RTAI-Lab tutorial: Scilab, Comedi, and real-time control

Roberto Bucher Simone Mannori Thomas Netter

Version 0.50, 4th November 2005

1 Introduction

Computer Aided Control System Design (CACSD) includes a wide range of computational tools and envi-
ronments for control system design, real time simulation, with and without hardware in the loop, making the
best use of high desktop computer power, graphical capabilities and ease of interaction with low hardware
cost. Integrated CACSD software environments allow an interactive control system design process to be
automated with respect to multi-objective performances evaluation and multi-parameter synthesis tuning.
Visual decision support provides the engineer with the clues for interactively directing an automated search
process to achieve a well balanced design under many conflicting objectives and constraints. Local/remote
on line data down/upload makes it possible a seamless interaction with the control system, in order to su-
pervise its operation and adapt it to changing operational needs.

We present a full development chain which uses software tools released under open-source licenses. Most
of them are released under GNU/GPL. Scilab/Scicos have a license which is very similar, but not exactly
equal, to GNU/GPL. All the software used here is Patent-Free. In this way the cost of the software acquisition
is reduced around zero and there are not recurring costs or constraints like royalty or patents. The end-user
is free to use commercial /O hardware devices (supported by "ready to use” Comedi device drivers) - or any
other kind of hardware - also custom developed - writing a Comedi driver or direct control code embedded in
SCICOS blocks. These aspects are real strategic advantages - compared with a proprietary solution - both
for educational and industrial applications.

2 Installation

To implement and use a complete CACSD developement chain you need:
e areal time operating system (Linux kernel with ADEOS patch and the RTAI library);

¢ a design and developement interactive graphical environnement (SCILAB/SCICOS);

an automatic code generator: from visual symbolic representation to real code to compile (integrated
in RTAI);

a user interface to display the behaviour of the system and interact with (RTAI-Lab is included in RTAI
project);

a library of 1/0O driver (Comedi and Comedilib, kernel and user space driver and libraries);

the possibility to encapsulate direct access code to 1/0 devices and/or RTAI functions inside a SCICOS
block (we are giving here some simple examples).

2.1 Be politically incorrect

In a Linux system, only the user "root” has the privilege to do most of the operations described in this
document. Instead of login as normal user then switch to "superuser” ("root”) when it is necessary, we
suggest you to work as "root”. It is a little bit dangerous, because as "root” you can clear all the system files.
However, it is faster than typing "su” plus "password” many times. Make your choice. Think before press
[Enter] key.

2.2 Getting libraries

A good starting point is a complete Linux distribution as Debian, Fedora, Slackware, Ubuntu, Suse, etc...
with the default kernel developement tools (GCC) in a graphical environnement (Gnome or KDE).
We strongly suggest a full distro installation to be sure to have all the developement tools and libraries.

2.2.1 Installing Mesa and EFLTK libraries

As prerequisite you need to download, configure compile and install Mesa and EFLTK.

EFLTK is a library of graphical primitive used by RTAI-Lab user interface. EFLTK is light and fast because
all its functions use OpenGL calls. These calls are handled by Mesa and, if you have a 3D accelerated
videocard supported in the kernel and RTAI compatible, all the graphic user interface (RTAI-Lab) is rendered
in hardware with minimal CPU load using DRI (Direct Rendering Interface). If the DRI support is not avail-
able (for hardware or maximum compatibility reasons) all the OpenGL primitives are handled in software
emulation by the Mesa library using some CPU effort.

The 3D-DRI hardware support in the kernel is ADEOS-RTAI tested and garantee only with kernel 2.4.x. We
have tested, with positive results, Intel integrated i8xx, ATl (up to Ati 9250) and Matrox. The 2.4.x. DRI
support configuration is described in appendix.

For reasons which go beyond our knowledge, the DRI support inside in the 2.6.x kernel is not compatible
with ADEOS-RTAI. With 2.6.x we had positive results only using the latest proprietary ATI driver. To use this
driver you need, obiouvsly, a ATl videocard (see www.ati.com for the list of supported cards), and you have
to follow a specific procedure (reported in this document) for the kernel, external modules and X11 driver
configuration, compilation and installation.

The proprietary nVidia driver (www.nvidia.com) is very performing and easy to install, but it is not RTAl com-
patible because it blocks the interrupts for too much time and, as a consequence, it freezes the machine if a
realtime task is active.

The video performance is critical if you need complex graphics visualization (e.g. realtime user interface and
multimedia).

Mesa libraries download and install these libraries using the following steps:

1. Warning: In some distributions the Mesa 3D support is pre-installed. In any case, don’t "jump” the
Mesa installation. You really need this package installed from the source to obtain good results.
If you jump this step the results will be incomplete rendering of the RTAI-Lab graphics.

Download Mesalib-6.2.tar.gz (from www.mesa3d.org) in a temporary directory (/tmp)
Untar the archive : "tar xvzf MesaLib-6.2.tar.gz"

"cd /tmp/Mesa-6.2"

"make linux-86" or "make linux-x86-static”. Both are working solutions.

S

"make install’. This program makes a couple of questions regarding "where” putting the library.
Normally the suggested default are correct: answer [Enter] to both questions. The defaults are:

e "[usr/include and” "/usr/lib”
But in some systems you may need to put the Mesa library files in different places, such as

e "/usr/X11R6/include” and "/usr/X11R6/lib”

If you are interested in absolute maximum performance, you need to compile the DRI support statically
in the Mesa using the instruction in this DRI Wiky page (http://dri.freedesktop.org/wiki/).

EFLTK libraries Compile and install the EFLTK package

1. Download EFLTK from CVS in a temporary directory (/tmp)
"cvs -d:pserver.anonymous@cvs.sourceforge.net:/cvsroot/ede login ”
(press ENTER when CVS asks for password)
"cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/ede co efltk”

2. "cd /tmp/efltk ”
" lefltk-config.in ——prefix=/usr/local ——multithread”
".Jemake "
" Jemake install "

3. Using an editor (e.g. gedit) add the path [/usr/local/lib] in the dynamic library configuration file
[/etc/ld.so.conf].
gedit /etc/ld.so.conf. The file should be like this one

/usr/local/lib
include 1d.so.conf.d/*.conf
/usr/X11R6/1ib
/usr/lib/mysql

4. Then run "ldconfig” To update the library database("ldconfig” or "/sbin/ldconfig”)

2.3 Installing a patched kernel for RTAI and RTAI-Lab
e Kernel (case 2.4.x). The latest RTAI v.3.2 supports kernel 2.4.27 with "hal-linux-2.4.27-i386-r15.patch”.

1. Get a "vanilla” kernel from www.kernel.org (e.g. "linux-2.4.27 .tar.bz2")

Get RTAI from www.rtai.org (e.g. "rtai-3.2.tar.bz2")

Change working directory to /usr/src ("cd /usr/src”)

Unpack the kernel ("tar xjvf linux-2.4.27.tar.bz2")

Unpack Linux RTAI ("tar xjvf rtai-3.2.tar.bz2")

Make linux symbolic link (”In -s /usr/src/linux-2.4.27 linux”)

Make rtai symbolic link ("In -s /usr/src/rtai-3.2 rtai”). These links semplify next installation steps.

Patch the kernel with the ADEOS patch
generic "patch -pl < <rtaidir>/base/arch/i386/patches/<kernel-version>.patch” or
specific "patch -pl < /usr/src/rtai/base/arch/i386/patches/hal-linux-2.4.27-i386-r15.patch”)

© N o bk wN

9. "make xconfig” (or "make menuconfig” for text interface)
10. configure the kernel

11. "make bzlmage”

12. "make modules”

13. "make modules_install”

14. "make install”

15. fit lilo or grub for this new kernel (see appendix).

e Kernel (case 2.6.x). The latest RTAI v.3.2 support kernel 2.6.10 with "hal-linux-2.6.10-i386-r9.patch”

1. Get a "vanilla” kernel 2.6.x from www.kernel.org (e.g. "linux-2.6.10.tar.bz2"; anyway check first
the availability of the corresponding ADEOS patch);

Get RTAI from www.rtai.org (e.g. "rtai-3.2.tar.bz2”)

Change working directory to /usr/src ("cd /usr/src ")

Unpack the kernel ("tar xjvf linux-2.6.10.tar.bz2 ")

Unpack Linux RTAI ("tar xjvf rtai-3.2.tar.nbz2 ")

Make linux symbolic link (”In -s /usr/src/linux-2.6.10 linux”)

Make rtai symbolic link ("In -s /usr/src/rtai-3.2 rtai”). These links semplify next installation steps.

© N o ok~ w N

. Patch the kernel with the adeos patch
generic "patch -pl < <rtaidir>/base/arch/i386/patches/<kernel-version>.patch " or
specific "patch -p1 < /usr/src/rtai/base/arch/i386/patches/hal-linux-2.6.10-i386-r9.patch ”

9. "make xconfig”

10. configure the kernel

11. "make”

12. "make modules_install”

13. "make install”.

14. fit lilo or grub for this new kernel (see appendix).

2.4 Installing the COMEDI and Comedilib files

The Comedi project develops open-source drivers, tools, and libraries for data acquisition. Comedi is a
collection of drivers (+100 devices are supported) for a variety of common data acquisition plug-in boards.
The drivers are implemented as a core Linux kernel module providing common functionality and individual
low-level driver modules. In this way it is possible to write modular program that needs minimal or NO mod-
ifications if the I/O hardware is changed. There are primitives to "inspect” the 1/0O device and dinamically
configuring its features.

We strongly suggest to install the software from CVS, install and check the "comedilib/doc/comedilib.pdf”
BEFORE buying a new data acquisition card. If you already have a card NOT supported by Comedi don’t
PANIC: with some documentation it is possible to adapt a similar Comedi driver or write a specific code to
address the card functions.

Comedilib is a user-space library that provides a developer-friendly interface to Comedi devices. Included in
the Comedilib distribution there is documentation, configuration and calibration utilities, and demonstration
programs.

Kcomedilib is a Linux kernel module (distributed with Comedi) that provides the same interface as Comedilib
in kernel space, suitable for real-time (RTAI) tasks. It is effectively a "kernel library” for using Comedi from
real-time tasks.

Comedilib Install Comedilib with the following commands

1. cd /usr/src

2. cvs -d :pserver:anonymous@cvs.comedi.org:/var/cvs login
cvs -d :pserver:anonymous@cvs.comedi.org:/var/cvs co comedi
cvs -d :pserver:anonymous@cvs.comedi.org:/var/cvs co comedilib

3. cd comedilib

4. Read software installation requirements in README. CVS and verify that your packages (automake
etc.) are up to date with automake --version

5. sh autogen.sh

6. ./configure ——sysconfdir=/etc
7. make and make install

8. make dev
This step created the /dev/comedi[0-3] device inodes. See the Comedi manual and man comedi config
to associate a particular driver and hardware device to one of the /dev/comedi device files.
WARNING: with the new UDEV platform there are some problems if the new inodes are not
registered.

RTAI (1st pass) Install RTAI (without Comedi support)

1. cd /usr/src/rtai)
2. make xconfig Or make menuconfig
3. Menu General: verify default directories:

e Installation directory /usr/realtime
o Kernel source directory /usr/src/linux

Menu Machine (x86): adjust Number of CPUs (default = 2)
Exit xconfig/menuconfig and save configuration
make and make install

IMPORTANT: Add /usr/realtime/bin to the PATH variable in /etc/profile or your home direc-
tory’s .bashrc.

N o o &

Comedi for Linux RTAI

1. cd /usr/src/comedi
2. sh autogen.sh

3. ./configure or possibly:
./configure --with-linuxdir=/usr/src/linux-2.6.10 --with-rtaidir=/usr/realtime

4. make
5. make install (installs the comedi kernel modules)

6. cp include/linux/comedi.h /usr/include/
cp include/linux/comedilib.h /usr/include/

7. 1n -s /usr/include/comedi.h /usr/include/linux/comedi.h
1n -s /usr/include/comedilib.h /usr/include/linux/comedilib.h

RTAI (2nd pass) (with Comedi support)

1. cd /usr/src/rtai)
2. make xconfig Or make menuconfig
3. Menu Add-ons:

e Select COMEDI support over LXRT

e Specify COMEDI installation directory (/usr/local or /usr). The directory should contain
1lib/libcomedi.a, include/comedi.h and include/comedilib.h

4. Menu RTAI Lab:

e Select RTAI Lab
e Adjust EFLTK installation directory (default is /usr/local)

5. Exit xconfig/menuconfig and save configuration
6. make and make install

2.5 Installing the RTAI add-ons for Scilab

Now follow these steps to properly install all the Scilab/Scicos add-ons for RTAI-Lab:
1. become superuser ("su”)
2. "cd /usr/src/rtai/rtai-lab/scilab/macros”

3. modify eventually in the file "Makefile” the line
SCILAB_DIR = /usr/local/scilab-3.1.1
to fit your SCILAB installation

4. run "make install”

Each user who wants to work with the Scilab/Scicos RTAI add-ons has to modify his own ".scilab” (scilab-
3.0) or ".Scilab/scilab-3.1.1/.scilab” (scilab-3.1.1) startup file. This operation can be done running as normal
user "make user” in this "macros” directory. This command add the following lines to the startup file:

load(’SCI/macros/RTAI/1ib’)
%scicos_menu($+1)=[’RTAI’,’RTAI CodeGen’,’SetTarget_’]
scicos_pal($+1,:)=[’RTAI-Lib’,’SCI/macros/RTAI/RTAI-Lib.cosf’]

These lines add the menu "RTAI—CodeGen” and "Set Target” to the scicos window and the new RTAI-
Lib.cosf library with the RTAI specific blocks to the scicos palette.
In order to finish the installation of Scilab you have to create a link to the scilab application under "/usr/local/bin”:

cd /usr/local/bin
1n -s /usr/local/Scilab-3.1.1/bin/scilab scilab

Or add "usr/local/scilab-3.1.1/bin” to the PATH.

- END OF INSTALLATION SECTION

3 A simple example

3.1 Continous and time-sampled models
In the following, a simple example will be analysed. The system is represented by a transfer function

20
Gs(s) = T s

with unity feedback,
The system has been implemented as discrete-time transfer function

9.987z +9.973
22 —1.996z + 0.996

with a sampling time of 1ms. Different signals are sent to scopes, meters, and LEDs.
The model is saved with the name "test”.

Gz(z) =107°

A 4

num(2) —» Scope
Square»—»b»— — den(z)RI’ SCOPE

Tf

i Me‘tyer
LED ——>>>—>
— [ED @ METER

Figure 1: Scicos block diagram

3.2 Implementation under Scilab
3.2.1 Designing the block diagram

First of all, we have to design the system using SCICOS. Figure 1 represents the Scicos block diagram of
the given example. We can get the different blocks from the SCICOS palettes in order to obtain the desired
system. By the next step we have to integrate some I/O into our block diagram.

e 1/O can be chosen from a specific RTAI Library (SCICOS Menu- Edit - Palettes - RTAI-Lib)

e /O were configured by hand (SCICOS Menu - Edit - Add new block - Get block GUI from function
name - Name:). See next sections how-to make a new user 1/O block.

These methods can be mixed together.

3.2.2 Implementing I/O using the RTAI palette

In order to generate the code this block diagram must be transformed into a "Super Block” which can be
used to generate the code.

e The menu "Diagram” "Region to Super Block” allows to select a part of the block diagram and put it
into a "Super Block”. Figure 2 represents "clock” and "Super Block”.

e We can access to the "Super Block” block diagram simply by clicking on it (figure 3). A good idea is to
open the "Super Block” and to rename it ("Diagram” "Rename”) to "test”. This will be the name of the
generated model and of the directory where the generated files are stored.

e Now we can simply choose the menu "RTAI” - "RTAI Code Gen” to generate and compile the realtime
code.

o Inside "RTAI" there is a second optional "Set Target” submenu which activate a dialog box that allow to
chose "Target”, "Ode function” and "Step beteween sampling”. Leave the default values.

e A dialog Box asks about some compilation parameters, in particular it proposes the sampling time read
from the "clock” event block.

e After "OK” SCICOS performs the code generation and the compilation of the generated modules.

Figure 2: Scicos superblock and clock

Square-

num(z
4’> e den(z)L

Tf

—» Scope
I3 SCOPE

=

@%

Figure 3: Scicos superblock

v
Meter

METER

4 RTAI-Lib Blocks

Figure 4 represents the Scicos RTAI blocks library.

Sine. Realtime internal sine generator. Every parameter is programmable and run-time controllable
with RTAI-Lab.

Square. As above but square waveform.
Step. As above, but step function.

extdata. Data from external file. The passed file must contain a single column with the values at each
sampling time in ASCII format.

SENSOR. Generic sensor input. The dialog box allows to implement the C-Code.
Scope. Multichannel input oscilloscope.

Meter. Single channel meter.

LED. Multichannel LED lamps: switch ON if the input is positive.

FIFO-O.

ACTUATOR. Generic actuator output. The dialog box allows to implement the C-Code.
Mxb Send Ovw.

Mbx Rcv no blk.

Mbx Rcv blk.

Mbx Send if.

Comedi A/D. Comedi supported Analog Input.

Comedi D/A. Comedi supported Analog Output.

Comedi DI. Comedi supported Digital Input.

Comedi DO. Comedi supported Digital Output.

SEM wait. This block can be used to synchronize RT tasks using semaphores.
SEM signal. This block can be used to synchronize RT tasks using semaphores.

C RTAI. This is a generic block where the user can implement his own C-Code.

The most I/0 blocks call functions implemented in a library (libsciblk.a).
Figure 4 shows the palette with the present available RTAI blocks under Scilab/Scicos.

5

Implementation of new User I/O Blocks

The best way to show how to build a new user 10 block from zero is to use a very simple example: how to
write an output bit and read an input bit of the standard parallel port. To try this example you need a very
simple hardware: a DB-25 male connector, a LED and a resistor (figure 5). Check you BIOS setting about
the parallel port mode and address. The safest choice is SPP (Standard Parallel Port) and address 0x378.
Hardware details are in appendix F.

v

v v v v .
SI ne Scope p. Mbx Send Ovw COMEDI A/DQV ggm walit
> > MBX comedi0 CH-
SCOPE
v v v v v
Meter Mbx Rcv no blk COMEDI D/A EM si |
Square > METER MBX > comedio CH-0 > EEM signa
LED Mbx rcv blk C RTA|
COMEDI DI
Step i LED MBX comedi0 CH- > BlOCk
v v v v
extdata Mbx Send if COMEDI DO
test dat> » FIFO-0 > MBX P comedio CH-0
v v
SENSOR ACTUATOR
SeENs ™ % AcT

Valid addresses are:

Figure 4: Scicos palette for RTAI

BASE = 0x378 // the standard base address

BASE = 0x278
BASE = 0x3BC

For the output line we use (address = BASE)

Position Name
BO Data O

And for the input (address = BASE + 1)

Position Name
B3 Error

Pin
2

Pin
15

5.1 Implementing the code for a user actuator device

e Go to /ust/src/rtai-3.2/rtai-lab/scilab/devices ("cd /usr/src/rtai-3.2/rtai-lab/scilab/devices”)

e Choose a name for the output device ("DirOutBit” Direct Output Bit)

e Use the utilities "gen_dev <model>" ("gen_dev DirOutBit”). These utilities - using "template.c” and "de-
vtmpl.h” - make two very important things: (1) creation of a brand new "DirOutBit.c” file ("<model>");this
file contains all the necessary functions to implement the driver as "input” and "output” driver; (2) up-
dating the "device.h” files automatically with generic functions prototypes;

e The file "devstruct.h” contains the description of the structure used to store the block specific data.

typedef struct devStr{
int nch;

10

Resistor
DataO

470 Q
Error

15° w1

18 &
GND

Figure 5: Schematic diagram

char I0Name[20];

char sName[20];

char sParam[20];

double dParam[5];

int i1l;

long 11;

long 12;

void * ptr;
}devStr;

A structure for input (inpDevStr) and a structure for output (outDevStr) are provided in "rtmain.c”. The
different fields can be used to store temporary data related to the specific instance of the module;

open with an editor "GNUmakefile.am” ("gedit GNUmakefile.am” and manually add "DirOutBit.c” to
libsciblk_a_SOURCES list;

go back to /usr/src/rtai-3.2/ ("cd /usr/src/rtai-3.2/");

run here "aclocal” (this step is optional; use only if you system need it);
run automake ("automake rtai-lab/scilab/devices/GNUmakefile”);
make ;

make install ;

Now you have an empty code structure "/rtai-lab/scilab/device/DirOutBit.c”: you need to fill it with some
code.

open "DirOutBit.c” ("gedit rtai-lab/scilab/device”)
look carefully to the empty function inside the code ;

in the top of file add

#include <sys/io.h> The I/0 instructions definition
#define BASE 0x378 The parallel port BASE address

11

pass over the "inp_xxx_xxx()” these are relative to input block

"int out_DirOutBit_init()”. This function is called once the realtime task is started. Clear all the passing
arguments of the function and put a "void”. This is necessary because it is a very simple function
without arguments for the "init” function, then the automatic code generator makes a "void” call (without
any arguments). The "gen_dev” utility doesn’t know your intentions: it will generate a general empty
structure and fill "device.h” with generic functions prototypes. It is up to you to adjust all the puzzle's
pieces. We put a "outb (0x00, BASE)" to clear (zeros) all the eight output bit. Make attention to the
non-standard syntax of all the /O instructions (data, address) Normally the I/O port space is protected,
but to semplify your job, the code generator uses a special istruction ("iopl(3)” in "rtmain.c”) to unlock
ALL the I/O address space. As usual, this is "polically incorrect”: you must take all the safety to avoid
system crash;

"out_DirOutBit_output()”; all the arguments inside the SCICOS realtime environment are pointers to
double precision (64 bit) floating point variables. We chose to activate the output bit if the variable is

positive;

e "out_DirOutBit_end()” make the same job of the _init(): clear the output bit ;

run "make”; check if the compilation go through without errors or serious warnings then

run "make install”

5.2 Creating the SCICOS block for actuator

It it the time for understanding the real guts behind the fancy (or not so fancy) SCICOS graphics block

e do to "/usr/src/rtai-3.2/rtai-lab/scilab/macros/RTAI” (cd "/usr/src/rtai-3.2/rtai-lab/scilab/macros/RTAI")

e copy, customize and save the following examples as "rtai_DirOutBit.sci”
e open the local "Makefile” and add to the MACROS list "rtai_DirOutBit.sci”
e do to "/usr/src/rtai-3.2/rtai-lab/scilab/macros” ("cd ..")

e run "make”

A scicos file specific for an actuator block can be programmed starting from this example. Number 1...10

show the points of the program to be changed (see subsection 5.5).

[/KoK ks sk ok ook ok ok ok o ok o ok ook oK K oK oK ok K o ok o ok oK oK K oK K ok K o oK o oK K R oK K oK oK ok K o ok o sk o oK oK oK K ok K o oK o ok oK oK ok K ok K ok ok o ok ook oK oK
// Here the name of the function must be set.
function [x,y,typl=rtai_DirOutBit(job,argl,arg2) // 1
[/KoK sk sk ok ook ok ok ok o ok o ok oK oK K oK oK o K o ok o ok o oK oK K oK oK ok K o oK o oK K R oK K oK oK ok K ok ok o sk o oK oK oK K ok K o oK o ok oK oK ok K ok K ok ok o ok ook ok oK
//
// Copyright roberto.bucher@supsi.ch
x=[1;y=01;typ=01;
select job
case ’plot’ then
graphics=argl.graphics; exprs=graphics.exprs;
[/ 3k sk sk sk ks sk ok sk ok sk ok sk sk sk sk sk ok ok ok o sk sk sk sk sk ok sk ok sk sk sk sk sk ok s ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk ko sk sk sk ok ok
// The user has the possibility to extract some fields which can be used by the ’’plot’’
// function, in order to display some values on the scicos block here.
name=exprs (1) (2); // 2

[/K3 ok ks sk sk ok ok ok ok ok o ok o ok sk oK R ok oK ok oK o ok o ok oK R oK R oK K ok K o ok o ok K R oK K oK oK ok K ok ok o ok o ok oK R oK K ok K o oK o ok oK oK ok K ok K ok ok o ok ook oK oK
standard_draw(argl)

case ’getinputs’ then
[x,y,typl=standard_inputs(argl)

case ’getoutputs’ then

12

[x,y,typ]l=standard_outputs(argl)
case ’getorigin’ then
[x,y]l=standard_origin(argl)
case ’set’ then
x=argl
model=argl.model;graphics=argl.graphics;
label=graphics.exprs;
while %t do
[/ 33k srskoskok stk ke stk ok stk ok sk ok sk stk sk ok sk ke ok sk sk sk ok stk ok sk sk sk ok stk ok sk ki sk ok skl sk ok stk ki sk ok stk sk ok sk sk ok sk sk sk sk ok ok
// This is the dialog box needed to get all the parameters and info of the block.
[ok,ip,name,lab]l=.. // 3
getvalue(’Direct Output Bit DO’,..
[’input ports’;
’Identifier’],..
list(’vec’,-1,’str’,1),label(1))
[/ Kk sksk ke ks sk sk sk s sk sk ke sk sk sk ke sk sk sk sk e ok sk sk e sk sk s sk sk e ksl sk e sk sk s sk s e ksl sk ke ok sk s ke sk sk s sk sk e ksl sk sk sk s sk sk e sk sk sk ke sk sk s sk sk e ok ok

if "ok then break,end
label(1)=1lab
[/ 33k sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk K 3K K 3K K K K K K K K kK o o o o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K 3K K 3K K 3K 3K K 3K K K K K K ko o o o ok ok ok ok ok ok ok ok
// A name of the generated C-function is generated here.
funam=’o_DirOutBit_’ + name; // 4
[/ 33k sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk K 3k K 3K K K K K K K K Kk K o o o o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok K 3K K 3K 3K K 3K K K K K Kk ko o o o o o o ok ok ok ok ok ok ok ok
xx=[];ng=[];2=0;
nx=0;nz=0;
o=[1;
i=[1;
for nn =1 : ip
i=[i,1];
end
i=int(i(:));nin=size(i,1);
ci=1;nevin=1;
co=[];nevout=0;
funtyp=2004;
depu=Jt;
dept=/f;
dep_ut=[depu dept];

[ok,tt]=getCode (funam)
if "ok then break,end
[model,graphics,ok]=check_io(model,graphics,i,o,ci,co)
if ok then
model.sim=1ist (funam,funtyp)
model.in=1i
model.out=[]
model.evtin=ci
model.evtout=[]
model.state=[]
model.dstate=0
[/KoK sk sk sk ok ok ok ok ok o ok o ok sk R oK R ok oK o oK ok ok ok oK oK K oK o ok K o oK o oK K R oK K oK oK ok K o ok o ok o oK oK oK K ok K o oK o ok oK oK ok K ok K ok ok o ok ook oK oK
// Some block parameters can be inserted in the ’’rpar’’ fields. These parameters can be
// modified by the ’’xrtailab’’ application.
model .rpar=[] // 5
[/% KE koo ko ok ok ko ok oK ok oKk KKK KKk KKKk ok o
model.ipar=[]
model . firing=[]
model.dep_ut=dep_ut
model .nzcross=0
label(2)=tt
x.model=model

13

graphics.exprs=label
X.graphics=graphics
break
end
end
case ’define’ then
in=1
insz = 1
[/ sk skeoksk ok ok s ok sk ok sk s ok sk sk s ok sk sk s ok sk ok sk e ok ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk s ok ok sk e sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok ok
// All the parameters of the dialog box (see point 3) should be initialized here.
name = ’ACT’ // 6
[/ ek skeokskok sk sk ok sk ok sk sk ok sk sk s ok sk ok sk s ok sk ok sk e ok ok ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk s ok ok sk e sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok ok ok

model=scicos_model ()
model.sim=1ist(’ ’,2004)
model.in=insz

model .out=[]
model.evtin=1
model.evtout=[]
model.state=[]
model.dstate=[]
model.rpar=[]
model . ipar=[]
model.blocktype=’d’
model.firing=[]
model.dep_ut=[}t %f]
model .nzcross=0

[/%K% ook ok sk sk ok ok ok ok sk sk s ok ok sk sk o ok ok ok sk ok ok ok sk K 3 ok ok ok Kk 3 ok ok sk K ok ok ok sk sk ok ok sk sk 3 ok ok ok Kk 3k ok ok sk 3 ok ok ok Kk s ok ok sk ok ok ok ok sk ok sk ok ok ok ok ok ok K
// The block default values and the block look are set here.

//
label=list([sci2exp(in),name], [1) /7

gr_i=[’xstringb(orig(1l),orig(2),[’’DirOutBit’’;name],sz(1),sz(2),’’£fill’’);’]
[/%K KA A A A A KA KA K KA K KK KA K KA K KA K A K A K A K A A K A K KK KK KA KKK K KKK KKK KoK KoK oK KoK KoK koK koK Kok ok ok o
x=standard_define([3 2] ,model,label,gr_i)

end
endfunction

function [ok,tt]=getCode(funam)
textmp=[
’#ifndef MODEL’
’#include <math.h>’;
’#include <stdlib.h>’;
’#include <scicos/scicos_block.h>’;
*#endif’

).
s

’void ’+funam+’ (scicos_block *block,int flag)’;
1;

textmp ($+1)="{"

textmp($+1)=’#ifdef MODEL’

textmp($+1)="int i;’

textmp ($+1)="int port;’

textmp ($+1)="double ul’ + string(nin) + ’];’

textmp($+1)="double t = get_scicos_time();’

textmp ($+1)=" switch(flag) {’

textmp ($+1)="> case 4:°
[/%K F A KA A A A KA A K KA K KK KA K KA K KA K A KA KA KA KA KA KA KA KA KA KA KKK KKK KKK KKK KKK KKK KKK KoK ok oK o
// The initialization code of the block must be programmed here.

14

textmp ($+1)=’ port=out_DirOutBit_init();’
[/%K KA A A A A A KA KA KA KA KA K KA KA AR KA KA AR A K A K KA K KA K SRR K KKK KKK KK KKK KKK KKK KK KoK Kok kK
textmp ($+1)=" break;’;
textmp ($+1)=’> case 2:°
textmp ($+1)=" for (i=0;i<’ + string(nin) + ’;i++) ulil=block->inptr[i] [0];’

[/33 ksrskokok stk ok stk ok stk ok sk ok sk ok stk ok sk ke ok sk skl ok stk s ok sk sk ks ok stk sk ok sk ks sk sk sk ok stk e sksk sk stk ok sk sk ok sk ki sk ok ok
// The input respectively output code of the block must be programmed here.

textmp ($+1)=" out_DirQutBit_output (port,u,t);’

[[%KFF A A A A A A AK KA KA K K KKK KK oK K oK K KoK KoK oK KoK KoK oK oK oK KoK KoK KK KK KK KoK oK ok o o
textmp ($+1)=" break;’
textmp($+1)=’ case 5:°

[/33K srskoskok stk ke sksk sk ok stk ok sk ok sk stk sk ok sk ke ok sk skl ok stk s oksk sk sk ok stk sk ok sk ki sk sk sk ok sk ke sksk sk stk sk ok sk sk ok sk e sksk sk ok ok
// The termination code of the block must be programmed here.

textmp ($+1)=" out_DirQutBit_end(port);’
[[%KF A A A A A A KA KKK A KA K KK oK KooK KooK KooK K ok oK K ok oK K oKk K ok oK koK oK oK oK oK oK oK KoK KoK oK K kK koK ook ok o o
textmp ($+1)=" break;’

textmp($+1)=> 1}’
textmp ($+1)="#endif’
textmp ($+1)="}"

tt=textmp

ok=%t
endfunction

5.3 Some codes may need your attention

// 8

/79

// 10

With the actual version, it is mandatory to check and adjust some functions details inside "device_name.c”

and "device.h” (both in "rtai-lab/scilab/devices”) to match the automatic code generated by SCICOS.

Sometimes we have compilation problems because the - automatically generated - function calling is not
coherent with function prototyping (" device.h”) and functions definitions ("device_name.c”) . In case of
problems go to the SCICOS generated source folder and run "make” manually. Open the *.c file and note
the calling style. Open both "device_name.c” and "device.h” and adjust accordly. The "gen_dev” utilities don’t
know anything about your intentions, then it creates a very generic "device_name.c” and "device.h” that could

not match the functions calling of the SCICOS automatic code generator.

5.4 Creating the Scicos block for sensor
e Go to /usr/src/rtai-3.2/rtai-lab/scilab/devices ("cd /usr/src/rtai-3.2/rtai-lab/scilab/devices”)
e Choose a name for the output device ("DirlnpBit” Direct Input Bit)

e Use the utilities "gen_dev” ("gen_dev DirlnpBit”);

e open with an editor "GNUmakefile.am” ("gedit GNUmakefile.am” and manually add "DirlnpBit.c” to

libsciblk_a_SOURCES list;
e go back to /usr/src/rtai-3.2/ ("cd /usr/src/rtai-3.2/")
e run here "aclocal” (this step is optional; use only if your system need it)
e run automake ("automake rtai-lab/scilab/devices/GNUmakefile”)
e run "make”

e run "make install”

Now you have an empty code structure "/rtai-lab/scilab/device/DirlnpBit.c”: you need to fill with some

code.

e open "DirlnpBit.c” ("gedit rtai-lab/scilab/device/DirlnpBit.c”)

15

o look carefully to the empty function inside the code ;

e in the top of file add

#include <sys/io.h> ; The I/0 instructions definition
#define BASE 0x378 ; The parallel port BASE address

e in the function "void inp_DirlnpBit_input(double * y, double t)” put the code

input_bit inb(BASE+1) ;
input_bit = input_bit & 0x08 ; // Filter the Bit 3
if (input_bit > 0) *y = 1.0 ;

else xy = 0.0 ;

to read the input ERROR from the parallel port.
e run "make”; check if the compilation go through without errors or serious warnings then
e run "make install”

[/KKK A AR R oK K KK KKK KK oK oK ok oK ok K KK K oK R oK oK o K o koK K K KK oK oK ok ok ok K oK R oK R ok oK ok K ok ok K KK ok oK ok ok ok ok ok oK
function [x,y,typl=rtai_DirInpBit(job,argl,arg2) // 1
[/3K sk sk sk sk ok sk ok ok ok o sk o ok sk sk R ok o ok ok ok ok sk ok R sk R oK R ok ok sk o ok K R sk R ok R ok ok ok ok o sk ok sk R sk R ok ok o sk o sk sk sk sk ok ok ok ok o sk ok ok oK
//
// Copyright roberto.bucher@supsi.ch
x=[1;y=01;typ=01;
select job
case ’plot’ then
graphics=argl.graphics; exprs=graphics.exprs;
[/KKK A AR R oK oK oK KoK KKK KK oK oK ok oK oK oK KoK K oK K oK oK o K o koK K K K K ok oK ok ok o sk ok oK K oK K ok ok ok ok o ok ok ok oK K sk ok ok ok o ok ok ok oK
name=exprs(1) (2); // 2
[/3K sk sk sk sk ok sk ok ok ok sk o ok sk sk sk ok ok ok ok ok sk ok Rk R sk R ok ok o sk o ok oK R sk R sk ok ok ok ok ok o sk sk sk R sk ok ok ok s sk o sk sk sk sk ok ok ok ok o sk ok ok oK
standard_draw(argl)
case ’getinputs’ then
[x,y,typl=standard_inputs(argl)
case ’getoutputs’ then
[x,y,typl=standard_outputs(argl)
case ’getorigin’ then
[x,y]=standard_origin(argl)
case ’set’ then
x=argl
model=argl.model;graphics=argl.graphics;
label=graphics.exprs;
while %t do
[/KKK A AR K o oK ook ok oK oK KoK K ok oK ok oK ok ok oK K oK K oK oK o ok o ok ook oK K oK K ok oK ok ok o sk ok oK K oK K ok oK ok ok o ok ok oK ok K ok oK ok ok o ok ok ok oK
[ok,op,name,lab]l=.. // 3
getvalue(’Set ’,
[’output ports’;
’Identifier’],..
list(’vec’,-1,’str’,1),label(1))
[[KKKk AR R oK oK o oK o ok o ok ok oK K oK K ok oK ok ok o ok ok oK K oK K ok oK o ok o sk ok oK K oK K ok oK ok ok o sk ook oK K oK K ok ok ok ok o sk ok ok ok K ok K ok ok o sk ok oK oK

if "ok then break,end
label(1)=1lab
7/ Kk ok ok sk sk sk ok ok o ok sk ok sk ok ok o ok ok sk sk sk ok ok o ok sk ok sk ok o o ok sk sk sk ok ok o ok sk sk sk ok ok o ok sk sk sk ok ok o ok ok sk sk sk ok ok o ok ok sk sk sk ok ok o ok sk ok sk ok ok o ok
funam=’i_DirInpBit_’ + name; // 4
[/ %% Kok ok sk o kok ok o stk ok ok sk ok ook ok ok o skok ok ok sk ok ok ok ok sk ok ok sk o ok ok ok stk ok sk ok ok ok ok ok sk ok o sk ok ok ok sk ok o skok ok sk o sk ok ok ok ok o skok ok ok
xx=[];ng=[1;2=0;
nx=0;nz=0;

o=[];

16

i=[1;

for nn =1 : op
o=[o0,1];

end

o=int(o(:)) ;nout=size(o,1);

ci=1;nevin=1;

co=[];nevout=0;

funtyp=2004;

depu=Jt;

dept=/f;

dep_ut=[depu dept];

[ok,tt]=getCode (funam)
if "ok then break,end
[model,graphics,ok]=check_io(model,graphics,i,o,ci,co)
if ok then
model.sim=1ist (funam,funtyp)
model.in=[]
model.out=o0
model.evtin=ci
model.evtout=[]
model.state=[]
model.dstate=0
[/ %k sookskook ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok kKK ok ok ko ok sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok sk ok ok ok ok ok ok ok kKK kK ok ok ok sk ok ok ok sk ok ok ok ok ok
model.rpar=[] // 5
[/ Kok ok ok o ok kKoK ok ok o o o K oK oK oK ok o o K K KK oK ok o o K KoK oK ok o o o K K oK ok ok o o KK oK oK ok o o o K K oK oK ok ok o K KoK ok ok o o K KoK oK ok ok o o K K oK ok ok ok o K K
model.ipar=[]
model.firing=[]
model.dep_ut=dep_ut
model .nzcross=0
label(2)=tt
x.model=model
graphics.exprs=label
x.graphics=graphics
break
end
end
case ’define’ then
out=1
outsz = 1
[/ %k skokoskook ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ko o ko ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok kK ko ko ok ok ok ok sk ok ok ok ok ok ok ok
name = ’SENS’ // 6
[/ Rk ok ok ok kKKK oK ok ok o o KK oK oK ok ok o K KK oK ok ok o o K KoK oK ok o o K KoK oK ok ok o K KoK oK ok ok o KK oK oK ok ok o KK oK oK ok ok o K KoK oK ok ok K oK ok ok ok o K

model=scicos_model ()
model.sim=1ist(’ ’,2004)
model.in=[]
model.out=outsz
model.evtin=1
model.evtout=[]
model.state=[]
model.dstate=[]
model.rpar=[]
model.ipar=[]
model.blocktype=’c’
model.firing=[]
model.dep_ut=[%t %f]
model .nzcross=0

/] F KKKk ok koK Kok ok ok ok ok kK ok ok ok ok o ok Kok ok ok ok o ok KoK ok ok ok o kKoK ok ok ok o ok KoK ok ok ok ok ok Kok ok ok ok o kKoK ok ok ok ok ok Kok ok ok ok ok kK ok ok ok ok o K

17

label=list ([sci2exp(out) ,name], [1) /] 7

gr_i=[’xstringb(orig(1) ,orig(2), [’ ’DirInpBit’’;name],sz(1),sz(2),’’£ill’’);’]
N R T L Rt T T

x=standard_define([3 2] ,model,label,gr_i)

end
endfunction

function [ok,tt]=getCode(funam)
textmp=[
’#ifndef MODEL’
’#include <math.h>’;
’#include <stdlib.h>’;
’#include <scicos/scicos_block.h>’;
’#endif’

).
)

’void ’+funam+’ (scicos_block *block,int flag)’;
1;
textmp ($+1)="{"
textmp ($+1)="#ifdef MODEL’
textmp ($+1)="int i;’
textmp($+1)=double y[’ + string(nout) + ’];’
textmp($+1)="double t = get_scicos_time();’
textmp ($+1)="> switch(flag) {’

textmp($+1)=> case 4:’
[/% KF KA A K AR AR KK oK KooK K ok oK ok oK ok oK Kok ok ok ok ok ok Kok ok ok oK koK ok oK ok oK KoK KoK KoK KoK KKK ok ok o
textmp ($+1)=" /* Initialisation */’ // 8
[/K KA KA A A KA A K KA K KK A K A K KK K oA K oK K KK oK K oK K KK KKK KK KKK KKK KK KK KoK KoK KoK kK koK ok ok ok ok o
textmp ($+1)=" break;’;
textmp ($+1)="’ case 1:’
[/%K F kA AR A KKK KK oK KoK oK ook Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk oK oK oK KoK kKKK KK kKK ok ok o
textmp($+1)=’> inp_DirInpBit_input(y, t);’ // 9
[/KK A KA A KA KA K KA K KK KA K KA K KA A KA K A KA KA K A K KK KA K KKK KKK KKK KK KKK KKK KoK KoK koK koK Kok ok ok o
textmp ($+1)=" for (i=0;i<’ + string(nout) + ’;i++) block->outptr[i] [0] = y[i];’
textmp ($+1)=" break;’
textmp ($+1)=’> case 5:°
[/%K KAk A A A A A KA KA KA KA KA AR AR AR AR KA K KKK KK KK KKK KKK KKK KK KKK KK KK KKk ok
textmp($+1)=" /* end */’ // 10
[[%KF koK ko ok ok ok ko ok ok ok ook ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk oK oK Kk oKk KKK KKk kK ok ok o
textmp ($+1)=" break;’

textmp($+1)=> 1}’
textmp ($+1)="#endif’
textmp ($+1)="}"

tt=textmp
ok = It
endfunction

5.5 Fitting the code
1. Here the name of the function must be set.

2. The user has the possibility to extract some fields which can be used by the "plot” function, in order to
display some values on the scicos block here.

3. This is the dialog box needed to get all the parameters and info of the block.

4. A name of the generated C-function is generated here.

18

5. Some block parameters can be inserted in the "rpar” fields. These parameters can be modified by the
"xrtailab” application.

All the parameters of the dialog box (see point 3) should be initialized here.
The block default values and the block look are set here.

The initialization code of the block must be programmed here.

© © N 2

The input respectively output code of the block must be programmed here.

10. The termination code of the block must be programmed here.

The new blocks must be added to the "Makefile” in the "macros/RTAI” directory. The user must now simply
run "make” to complete the procedure.

6 Using COMEDI drivers

In order to use COMEDI drivers with the RTAI-Lab environment the following modules should be installed:

e rtai_hal

o rtai_lxrt

o rtai_fifos

e rtai_sem

e rtai_mbx

e rtai_msg

e rtai_netrpc
e rtai_shm

e rtai_comedi
e comedi

e kcomedilib
At this point the user must load the COMEDI specific modules and perform the "comedi_config” command.

APPENDIX ——

A Configuring a patched kernel for RTAI

From a basic point a view, kernel 2.4.x and 2.6.x have a very similar configuration structure: if you know
which item to select, the graphical tool will guide your choice. The compilation steps are strigthforward,
as described in the previous sections. The real obstacle for a beginner is to understand the thousands of
options in the kernel configuration. We hope that the following guidelines will save them a lot of effort and
frustration.

19

Al

A2

General Guidelines

Keep a default safe kernel version
Keep in the Grub/Lilo menu a copy of the default kernel shipped with the distro.

What is not present will not fail

Keep it simple. At first try to select only the options that you really need. Don'’t care about the angry
red message during the boot. You will fix them later, selecting the right option. Your first primary target
is to produce a working hard-realtime kernel. Multimedia and other goodies could wait.

Forget Overclock

If Linux is a serious operating system, Linux-Adeos-RTAIl "hard-as-diamond” realtime operating system
is a very serious one, demanding platform. It will push every bit of your hardware to the max. Then,
forget about tweaks or overclock. Put the Bios to "safe” (or "default”) settings. Use Memtest86 program
to test the CPU-Memory subsystem of your PC.

Hardware incompatibility

There is a residual probability of hardware incompatibility, because some chipsets implement timer and
interrupt controller in a non-canonical way. The fastest way to check your hardware with ADEOS-RTAI
is downloading the ISO image of a bootable test CD from www.rtai.org, burning a disk and making a
clean boot. If the latency test works your PC is - basically - OK.

Resident in the kernel or module ?

Most of the device driver options offer three settings:

- de-selected (blank)

- selected as modules (M or a dot (.))

- selected as permanent code in the kernel.

If you don’t need them leave de-selected: what is not present will not fail. Select as module if your
system want to configure dinamically the devices during the boot (as Fedora Core want do with USB)
or when you want to control manually the presence of a specific device driver. Otherwise, if you always
need the presence of a device (eg. the ATA hard disk) and you want maximum performance put the
code in the kernel. Linux is designed as a monolithic kernel. You can criticize it. You can blame it. But
it is fast.

Configuration

These guidelines are for 2.6.x kernel. Now launch the configuration tool ("make xconfig” or "make menucon-

fig?).

"l see you”
From the menu "Option” select "Show All Options”. You really need this option enabled. The option
that you do not see will kill you.

Learn to read suggestions

The kernel configuration needs calm, concentration, focus and accurate reading of the suggestions in
the bottom right window. If you use the "menuconfig” text program, there is a separe "Help” option for
each menu/item.

Code maturity level options
Select "Prompt for development ...etc ...".

General setup
Leave the default

Loadable modules support
Select "Enable module support” and "Automatic module loading” Deselect "Module versioning sup-
port”. The RTAI modules are not version dependent.

20

Processor type and features

Select here your Sub-architecture (PC-Compatible) and processor Family. Select "Preemptible kernel”.
This option reduces the system latency. It is good for you. Select only the options that you really
understand, otherwise leave them unselected. Be sure to deselect "Use register arguments”.

Adeos Support
Leave the default settings

Power Management

Modern processors need power management. If you try to disable this feature, your machine is going
to be very hot and the BIOS will activate its power management routine anyway. The BIOS routines
are awfully slow and have the bad aptitude of disabling ALL interrupts: this is not a good thing in a
Linux Realtime system. Please activate the Power Management and ALL the ACPI relevant features
for your machine. Leave APM unselected (it is necessary only for VERY old machines). Deselect also
CPU Frequency Scaling, if you leave this option active, the timing of the realtime tasks will change
dinamically according to the CPU clock.

Bus options
Leave the default. Check the support for your hardware. Laptop needs PCCARD (PCMCIA) support.

Executable File Format
Leave the default

Device driver
Generic driver options: leave the default

Memory Tecnology Devices (MTD)
You don’t need them.

Parallel Port

Unselect Parallel port support. The standard parallel port is a useful device for realtime debugging and
experimenting. You need to leave this resurce free for Comedi or for direct access for kernel and user
tasks.

Plug and Play support
Leave the default settings.

Block devices
Select your devices. Fedora Core lll needs also Ram Disk Support and Initial RAM Disk (initrd) to
boot.

1/0 Scheduler
Leave the default

ATA/ATAPI/MFM/RLL Support
Select the main item "ATA/ATAPI/MFM/RLL supportand” all the options relevant to your system. Dont’
be afraid to select too many options: follow the suggestion of the help window.

SCSI device support
Make sure the selection of the main item. Leave the others as default. This subdevice needs attention
only if you have SCSI devices.

Old CDROM
Obsolete devices. Normally all the CD/DVD drives are IDE devices.

Multi-device support (RAID and LVM)
You need this option only in special cases. For Fedora Core Il default installation you need this option
enabled with LVM (Device Mapper) enabled too.

Fusion MPT support
Leave this option disabled.

21

e |[EEE 1394 (Firewire)
Leave disabled.

e 102 device support
Leave disabled.

e Network support
Leave the default. Explore the devices submenu until you find your netword interface. Use "Ispci” to
explore your system.

¢ Amateur Radio, Irda, Bluthoot and ISDN Telephony support
Leave disabled. You will enable it later.

e Input device
Make sure of the selection of mouse devices.

e Character devices
At first try to unselect everythings or leave the defaults. AGP Support and DRI support are the critical
items. We will discuss them in the videocard section.

e |12C support
This kind of supervision devices are very useful but create too many problems for ADEOS in the
handling of their interrupt routine. Leave this option disabled.

e Dallas 1 wire bus, Mish devices
Leave disabled.

o Multimedia devices
Leave disabled. You will enable them later.

e Graphics support
Leave it disabled. With this option you can use the advanced features of your video card, but some-
times this creates compatibility problems.

e Console display driver support
Select VGA text console

e Sound
Leave disabled. You will enable it later. Prof. Paolo Mategazza, Father and Architect of RTAI, has
a PC without soundcard. In 2005 it seems really incredible. In practice, if you work with realtime
systems, the soundcard is just a source of unwanted interrupt and DMA activity. On the other hand,
Simone Mannori uses a system with Sound Blaster Audigy with 5+1 support and a Sony multichannels
amplifier to play "Matrix” with Xine while controlling several realtime processes.

e USB Support
Leave disabled or leave the default options. You will refine the details later.

o File Systems
Select both ext2 and ext3. Most of distributions use them. Suse use RiserFS. Leave untouched the
other options.

e CD/ROM-DVD Filesystem
Select ISO9660

e DOS/FAT/NTFS
Select what you need.

Leave the other menu and options as default.

If you recompile the kernel to add some features, you need also to recompile, install and check both RTAI
and Comedi.

22

B Configuring boot manager

We report a dump of a "/etc/grub.conf” for a Fedora Core Il system as generic reference.

grub.conf generated by anaconda

#

Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, eg.

root (hd0,1)

kernel /vmlinuz-version ro root=/dev/hda3

initrd /initrd-version.img

boot=/dev/hda

default=2

timeout=10
splashimage=(hd0,1)/grub/splash.xpm.gz
#

The original F.C. II Generic-Modular Non-Realtime Kernel
title Fedora Core (2.6.5-1.358)

root (hdO,1)

kernel /vmlinuz-2.6.5-1.358 ro root=LABEL=/ rhgb quiet
initrd /initrd-2.6.5-1.358.img

#

The latest ADEOS patched Kernel
title Linux (2.6.10-RTAI-3.2)

root (hdO,1)

kernel /vmlinux-2.6.10-Adeos

#

01d series kernel

title Linux (2.4.27-RTAI)

root (hd0,1)

kernel /vmlinux-2.4.27-RTAI

#

VERY useful memory tester program
title Memtest86

root (hdO,1)

kernel /memtest86+-1.11

#

If you work in industry like me, you may need this bunch of software :

title Windows XP-Home
rootnoverify (hd0,0)
chainloader +1

C Installing 3D DRI support inside a 2.4.x kernel

We describe the MTRR / AGP / DRI configuration options.

e Processor type and features
Select MTRR support

e Character device - dev/agpgart (AGP support)

Select your chipset. Inserting a chipset which is NOT present it is not - generally - dangerous because
the corresponding driver is activated ONLY if it is correctly detected.

e Character device - Direct Rendering Manager

Open the submenu and go to "DRM 4.1 Driver” (in case, unselect the old one). Select your video
card. Some cards have a better support than others (ATl are the best ones, refer to DRI web pages

for detailed information).

23

D Installing ATI proprietary driver for kernel 2.6.x

The ATI driver is splitted into two sections: (1) a X11 (Xorg or XFree) driver and (2) a 3D kernel module
"accelerator”. If you have an ATI supported videocard is a good idea to use the "fglrx-config” program
to configure your machine to use the proprietary video driver. In this case the machine will be not 3D
accelerated but the proprietary driver is definetely better.

e Download the driver form www.ati.com and unpack with
e "rpm ——install ——force < .rpm>"
e configure your diplay using "fglrx-config”

The X11 driver is configured in "/etc/X11/xorg.conf”

Section "Device"
Identifier "ATI Graphics Adapter"
Driver "fglrx"

The ATI custom X11 driver is a very good choice anyway, beacause the generic X11 "radeon” driver shipped
with Xorg/XFree is not very welcome for the latest ATI models.

Section "Device"

Identifier "VideocardO"

Driver "radeon"

VendorName "Videocard vendor"

BoardName "ATI Radeon Mobility 9600 M10"
EndSection

To fully use the 3D-OpenGl acceleration you really need to compile a brand-new (Adeos patched of course)
2.6.x Linux kernel with the following mandatory options:

e in section "Processor type and features”: disable "MTRR” support ;

e in section "Character devices”: disable both "dev/agpgart (AGP Support)” and "Direct Rendering Man-
ager”

e save the new ".config” and compile the new kernel. These options must be disabled because the "fgirx”
kernel module needs direct access to the hardware;

e reboot the machine with the new kernel;

e make a safe copy of your xorg.conf (you never know : "cp /etc/X11/xorg.conf /etc/X11/xorg.conf.backup”)
e launch "fglrxconfig”

e answer all the questions after reading the text. Normally the suggested default is correct.

e change working directory to

cd /lib/modules/fglrx/build_mod/

sh build.sh" --> (build a brand-new 3D acceleration module for you kernel)
cd ..
sh make_install.sh" --> (install the new kernel fglrx module)

e Open atext console [CRTL]+ALT+[F1];

e login as "root”

init 3
init 5

24

to shutdown and reboot the X server.

e now "Ismod” signal the presence of a new kernel module

Module Size Used by
fglrx 238716 9
ohci_hcd 21512 0
ehci_hcd 30852 0

o Verify the new setup using

glxinfo
glxgears

and

fglrxinfo
fgl_glxgears

If everything works OK you are ready to play Doom, Quake or whatever you like while playing DVD, surfing
the Web and running hard realtime tasks, of course.

E Code Examples

We report the printout of some configuration and code files.

E.1 GNUmakefile.am
Device drivers makefile.

moduledir = $(DESTDIR)@RTAI_MODULE_DIR®@

CROSS_COMPILE

Q@CROSS_COMPILE®@

1lib_LIBRARIES

libsciblk.a

libsciblk_a_SOURCES = \
rtai_scope.c \
rtai_led.c \
rtai_meter.c \
rtai_fifo.c \
extdata.c \
mbx_receive_if.c \
mbx_receive.c \
mbx_ovrwr_send.c \
mbx_send_if.c \
rtmain.h \
rtai_sem.c \
cioquad4.c \
maxon_can.c \
libpcan.c \
rtai_epp.c \
libpcan.h \
pcan.h \
rtai_pport.c\
mio_mio.c\
nuke.c\

25

DirOutBit.c \
DirInpBit.c

if CONFIG_RTAI_COMEDI_LXRT
libsciblk_a_SOURCES += \
rtai_comedi_data.c \
rtai_comedi_dio.c

endif

libsciblk_a_AR = $(CROSS_COMPILE)ar cru
includedir=$(prefix)/include/scicos

include_HEADERS = \
devices.h \
devstruct.h

INCLUDES = \
ORTAI_USER_CFLAGS@ \
-I$(top_srcdir) /base/include \
-I../../../base/include \
-I$(top_srcdir)/addons/comedi \
-I@COMEDI_DIR@/include

EXTRA_DIST = template.c README.devices devtmpl.h cioquad4.c

E.2 DirOutBit.c

The source code of the Direct Output Bit to the parallel port. Observe the code customisation and the
elimination of the functions not used.

/*
COPYRIGHT (C) 2003 Roberto Bucher (roberto.bucher@die.supsi.ch)
Simone Mannori (smannori@f2n.it)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

*/

#include <stdio.h>

#include <string.h>

#include "devstruct.h"

#include <sys/io.h>
#define BASE 0x378 // The parallel port BASE address

extern devStr inpDevStr[];

26

extern devStr outDevStr[];
extern int pinp_cnt;
extern int pout_cnt;

int inp_DirQutBit_init(int nch,char * sName,char * sParam,double pl,
double p2, double p3, double p4, double p5)
{
int port=pinp_cnt++;
inpDevStr [port] .nch=nch;
strcpy (inpDevStr [port] . sName, sName) ;
strcpy (inpDevStr [port] . sParam, sParam) ;
strcpy (inpDevStr [port] .I0Name, "DirOutBit inp");
inpDevStr [port] .dParam[0]=p1;
inpDevStr [port] .dParam[1]=p2;
inpDevStr [port] .dParam[2]=p3;
inpDevStr [port] .dParam[3]=p4;
inpDevStr [port] .dParam[4]=p5;

return(port) ;

void inp_DirOutBit_input(int port, double * y, double t)
{

/* *xy=XXXX; */
}
void inp_DirOutBit_update(void)
{
}
void inp_DirOutBit_end(int port)
{
printf("%s closed\n",inpDevStr[port] .I0Name) ;
}
// -- -- --
int out_DirQOutBit_init(void)
{
outb(0x00,BASE) ;
return O ;
}

void out_DirOutBit_output(int port, double * u,double t)

{
/* XXXX=*u; */

if (*u > 0) outb(0x01,BASE) ;
else outb(0x00,BASE) ;

void out_DirOutBit_end(int port)
{

outb (0x00,BASE) ;

printf("%s closed\n",outDevStr[port].I0Name) ;
}

27

E.3 device.h

The source code of the header file that contains all the functions prototyping.

int out_rtai_scope_init(int nch,char * sName);
void out_rtai_scope_output(int port, double * u,double t);
void out_rtai_scope_end(int port);

int inp_rtai_comedi_data_init(int nch,char * sName, int Range, int aRef) ;
void inp_rtai_comedi_data_input(int port, double * y, double t);

void inp_rtai_comedi_data_update(void);

void inp_rtai_comedi_data_end(int port);

int out_rtai_comedi_data_init(int nch,char * sName, int Range, int aRef);
void out_rtai_comedi_data_output(int port, double * u,double t);
void out_rtai_comedi_data_end(int port);

int inp_rtai_comedi_dio_init(int nch,char * sName);

void inp_rtai_comedi_dio_input(int port, double * y, double t);
void inp_rtai_comedi_dio_update(void);

void inp_rtai_comedi_dio_end(int port);

int out_rtai_comedi_dio_init(int nch,char * sName,double threshold);
void out_rtai_comedi_dio_output(int port, double * u,double t);
void out_rtai_comedi_dio_end(int port);

int out_rtai_led_init(int nch,char * sName);
void out_rtai_led_output(int port, double * u,double t);
void out_rtai_led_end(int port);

int out_rtai_meter_init(char * sName);
void out_rtai_meter_output(int port, double * u,double t);
void out_rtai_meter_end(int port);

int inp_extdata_init(int nch,char * sName);

void inp_extdata_input(int port, double * y, double t);
void inp_extdata_update(void);

void inp_extdata_end(int port);

int out_mbx_ovrwr_send_init(int nch,char * sName,char * IP);
void out_mbx_ovrwr_send_output(int port, double * u,double t);
void out_mbx_ovrwr_send_end(int port);

int inp_mbx_receive_if_init(int nch,char * sName,char * IPs);
void inp_mbx_receive_if_input(int port, double * y, double t);
void inp_mbx_receive_if_update(void) ;
void inp_mbx_receive_if_end(int port);

int inp_mbx_receive_init(int nch,char * sName,char * IP);
void inp_mbx_receive_input(int port, double * y, double t);
void inp_mbx_receive_update(void);

void inp_mbx_receive_end(int port);

int out_mbx_send_if_init(int nch,char * sName,char * IP);
void out_mbx_send_if_output(int port, double * u,double t);
void out_mbx_send_if_end(int port);

int inp_rtai_fifo_init(int nch,char * sName,char * sParam,double pl,

double p2, double p3, double p4, double p5);
void inp_rtai_fifo_input(int port, double * y, double t);

28

void inp_rtai_fifo_update(void);
void inp_rtai_fifo_end(int port);

int out_rtai_fifo_init(int nch,int fifon);
void out_rtai_fifo_output(int port, double * u,double t);
void out_rtai_fifo_end(int port);

int inp_rtai_sem_init(char * sName,char * IP);

void inp_rtai_sem_input(int port, double * y, double t);
void inp_rtai_sem_update(void);

void inp_rtai_sem_end(int port);

int out_rtai_sem_init(char * sNam,char * IPe);
void out_rtai_sem_output(int port, double * u,double t);
void out_rtai_sem_end(int port);

int inp_cioquad4_init(int modul ,char * Addr,int reso, int prec, int Rot, int Reset);
void inp_cioquad4_input(int port, double * y, double t);

void inp_cioquad4_update(void);

void inp_cioquad4_end(int port);

int inp_pcan_init(char * can_id,int Kp, int Ki, int nTyp);
void inp_pcan_input(int port, double * y, double t);

void inp_pcan_update();

void inp_pcan_end(int port);

int out_pcan_init(char * can_id,int Kp, int Ki, int nTyp);
void out_pcan_output(int port, double * u,double t);
void out_pcan_end(int port);

int inp_rtai_epp_init(int nch);
void inp_rtai_epp_input(int port, double * y, double t);
void inp_rtai_epp_update(void);
void inp_rtai_epp_end(int port);

int out_rtai_epp_init(int nch);

void out_rtai_epp_output(int port, double * u,double t);
void out_rtai_epp_end(int port);

void rtai_epp_outb(double value, int port);

void inp_mio_mio_init(int port,int nch,char * sName,char * sParam,double pil,
double p2, double p3, double p4, double p5);

void inp_mio_mio_input(int port, double * y, double t);

void inp_mio_mio_update(void);

void inp_mio_mio_end(int port);

void out_mio_mio_init(int port,int nch,char * sName,char * sParam,double pl,
double p2, double p3, double p4, double p5);

void out_mio_mio_output(int port, double * u,double t);

void out_mio_mio_end(int port);

void inp_nuke_init(int port,int nch,char * sName,char * sParam,double pil,
double p2, double p3, double p4, double p5);

void inp_nuke_input(int port, double * y, double t);

void inp_nuke_update(void);

void inp_nuke_end(int port);

int out_nuke_init(void);
void out_nuke_output(int port, double * u,double t);

29

void out_nuke_end(int port);
e e e
void inp_DirOutBit_init(int port,int nch,char * sName,char * sParam,double pi,
double p2, double p3, double p4, double p5);
void inp_DirOutBit_input(int port, double * y, double t);
void inp_DirOutBit_update(void) ;
void inp_DirOutBit_end(int port);
//-======- e T e
int out_DirOutBit_init(void);
void out_DirOutBit_output(int port, double * u,double t);
void out_DirOutBit_end(int port);
/7- - - e
int inp_DirInpBit_init(int port,int nch,char * sName,char * sParam,double pi,
double p2, double p3, double p4, double pb);

void inp_DirInpBit_input(double * y, double t);
void inp_DirInpBit_update(void) ;
void inp_DirInpBit_end(int port);

E.4 DirlnpBit.c

The source code of the Direct Input Bit from the parallel port. Observe the code customisation and the
elimination of the functions not used.

/*
COPYRIGHT (C) 2005 Roberto Bucher (roberto.bucher@die.supsi.ch)
Simone Mannori (smannori@f2n.it)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the Licemnse, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/

#include <sys/io.h>
#define BASE 0x378 // The parallel port BASE address

extern devStr inpDevStr[];
extern devStr outDevStr[];
extern int pinp_cnt;
extern int pout_cnt;

int inp_DirInpBit_init(int nch,char * sName,char * sParam,double pil,
double p2, double p3, double p4, double p5)
{
int port=pinp_cnt++;
inpDevStr [port] .nch=nch;
strcpy (inpDevStr [port] . sName, sName) ;
strcpy (inpDevStr [port] . sParam, sParam) ;
strcpy (inpDevStr [port] .I0Name, "DirInpBit inp");
inpDevStr [port] .dParam[0]=p1;

30

inpDevStr[port] .dParam[1]=p2;
inpDevStr [port] .dParam[2]=p3;
inpDevStr [port] .dParam[3]=p4;
inpDevStr[port] .dParam[4]=p5;

return(port) ;
void inp_DirInpBit_input(double * y, double t)
{

int input_bit ;

/* *y=XXXX; */

input_bit = inb(BASE+1) ;

input_bit = input_bit & 0x08 ; // Filter the Bit 3

if (input_bit > 0) *y
else *y

1.0 ;
0.0

>

void inp_DirInpBit_update(void)
{
}

void inp_DirInpBit_end(int port)
{

printf("%s closed\n",inpDevStr[port].I0Name);
}

F Standar Parallel Port

We report some hardare details of SPP as reference.

The most basic version of parallel port is the SPP (Standard Parallel Port).

DB-25 Pin allocation.

Pin Name Func. Register Hardware Inverted
-----] B R
1 nStrobe In/0Out Control Yes

2 Data O Out Data

3 Data 1 Out Data

4 Data 2 Out Data

5 Data 3 Out Data

6 Data 4 Out Data

7 Data 5 Qut Data

8 Data 6 Out Data

9 Data 7 Out Data

10 nAck In Status

11 Busy In Status Yes

12 P_Out/_End In Status

13 Select In Status

14 nAuto In/Out Control Yes

15 Error In Status

16 nlnit In/0Out Control

17 nSelect In/Out Control Yes

18-25 Ground Gnd

In/Out: TTL level input / Open Collector output

31

Out : TTL level output
In : TTL level input

Hardware Inverter: the in/out voltage level is inverted respect to
normal logic.

I/0 BASE valid address: 0x378 - 0x278 - 0x3BC

BASE+0 : Data Register

Bit Pin Name Fun. Register
e R e - -] ===

0 2 Data O Out Data

1 3 Data 1 Out Data

2 4 Data 2 Out Data

3 5 Data 3 Out Data

4 6 Data 4 Out Data

5 7 Data 5 Out Data

6 8 Data 6 Out Data

7 9 Data 7 Out Data

BASE+1 : Status Register

Bit Pin Name Fun. Register Hardware Inverted
————— | —=mmmmm = m e | - =] mmm o | -

0 Reserved

1 Reserved

2 Reserved

3 15 Error In Status

4 13 Select In Status

5 12 P-Out/-End In Status

6 10 nAck In Status

7 1 Busy In Status Yes

BASE+2 : Control

Bit Pin Name Fun Register Hardware Inverted
- |-———-—- | -———————- |-—==—————- |-====— |-~

0 1 nStrobe In/Out Control Yes

1 14 nAuto In/Out Control Yes

2 16 nlnit In/Out Control

3 17 nSelect In/Out Control Yes

4 En_IRQ(nACK)

5 En_DATA_READ

6 unused

7 unuded

32

