw
Limit on command second derivative. The command second derivative used byFF2 will be lim-
ited to this value, unless the value is zero. Can be used to prevent FF2 from producing large out-
put spikes if there is a step change on the command. Not normally needed.

pid.N.errorI float ro (only if debug=1)
Integral of error. This is the value that is multiplied byIgain to produce the Integral term of the
output.

pid.N.errorD float ro (only if debug=1)
Derivative of error. This is the value that is multiplied byDgain to produce the Derivative term of
the output.

pid.N.commandDfloat ro (only if debug=1)
Derivative of command. Thisis the value that is multiplied byFF1 to produce the first order feed-
forward term of the output.

pid.N.commandDDfloat ro (only if debug=1)
Second derivative of command. Thisis the value that is multiplied byFF2 to produce the second
order feed-forward term of the output.

BUGS
Some people would argue that deadband should be implemented such that error is treated as zero if it is
within the deadband, and be unmodified if it is outside the deadband.This was not done because it would
cause a step in the transfer function equal to the size of the deadband. People who prefer that behavior are
welcome to add a parameter that will change the behavior, or to write their own version ofpid. Howev er,
the default behavior should not be changed.

EMC Documentation 2007-01-16 159

PLUTO_SERVO(9) HAL Component PLUTO_SERVO(9)

NAME
pluto_servo − Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with servo
machines.

SYNOPSIS
loadrt pluto_servo [ioaddr=N] [ioaddr_hi=N] [epp_wide=N] [watchdog=N] [test_encoder=N]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode.0 means to use ioaddr +
0x400. -1means there is no secondary address. The secondary address is used to set the port
to EPP mode.

epp_wide[default: 1]
Set to zero to disable the "wide EPP mode"."Wide" mode allows a 16- and 32-bit EPP trans-
fers, which can reduce the time spent in the read and write functions.However, this may not
work on all EPP parallel ports.

watchdog[default: 1]
Set to zero to disable the "hardware watchdog". "Watchdog" will tristate all outputs approxi-
mately 6ms after the last execution ofpluto-servo.write, which adds some protection in the
case of emc crashes.

test_encoder[default: 0]
Internally connect dout0..2 to QA0, QB0, QZ0 to test quadrature counting

DESCRIPTION
Pluto_servo is an emc2 software driver and associated firmware that allow the Pluto-P board to be used to
control a servo-based CNC machine.

The driver has 4 PWM channels, 4 quadrature channels with index pulse, 18 digital outputs (8 shared with
PWM), and 20 digital inputs (12 shared with quadrature).

Encoders
The encoder pins and parameters conform to the ‘canonical encoder’ interface described in the HAL man-
ual. It operates in ‘x4 mode’.

The sample rate of the encoder is 40MHz. The maximum number quadrature rate is 8191 counts per emc2
servo cycle. For correct handling of the index pulse, the number of encoder counts per revolution must be
less than 8191.

PWM
The PWM pins and parameters conform to the ‘canonical analog output’ interface described in the HAL
manual. Theoutput pins are ‘up/down’ or ‘pwm/dir’ pins as described in the documentation of the ‘pwm-
gen’ component.

Internally the PWM generator is based on a 12-bit, 40MHz counter, giving 4095 duty cycles from -100% to
+100% and a frequency of approximately 19.5kHz. In PDM mode, the duty periods are approximately
100ns long.

Digital I/O
The digital output pins conform to the ‘canonical digital output’ interface described in the HAL manual.

The digital input pins conform to the ‘canonical digital input’ interface described in the HAL manual.

160 2009-07-31 EMC Documentation

PLUTO_SERVO(9) HAL Component PLUTO_SERVO(9)

FUNCTIONS
pluto-servo.read (uses floating-point)

Read all the inputs from the pluto-servo board

pluto-servo.write (uses floating-point)
Write all the outputs on the pluto-servo board

PINS
pluto-servo.encoder.M.count s32 out (M=0..3)
pluto-servo.encoder.M.position float out (M=0..3)
pluto-servo.encoder.M.velocity float out (M=0..3)
pluto-servo.encoder.M.resetbit in (M=0..3)
pluto-servo.encoder.M.index-enablebit io (M=0..3)

encoder.M corresponds to the pins labeled QAM, QBM, and QZM on the pinout diagram

pluto-servo.pwm.M.valuefloat in (M=0..3)
pluto-servo.pwm.M.enablebit in (M=0..3)

pwm.M corresponds to the pins labeled UPM and DNM on the pinout diagram

pluto-servo.dout.MM bit in (MM=00..19)
dout.0M corresponds to the pin labeled OUTM on the pinout diagram. Other pins are shared with
the PWM function, as follows:

Pin Shared

Label with

dout.10 UP0

dout.10 UP0

dout.12 UP1

dout.14 UP2

dout.18 UP3

dout.11 DOWN0

dout.13 DOWN1

dout.15 DOWN2

dout.19 DOWN3

pluto-servo.din.MM bit out (MM=00..19)
pluto-servo.din.MM-not bit out (MM=00..19)

For M=0 through 7, din.0M corresponds to the pin labeled INM on the pinout diagram. Other pins
are shared with the encoder function, as follows:

Pin Shared

Label with

din.8 QZ0

din.9 QZ1

din.10 QZ2

din.11 QZ3

din.12 QB0

din.13 QB1

din.14 QB2

din.15 QB3

EMC Documentation 2009-07-31 161

PLUTO_SERVO(9) HAL Component PLUTO_SERVO(9)

din.16 QA0

din.17 QA1

din.18 QA2

din.19 QA3

PARAMETERS
pluto-servo.encoder.M.scalefloat rw (M=0..3) (default:1)
pluto-servo.encoder.z-polaritybit rw

Set to TRUE if the index pulse is active low, FALSE if it is active high. Affects all encoders.

pluto-servo.pwm.M.offsetfloat rw (M=0..3)
pluto-servo.pwm.M.scalefloat rw (M=0..3) (default:1)
pluto-servo.pwm.M.max-dcfloat rw (M=0..3) (default:1)
pluto-servo.pwm.M.min-dc float rw (M=0..3) (default:0)
pluto-servo.pwm.M.pwmdir bit rw (M=0..3) (default:0)

Set to TRUE use PWM+direction mode. Set to FALSE to use Up/Down mode.

pluto-servo.pwm.is-pdmbit rw
Set to TRUE to use PDM (also called interleaved PWM) mode. Set to FALSE to use traditional
PWM mode. Affects all PWM outputs.

pluto-servo.dout.MM-invert bit rw (MM=00..19)
If TRUE, the output on the correspondingdout.MM is inverted.

pluto-servo.communication-error u32 rw
Incremented each time pluto-servo.read detects an error code in the EPP status register. While this
register is nonzero, new values are not being written to the Pluto-P board, and the status of digital
outputs and the PWM duty cycle of the PWM outputs will remain unchanged. If the watchdog is
enabled, it will activate soon after the communication error is detected.To continue after a com-
munication error, set this parameter back to zero.

pluto-servo.debug-0s32 rw
pluto-servo.debug-1s32 rw

These parameters can display values which are useful to developers or for debugging the driver
and firmware. They are not useful for integrators or users.

SEE ALSO
The pluto_servosection in the HAL User Manual, which shows the location of each physical pin on the
pluto board.

LICENSE
GPL

162 2009-07-31 EMC Documentation

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

NAME
pluto_step − Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with stepper
machines.

SYNOPSIS
loadrt pluto_step ioaddr=addr ioaddr_hi=addrepp_wide=[0|1]

ioaddr [default: 0x378]
The base address of the parallel port.

ioaddr_hi [default: 0]
The secondary address of the parallel port, used to set EPP mode.0 means to use ioaddr +
0x400. -1means there is no secondary address.

epp_wide[default: 1]
Set to zero to disable "wide EPP mode"."Wide" mode allows 16- and 32-bit EPP transfers,
which can reduce the time spent in the read and write functions.However, this mode may not
work on all EPP parallel ports.

watchdog[default: 1]
Set to zero to disable the "hardware watchdog". "Watchdog" will tristate all outputs approxi-
mately 6ms after the last execution of pluto-step.write, which adds some protection in the
case of emc crashes.

speedrange[default: 0]
Selects one of four speed ranges:

0: Top speed 312.5kHz; minimum speed 610Hz
1: Top speed 156.25kHz; minimum speed 305Hz
2: Top speed 78.125kHz; minimum speed 153Hz
3: Top speed 39.06kHz; minimum speed 76Hz

Choosing the smallest maximum speed that is above the maximum for any one axis may give
improved step regularity at low step speeds.

DESCRIPTION
Pluto_step is an emc2 software driver and associated firmware that allow the Pluto-P board to be used to
control a stepper-based CNC machine.

The driver has 4 step+direction channels, 14 dedicated digital outputs, and 16 dedicated digital inputs.

Step generators
The step generator takes a position input and output.

The step wav eform includes step length/space and direction hold/setup time.Step length and direction
setup/hold time is enforced in the FPGA. Step space is enforced by a velocity cap in the driver.

(all the following numbers are subject to change)In speedrange=0, the maximum step rate is 312.5kHz.
For position feedback to be accurate, the maximum step rate is 512 pulses per servo cycle (so a 1kHz servo
cycle does not impose any additional limitation). The maximum step rate may be lowered by the step
length and space parameters, which are rounded up to the nearest multiple of 1600ns.

In successive speedranges the maximum step rate is divided in half, as is the maximum steps per servo
cycle, and the minimum nonzero step rate.

EMC Documentation 2009-07-31 163

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

Digital I/O
The digital output pins conform to the ‘canonical digital output’ interface described in the HAL manual.

The digital input pins conform to the ‘canonical digital input’ interface described in the HAL manual.

FUNCTIONS
pluto-step.read(uses floating-point)

Read all the inputs from the pluto-step board

pluto-step.write (uses floating-point)
Write all the outputs on the pluto-step board

PINS
pluto-step.stepgen.M.position-cmdfloat in (M=0..3)
pluto-step.stepgen.M.velocity-fb float out (M=0..3)
pluto-step.stepgen.M.position-fb float out (M=0..3)
pluto-step.stepgen.M.countss32 out (M=0..3)
pluto-step.stepgen.M.enablebit in (M=0..3)
pluto-step.stepgen.M.resetbit in (M=0..3)

When TRUE, reset position-fb to 0

pluto-step.dout.MM bit in (MM=00..13)
dout.MM corresponds to the pin labeled OUTM on the pinout diagram.

pluto-step.din.MM bit out (MM=00..15)
pluto-step.din.MM-not bit out (MM=00..15)

din.MM corresponds to the pin labeled INM on the pinout diagram.

PARAMETERS
pluto-step.stepgen.M.scalefloat rw (M=0..3) (default:1.0)
pluto-step.stepgen.M.maxvelfloat rw (M=0..3) (default:0)
pluto-step.stepgen.step-polaritybit rw
pluto-step.stepgen.steplenu32 rw

Step length in ns.

pluto-step.stepgen.stepspaceu32 rw
Step space in ns

pluto-step.stepgen.dirtimeu32 rw
Dir hold/setup in ns. Refer to the pdf documentation for a diagram of what these timings mean.

pluto-step.dout.MM-invert bit rw (MM=00..13)
If TRUE, the output on the correspondingdout.MM is inverted.

pluto-step.communication-error u32 rw
Incremented each time pluto-step.read detects an error code in the EPP status register. While this
register is nonzero, new values are not being written to the Pluto-P board, and the status of digital
outputs and the PWM duty cycle of the PWM outputs will remain unchanged. If the hardware
watchdog is enabled, it will activate shortly after the communication error is detected by emc.To
continue after a communication error, set this parameter back to zero.

pluto-step.debug-0s32 rw
pluto-step.debug-1s32 rw
pluto-step.debug-2float rw (default:.5)
pluto-step.debug-3float rw (default:2.0)

Registers that hold debugging information of interest to developers

SEE ALSO
The pluto_stepsection in the HAL User Manual, which shows the location of each physical pin on the
pluto board.

164 2009-07-31 EMC Documentation

PLUTO_STEP(9) HAL Component PLUTO_STEP(9)

LICENSE
GPL

EMC Documentation 2009-07-31 165

PWMGEN(9) HAL Component PWMGEN(9)

NAME
pwmgen − software PWM/PDM generation

SYNOPSIS
loadrt pwmgen output_type=type0[,type1...]

DESCRIPTION
pwmgen is used to generate PWM (pulse width modulation) or PDM (pulse density modulation) signals.
The maximum PWM frequency and the resolution is quite limited compared to hardware-based approaches,
but in many cases software PWM can be very useful. If better performance is needed, a hardware PWM
generator is a better choice.

pwmgensupports a maximum of eight channels.The number of channels actually loaded depends on the
number oftypevalues given. Thevalue of eachtypedetermines the outputs for that channel.

type 0: single output
A single output pin,pwm, whose duty cycle is determined by the input value for positive inputs,
and which is off (or atmin-dc) for negative inputs. Suitablefor single ended circuits.

type 1: pwm/direction
Tw o output pins,pwm anddir . The duty cycle onpwm varies as a function of the input value.
dir is low for positive inputs and high for negative inputs.

type 2: up/down
Tw o output pins,up and down. For positive inputs, the PWM/PDM wav eform appears onup,
while down is low. For negative inputs, the wav eform appears ondown, while up is low. Suitable
for driving the two sides of an H-bridge to generate a bipolar output.

FUNCTIONS
pwmgen.make-pulses(no floating-point)

Generates the actual PWM wav eforms, using information computed byupdate. Must be called as
frequently as possible, to maximize the attainable PWM frequency and resolution, and minimize
jitter. Operates on all channels at once.

pwmgen.update(uses floating point)
Accepts an input value, performs scaling and limit checks, and converts it into a form usable by
make-pulsesfor PWM/PDM generation.Can (and should) be called less frequently thanmake-
pulses. Operates on all channels at once.

PINS
pwmgen.N.enablebit in

Enables PWM generatorN - when false, allpwmgen.N output pins are low.

pwmgen.N.valuefloat in
Commanded value. Whenvalue = 0.0, duty cycle is 0%, and whenvalue = +/-scale, duty cycle is
+/- 100%. (Subject tomin-dc andmax-dc limitations.)

pwmgen.N.pwm bit out (output types 0 and 1 only)
PWM/PDM wav eform.

pwmgen.N.dir bit out (output type 1 only)
Direction output: low for forward, high for reverse.

pwmgen.N.up bit out (output type 2 only)
PWM/PDM wav eform for positive input values, low for negative inputs.

pwmgen.N.down bit out (output type 2 only)
PWM/PDM wav eform for negative input values, low for positive inputs.

166 2007-01-16 EMC Documentation

PWMGEN(9) HAL Component PWMGEN(9)

PARAMETERS
pwmgen.N.curr-dc float ro

The current duty cycle, after all scaling and limits have been applied. Range is from -1.0 to +1.0.

pwmgen.N.max-dcfloat rw
The maximum duty cycle. A value of 1.0 corresponds to 100%.This can be useful when using
transistor drivers with bootstrapped power supplies, since the supply requires some low time to
recharge.

pwmgen.N.min-dc float rw
The minimum duty cycle. A value of 1.0 corresponds to 100%. Note that when the pwm genera-
tor is disabled, the outputs are constantly low, reg ardless of the setting ofmin-dc.

pwmgen.N.scalefloat rw
pwmgen.N.offsetfloat rw

These parameters provide a scale and offset from thevalue pin to the actual duty cycle. Theduty
cycle is calculated according todc = (value/scale) + offset, with 1.0 meaning 100%.

pwmgen.N.pwm-freq float rw
PWM frequency in Hz. Theupper limit is half of the frequency at which make-pulsesis invoked,
and values above that limit will be changed to the limit.If dither-pwm is false, the value will be
changed to the nearest integer submultiple of themake-pulsesfrequency. A value of zero pro-
duces Pulse Density Modulation instead of Pulse Width Modulation.

pwmgen.N.dither-pwm bit rw
Because software-generated PWM uses a fairly slow timebase (several to many microseconds), it
has limited resolution.For example, ifmake-pulsesis called at a 20KHz rate, andpwm-freq is
2KHz, there are only 10 possible duty cycles. Ifdither-pwm is false, the commanded duty cycle
will be rounded to the nearest of those values. Assumingvalue remains constant, the same output
will repeat every PWM cycle. If dither-pwm is true, the output duty cycle will be dithered
between the two closest values, so that the long-term average is closer to the desired level. dither-
pwm has no effect ifpwm-freq is zero (PDM mode), since PDM is an inherently dithered pro-
cess.

EMC Documentation 2007-01-16 167

SAMPLE_HOLD(9) HAL Component SAMPLE_HOLD(9)

NAME
sample_hold − Sample and Hold

SYNOPSIS
loadrt sample_hold [count=N|names=name1[,name2...]]

FUNCTIONS
sample-hold.N

PINS
sample-hold.N.in s32 in
sample-hold.N.hold bit in
sample-hold.N.out s32 out

LICENSE
GPL

168 2009-07-31 EMC Documentation

SAMPLER(9) HALUser’s Manual SAMPLER(9)

NAME
sampler − sample data from HAL in real time

SYNOPSIS
loadrt sampler depth=depth1[,depth2...]cfg=string1[,string2...]

DESCRIPTION
sampler andhalsampler(1) are used together to sample HAL data in real time and store it in a file.sam-
pler is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory. It then
begins sampling data from the HAL and storing it to the FIFO.halsampler is a user space program that
copies data from the FIFO to stdout, where it can be redirected to a file or piped to some other program.

OPTIONS
depth=depth1[,depth2...]

sets the depth of the realtime->user FIFO thatsampler creates to buffer the realtime data.Multi-
ple values ofdepth(separated by commas) can be specified if you need more than one FIFO (for
example if you want to sample data from two different realtime threads).

cfg=string1[,string2...]
defines the set of HAL pins thatsampler exports and later samples data from.Onestring must be
supplied for each FIFO, separated by commas.sampler exports one pin for each character in
string. Legal characters are:

F, f (float pin)

B, b (bit pin)

S, s(s32 pin)

U, u (u32 pin)

FUNCTIONS
sampler.N

One function is created per FIFO, numbered from zero.

PINS
sampler.N.pin.M input

Pin for the data that will wind up in columnM of FIFO N (and in columnM of the output file).
The pin type depends on the config string.

sampler.N.curr-depth s32 output
Current number of samples in the FIFO.When this reachesdepthnew data will begin overwriting
old data, and some samples will be lost.

sampler.N.full bit output
TRUE when the FIFON is full, FALSE when there is room for another sample.

sampler.N.enablebit input
When TRUE, samples are captured and placed in FIFON, when FALSE, no samples are acquired.
Defaults to TRUE.

PARAMETERS
sampler.N.overruns s32 read/write

The number of times thatsampler has tried to write data to the HAL pins but found no room in
the FIFO. It increments whenever full is true, and can be reset by thesetpcommand.

EMC Documentation 2006-11-18 169

SAMPLER(9) HALUser’s Manual SAMPLER(9)

sampler.N.sample-nums32 read/write
A number that identifies the sample.It is automatically incremented for each sample, and can be
reset using thesetpcommand. Thesample number can optionally be printed in the first column of
the output fromhalsampler, using the-t option. (seeman 1 halsampler)

SEE ALSO
halsampler(1) streamer(9) halstreamer(1)

HISTORY
BUGS

Should anenableHAL pin be added, to allow sampling to be turned on and off?

AUTHOR
Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.
Improvements by several other members of the EMC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

170 2006-11-18 EMC Documentation

SCALE(9) HAL Component SCALE(9)

NAME
scale

SYNOPSIS
loadrt scale [count=N|names=name1[,name2...]]

FUNCTIONS
scale.N (uses floating-point)

PINS
scale.N.in float in
scale.N.gain float in
scale.N.offsetfloat in
scale.N.out float out

out = in * gain + offset

LICENSE
GPL

EMC Documentation 2009-07-31 171

SELECT8(9) HAL Component SELECT8(9)

NAME
select8 − 8-bit binary match detector

SYNOPSIS
loadrt select8 [count=N|names=name1[,name2...]]

FUNCTIONS
select8.N

PINS
select8.N.sels32 in

The number of the output to set TRUE. All other outputs well be set FALSE

select8.N.outM bit out (M=0..7)
Output bits. If enable is set and the sel input is between 0 and 7, then the corresponding output bit
will be set true

PARAMETERS
select8.N.enablebit rw (default:TRUE)

Set enable to FALSE to cause all outputs to be set FALSE

LICENSE
GPL

172 2009-07-31 EMC Documentation

SERPORT(9) HAL Component SERPORT(9)

NAME
serport − Hardware driver for the digital I/O bits of the 8250 and 16550 serial port.

SYNOPSIS
loadrt serport io=addr[,addr...]

The pin numbers refer to the 9-pin serial pinout.Keep in mind that these ports generally use rs232 volt-
ages, not 0/5V signals.

Specify the I/O address of the serial ports using the module parameterio=addr[,addr...]. These ports must
not be in use by the kernel. To free up the I/O ports after bootup, install setserial and execute a command
like:

sudo setserial /dev/ttyS0 none
but it is best to ensure that the serial port is never used or configured by the Linux kernel by setting a kernel
commandline parameter or not loading the serial kernel module if it is a modularized driver.

FUNCTIONS
serport.N.read

serport.N.write

PINS
serport.N.pin-1-in bit out

Also called DCD (data carrier detect); pin 8 on the 25-pin serial pinout

serport.N.pin-6-in bit out
Also called DSR (data set ready); pin 6 on the 25-pin serial pinout

serport.N.pin-8-in bit out
Also called CTS (clear to send); pin 5 on the 25-pin serial pinout

serport.N.pin-9-in bit out
Also called RI (ring indicator); pin 22 on the 25-pin serial pinout

serport.N.pin-1-in-not bit out
Inverted version of pin-1-in

serport.N.pin-6-in-not bit out
Inverted version of pin-6-in

serport.N.pin-8-in-not bit out
Inverted version of pin-8-in

serport.N.pin-9-in-not bit out
Inverted version of pin-9-in

serport.N.pin-3-out bit in
Also called TX (transmit data); pin 2 on the 25-pin serial pinout

serport.N.pin-4-out bit in
Also called DTR (data terminal ready); pin 20 on the 25-pin serial pinout

serport.N.pin-7-out bit in
Also called RTS (request to send); pin 4 on the 25-pin serial pinout

PARAMETERS
serport.N.pin-3-out-invert bit rw
serport.N.pin-4-out-invert bit rw
serport.N.pin-7-out-invert bit rw

EMC Documentation 2009-08-16 173

SERPORT(9) HAL Component SERPORT(9)

serport.N.ioaddr u32 r

LICENSE
GPL

174 2009-08-16 EMC Documentation

SIGGEN(9) HAL Component SIGGEN(9)

NAME
siggen − signal generator

SYNOPSIS
loadrt siggen num_chan=num

DESCRIPTION
siggenis a signal generator that can be used for testing and other applications that need simple wav eforms.
It produces sine, cosine, triangle, sawtooth, and square wav es of variable frequency, amplitude, and offset,
which can be used as inputs to other HAL components.

siggensupports a maximum of sixteen channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Ifnumchan is not specified, the default value is one.

FUNCTIONS
siggen.N.update (uses floating-point)

Updates output pins for signal generatorN. Each time it is called it calculates a new sample. It
should be called many times faster than the desired signal frequency, to avoid distortion and alias-
ing.

PINS
siggen.N.frequencyfloat in

The output frequency for signal generatorN, in Hertz. Thedefault value is 1.0 Hertz.

siggen.N.amplitude float in
The output amplitude for signal generatorN. If offset is zero, the outputs will swing from -ampli-
tude to +amplitude. The default value is 1.00.

siggen.N.offsetfloat in
The output offset for signal generatorN. This value is added directly to the output signal.The
default value is zero.

siggen.N.squarefloat out
The square wav eoutput. Positive while triangle andcosineare ramping upwards, and whilesine
is negative.

siggen.N.sinefloat out
The sine output. Lagscosineby 90 degrees.

siggen.N.cosinefloat out
The cosine output. Leadssineby 90 degrees.

siggen.N.triangle float out
The triangle wav eoutput. Rampsup whilesquare is positive, and down whilesquare is negative.
Reaches its positive and negative peaks at the same time ascosine.

siggen.N.sawtoothfloat out
The sawtooth output. Ramps upwards to its positive peak, then instantly drops to its negative peak
and starts ramping again. Thedrop occurs whentriangle andcosineare at their positive peaks,
and coincides with the falling edge ofsquare.

PARAMETERS
None

EMC Documentation 2007-01-16 175

SIM_ENCODER(9) HAL Component SIM_ENCODER(9)

NAME
sim_encoder − simulated quadrature encoder

SYNOPSIS
loadrt sim_encoder num_chan=num

DESCRIPTION
sim_encodercan generate quadrature signals as if from an encoder. It also generates an index pulse once
per revolution. It is mostly used for testing and simulation, to replace hardware that may not be available.
It has a limited maximum frequency, as do all software based pulse generators.

sim_encodersupports a maximum of eight channels. The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Ifnumchan is not specified, the default value is one.

FUNCTIONS
sim-encoder.make-pulses(no floating-point)

Generates the actual quadrature and index pulses. Mustbe called as frequently as possible, to
maximize the count rate and minimize jitter. Operates on all channels at once.

sim-encoder.update-speed(uses floating-point)
Reads thespeedcommand and other parameters and converts the data into a form that can be used
by make-pulses. Changes take effect only whenupdate-speedruns. Can(and should) be called
less frequently thanmake-pulses. Operates on all channels at once.

PINS
sim-encoder.N.phase-Abit out

One of the quadrature outputs.

sim-encoder.N.phase-Bbit out
The other quadrature output.

sim-encoder.N.phase-Zbit out
The index pulse.

sim-encoder.N.speedfloat in
The desired speed of the encoder, in user units per per second. This is divided byscale, and the
result is used as the encoder speed in revolutions per second.

PARAMETERS
sim-encoder.N.ppr u32 rw

The pulses per revolution of the simulated encoder. Note that this is pulses, not counts, per revolu-
tion. Eachpulse or cycle from the encoder results in four counts, because every edge is counted.
Default value is 100 ppr, or 400 counts per revolution.

sim-encoder.N.scalefloat rw
Scale factor for thespeedinput. Thespeedvalue is divided byscale to get the actual encoder
speed in revolutions per second.For example, ifscaleis set to 60, thenspeedis in revolutions per
minute (RPM) instead of revolutions per second. The default value is 1.00.

176 2007-01-16 EMC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

NAME
stepgen − software step pulse generation

SYNOPSIS
loadrt stepgen step_type=type0[,type1...] [ctrl_type=type0[,type1...]]

DESCRIPTION
stepgenis used to control stepper motors. The maximum step rate depends on the CPU and other factors,
and is usually in the range of 5KHz to 25KHz. If higher rates are needed, a hardware step generator is a
better choice.

stepgenhas two control modes, which can be selected on a channel by channel basis usingctrl_type. Pos-
sible values are "p" for position control, and "v" for velocity control. The default is position control, which
drives the motor to a commanded position, subject to acceleration and velocity limits. Velocity control
drives the motor at a commanded speed, again subject to accel and velocity limits.Usually, position mode
is used for machine axes. Velocity mode is reserved for unusual applications where continuous movement
at some speed is desired, instead of movement to a specific position. (Note that velocity mode replaces the
former componentfreqgen.)

stepgencan control a maximum of eight motors. The number of motors/channels actually loaded depends
on the number oftypevalues given. Thevalue of eachtypedetermines the outputs for that channel.Posi-
tion or velocity mode can be individually selected for each channel.Both control modes support the same
15 possible step types.

By far the most common step type is ’0’, standard step and direction. Others include up/down, quadrature,
and a wide variety of three, four, and five phase patterns that can be used to directly control some types of
motor windings. (When used with appropriate buffers of course.)

Some of the stepping types are described below, but for more details (including timing diagrams) see the
stepgensection of the HAL reference manual.

type 0: step/dir
Tw o pins, one for step and one for direction.make-pulsesmust run at least twice for each step
(once to set the step pin true, once to clear it).This limits the maximum step rate to half (or less)
of the rate that can be reached by types 2-14.The parameterssteplenandstepspacecan further
lower the maximum step rate.Parametersdirsetup anddirhold also apply to this step type.

type 1: up/down
Tw o pins, one for ’step up’ and one for ’step down’. Like type 0,make-pulsesmust run twice per
step, which limits the maximum speed.

type 2: quadrature
Tw o pins, phase-A and phase-B.For forward motion, A leads B.Can advance by one step every
timemake-pulsesruns.

type 3: three phase, full step
Three pins, phase-A, phase-B, and phase-C. Three steps per full cycle, then repeats. Only one
phase is high at a time - for forward motion the pattern is A, then B, then C, then A again.

type 4: three phase, half step
Three pins, phases A through C. Six steps per full cycle. FirstA is high alone, then A and B
together, then B alone, then B and C together, etc.

types 5 through 8: four phase, full step
Four pins, phases A through D.Four steps per full cycle. Types 5 and 6 are suitable for use with
unipolar steppers, where power is applied to the center tap of each winding, and four open-collec-
tor transistors drive the ends.Types 7 and 8 are suitable for bipolar steppers, driven by two H-
bridges.

EMC Documentation 2007-01-16 177

STEPGEN(9) HAL Component STEPGEN(9)

types 9 and 10: four phase, half step
Four pins, phases A through D. Eight steps per full cycle. Type 9 is suitable for unipolar drive,
and type 10 for bipolar drive.

types 11 and 12: five phase, full step
Five pins, phases A through E.Five steps per full cycle. SeeHAL reference manual for the pat-
terns.

types 13 and 14: five phase, half step
Five pins, phases A through E.Ten steps per full cycle. SeeHAL reference manual for the pat-
terns.

FUNCTIONS
stepgen.make-pulses(no floating-point)

Generates the step pulses, using information computed byupdate-freq. Must be called as fre-
quently as possible, to maximize the attainable step rate and minimize jitter. Operates on all chan-
nels at once.

stepgen.capture-position(uses floating point)
Captures position feedback value from the high speed code and makes it available on a pin for use
elsewhere in the system. Operates on all channels at once.

stepgen.update-freq(uses floating point)
Accepts a velocity or position command and converts it into a form usable bymake-pulsesfor
step generation. Operates on all channels at once.

PINS
stepgen.N.countss32 out

The current position, in counts, for channelN. Updated bycapture-position.

stepgen.N.position-fb float out
The current position, in length units (see parameterposition-scale). Updatedby capture-posi-
tion. The resolution ofposition-fb is much finer than a single step.If you need to see individual
steps, usecounts.

stepgen.N.enablebit in
Enables output steps - when false, no steps are generated.

stepgen.N.velocity-cmdfloat in (velocity mode only)
Commanded velocity, in length units per second (see parameterposition-scale).

stepgen.N.position-cmdfloat in (position mode only)
Commanded position, in length units (see parameterposition-scale).

stepgen.N.stepbit out (step type 0 only)
Step pulse output.

stepgen.N.dir bit out (step type 0 only)
Direction output: low for forward, high for reverse.

stepgen.N.up bit out (step type 1 only)
Count up output, pulses for forward steps.

stepgen.N.down bit out (step type 1 only)
Count down output, pulses for reverse steps.

stepgen.N.phase-Athruphase-Ebit out (step types 2-14 only)
Output bits.phase-Aandphase-Bare present for step types 2-14,phase-Cfor types 3-14,phase-
D for types 5-14, andphase-Efor types 11-14. Behavior depends on selected stepping type.

178 2007-01-16 EMC Documentation

STEPGEN(9) HAL Component STEPGEN(9)

PARAMETERS
stepgen.N.frequencyfloat ro

The current step rate, in steps per second, for channelN.

stepgen.N.maxaccelfloat rw
The acceleration/deceleration limit, in length units per second squared.

stepgen.N.maxvelfloat rw
The maximum allowable velocity, in length units per second. If the requested maximum velocity
cannot be reached with the current combination of scaling andmake-pulsesthread period, it will
be reset to the highest attainable value.

stepgen.N.position-scalefloat rw
The scaling for position feedback, position command, and velocity command, in steps per length
unit.

stepgen.N.rawcountss32 ro
The position in counts, as updated bymake-pulses. (Note: this is updated more frequently than
thecountspin.)

stepgen.N.steplenu32 rw
The length of the step pulses, in nanoseconds. Measured from rising edge to falling edge.

stepgen.N.stepspaceu32 rw (step types 0 and 1 only) The minimum
space between step pulses, in nanoseconds. Measured from falling edge to rising edge. The actual
time depends on the step rate and can be much longer. If stepspaceis 0, thenstepcan be asserted
ev ery period. This can be used in conjunction withhal_parport ’s auto-resetting pins to output
one step pulse per period. In this mode,steplenmust be set for one period or less.

stepgen.N.dirsetup u32 rw (step type 0 only)
The minimum setup time from direction to step, in nanoseconds periods. Measured from change
of direction to rising edge of step.

stepgen.N.dirhold u32 rw (step type 0 only)
The minimum hold time of direction after step, in nanoseconds. Measured from falling edge of
step to change of direction.

stepgen.N.dirdelay u32 rw (step types 1 and higher only)
The minimum time between a forward step and a reverse step, in nanoseconds.

TIMING
There are five timing parameters which control the output wav eform. No step type uses all five, and only
those which will be used are exported to HAL. The values of these parameters are in nano-seconds, so no
recalculation is needed when changing thread periods. In the timing diagrams that follow, they are ident-
fied by the following numbers:

(1) stepgen.n.steplen

(2) stepgen.n.stepspace

(3) stepgen.n.dirhold

(4) stepgen.n.dirsetup

(5) stepgen.n.dirdelay

For step type 0, timing parameters 1 thru 4 are used. The following timing diagram shows the output
waveforms, and what each parameter adjusts.

_____ _____ _____
STEP ____/ _______/ _____________/ ______

| | | | | |
Time |-(1)-|--(2)--|-(1)-|--(3)--|-(4)-|-(1)-|

|__________________
DIR ________________________________/

EMC Documentation 2007-01-16 179

STEPGEN(9) HAL Component STEPGEN(9)

For step type 1, timing parameters 1, 2, and 5 are used. The following timing diagram shows the output
waveforms, and what each parameter adjusts.

_____ _____
UP __/ _____/ ________________________________

| | | | |
Time |-(1)-|-(2)-|-(1)-|---(5)---|-(1)-|-(2)-|-(1)-|

|_____| |_____|
DOWN ______________________________/ _____/ ____

For step types 2 and higher, the exact pattern of the outputs depends on the step type (see the HAL manual
for a full listing). The outputs change from one state to another at a minimum interval ofsteplen. When a
direction change occurs, the minimum time between the last step in one direction and the first in the other
direction is the sum ofsteplenanddirdelay.

SEE ALSO
The HAL User Manual.

180 2007-01-16 EMC Documentation

STEPTEST(9) HAL Component STEPTEST(9)

NAME
steptest − Used by Stepconf to allow testing of acceleration and velocity values for an axis.

SYNOPSIS
loadrt steptest [count=N|names=name1[,name2...]]

FUNCTIONS
steptest.N (uses floating-point)

PINS
steptest.N.jog-minus bit in

Drive TRUE to jog the axis in its minus direction

steptest.N.jog-plus bit in
Drive TRUE to jog the axis in its positive direction

steptest.N.run bit in
Drive TRUE to run the axis near its current position_fb with a trapezoidal velocity profile

steptest.N.maxvelfloat in
Maximum velocity

steptest.N.maxaccelfloat in
Permitted Acceleration

steptest.N.amplitude float in
Approximate amplitude of positions to command during ’run’

steptest.N.dir s32 in
Direction from central point to test: 0 = both, 1 = positive, 2 = neg ative

steptest.N.position-cmdfloat out
steptest.N.position-fb float in
steptest.N.running bit out
steptest.N.run-target float out
steptest.N.run-start float out
steptest.N.run-low float out
steptest.N.run-high float out

PARAMETERS
steptest.N.epsilonfloat rw (default:.001)

LICENSE
GPL

EMC Documentation 2009-07-31 181

STREAMER(9) HALUser’s Manual STREAMER(9)

NAME
streamer − stream file data into HAL in real time

SYNOPSIS
loadrt streamer depth=depth1[,depth2...]cfg=string1[,string2...]

DESCRIPTION
streamer and halstreamer(1) are used together to stream data from a file into the HAL in real time.
streamer is a realtime HAL component that exports HAL pins and creates a FIFO in shared memory.
hal_streamer is a user space program that copies data from stdin into the FIFO, so thatstreamer can write
it to the HAL pins.

OPTIONS
depth=depth1[,depth2...]

sets the depth of the user->realtime FIFO thatstreamer creates to receive data fromhalstreamer.
Multiple values ofdepth(separated by commas) can be specified if you need more than one FIFO
(for example if you want to stream data from two different realtime threads).

cfg=string1[,string2...]
defines the set of HAL pins thatstreamer exports and later writes data to.One string must be
supplied for each FIFO, separated by commas.streamer exports one pin for each character in
string. Legal characters are:

F, f (float pin)

B, b (bit pin)

S, s(s32 pin)

U, u (u32 pin)

FUNCTIONS
streamer.N

One function is created per FIFO, numbered from zero.

PINS
streamer.N.pin.M output

Data from columnM of the data in FIFON appears on this pin. The pin type depends on the con-
fig string.

streamer.N.curr-depth s32 output
Current number of samples in the FIFO.When this reaches zero, new data will no longer be writ-
ten to the pins.

streamer.N.empty bit output
TRUE when the FIFON is empty, FALSE when valid data is available.

streamer.N.enablebit input
When TRUE, data from FIFON is written to the HAL pins. When false, no data is transferred.
Defaults to TRUE.

PARAMETERS
streamer.N.underruns s32 read/write

The number of times thatsampler has tried to write data to the HAL pins but found no fresh data
in the FIFO. It increments whenever empty is true, and can be reset by thesetpcommand.

182 2006-11-18 EMC Documentation

STREAMER(9) HALUser’s Manual STREAMER(9)

SEE ALSO
halstreamer(1) sampler(9) halsampler(1)

HISTORY
BUGS

Should anenableHAL pin be added, to allow streaming to be turned on and off?

AUTHOR
Original version by John Kasunich, as part of the Enhanced Machine Controller (EMC) project.
Improvements by several other members of the EMC development team.

REPORTING BUGS
Report bugs to jmkasunich AT users DOT sourceforge DOT net

COPYRIGHT
Copyright © 2006 John Kasunich.
This is free software; see the source for copying conditions.There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

EMC Documentation 2006-11-18 183

SUM2(9) HAL Component SUM2(9)

NAME
sum2 − Sum of two inputs (each with a gain) and an offset

SYNOPSIS
loadrt sum2 [count=N|names=name1[,name2...]]

FUNCTIONS
sum2.N (uses floating-point)

PINS
sum2.N.in0 float in
sum2.N.in1 float in
sum2.N.out float out

out = in0 * gain0 + in1 * gain1 + offset

PARAMETERS
sum2.N.gain0float rw (default:1.0)
sum2.N.gain1float rw (default:1.0)
sum2.N.offsetfloat rw

LICENSE
GPL

184 2009-07-31 EMC Documentation

SUPPLY(9) HAL Component SUPPLY(9)

NAME
supply − set output pins with values from parameters (obsolete)

SYNOPSIS
loadrt supply num_chan=num

DESCRIPTION
supply was used to allow the inputs of other HAL components to be manipulated for testing purposes.
When it was written, the only way to set the value of an input pin was to connect it to a signal and connect
that signal to an output pin of some other component, and then let that component write the pin value. sup-
ply was written to be that "other component". It reads values from parameters (set with the HAL command
setp) and writes them to output pins.

Sincesupply was written, thesetpcommand has been modified to allow it to set unconnected pins as well
as parameters.In addition, thesetscommand was added, which can directly set HAL signals, as long as
there are no output pins connected to them. Therefore,supply is obsolete.

supply supports a maximum of eight channels.The number of channels actually loaded is set by the
num_chanargument when the module is loaded. Ifnumchan is not specified, the default value is one.

FUNCTIONS
supply.N.update (uses floating-point)

Updates output pins for channelN.

PINS
supply.N.q bit out

Output bit, copied from parametersupply.N.d.

supply.N._q bit out
Output bit, inverted copy of parametersupply.N.d.

supply.N.variable float out
Analog output, copied from parametersupply.N.value.

supply.N._variable float out
Analog output, equal to -1.0 times parametersupply.N.value.

PARAMETERS
supply.N.d bit rw

Data source forq and_q output pins.

supply.N.valuebit rw
Data source forvariable and_variable output pins.

EMC Documentation 2007-01-16 185

THREADS(9) HAL Component THREADS(9)

NAME
threads − creates hard realtime HAL threads

SYNOPSIS
loadrt threads name1=nameperiod1=period[fp1=<0|1>] [<thread-2-info>] [<thread-3-info>]

DESCRIPTION
threads is used to create hard realtime threads which can execute HAL functions at specific intervals. It is
not a true HAL component, in that it does not export any functions, pins, or parameters of its own. Onceit
has created one or more threads, the threads stand alone, and thethreads component can be unloaded with-
out affecting them. In fact, it can be unloaded and then reloaded to create additional threads, as many times
as needed.

threads can create up to three realtime threads. Threads must be created in order, from fastest to slowest.
Each thread is specified by three arguments.name1 is used to specify the name of the first thread (thread
1). period1 is used to specify the period of thread 1 in nanoseconds.Both nameandperiodare required.
The third argument,fp1 is optional, and is used to specify if thread 1 will be used to execute floatingpoint
code. Ifnot specified, it defaults to1, which means that the thread will support floating point.Specify0 to
disable floating point support, which saves a small amount of execution time by not saving the FPU con-
text. For additional threads,name2, period2, fp2, name3, period3, and fp3 work exactly the same.If
more than three threads are needed, unload threads, then reload it to create more threads.

FUNCTIONS
None

PINS
None

PARAMETERS
None

BUGS
The existence ofthreads might be considered a bug. Ideally, creation and deletion of threads would be
done directly withhalcmd commands, such as "newthread name period", "delthread name", or similar.
However, limitations in the current HAL implementation require thread creation to take place in kernel
space, and loading a component is the most straightforward way to do that.

186 2007-01-16 EMC Documentation

THREADTEST(9) HAL Component THREADTEST(9)

NAME
threadtest

SYNOPSIS
loadrt threadtest [count=N|names=name1[,name2...]]

FUNCTIONS
threadtest.N.increment

threadtest.N.reset

PINS
threadtest.N.count u32 out

LICENSE
GPL

EMC Documentation 2009-07-31 187

TIMEDELAY(9) HAL Component TIMEDELAY(9)

NAME
timedelay − The equivalent of a time-delay relay

SYNOPSIS
loadrt timedelay [count=N|names=name1[,name2...]]

FUNCTIONS
timedelay.N (uses floating-point)

PINS
timedelay.N.in bit in
timedelay.N.out bit out

Follows the value ofin after applying the delayson-delayandoff-delay.

PARAMETERS
timedelay.N.on-delayfloat rw (default:0.5)

The time, in seconds, for whichin must betrue beforeout becomestrue

timedelay.N.off-delay float rw (default:0.5)
The time, in seconds, for whichin must befalsebeforeout becomesfalse

timedelay.N.elapsedfloat r
Current value of the internal timer

AUTHOR
Jeff Epler, based on works by Stephen Wille Padnos and John Kasunich

LICENSE
GPL

188 2009-07-31 EMC Documentation

TIMEDELTA(9) HAL Component TIMEDELTA(9)

NAME
timedelta

SYNOPSIS
loadrt timedelta [count=N|names=name1[,name2...]]

FUNCTIONS
timedelta.N

PINS
timedelta.N.out s32 out
timedelta.N.err s32 out (default:0)
timedelta.N.min s32 out (default:0)
timedelta.N.max s32 out (default:0)
timedelta.N.jitter s32 out (default:0)
timedelta.N.avg-err float out (default:0)
timedelta.N.resetbit in

LICENSE
GPL

EMC Documentation 2009-07-31 189

TOGGLE(9) HAL Component TOGGLE(9)

NAME
toggle − ’push-on, push-off’ f rom momentary pushbuttons

SYNOPSIS
loadrt toggle [count=N|names=name1[,name2...]]

FUNCTIONS
toggle.N

PINS
toggle.N.in bit in

button input

toggle.N.out bit io
on/off output

PARAMETERS
toggle.N.debounceu32 rw (default:2)

debounce delay in periods

LICENSE
GPL

190 2009-07-31 EMC Documentation

TOGGLE2NIST(9) HAL Component TOGGLE2NIST(9)

NAME
toggle2nist − toggle button to nist logic

SYNOPSIS
loadrt toggle2nist [count=N|names=name1[,name2...]]

FUNCTIONS
toggle2nist.N (uses floating-point)

PINS
toggle2nist.N.in bit in
toggle2nist.N.is-onbit in
toggle2nist.N.on bit out
toggle2nist.N.off bit out

LICENSE
GPL

EMC Documentation 2009-07-31 191

TRISTATE_BIT(9) HAL Component TRISTATE_BIT(9)

NAME
tristate_bit − Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS
loadrt tristate_bit [count= N|names=name1[,name2...]]

FUNCTIONS
tristate-bit.N

If enableis TRUE, copyin to out.

PINS
tristate-bit.N.in bit in

Input value

tristate-bit.N.out bit io
Output value

tristate-bit.N.enablebit in
When TRUE, copy in to out

LICENSE
GPL

192 2009-07-31 EMC Documentation

TRISTATE_FLOAT(9) HAL Component TRISTATE_FLOAT(9)

NAME
tristate_float − Place a signal on an I/O pin only when enabled, similar to a tristate buffer in electronics

SYNOPSIS
loadrt tristate_float [count=N|names=name1[,name2...]]

FUNCTIONS
tristate-float.N (uses floating-point)

If enableis TRUE, copyin to out.

PINS
tristate-float.N.in float in

Input value

tristate-float.N.out float io
Output value

tristate-float.N.enablebit in
When TRUE, copy in to out

LICENSE
GPL

EMC Documentation 2009-07-31 193

UPDOWN(9) HAL Component UPDOWN(9)

NAME
updown − Counts up or down, with optional limits and wraparound behavior

SYNOPSIS
loadrt updown [count=N|names=name1[,name2...]]

FUNCTIONS
updown.N

Process inputs and update count if necessary

PINS
updown.N.countup bit in

Increment count when this pin goes from 0 to 1

updown.N.countdownbit in
Decrement count when this pin goes from 0 to 1

updown.N.resetbit in
Reset count when this pin goes from 0 to 1

updown.N.count s32 out
The current count

PARAMETERS
updown.N.clamp bit rw

If TRUE, then clamp the output to the min and max parameters.

updown.N.wrap bit rw
If TRUE, then wrap around when the count goes above or below the min and max parameters.
Note that wrap implies (and overrides) clamp.

updown.N.max s32 rw (default:0x7FFFFFFF)
If clamp or wrap is set, count will never exceed this number

updown.N.min s32 rw
If clamp or wrap is set, count will never be less than this number

LICENSE
GPL

194 2009-07-31 EMC Documentation

WCOMP(9) HAL Component WCOMP(9)

NAME
wcomp − Window comparator

SYNOPSIS
loadrt wcomp [count=N|names=name1[,name2...]]

FUNCTIONS
wcomp.N (uses floating-point)

PINS
wcomp.N.out bit out

True if in is between min and max

wcomp.N.over bit out
True if in is greater than max

wcomp.N.under bit out
True if in is less than min

wcomp.N.in float in

PARAMETERS
wcomp.N.min float rw

Low boundary for comparison

wcomp.N.max float rw
High boundary for comparison

NOTES
Note that if min = max, strange things happen.

LICENSE
GPL

EMC Documentation 2009-07-31 195

WEIGHTED_SUM(9) HAL Component WEIGHTED_SUM(9)

NAME
weighted_sum − convert a group of bits to an integer

SYNOPSIS
loadrt weighted_sum wsum_sizes=size[,size,...]

Creates weighted sum groups each with the given number of input bits (size).

DESCRIPTION
This component is a "weighted summer": Its output is the offset plus the sum of the weight of each TRUE
input bit. The default value for each weight is 2ˆn where n is the bit number. This results in a binary to
unsigned conversion.

There is a limit of 8 weighted summers and each may have up to 16 input bits.

FUNCTIONS
process_wsums

Read all input values and update all output values.

PINS
wsum.N.bit.M.in bit in

Them’th input of weighted summern.

wsum.N.hold bit in
When TRUE, thesumoutput does not change. When FALSE, thesumoutput tracks thebit inputs
according to the weights and offset.

wsum.N.sumsigned out
The output of the weighted summer

PARAMETERS
wsum.N.bit.M.weight signed rw

The weight of them’th input of weighted summern. The default value is 2m̂.

wsum.N.offsetsigned rw
The offset is added to the weights corresponding to all TRUE inputs to give the final sum.

196 2007-01-16 EMC Documentation

XOR2(9) HAL Component XOR2(9)

NAME
xor2 − Two-input XOR (exclusive OR) gate

SYNOPSIS
loadrt xor2 [count=N|names=name1[,name2...]]

FUNCTIONS
xor2.N

PINS
xor2.N.in0 bit in
xor2.N.in1 bit in
xor2.N.out bit out

out is computed from the value ofin0 andin1 according to the following rule:

in0=TRUE in1=FALSE
in0=FALSE in1=TRUE

out=TRUE

Otherwise,
out=FALSE

LICENSE
GPL

EMC Documentation 2009-07-31 197

