
RTAI Port to MCF5329

Developer's manual

M5329/RTAI3.6.2

Rev. 0.2 11/2008

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

1

CONTENTS

1. Introduction..6

1.1. RTAI Features for MCF5329..6

1.2. RTAI's Services Overview...7

1.2.1. Module rtai_hal...7
1.2.2. Module rtai_lxrt...7
1.2.3. Module rtai_sched...7
1.2.4. Module rtai_fifos..7
1.2.5. Module rtai_wd..7
1.2.6. Module rtai_msg...7
1.2.7. Module rtai_bits...8
1.2.8. Module rtai_mq...8
1.2.9. Module rtai_sem...8
1.2.10. Module rtai_netrpc..8
1.2.11. Module rtai_tbx..8
1.2.12. Module rtai_mbx...8
1.2.13. Module rtai_signal...8
1.2.14. Module rtai_tasklets..8

1.3. Related files...8

2. RTAI Installation and Usage...10

2.1. RTAI General Overview...10

2.1.1. Hard real time...10
2.1.2. RTAI and other real time projects..10
2.1.3. RTAI implementation...10

2.2. m68k-elf Tool Chain Setup..11

2.3. μClinux and RTAI installation. Patching and Compilation............11

2.4. RTAI testsuite installation...15

3. Changes in the μClinux and I-Pipe Source Code...................21

4. Changes in RTAI Source Code...23

4.1. RTAI HAL Changes..23

4.2. RTC Removal...26

4.3. RTAI LEDs Support...26

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

2

5. Programming with RTAI..27

5.1 Creating user-space RTAI programs..27

5.2 Creating kernel-space RTAI modules...28

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

3

About This Document

This document describes setting up and usage of RTAI for MCF5329 installed into
μClinux embedded OS, and the changes in RTAI and Linux kernel source code,
which allow using RTAI with MCF5329.

Audience

This document targets μClinux software developers using the MCF5329 processor.

Suggested Reading

[1] MCF5329 Reference Manual Rev. 0

[2] RTAI 3.4 User Manual Rev 0.3

[3] Advanced Linux Programming. M. Mitchel, J. Oldham, A. Samuel

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

4

Definitions Acronyms and Abbreviation

The following list defines the acronyms and abbreviations used in this document.

ADEOS Adaptive Domain Environment for Operating Systems, a nanokernel
used by RTAI

FEC ColdFire Fast Ethernet Controller

FIFO First Input First Output

HAL Hardware Abstraction Layer

I-Pipe Interrupt Pipeline

LED Light-Emitting Diode

OS Operating System

RDTSC Read Time Stamp Counter – the function returning number of ticks
from the system start.

RTAI Real Time Application Interface

RTC Real Time Clock

SRQ System Request

UART Universal Asynchronous Receiver/Transmitter

μClinux Micro-Controller version of Linux OS for Embedded Applications

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

5

1. Introduction

This document describes the Real Time Application Interface (RTAI), ported to the
MCF5329. RTAI is a Linux kernel extension, that allows preemption of the Linux
kernel at any time in order to perform real time operations with interrupt latencies in
the microseconds range. The standard Linux kernel can have latencies of several
milliseconds.

The document is divided logically into five parts.

The first part contains a general overview of RTAI.

The second part contains the description of its installation and usage.

The third part describes the changes, which were made in the μClinux kernel 2.6.25
and Linux drivers. Mainly it contains information about modifications of the interrupt
handling routines and timer routines.

The fourth part is a description of the changes made in the RTAI source code during
porting.

The fifth part gives a short manual of creation of RTAI applications.

1.1. RTAI Features for MCF5329

● Correct execution of the real time tasks in periodic mode with the frequencies
3 kHz and less (In this mode real time task period have to be a multiple of the
timer period).

● Correct execution of the real time tasks in oneshot mode with the frequencies
5 kHz and less (In this mode real time task period have to be a variable value
based on the timer clock frequency).

● RTAI services are provided by 14 kernel modules, which allow hard real time,
fully preemptive scheduling. These modules are: rtai_hal, rtai_sched, rtai_lxrt,
rtai_fifos, rtai_wd, rtai_msg, rtai_bits, rtai_mq, rtai_sem, rtai_netrpc, rtai_tbx,
rtai_mbx, rtai_signal, rtai_tasklets. Note that 15-th module, rtai_usi, contains
no code, so there is no reason to use it.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

6

1.2. RTAI's Services Overview

This section briefly describes RTAI’s real time services. They are provided via kernel
modules, which can be loaded and unloaded using the standard Linux insmod and
rmmod commands. Although the rtai_hal and rtai_sched(or rtai_lxrt) modules are
required every time any real time service is needed, all other modules are necessary
only when their associated real time services are desired.

1.2.1. Module rtai_hal

It's the RTAI hardware abstraction layer used by other RTAI modules. It offers
interrupt handling and timing functions.

1.2.2. Module rtai_lxrt

It's a real time, preemptive, priority-based scheduler, modified to work on MCF5329.
It's simply a GNU/Linux co-scheduler. This means that it supports hard real time for
all Linux schedulable objects like processes/threads/kthreads.

1.2.3. Module rtai_sched

It's a real time, preemptive, priority-based scheduler, modified to work on MCF5329.
The rtai_sched instead supports not only hard real time for all Linux schedulable
objects, like processes/threads/kthreads, but also for RTAI own kernel tasks, which
are very light kernel space only schedulable objects proper to RTAI.

1.2.4TAI tMPCF

1.2.7. Module rtai_bits

It's RTAI event flags functions.

1.2.8. Module rtai_mq

It's POSIX-like message queues.

1.2.9. Module rtai_sem

It's RTAI semaphore functions.

1.2.10. Module rtai_netrpc

It's a module for network real time communications.

1.2.11. Module rtai_tbx

It's RTAI message queues.

1.2.12. Module rtai_mbx

It's RTAI mailbox functions.

1.2.13. Module rtai_signal

It's RTAI signal services.

1.2.14. Module rtai_tasklets

It's an RTAI's implementation of tasklets. RTAI tasklets are used when functions are
needed to be called from user- and kernel-space.

1.3. Related files

The following files are relevant to RTAI:

● uClinux-dist-20080808.tar.bz2 – source code of the μClinux.

● rtai-3.6.2.tar.bz2 – RTAI 3.6.2 original package.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

8

● m68k-uclinux-tools-20061214.sh - m68k-uclinux tool chain for μClinux and
RTAI compilation.

● rtai3.6.2-mcf5329.patch – patch for RTAI to support MCF5329.

● uClinux-rtai-mcf5329_2.6.25.patch – patch for μClinux 2.6.25 kernel
containing I-Pipe.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

9

2. RTAI Installation and Usage

This chapter describes how to install and patch μClinux and RTAI, download image
with μClinux and it's real time extension for MCF5329. It also contains a general
overview of RTAI and information about RTAI installation.

2.1. RTAI General Overview

2.1.1. Hard real time

True multi-tasking operating systems, such as Linux, are adopted for use in
increasingly complex systems, where the need for hard real time often becomes
apparent. “Hard real time” can be found in the systems, which are dependent from
guaranteed system responses of thousandths or millionths of a second. Since these
control deadlines can never be missed, a hard real time system cannot use average
case performance to compensate for worst-case performance.

2.1.2. RTAI and other real time projects

There are four primary variants of hard real time Linux available: RTLinux, Xenomai
and RTAI.

RTLinux was developed at the New Mexico Institute of Technology by Michael
Barabanov under the direction of Professor Victor Yodaiken. Real Time Application
Interface (RTAI) was developed at the Dipartimento di Ingeneria Aerospaziale,
Politecnico di Milano by Professor Paolo Mantegazza. One of the main advantages of
RTAI is the support of periodic mode scheduling and its performance. Xenomai, that
was launched in 2001 provides slightly worser performance comparing to RTAI.

2.1.3. RTAI implementation

For the real time Linux scheduler the Linux OS kernel is an idle task. Therefore
Linux executes only when the real time tasks aren’t running and the real time kernel
isn’t active. RTAI 3.6.2 uses ADEOS nanokernel for managing interrupts. ADEOS
provides Interrupt Pipeline (called I-Pipe), that delivers interrupts to domains. One of
domains is Linux, the second – RTAI. In hard real time mode (when there is a real
time task running) Linux domain is in “stalled” state, which means it doesn't receive
interrupts. So Linux kernel doesn't schedule, because timer interrupt never occurs. In

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

10

hard real time interrupts are delivered to RTAI scheduler, which manages RTAI tasks.

2.2. m68k-elf Tool Chain Setup

To install the m68k-uclinux tool chain for correct μClinux and RTAI compilation, the
following steps must be accomplished:

1. Login as root

2. Run m68k-uclinux-tools-20061214.sh

2.3. μClinux and RTAI installation. Patching and Compilation

To install and patch μClinux and RTAI, the following steps must be performed:

1. Copy μClinux archive (uClinux-dist-20080808.tar.bz2) into the
/opt/rtai directory (it developer wants to have uClinux-dist directory with
μClinux in the other directory, the sequence of actions will be the same – only
change of paths is needed).

2. Extract its content:

$ tar xf uClinux-dist-20080808.tar.bz2

3. Copy RTAI archive (rtai-3.6.2.tar.bz2) into the /opt/rtai directory
(location also can be changed)

4. Extract its content:

$ tar xf rtai-3.6.2.tar.bz2

5. If the patches are stored in the /opt/rtai/patches directory, execute the
following commands to patch μClinux and RTAI code:

$ cd /opt/rtai/rtai-3.6.2

$ patch -p1 < /opt/rtai/patches/rtai3.6.2-mcf5329.patch

$ cd /opt/rtai/uClinux-dist

$ patch -p1 < /opt/rtai/patches/uClinux-rtai-mcf5329_2.6.25.patch

6. Configure the Linux kernel:

$ cd /opt/rtai/uClinux-dist

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

11

$ make menuconfig

It's possible to use xconfig and config if the developer prefers such way.

Afterwards do the following selections:

Vendor/Product Selection->Vendor = Freescale

Vendor/Product Selection->Freescale Products = M5329EVB

Kernel/Library/Defaults Selection->Kernel Version = linux-2.6.x

Kernel/Library/Defaults Selection->libc Version = uClibc

Kernel/Library/Defaults Selection->Customize Kernel Settings = y

Kernel/Library/Defaults Selection->Customize Application/Library
Settings = y

Then save and exit. The second window “Kernel Configuration” will be
shown. Here the following should be selected:

Enable loadable module support = y

Enable loadable module support/Module unloading = y

Processor type and features->Interrupt Pipeline = y

Then save and exit. The third window “uClinux Distribution Configuration”
will be shown. Here the following should be selected:

Busybox/Busybox = y

Busybox/Busybox/Linux Module Utilites/insmod = y

Busybox/Busybox/Linux Module Utilites/lsmod = y

Busybox/Busybox/Linux Module Utilites/rmmod = y

Busybox/Busybox/Linux Module Utilites/Support version 2.6.x Linux
kernels = y

Then save and exit.

POSIX threading support is required to compile some RTAI testsuite files. To
enable POSIX threading support configure uClibc:

$ cd uClibc

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

12

$ make menuconfig

In the configuration window set:

General Library Settings/POSIX Threading Support = y

Then save and exit.

Go back to μClinux root directory:

$ cd /opt/rtai/uClinux-dist

7. Build μClinux:

$ make

8. Configure RTAI:

$ cd /opt/rtai/rtai-3.6.2

$ make ARCH=m68knommu CROSS_COMPILE=m68k-uclinux- menuconfig

In the configuration window set:

General->Linux Source Tree = /opt/rtai/uClinux-dist/linux-2.6.x

9. Build RTAI and copy modules to the target file system:

$ make

$ cd base

$ install -d /opt/rtai/uClinux-dist/romfs/lib/modules/rtai

$ find -name *.ko -exec cp '{}' /opt/rtai/uClinux-
dist/romfs/lib/modules/rtai \;

10. Then compile μClinux again:

$ cd /opt/rtai/uClinux-dist

$ make

11. Now it is possible to load and run μClinux using the dBUG monitor of the
built-in ROMs. Use the dn command to load the image. And then type
go 40020000 to run it.

12. Now load RTAI modules and get information through /proc filesystem:

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

13

insmod rtai_hal.ko

insmod rtai_sched.ko

insmod rtai_fifos.ko

... (and so on, all RTAI modules you need)

Go to /proc:

cd /proc/rtai

cat hal

** RTAI/m68knommu:

** Real-time IRQs used by RTAI: none

** RTAI extension traps:

 SYSREQ=0x2b

** RTAI SYSREQs in use: #1 #2

cat scheduler

RTAI LXRT Real Time Task Scheduler.

 Calibrated CPU Frequency: 240000000 Hz

 Calibrated interrupt to scheduler latency: 81991 ns

 Calibrated oneshot timer setup_to_firing time: 8008
ns

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

14

Number of RT CPUs in system: 1 (sized for 1)

Real time kthreads in resorvoir (cpu/#): (0/1)

Number of forced hard/soft/hard transitions: traps 0,
syscalls 0

Priority Period(ns) FPU Sig State CPU Task HD/SF
PID RT_TASK * TIME

TIMED

READY

2.4. RTAI testsuite installation

To install and launch RTAI testsuite, some additional steps must be performed:

1. General->Build RTAI testsuite option must be selected when
configuring RTAI.

2. After building testsuite files must be copied to the target filesystem:

$ UC_RT_TEST=/opt/rtai/uClinux-dist/romfs/rtai-testsuite

$ install -d $UC_RT_TEST/kern/latency

$ install -d $UC_RT_TEST/kern/preempt

$ install -d $UC_RT_TEST/kern/switches

$ install -d $UC_RT_TEST/user/latency

$ install -d $UC_RT_TEST/user/preempt

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

15

$ install -d $UC_RT_TEST/user/switches

$ cd /opt/rtai/rtai-3.6.2/testsuite

$ cp kern/latency/latency_rt.ko $UC_RT_TEST/kern/latency/

$ cp kern/latency/display $UC_RT_TEST/kern/latency/

$ cp kern/preempt/preempt_rt.ko $UC_RT_TEST/kern/preempt/

$ cp kern/preempt/display $UC_RT_TEST/kern/preempt/

$ cp kern/switches/switches_rt.ko $UC_RT_TEST/kern/switches/

$ cp user/latency/latency $UC_RT_TEST/user/latency/

$ cp user/latency/display $UC_RT_TEST/user/latency/

$ cp user/preempt/preempt $UC_RT_TEST/user/preempt/

$ cp user/preempt/display $UC_RT_TEST/user/preempt/

$ cp user/switches/switches $UC_RT_TEST/user/switches/

3. Testsuite uses RTAI FIFOs, so FIFO device files should be created:

$ touch /opt/rtai/uClinux-dist/romfs/dev/@rtf0,c,150,0

$ touch /opt/rtai/uClinux-dist/romfs/dev/@rtf1,c,150,1

$ touch /opt/rtai/uClinux-dist/romfs/dev/@rtf2,c,150,2

$ touch /opt/rtai/uClinux-dist/romfs/dev/@rtf3,c,150,3

4. Rebuild μClinux

$ cd /opt/rtai/uClinux-dist

$ make

5. Now it is possible to load and run μClinux using the dBUG monitor of the
built-in ROMs. Use the dn command to load the image. And then type
go 40020000 to run it.

6. When μClinux is launched on the board, insert required modules:

insmod rtai_hal.ko

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

16

Preempt test will be displaying its results, until you press Ctrl+C.

rmmod preempt_rt.ko

cd ../..

Kernel-space switches test:

cd kern/switches

insmod switches_rt.ko

Switches test will be displaying its results after few seconds.

rmmod switches_rt.ko

cd ../..

User-space latency test in oneshot mode:

cd user/latency

./latency&

./display

Latency test will be displaying its results, until you press ENTER.

cd ../..

User-space latency test in periodic mode:

You will need to modify latency test, rebuild RTAI and μClinux and launch
μClinux on the board again.

First, in the following file

/opt/rtai/rtai-3.6.2/testsuite/user/latency/latency.c

change line 38 from

#define TIMER_MODE 0

to

#define TIMER_MODE 1

After it rebuild RTAI:

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

18

$ cd /opt/rtai/rtai-3.6.2

$ make

Then copy updated latency executable to the romfs:

$ UC_RT_TEST=/opt/rtai/uClinux-dist/romfs/rtai-testsuite

$ cp /opt/rtai/rtai-3.6.2/testsuite/user/latency/latency
/opt/rtai/uClinux-dist/romfs/rtai-testsuite/user/latency/

And rebuild μClinux:

$ cd /opt/rtai/uClinux-dist

$ make

Then load and run μClinux using the dBUG monitor of the built-in ROMs. Use
the dn command to load the image. And then type go 40020000 to run it.

Insert required modules again:

insmod rtai_hal.ko

insmod rtai_sched.ko

insmod rtai_sem.ko

insmod rtai_fifos.ko

insmod rtai_mbx.ko

insmod rtai_msg.ko

cd /rtai-testsuite

And finally launch user-space latency test in periodic mode:

cd user/latency

./latency&

./display

Latency test will be displaying its results, until you press ENTER.

cd ../..

User-space preempt test:

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

19

cd user/preempt

./preempt&

./display

Preempt test will be displaying its results, until you press Ctrl+C twice.

cd ../..

User-space switches test:

cd user/switches

./switches

Switches test will be displaying its results after few seconds.

Note: The description for each test can be found in README file in the test
directory.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

20

3. Changes in the μClinux and I-Pipe Source
Code

Both μClinux and I-Pipe source code has been changed during porting. Changes
affect architecture-dependent part. I-Pipe was ported to the m68knommu architecture.

1. The return function from arch/m68knommu/platform/coldfire/entry.S was
modified to call EMULATE_ROOT_IRET macro. It was made to process syscalls
correctly with the I-Pipe;

2. The system_call function from arch/m68knommu/platform/coldfire/entry.S
was modified to call CATCH_ROOT_SYSCALL macro. It was made to deliver
syscall to the I-Pipe;

3. The trap function from arch/m68knommu/kernel/entry.S was modified to call
__ipipe_handle_exception() function. It was made to deliver exceptions
to the I-Pipe;

4. The inthandler function from arch/m68knommu/platform/5307/entry.S was
modified to call ipipe_irq_handler() function instead of Linux interrupt
handler. It was made to deliver interrupts to the I-Pipe;

5. All interrupt enabling/disabling routines from include/asm-
m68knommu/system.h were modified to use the I-Pipe stall/unstall domain
functions instead of hardware interrupt managing. The functions with _hw
suffix which implement hardware interrupts enabling/disabling were added;

6. The read_timer_cnt() function was added to arch/m68knommu/
platform/coldfire/timers.c. This function calculates the number of timer ticks
passed from the timer initialization. It is used to implement the rdtsc()
function in the m68knommu RTAI part;

7. The ack_linux_icr0() function was added to arch/m68knommu/kernel/
ipipe.c. It was made to perform correct acknowledgment of the FEC and
UART interrupt routines in the I-Pipe;

8. The FREQ macro definition was modified in
arch/m68knommu/platform/coldfire/timers.c to equal to MCF_BUSCLK. It was
made because of another timer frequency;

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

21

9. The mcftmr_tick() function from
arch/m68knommu/platform/coldfire/timers.c was modified by deleting timer
acknowledgment, because now it is performed from the I-Pipe;

10. The mcftmr_read_clk() function from arch/m68knommu/platform/ coldfire/
timers.c was modified to use read_timer_cnt() function;

11.The hw_timer_init() function from arch/m68knommu/platform/coldfire/
timers.c was modified to initialize timer to work with better timer precision;

12. The ack_linux_tmr() function was added to arch/m68knommu/platform/
coldfire/timers.c to perform correct timer interrupt acknowledgment in I-Pipe;

13. The mcf_interrupt() function from drivers/serial/mfc.c was modified to
enable UART interrupt. It was made to perform correct UART interrupt
acknowledgment;

14. The fec_enet_interrupt() function from drivers/net/fec.c was modified to
enable FEC interrupt. It was made to perform correct FEC interrupt
acknowledgment.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

22

4. Changes in RTAI Source Code

RTAI source code has been changed during porting. Changes affect both
architecture-independent and architecture-dependent parts.

Main changes in RTAI code are described here.

4.1. RTAI HAL Changes

In RTAI HAL (file /base/arch/m68knommu/hal.c) the following changes were made:

1. Timer code was changed to work with ColdFire timer. First system timer is used
by both RTAI for scheduling real time processes and Linux when RTAI scheduler
is inactive.

2. rdtsc() function implementation is now based on read_timer_cnt() kernel
function. Thus RDTSC functionality is emulated by ColdFire timer.

long long rdtsc()
{
 return read_timer_cnt() * (tuned.cpu_freq / TIMER_FREQ);
}

3. RTAI SRQ dispatcher code was adopted to MCF5329. SRQ dispatcher is a
function that is called as a trap handler from user space to access RTAI
functionality. The result of a syscall is always a 64-bit value, but it's meaning
depends on a specific syscall.

//We have: d0 - srq, d1 - args, d2 - retval
asmlinkage int rtai_syscall_dispatcher (__volatile struct
pt_regs pt)
{

int cpuid;
//unsigned long lsr = pt.sr;
long long result;
//IF_IS_A_USI_SRQ_CALL_IT(pt.d0, pt.d1, (long long*)pt.d2,

lsr, 0);
if (usi_SRQ_call(pt.d0, pt.d1, &result, pt.sr))

return 0;
result = pt.d0 > RTAI_NR_SRQS ?

rtai_lxrt_dispatcher(pt.d0, pt.d1, (void *)&pt) :
rtai_usrq_dispatcher(pt.d0, pt.d1);

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

23

pt.d2 = result & 0xFFFFFFFF;
pt.d3 = (result >> 32);
if (!in_hrt_mode(cpuid = rtai_cpuid())) {

hal_test_and_fast_flush_pipeline(cpuid);
return 1;

}
return 0;

}

#define SAVE_REG \
"move #0x2700,%sr\n\t" /* disable intrs */ \
"btst #5,%sp@(2)\n\t" /* from user? */ \
"bnes 6f\n\t" /* no, skip */ \
"movel %sp,sw_usp\n\t" /* save user sp

*/ \
"addql #8,sw_usp\n\t" /* remove exception */ \
"movel sw_ksp,%sp\n\t" /* kernel sp */ \
"subql #8,%sp\n\t" /* room for exception */

\
"clrl %sp@-\n\t" /* stkadj */ \
"movel %d0,%sp@-\n\t" /* orig d0 */ \
"movel %d0,%sp@-\n\t" /* d0 */ \
"lea %sp@(-32),%sp\n\t" /* space for 8 regs */ \
"moveml %d1-%d5/%a0-%a2,%sp@\n\t" \
"movel sw_usp,%a0\n\t" /* get usp */ \
"movel %a0@-,%sp@(48)\n\t" /* copy exception

program counter (PT_PC=48)*/ \
"movel %a0@-,%sp@(44)\n\t" /* copy exception

format/vector/sr (PT_FORMATVEC=44)*/ \
"bra 7f\n\t" \
"6:\n\t" \
"clrl %sp@-\n\t" /* stkadj */ \
"movel %d0,%sp@-\n\t" /* orig d0 */ \
"movel %d0,%sp@-\n\t" /* d0 */ \
"lea %sp@(-32),%sp\n\t" /* space for 8 regs */ \
"moveml %d1-%d5/%a0-%a2,%sp@\n\t" \
"7:\n\t" \
"move #0x2000,%sr\n\t"

#define RSTR_REG \
"btst #5,%sp@(46)\n\t" /* going user?

(PT_SR=46)*/ \
"bnes 8f\n\t" /* no, skip */ \
"move #0x2700,%sr\n\t" /* disable intrs */ \
"movel sw_usp,%a0\n\t" /* get usp */ \
"movel %sp@(48),%a0@-\n\t" /* copy exception

program counter (PT_PC=48)*/ \

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

24

"movel %sp@(44),%a0@-\n\t" /* copy exception
format/vector/sr (PT_FORMATVEC=44)*/ \

"moveml %sp@,%d1-%d5/%a0-%a2\n\t" \
"lea %sp@(32),%sp\n\t" /* space for 8 regs */ \
"movel %sp@+,%d0\n\t" \
"addql #4,%sp\n\t" /* orig d0 */ \
"addl %sp@+,%sp\n\t" /* stkadj */ \
"addql #8,%sp\n\t" /* remove exception */ \
"movel %sp,sw_ksp\n\t" /* save ksp */ \
"subql #8,sw_usp\n\t" /* set exception */ \
"movel sw_usp,%sp\n\t" /* restore usp */ \
"rte\n\t" \
"8:\n\t" \
"moveml %sp@,%d1-%d5/%a0-%a2\n\t" \
"lea %sp@(32),%sp\n\t" /* space for 8 regs */ \
"movel %sp@+,%d0\n\t" \
"addql #4,%sp\n\t" /* orig d0 */ \
"addl %sp@+,%sp\n\t" /* stkadj */ \
"rte"

#define DEFINE_VECTORED_ISR(name, fun) \
__asm__ (\

 SYMBOL_NAME_STR(name) ":\n\t" \
SAVE_REG \
"jsr "SYMBOL_NAME_STR(fun)"\n\t" \
RSTR_REG);

void rtai_uvec_handler(void);
DEFINE_VECTORED_ISR(rtai_uvec_handler,
rtai_syscall_dispatcher);

This code switches stack from user-space stack to kernel-space when RTAI
syscall occurs and switches back at syscall return. Stack switching code is similar
to Linux syscalls implementation, because this RTAI code is based on it.

4. Two functions from rtai_atomic.h (atomic_xchg() and atomic_cmpxchg())
were changed to use RTAI traps. The following trap code was added to the HAL:

void rtai_cmpxchg_trap_handler(void);
__asm__ (\

"rtai_cmpxchg_trap_handler:\n\t" \
"move #0x2700,%sr\n\t" \
"movel %a1@, %d0\n\t" \
"cmpl %d0,%d2\n\t" \
"bnes 1f\n\t" \
"movel %d3,%a1@\n\t" \

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

25

"1:\n\t" \
"rte");

void rtai_xchg_trap_handler(void);
__asm__ (\

"rtai_xchg_trap_handler:\n\t" \
"move #0x2700,%sr\n\t" \
"movel %a1@, %d0\n\t" \
"movel %d2,%a1@\n\t" \
"rte");

...
rtai_xchg_trap_vec =
rtai_set_gate_vector(RTAI_XCHG_TRAP_SYS_VECTOR, 15, 3,
&rtai_xchg_trap_handler);rtai_cmpxchg_trap_vec =
rtai_set_gate_vector(RTAI_CMPXCHG_TRAP_SYS_VECTOR, 15, 3,
&rtai_cmpxchg_trap_handler);

5. rt_set_timer_delay() function from rtai_hal.h was changed to work with
ColdFire timer and was made cache-aware to avoid timer TCN overruns (i.e.
when TCN is further then TRR).

4.2. RTC Removal

RTAI port for MCF5329 doesn't allow to use an RTC as a time source, so all related
code was removed.

4.3. RTAI LEDs Support

rtai_leds module hasn't been ported, because LED functionality doesn't depend on
RTAI. If you need to use LEDs for debugging you will need to write a code that is
specific to your LEDs and hardware it is based on.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

26

5. Programming with RTAI.

This section gives some information about creation of RTAI applications.

The following acronyms were used in this section:

<uClinux> - μClinux root directory

<rtai> - RTAI root directory

<filename> - name code of file that should be built (without extension).

This section describes building of written RTAI application or module, it doesn't
cover any programming information.

For help in RTAI API please refer to RTAI Doxygen documentation or RTAI
programming manuals.

5.1 Creating user-space RTAI programs

To compile <filename>.c in user-space that uses some exportations from liblxrt
library:

1. Change the current directory to the directory with <filename>.c;

2. Compile <filename>.c to the object file <filename>.o:

$ m68k-uclinux-gcc -DHAVE_CONFIG_H -I. -
I<uClinux>/linux-2.6.x/include -DCONFIG_UCLINUX -D__IN_RTAI__
-I<rtai>/base/include -I<rtai> -m5307 -Wa,-m5307 -c -o
<filename>.o <filename>.c

3. Link <filename>.o to the executable <filename>:

$ m68k-uclinux-gcc -m5307 -Wa,-m5307 -Wl,-elf2flt -o
<filename> <filename>.o <rtai>/base/sched/liblxrt/liblxrt.a
-lpthread

4. If there were no errors, then in the current folder <filename> executable will
appear. Then it can be added to the romfs of μClinux.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

27

5.2 Creating kernel-space RTAI modules

1. To compile kernel-space RTAI-based module <filename>.c for MCF5329,
the next steps should be done:

2. Change the current directory to the directory with <filename>.c;

3. Create Makefile file and put the next lines into it:

rtai_srctree:=<rtai>

EXTRA_CFLAGS+=-I$(rtai_srctree) -I$
(rtai_srctree)/base/include

obj-m := <filename>.o

4. Launch the make utility:

$ make -C <uClinux> SUBDIRS=$PWD modules

5. If there were no errors, <filename>.ko kernel module will appear in the
current folder. Then it can be added to the romfs of μClinux.

PRELIMINARY – SUBJECT TO CHANGE WITHOUT NOTICE

28

	1. Introduction
	1.1. RTAI Features for MCF5329
	1.2. RTAI's Services Overview
	1.2.1. Module rtai_hal
	1.2.2. Module rtai_lxrt
	1.2.3. Module rtai_sched
	1.2.4. Module rtai_fifos
	1.2.5. Module rtai_wd
	1.2.6. Module rtai_msg
	1.2.7. Module rtai_bits
	1.2.8. Module rtai_mq
	1.2.9. Module rtai_sem
	1.2.10. Module rtai_netrpc
	1.2.11. Module rtai_tbx
	1.2.12. Module rtai_mbx
	1.2.13. Module rtai_signal
	1.2.14. Module rtai_tasklets

	1.3. Related files

	2. RTAI Installation and Usage
	2.1. RTAI General Overview
	2.1.1. Hard real time
	2.1.2. RTAI and other real time projects
	2.1.3. RTAI implementation

	2.2. m68k-elf Tool Chain Setup
	2.3. μClinux and RTAI installation. Patching and Compilation
	2.4. RTAI testsuite installation

	3. Changes in the μClinux and I-Pipe Source Code
	4. Changes in RTAI Source Code
	4.1. RTAI HAL Changes
	4.2. RTC Removal
	4.3. RTAI LEDs Support

	5. Programming with RTAI.
	5.1 Creating user-space RTAI programs
	5.2 Creating kernel-space RTAI modules

